第九章 储层地质建模

第九章 储层地质建模
第九章 储层地质建模

《储层地质学》期末复习题及答案

《储层地质学》期末复习题 第一章绪论 一、名词解释 1、储集岩 2、储层 3、储层地质学 第二章储层的基本特征 一、名词解释 1、孔隙度 2、有效孔隙度 3、流动孔隙度 4、绝对渗透率 5、相渗透率 6、相对渗透率 7、原始含油饱和度 8、残余油饱和度 9、达西定律 二、简答题 1、简述孔隙度的影响因素。 2、简述渗透率的影响因素。 3、简述孔隙度与渗透率的关系 第三章储层的分布特征

一、简答题 1、简述储层的岩性分类? 2、简述碎屑岩储层岩石类型? 3、简述碳酸盐岩储层岩石类型? 4、简述火山碎屑岩储层岩石类型? 5、风化壳储层的结构 6、泥质岩储层的形成条件 二、论述题 1、简述我国中、新生代含油气湖盆中的主要储集砂体成因类型及主要特征。 (要点:重点针对河流相、三角洲、扇三角洲、滩坝、浊积岩等砂体分析其平面及剖面展布特征) 第四章储层孔隙成岩演化及其模型 一、名词解释 1、成岩作用 2、同生成岩阶段 3、表生成岩阶段 二、简答题 1、次生孔隙形成的原因主要有哪些? 2、碳酸盐岩储层成岩作用类型有哪些? 3、如何识别次次生孔隙。 三、论述题 1、简述成岩阶段划分依据及各成岩阶段标志

2、论述碎屑岩储层的主要成岩作用类型及其对储层发育的影响。 3、论述影响储层发育的主要因素有哪些方面。 第五章储层微观孔隙结构 一、名词解释 1、孔隙结构 2、原生孔隙 3、次生孔隙 4、喉道 5、排驱压力 二、简答题 1、简述砂岩碎屑岩储层的孔隙与喉道类型。 2、简述碳酸盐岩储层的孔隙与喉道类型。 三、论述题 试述毛管压力曲线的作用?并分析下列毛管压力曲线所代表的含义 第六章储层非均质性 一、名词解释 1、储层非均质性 2、层内非均质性 3、层间非均质性 4、平面非均质性 二、简答题 1、请指出储层非均质性的影响因素。 2、如何表征层内非均质性?

储层地质建模的现状与展望

MARINEORIGINPETROLEUMGEOLOGY 海相油气地质 第12卷第3期理论? 前沿2007年7月 摘要储层地质建模对于科学的油藏评价、油藏开发管理以及三维油藏数值模拟具 有很大的意义。目前已有的建模算法和商业软件可满足地质特征三维分布的图形要求,并可进行初步的井间预测,但预测精度有待于进一步提高。简要介绍了各种建模方法研究现状,分析了已有算法中亟需改进的问题,并从建模算法的改进、原型模型的丰富、地震信息的整合以及加强地质约束等方面论述了储层地质建模的发展前景。关键词 储集层;地质建模;随机模拟;地质统计学 储层地质建模的现状与展望 吴胜和1963年生,教授,博士生导师。1986年毕业于华东石油学院北京研究生部,获硕士学 位;1998年毕业于石油大学(北京),获博士学位。主要从事储层地质学、油藏描述及三维地质建模的教学与科研工作。通讯地址:102249北京市昌平区中国石油大学资源与信息学院;电话: (010)89733324 文章编号:1672-9854(2007)-03-0053-08 中图分类号:TE19 文献标识码:A 收稿日期:2007-05-14 吴胜和 吴胜和,李宇鹏 (中国石油大学资源与信息学院) 随着油气田勘探开发的不断深入,储层研究转向以建立定量的三维储层地质模型为目标,这是储层研究向更高阶段发展的体现。进行科学的油藏评价、油藏开发管理以及三维油藏模拟均要求三维储层地质模型,即表征储层地质特征三维变化与分布的数字化模型。这一模型具有常规二维储层地质图件无可比拟的优点[ 1] 。 自上世纪80年代以来,储层地质建模取得了长足的进展,发展了很多建模方法,并开发了不少建模软件,如国内目前应用较多的RMS、Petrel、Gocad等商业化软件。这些建模软件均可建立三维储层地质模型,并在油藏评价、油藏开发管理及剩余油分布预测等方面取得了较好的应用效果。 储层地质建模属于地质、数学与计算机等多学科结合的学科方向。建模内涵包括两大方面,其一为储层地质特征的计算机图形显示,属于计算机图形学的范畴,这一学科的发展已基本满足三维地质建模的图 形显示需要,如储层格架、储层相与岩石物理参数分布的三维图形显示(目前已有的商业软件均可达到这一目的);其二为井间储层特征的预测,即应用已有信息预测储层特征的三维分布,这就要求相应的建模方法,它决定着所建立的模型是否符合地下地质实际,亦即建模精度。从这一角度来说,目前已有的建模方法和软件尚存在一些亟需改进的问题。 1建模方法概述 从本质上讲,储层地质建模是从三维的角度对 储层进行定量的研究,其核心是对井间储层进行多学科综合一体化、三维定量化及可视化的预测[ 1] 。 在给定资料前提下,井间储层预测有两种途径,相应地也就有两种建模途径,即确定性建模和随机建模。确定性建模是对井间未知区给出确定性的预测结果,而随机建模则是对井间未知区应用随机模拟方法给出多个“可选”的、“等可能”的预测结果。 53

2020年春【中石油】储层地质学第一阶段在线作业(标准)

【石油大学】储层地质学- 第一阶段在线作业试卷总分:100 得分:100第 1 题,1. ( 2.5 分)三角洲砂体在平面上的形态? A 、带状 B 、席状 C 、土豆状 D 、鸟足状 正确答 案:D 第 2 题,2. ( 2.5 分)湖底扇砂体在平面上的形态? A、带状 B、席状 C、土豆状 D、扇状正确答案:D 第 3 题,3. ( 2.5 分)滩坝砂体在平面上的形态? A、带状 B、席状 C、土豆状 D、扇状 正确答案:A 第 4 题,4. ( 2.5 分)低渗透致密储层是指渗透率小于多少的储层? A、0.001mD B、0.01mD C、0.1mD D、1mD E、10mD 正确答案:C 第 5 题,5. ( 2.5 分)低渗透致密储层的主要圈闭类型是什么? A、构造圈闭 B、岩性圈闭 C、地层圈闭 D、复合圈闭正确答案:B 第 6 题,6. ( 2.5 分)碳酸盐胶结物的主要胶结方式是什么?

A、孔隙式胶结 B、接触式胶结 C、基底式胶结 D、嵌晶式胶结正确答案:A 第7 题,7. ( 2.5 分)我国90%以上的储层类型是什么? A、碎屑岩储层 B、碳酸盐岩储层 C、变质岩储层 D、火山岩储层 正确答案:A 第8 题,8. ( 2.5 分)油气藏的核心是什么? A、烃源岩 B、储层 D、圈闭 正确答案:B 第9 题,9. ( 2.5 分)岩浆岩、变质岩、泥页岩的主要储集空间是什么? A 、孔隙 B 、裂缝 C 、溶洞 D 、微孔隙 正确答 案:B 第10 题,10. (2.5 分)同一岩样,相同条件下,绝对孔隙度、有效孔隙度和流动孔隙度三者,哪个最大? A、绝对孔隙度 B、有效孔隙度 C、流动孔隙度正确答案:A 第11 题,11. (2.5 分)同一岩样,相同条件下,绝对孔隙度、有效孔隙度和流动孔隙度三者,哪个最小? A、绝对孔隙度 B、有效孔隙度 C、流动孔隙度 正确答案:C 盖层

储层地质学复习资料教学提纲

第一章储层地质学的形成、发展与趋势 一、储层地质学 1、储层地质学(又称油藏地质学),是指应用地质与地球物理、以及各种分析化验资料,研究和解释油气储集地质体的成因、演化及分布,描述并表征储层的主要特征(几何特性和物理特征)与信息,应用定性与定量方法来分析和评价储层不同层次的非均质在油气勘探与开发中的影响,采用先进的建模技术预测其空间展布的一门综合性应用学科。 2、油藏描述是以沉积学、构造地质学和石油地质学的理论为指导,用地质、地震、测井及计算机手段,定性分析和定量描述油藏在三维空间中特征的一种综合研究方法。 3、储层表征:定量地确定储层的性质、识别地质信息及空间变化的不确定过程。 其中储层地质信息包括:物理特性——Φ、Κ和S O的非均质性 空间特性——储层建模过程中的各异向性 第二章油气储层的基本特征 碎屑岩储层与碳酸盐岩和其它岩类储层相比具有四个优点: ①孔隙以粒间孔为主,而碳酸盐岩多为粒内孔;②沉积作用控制强; ③粒度的粗细对孔、渗的影响通常具有较好的规律性;④压实过程比较清楚,并易进行定量分析。 第一节储层的物理特性——孔隙度、渗透率、饱和度 一、孔隙性:指岩石中颗粒间、颗粒内和填隙物内的空隙 ———属原生孔 ———属次生孔 (二)孔隙度 1、绝对孔隙度:岩样中所有孔隙空间体积之和与该岩样总体积的比值。 2、有效孔隙度:是指那些互相连通的、且在一定压差下允许流体在其中流动的 孔隙度的影响因素: 1、岩石的矿物成分 2、颗粒的排列方式及分选性 3、埋藏深度 4、成岩作用 二渗透率 储集岩的渗透性是指在一定的压差下,岩石本身允许流体通过的性能。 1、分类:绝对渗透率、有效渗透率(相渗透率)和相对渗透率 A、绝对渗透率的影响因素 1)岩石特征的影响2)孔隙结构的影响3)压力和温度的影响 B、相对渗透率的影响因素 1)润湿性的影响2)孔隙结构的影响3)温度的影响4)优势流体相饱和度的影响 三饱和度:所饱和油、气、水含量占总孔隙体积的百分比 四、储层 (一)储层的概念:凡是能够储存油气并在其中渗滤流体的岩石称为储集岩。 两个基本要素:孔隙度和渗透率。 (二)储层分类

储层地质学

第七章储层地质模型 在油气田的勘探评价阶段和开发阶段,储层研究以建立定量的三维储层地质模型为目标,这是油气开发深入发展的要求,也是储层研究向更高阶段发展的体现。 现代油藏管理(Reservoir Management)的两大支柱是油藏描述和油藏模拟。油藏描述的最终结果是油藏地质模型,而油藏地质模型的核心是储层地质模型。这也是油藏描述所建立的各类模型中最难的一部分。三维定量储层地质模型的建立是国外近十年来的热门研究课题,无论是在模型的分类及建模方法方面都发展很快。这类模型的建立在我国是近几年来才发展起来的。 储层地质模型主要是为油藏模拟服务的。油藏数值模拟要求一个把油藏各项特征参数在三维空间上的分布定量表征出来的地质模型。实际的油藏数值模拟还要求把储层网块化,并对各个网块赋以各自的参数值来反映储层参数的三维变化。因此,在油藏描述中建立储层地质模型时,也抛弃了传统的以等值线图来反映储层参数的办法,同样把储层网块化,设法得出每个网块的参数值,即建成三维的、定量的储层地质模型。网块尺寸越小,标志着模型越细;每个网块上参数值与实际误差愈小,标志着模型的精度愈高。 第一节储层地质模型的分类 储层地质模型的研究在近十年来发展很快,不同学者从不同方面提出了不同的储层模型类型。 一、按开发阶段及模型精度的分类 在不同的开发阶段,资料占有程度不同,因而所建模型的精度也不同,作用亦不同。据此,可将储层地质模型分为三大类,即概念模型(conceptual model)、静态模型(Static model)和预测模型(Predictable model)(裘亦楠,1991),体现了不同开发阶段不同开发研究任务所要求的不同精细程度的储层地质模型。 1.概念模型 针对某一种沉积类型或成因类型的储层,把它具代表性的储层特征抽象出来,加以典型化和概念化,建立一个对这类储层在研究地区内具有普遍代表意义的储层地质模型,即所谓的概念模型。 概念模型并不是一个或一套具体储层的地质模型,而是代表某一地区某一类储层的基本面貌,实际上在一定程度上与沉积模式类同,但加入了油田开发所需要的地质特征。图7-1为点坝砂体的储层概念模型——半连通体模式。

储层建模研究进展及发展趋势

储层建模研究进展及发展趋势 王文龙,尹艳树 (长江大学地球科学学院,湖北武汉430100) 摘要:油气田开发的后期进入高含水阶段,为了更加经济准确地进行油气开发,有必要采用储层地质建模的方法对老油气田进行储层研究。详细阐述了国内外储层地质建模的发展史,对储层地质建模的方法进行了细致的分类及论述。方法分类包括确定性建模方法和随机性建模方法。每一种建模方法又有多种子方法。提出了目前储层地质建模研究尚未很好解决的一些问题,如建模的对象局限于常规的碎屑岩储层。虽然有学者对火成岩、裂缝碳酸盐岩进行了相关的探究工作,但目前对非常规储层涉及较少,储层建模的精度也有待提高。 关键词:储层建模;确定性建模;随机性建模;发展趋势 0 引言 储层地质建模指的是运用计算机建模软件来建立高精度的储层地质模型,对油气储层内部结构进行精细解剖,进一步解释、研究油气的三维空间分布规律,表征储层的属性及特征,为下一步的油藏数值模拟提供数据(李振华,2010)。通过储层地质建模可以建立储层格架,对储层的物性进行评估,预测储层可采油气的空间分布,指导优选加密井井位及水平井钻进轨迹,以提高油气最终采收率,故储层地质建模是油藏描述的核心内容(盖凌云,2007;张昌民等,2007)。储层地质建模使得油气藏的非均质性描述更为精确,也为油气田的开发生产设计及相应的开发方案提供了数据(吴胜和等,1999;罗仁泽,2002)。储层地质建模自20世纪80年代开始提出,至今已取得了长足的发展。但是,相关的研究仍然存在一些问题,如建模对象局限于碎屑岩中的常规储层,建模精度不高等。储层地质建模的发展趋势必然会更好地解决这些问题,更好地用于指导油气的开发。目前,储层建模方法多样,有必要对地质储层建模方法进行总结并对目前储层建模研究中存在的问题和下一步的发展趋势进行探讨。 1 储层建模的发展 储层地质建模起源于国外,后来被引入国内对油田储层进行研究,我国学者结合实际建立了适用于我国地质储层的建模方法。 1.1 国外储层建模的发展过程 Jahns(1996)应用回归分析,并利用干扰试井数据进行油藏的二维描述,是迄今为止已知最早的关于油藏的研究成果;Coats等(1970)利用最小二乘法及线性规划并参考了动态特征的数据描述了油气藏的各种非均质性的参数,后来虽然有所发展,但尚未作为一门技术出现。20世纪50年代,南非的克里格提出金属分布具有的空间联系与样品的尺寸和位置有关,而非单纯的随机分布;不久之后,马特隆提出了地质统计学,他结合区域化变量的概念将传统的统计学理论进行了改进,发展出一套全新的数学技术——运用变差函数研究矿产矿化特征区域分布,这为以后的储层地质建模提供了基础。20世纪70年代,美国学者儒尔奈耳讨论

地质建模软件介绍

地质建模软件介绍 康文彬 摘要:随着信息技术手段的高速发展,传统工程地质学领域在地勘成果信息化设计方面渐渐形成了初步的理论与方法体系,并在此基础上对工程勘察全过程提出了一体化设计需求。实现工程三维地质信息建模与分析的目标,对工程全生命周期以三维地质模型作为支撑,将能够实现各方面的多种需求,而其最大的优势就是可以更为快速和准确、方便、直观的体现地质体的三维信息,还可以利用其剖切的功能实现二维图件的快速绘制。本文主要对地质建模理论和现有地质建模软件相关情况进行简要客观的介绍。 关键词:地质软件 1 三维地质建模的必要性 长久以来,对于地学信息的表示和处理都是基于二维的,通常将垂直方向的信息抽象成一个属性值,其实质就是将三维地质环境中的地质现象投影到某一平面(XY平面、XZ平面或YZ平面)上进行表达,称为2.5维或假三维,它描述空间地质构造的起伏变化直观性差,往往不能充分揭示其空间变化规律,难以使人们直接、完整、准确地理解和感受具体的地质情况,越来越不能满足工程设计和分析的需求,因此,真三维处理显得愈来愈迫切。与此同时,众多新型勘探手段的应用,诸如地震勘探、探地雷达、遥感,以及地球化学勘探等,致使各种地质资料急速膨胀,迫使地质工作者不得不采用新的手段来综合利用这些信息。因此,空间三维地质建模及可视化技术的研究是计算机在工程地质领域应用的一个必然趋势。 1994年加拿大学者Houlding最早提出了三维地学建模(3D Geosciences Modeling)的概念,即在三维环境下将地质解译、空间信息管理、空间分析和预测地质统计学、实体内容分析以及图形可视化等结合起来,并用于地质分析的技术。工程地质三维建模及可视化技术借助于计算机和科学计算可视化技术,直接从3D空间角度去理解和表达地质对象的几何形态、拓扑信息和物性信息,这对工程决策和灾害防治意义重大,已经成为岩土工程科学、工程地质学、数学地质学和计算机科学等多学科交叉领域研究的前沿和热点。 三维地质建模体系大致概括为地质数据处理、地质体建模和模型应用三个阶段。为充分了解现有三维地质建模软件的相关情况,选取满足当前工作使用需求的软件进行地质模型的创建,有必要对相关理论及各软件的相关情况进行简要介绍。

储层

储层:凡是能够储集和渗滤流体的地层的岩石构成的地层叫储层。 储层地质学:是一门从地质学角度对油气储层的主要特征进行描述、评价及预测的综合性学科。 研究内容:储层层位、成因类型、岩石学特征、沉积环境、构造作用、物性、孔隙结构特征、含油性、储集岩性几何特征储集体分布规律、对有利储层分布区的预测。有效孔隙度:指那些互相连通的,且在一定压差下(大于常压)允许流体在其中流动的孔隙总体积与岩石总体积的比值。 绝对渗透率:如果岩石孔隙中只有一种流体存在,而且这种流体不与岩石起任何物理、化学反应,在这种条件下所测得的渗透率为岩石的绝对渗透率。 剩余油饱和度:地层岩石孔隙中剩余油的体积与孔隙体积的比值 残余油饱和度:地层岩石孔隙中残余油的体积与孔隙体积的比值 储层发育的控制因素:沉积作用、成岩作用、构造作用低渗透储层的基本地质特征:孔隙度和渗透率低、毛细管压力高、束缚水饱和度高 低渗透储层的成因:沉积作用、成岩作用 论述碎屑岩储层对比的方法和步骤: 1、依据 2、对比单元划分 3、划分的步骤 1、依据:①岩性特征:指岩石的颜色、成分、结构、构造、地层变化、规律及特殊标志层等。在地层的岩性、厚度横向变化不大的较小区域,依据单一岩性标准层法,特殊标志层进行对比;在地层横向变化较大情况下依据岩性组合②沉积旋回:地壳的升降运动不均衡,表现在升降的规模大小不同。在总体上升或下降的背景上存在次一级规模的升降运动,地层剖面上,旋回表现出次一旋回对比分级控制③地球物理特征:主要取决于岩性特征及所含流体性质,电测曲线可清楚反映岩性及岩性组合特征,有自己的特征对比标志可用于储层对比;测井曲线给出了全井的连续记录,且深度比较准确,常用的对比曲线:视电阻率曲线、自然电位曲线、感应测井曲线 2、对比单元划分:储层层组划分与沉积旋回相对应,由大到小划分为四级:含油层系、油层、砂层组和单油层。储层单元级次越小,储层特性取性越高,垂向连通性较好 3、划分的步骤:沉积相的研究方法主要包括岩心沉积相标志研究、单井剖面相分析、连续剖面相对比和平面相分析四种方法 岩心沉积相标志的研究方法是以岩石学研究为基础,可分为三类:岩性标志,古生物标志和地球化学标;单井剖面分析是根据所研究地层的露头和岩化剖面,以单井为对象,利用相模式与分析剖面的垂向层序进行对比分析,确是沉积相类型,最后绘出单井剖面相分析图;连井剖面相对比分析主要表示同一时期不同井之间沉积相的变化,平面相分析是综合应用剖面相分析结果进行区域岩相古地理研究的方法。 碳酸盐岩与碎屑岩储层相比,具有哪些特征? ①岩石为生物、化学、机械综合成因,其中化学成因起主导作用。岩石化学成分、矿物成分比较简单,但结构构造复杂,岩石性质活泼,脆性大②以海相沉积为主,沉积微相控制储层发育③成岩作用和成岩后生作用严格控制储集空间发育和储集类型形成。 扇三角洲储层特征? ①碎屑流沉积。由于沉积物和水混合在一起的一种高 密度、高粘度流体,由于物质的密度很大,沿着物质聚集体内的剪切面而运动。②片汜沉积。是一种从冲积扇河流末端漫出河床而形成的宽阔浅水中沉积下来的产物,沉积物为呈板片状的砂、粉砂和砾石质。 。③河道沉积。指暂时切入冲积扇内的河道充填沉积物。④筛积物。当洪水携带的沉积物缺少细粒物质时,便形成由砾石组成的沉积体。 碎屑岩才沉积作用:垂向加积、前积、侧向加积、漫积、筛积、选积、填积、浊积 喉道:在扩大孔隙容积中所起作用不大,但在沟通孔隙形成通道中起着关键作用的相对狭窄部分,称为喉道。孔隙结构:岩石所具有的孔隙和喉道的几何形状、大小、分布、相互连通情况以及孔隙与喉道间的配置关系。 碎屑岩的喉道类型:孔隙缩小型喉道、缩颈型喉道、片状喉道、弯片状喉道、官束状喉道 孔隙类型:原生孔隙、次生孔隙、混合孔隙 排驱压力:非润湿相开始进入岩样所需要的最低压力,它是泵开始进入岩样最大连通孔喉而形成连续流所需的启动压力,也称阀压。 成岩作用:指碎屑沉积物在沉积之后到变质之前所发生的各种物理、化学及生物的变化。 同生成岩作用:沉积物沉积后尚未完全脱离上覆水体时发生的变化与作用的时期。 表成岩作用:指处于某一成岩阶段弱固结或固结的碎屑岩,因构造抬升而暴露或接近地表,受到大气淡水的溶蚀,发生变化与作用的阶段。 成岩作用的基本要素:岩石、流体、温度、压力 孔隙水的流动方式和动力:压实驱动流、重力驱动流、滞流 碎屑岩主要的成岩作用有哪些?分别对孔隙有什么影响? 根据成岩作用对储层孔隙演化的影响,可将碎屑岩的残岩作用分为两大类:一是降低储层孔渗性的成岩作用,主要有机械压实作用和胶结作用,其次压溶作用和重结晶作用;其中机械压实作用是沉积物在上覆重力及静水压力作用下,发生水分排出,碎屑颗粒紧密排列而使孔隙体积缩小,孔隙度降低,渗透性变差的成岩作用;胶结作用是指孔隙溶液中过饱和成分发生沉淀,将松散的

储层地质学裂缝

第五章储层裂缝 裂缝是油气储层特别是裂缝性储层的重要储集空间,更是良好的渗流通道。世界上许多大型、特大型油气田的储集层即为裂缝性储层。作为一种特殊的孔隙类型,裂缝的分布及其孔渗特征具有其独有的复杂性,它不象正常孔隙那样通过沉积相、成岩作用及岩心分析能够较为容易地预测和评价。由于裂缝的存在对油气储层的勘探和开发会导致很大的影响,因而对油气储层中裂缝的研究就显得十分重要。本章主要介绍裂缝系统的成因、裂缝的基本参数、孔渗性以及裂缝的探测和预测方法。 第一节裂缝的成因类型及分布规律 所谓裂缝,是指岩石发生破裂作用而形成的不连续面。显然,裂缝是岩石受力而发生破裂作用的结果。本节分别从力学和地质方面简要介绍裂缝的成因分类及分布规律。 一、裂缝的力学成因类型 在地质条件下,岩石处于上覆地层压力、构造应力、围岩压力及流体(孔隙)压力等作用力构成的复杂应力状态中。在三维空间中,应力状态可用三个相互正交的法向变量(即主应力)来表示,以分量σ1、σ2、和σ3别代表最大主应力、中间主应力和最小主应力(图5-1)。在实验室破裂试验中,可以观察到与三个主应力方向密切相关的三种裂缝类型,即剪裂缝、张裂缝(包括扩张裂缝和拉张裂缝)及张剪缝。岩石中所有裂缝必然与这些基本类型中的一类相符合。 图5-1 实验室破裂实验中三个主应力方向 及潜在破裂面的示意图 图中A示扩张裂缝,B、C表示剪裂缝

1.剪裂缝 剪裂缝是由剪切应力作用形成的。剪裂缝方向与最大主应力(σ1)方向以某一锐角相交(一般为30°),而与最小主应力方向(σ3)以某一钝角相交。在任何的实验室破裂实验中,都可以发育两个方向的剪切应力(两者一般相交60°),它们分别位于最大主应力两侧并以锐角相交(图5-1)。当剪切应力超过某一临界值时,便产生了剪切破裂,形成剪裂缝。根据库伦破裂准则,临 界剪应力与材料本身的粘结强度(τo)及作用于该剪切平面的正应力(σn )和 材料的内摩擦系数(μ)有关,即, τ临界=τo+μσn 剪裂缝的破裂面与σ1-σ2面呈锐角相交,裂缝两侧岩层的位移方向与破裂面平行,而且裂缝面上具有“擦痕”等特征。在理想情况下,可以形成两个方向的共轭裂缝(即图5-1中的B、C)。共轭裂缝中两组剪裂缝之间的夹角称为共轭角。但实际岩层中的剪裂缝并不都是以共轭型式出现的,有的只是一组发育而另一组不发育。剪裂缝的发育型式与岩层均质程度、围岩压力等因素有关。当岩层较均匀、围岩压力较大时,可形成共轭的剪裂缝;而当岩层均质程度较差、围岩压力较小时,趋向于形成不规则的剪裂缝。 2.张裂缝 张裂缝是由张应力形成的。当张应力超过岩石的扩张强度时,便形成的张裂缝。张应力方向(岩层裂开方向)与最大主应力(σ1)垂直,而与最小主应力(σ3)平行,破裂面与σ1-σ2平行,裂缝两侧岩层位移方向(裂开方向)与破裂面垂直。张裂缝一般具有一定的开度,有的被后期矿物充填或半充填。 根据张应力的类型,可将张裂缝分为二种,即扩张裂缝和拉张裂缝。 (1)扩张裂缝 扩张裂缝是在三个主应力均为压应力的状态下诱导的扩张应力所形成图5-2 扩张裂缝的形成和应力单元

储层地质模型

1、什么是储层地质模型?为什么要建立三维储层地质模型? 答:储层地质模型是指能定量表示地下地质特征和各种储层(油藏)三维空间分布的数据体,一个完整的储层地质模型应包括构造模型、沉积模型、储层模型和流体模型等。 三维储层地质建模是从三维的角度对储层的各种属性进行定量的研究并建立相应的三维地质模型,其核心是对井间储层进行三维定量化及可视化的预测,与传统的二维储层研究相比具有以下的优势: 1)更客观地描述并展现储层各种属性的空间分布,克服了用二维图件描述三维储层的局限性。三维储层建模可以从三维空间上定量的表征储层的非均质性,从而有利于油藏工程师进行合理的油藏评价及开发管理。 2)更精确地计算油气储量。在常规的储量计算时,储层参数(含油面积、有层厚度、孔隙度、含有饱和度等)均用平均值表示,这显然忽视了储层非均质性的影响。应用三维储层模型计算储量时,储量的基本计算单元是三维空间上的网格(分辨率比二维高得多),因为每一个网格均附有储集体(相)类型的孔、渗、饱等参数。因此,通过三维空间运算,可计算出实际的含油储集体(砂体)体积、孔隙体积及油气体积,其计算精度比二维储量计算高得多。 3)有利于三维油藏数值模拟。三维油藏数值模拟要求有一个把油藏各项特征参数在三维空间上定量表征出来的地质模型。粗化的三维储层地质模型可以直接作为油藏数值模拟的输入器,而油藏数值模拟成败的关键在很大程度上取决于三维储层地质模型的准确性。 2、如何理解储层概念模型、静态模型和预测模型?它们有何异同? 答:储层概念模型是指把所描述油藏的各种地质特征,特别是储层,典型化、概念化,抽象成具有代表性的地质模型。只追求油藏(储层)总的地质特征和关键性地质特征的描述,基本符合实际,并不追求所有局部的客观描述。 静态模型也称实体模型,是把一个具体研究对象(一个油田、一个开发区块或一套层系)的储层,依据资料控制点实测的数据将其储层表征在三维空间的变化和分布如实的描述出来而建立的地质模型,并不追求控制点间的预测精度。 预测模型不仅忠实于资料控制点的实测数据,而且追求控制点间的内插与外推值具有相当的精度,并遵循地质和统计规律,即对无资料点有一定得预测能力。 概念模型、静态模型和预测模型的区别: 1)研究阶段的区别。概念模型应用于油田的勘探与开发早期;静态模型应用于油田开发中期,一般是开发井网完成后进行;预测模型应用于油田开发后期。 2)研究方法的区别。概念模型一般以储层地质学(沉积学)和写实的描述方法为基本手段,尽可能直接利用岩心资料来建立概念模型,避免依赖测井解释等间接资料;静态模型的研究方法主要是在概念模型的基础上,充分应用开发井的各种资料,采用地质统计学方法来描述储层在二维或三维空间的实际特征;预测模型主要是采用随机建模技术,即将等概率的随机抽样方法(蒙特卡洛)与确定性的插值方法(克里金)相结合,所形成的地质统计学

GOCAD 软件三维地质建模方法

GOCAD 软件三维地质建模方法 1建模方法 GOCAD 三维地质建模主要包括两类:一类是构造模型(structural modeling)建模,一类是三维储层栅格结构(3D Reservoir Grid Construction)建模。 (1)构造模型(structural modeling)建模建立地质体构造模型具有非常重要的意义。通过建立构造模型能够模拟地层面、断层面的形态、位置和相互关系;结合反映地质体的各种属性模型的可视化图形,还能够用于辅助设计钻井轨迹。此外,构造模型还是地震勘探过程中地震反演的重要手段。 (2)三维储层栅格结构(3D Reservoir Grid Construction)建模根据建立的构造模型,在3D Reservoir Grid Construction 中可以建立其体模型;同时地质体含有多种反映岩层岩性、资源分布等特性的参数,如岩层的孔隙度、渗透率等,可对这些物性参数进行计算和综合分析,得到地质体的物性参数模型。 当采样值在地质体内密集、规则分布时,可以直接建立采样值到应用模型的映射关系,把对采样值的处理转化为对物性参数的处理,这样可以充分利用计算机的存储量大、计算速度快的特点。 当采样值呈散乱分布,并且数据量有限时,需要采用数学插值方法,拟合出连续的数据分布,充分利用由采样值所隐含的数据场的内部联系,精确的模拟模型中属性场的分布。 图1-1孔隙度参数模型分布图 2 建模流程 2.1数据分析 (1)钻孔、测井分布及数据分析 支持三维建模的数据主要为钻孔和测井。由于对区域范围和建立三维地质建模的精度要求不同,得对所得到的钻孔、测井的分布和根据其取得的数据进行分析和处理是的必要。根据钻孔、测井的分布范围和稠密程度可以大致确定地层的分布界限,对钻孔较少区域采取补充钻探或者采用其它方法进行处理。 (2)地质剖面

S-GeMs软件基本原理及三维地质建模应用

目录 第一章 S-Gems软件简介及建模工区概况 (2) 1.1 S-GeMs软件的基本概况 (2) 1.2 建模工区及地质背景简介 (2) 第二章数据的导入及基本分析 (3) 2.1 数据的格式及导入操作 (3) 2.2 数据分析及处理(正态变换) (4) 第三章各变量的变差函数分析 (8) 3.1 变差函数的基本原理 (8) 3.2 S-GeMs软件变差函数分析模块及基本操作简介 (8) 3.3 变差函数分析结果 (10) 第四章三维沉积相建模 (14) 4.1 三维沉积相确定性建模(指示克里金方法) (14) 4.2 三维沉积相随机建模(序贯指示模拟方法) (15) 第五章三维储层参数建模 (20) 5.1 协同克里金方法(cokriging)三维储层参数确定性建模 (20) 5.2 协同序贯高斯模拟方法(cosgsim)三维储层参数随机建模 (22) 第六章 S-GeMs软件建模的优越性与局限性 (26) 6.1 S-GeMs软件建模的优越性 (26) 6.2 S-GeMs软件建模的局限性(约束条件) (26) 参考文献 (27)

S-GeMs软件基本原理与三维地质建模应用 ——《地质与地球物理软件应用》课程报告第一章 S-Gems软件简介及建模工区概况 1.1 S-GeMs软件的基本概况 S-GeMS(Stanford Geostatistical Modeling Software)是Nicolas Remy在斯坦福大学油藏预测中心(SCRF:The Stanford Center for Reservoir Forecasting)开发的一套开源地质建模及地质统计学研究软件。2004年首次发布,其后进行了更新和升级。该软件包括传统的经典地质统计学算法和新近发展的多点地质统计学方法。由于操作简单、源代码公开,而且有二次开发的接口,因此日益成为继Gslib之后又一重要的地质统计学研究和应用软件。 1.2 建模工区及地质背景简介 已知建模工区的范围沿x、y、z方向为1000×1300×20米。三维网格数为100×130×10,网格大小为10×10×2米。主要沉积的砂体为发育在泛滥平原泥岩上的河道砂体,且河道砂体近东西向展布。另有部分河道发育决口扇砂体。工区第6网格层的沉积相切片如图1所示。 图1-1 建模工区中部沉积相分布图 本次实验共提供350口井的井数据,所有350井均为直井。垂向上每口井分为10个小层,每层厚度为2米,如图 2 所示。

《储层地质学》期末复习题及答案

中国石油大学(北京)现代远程教育 《储层地质学》期末复习题 一、名词解释 1、储集岩:具有孔隙空间并能储渗流体的岩石。 2、储层:凡是能够储存油气并能在其中参与渗流的岩岩层即为储层。 3、储层地质学:是研究储层成因类型、特征、形成、演化、几何形态、分布规律,还涉及储层的研究方法和描述技术以及储层评价和预测的综合性地质学科。 4、孔隙度:岩样孔隙空间体积与岩样体积之比 5、有效孔隙度:指相互连通的,在一般压力条件下允许流体在其中流动的孔隙体积之和与岩石总体积的比值 6、流动孔隙度:指在一定压差下,流体可以在其中流动的孔隙体积与岩石总体积的比值 7、绝对渗透率:当岩石为某单一流体所饱和时,岩石与流体之间不发生任何物理—化学反应,所测得的岩石对流体的渗透能力称为该岩石的绝对渗透率 8、相渗透率: 又称之为有效渗透率,指岩石孔隙中存在两种或两种以上互不相溶流体共同渗流时,岩石对每一种流体的渗透能力的量度,称之为该相流体的有效渗透率 9、相对渗透率:岩石孔隙为多相流体饱和时,岩石对各流体的相对渗透率指的是岩石对各种流体的有效渗透率与该岩石的绝对渗透率的比值 10、原始含油饱和度:油藏开发前,所测出的油层岩石孔隙空间中原有体积与岩石孔隙体积的比值称为原始含油饱和度 11、残余油饱和度:残余油是在油层内处于不可流动状态的那一部分油,其所占总孔隙体积百分数称为残余油饱和度。 12、达西定律: 位时间内通过岩石截面积的液体流量与压力差和截面积的大小成正比,与液体通过岩石的长度以及液体的粘度成反比。 13、成岩作用:沉积物沉积之后转变为沉积岩直至变质作用之前,或因构造运动重新抬升到地表遭受风化以前所发生的物理、化学、物理化学和生物的作用,以及这些作用所引起的沉积物或沉积岩的结构、构造和成分的变化。 14、同生成岩阶段: 沉积物沉积后至埋藏前所发生的变化与作用时期。 15、表生成岩阶段: 处于某一成岩阶段的弱固结或固结的碳酸盐岩、碎屑岩,因构造作用抬升至地表或近地表,受大气淡水的溶滤等作用所发生的变化与作用时期。 16、孔隙结构:是指岩石中孔隙和喉道的几何形态、大小及其相互连通和配置的关系。 17、原生孔隙:是岩石沉积过程中形成的孔隙,它们形成后没有遭受过溶蚀或胶结等

地质建模的作用是什么

地质建模的作用是什么? 四月5, 2010 作者hipetro 发表评论 严格的讲,地质建模已经不能算是很新的技术,在国外,地质建模已经发展了几十年,中国自上世纪80年代末开始引入EsrthVision以来,也已经发展了二十年。但回顾一下地质建模在油田开发中的作用,我们不难发现,目前的三维地质建模主要有两个作用:一个是为数值模拟提供基础模型,第二是用于油藏的整体评价,例如油藏勘探开发的风险评价。但三维地质建模一直没能深入到油田的生产中。就像许多搞生产的人评价的:好看,但不中用。 在另一方面,油田开发地质研究工作中,目前还没有十分有效、先进的技术。油藏地质研究还主要依靠手工编制的厚度图、油藏剖面图、连通图等。十分需要新的技术的补充与提高。在整个开发阶段地质研究工作中,唯一可以称为新技术的就是三维地质建模。因此三维地质建模完全可以在开发阶段地质研究中起到更为突出的作用。实际上,三维地质建模应该,也完全可以成为油藏开发阶段油藏精细描述和生产措施部署的核心技术。 自上世纪五十年代马特龙把地质统计学引用地质研究以来,地质统计学就成了地质建模的核心。但是几十年的实际应用也表明,单纯依靠地质统计学是不能把三维地质建模更深入的引入到油田的开发生产中的。 如何更多的发挥三维地质建模技术的作用,真正使其成为油藏开发阶段油藏精细描述和生产措施部署的核心技术是每一个从事三维地质建模工作的人必须经常琢磨的问题。 三维地质模型中的不确定性: 由于地质体的复杂性,三维地质模型中的不确定性是固有的,不可回避的。面对不确定性,擅长地质统计学的专家更喜欢从统计的角度对不确定性进行分析和评价。这在油藏整体评价阶段是正确的,但当我们把三维地质模型直接应用于生产的时候,又是远远不够的。例如从统计学的角度,可以利用随机模拟技术得到多个实现,通过多个实现的分析,对不确定性进行分析和评价。但对于生产来说,我们有可能根据多个实现钻探多套开发井网吗?生产需要的是一个确定的模型。因为生产方案只能有一个,生产措施方案只能有一套,钻探井位也只能有一套。 我们也可以计算出一个最大概率的模型做为最终的结果。但这个最大概率模型就真的更接近于地质体的实际状况吗?有生产经验的人都可以很容易的给与否定的回答。因此要想让地质模型能够被直接从事油藏开发生产的技术人员所接受,更合理的出路是想办法(通过更为充分的基础地质研究和基础数据的应用)尽量降低模型的不确定性。从而为生产方案提供一个更为合理可靠的(而不是多个等概率的)参考依据。 要想做到这一点,出路显然不在于更为合理的计算方法和计算参数上,而是更为充分合理的应用地质、物探基础数据。 三维地质建模与基础地质研究的结合 若要将三维地质建模技术直接应用到油藏开发生产,必须也能够与油藏地质研究相结合。

储层地质学

第六章储层非均质性 第一节储层非均质性的概念及分类 一、储层非均质性的概念 油气储集层由于在形成过程中受沉积环境、成岩作用及构造作用的影响,在空间分布及内部各种属性上都存在不均匀的变化,这种变化就称为储层非均质性。储层非均质性是影响地下油、气、水运动及油气采收率的主要因素。 储层的均质性是相对的,而非均质性是绝对的。在一个测量单元内(如岩心塞规模),由于只能把握储层的平均特性(如测定岩心孔隙度),可以认为储层在同一测量单元内是相对均质的,但从一个测量单元到另一个测量单元,储层性质就发生了变化,如两个岩心塞之间的孔隙度差异,这就是储层非均质的表现。测量单元具有规模和层次性,储层非均质性也具有规模和层次性。一个层次的非均质规模包含若干低一级层次的测量单元(如小层单元包括若干个岩心测量单元)。 另一方面,储层性质本身可以是各向同性的,也可以是各向异性的。有的储层参数是标量(如孔隙度、含油饱和度),其数值测量不存在方向性问题,即在同一测量单元内,沿三维空间任一方向测量,其数值大小相等,换句话说,对于呈标量性质的储层参数,非均质性仅是由参数数值空间分布的差异程度表现出来的,而与测量方向无关。有的储层参数为矢量(如渗透率),其数值测量涉及方向问题,即在同一测量单元内,沿三维空间任一方向测量,其数值大小不等,如垂直渗透率与水平渗透率的差别。因此,具有矢量性质的储层参数,其非均质性的表现不仅与参数值的空间分布有关,而且与测量方向有关。由此可见,矢量参数的非均质性表现得更为复杂。 二、储层非均质性的分类 1.Pettijohn (1973)的分类 Pettijohn (1973)对河流沉积储层按非均质性规模的大小提出了一个由大到小的非均质性分类谱图,划分了五种规模的储层非均质性(图6—1),即层系规模(100m级)、砂体规模(10m级)、层理规模(1~10m级)、纹层规模(10~100mm级)、孔隙规模(10~100μm级)。 2.Weber (1986)的分类 Weber(1986)根据Pettijohn 的思路,也提出了一种储层非均质性的分类体系(图6-2)。但在他的分类中,不仅考虑储层非均质性的规模,同时考虑了非均质性对流体渗流的影响。他将储层非均质性分为七类: (1)封闭、半封闭、未封闭断层

储层地质学

《储层地质学》综合复习资料 第一章绪论 一、请回答以下概念 1、储集岩 2、储层 3、储层地质学 二、简答题 1、石油天然气储层地质学的主要研究内容。 第二章沉积成因储层岩石学特征及分类 一、请回答以下概念 1、碎屑岩的结构 2、碎屑岩的构造 3、层理 4、层面构造 二、简答题 1、简述砂岩的分类方案。 2、简述碳酸盐岩的矿物成分、结构及其特有的构造。 三、论述题 1、论述碎屑岩储层主要的层理构造类型的特征、成因及其环境意义。 第三章沉积环境分类及碎屑岩储层沉积环境 一、简答题 1、简述沉积环境分类。

2、什么是河流的二元结构?曲流河相可以划分为哪些亚相及微相类型。 3、简述不同类型河流的储集岩特征。 4、简述滨岸亚环境的划分。 5、简述海洋三角洲的主要类型及其储集岩体特征。 6、简述海底扇沉积环境及其储集岩体特征。 二、论述题 1、简述我国中、新生代含油气湖盆中的主要储集砂体成因类型及主要特征。 2、论述扇三角洲与三角洲相在古地理背景条件、岩石学特征和储集体形态三个方面的主要区别。 第四章碳酸盐岩储层沉积环境 一、简答题 1、画图并简述威尔逊的碳酸盐岩沉积模式。 2、简述正常海洋潮坪环境及储集岩发育特征。 二、论述题 1、请指出砂岩和生物礁油气储层在岩石学特征、沉积环境和储集空间三个方面的主要区别。 2、请结合实例论述湖泊碳酸岩储层的沉积环境、沉积特征、沉积模式。 第五章储层的主要物理性质 一、请回答以下概念 1、孔隙度 2、有效孔隙度 3、流动孔隙度 4、绝对渗透率 5、相渗透率 6、相对渗透率 7、原始含油饱和度

8、残余油饱和度 9、岩石比表面 二、简答题 1、简述孔隙度的影响因素。 2、简述渗透率的影响因素。 3、简述孔隙度与渗透率的关系 第六章储层孔隙结构 一、请回答以下概念 1、孔隙结构 2、原生孔隙 3、次生孔隙 4、喉道 二、简答题 1、简述砂岩储集岩的孔隙与喉道类型。 2、简述压汞法研究孔隙结构的基本原理。 第七章成岩作用及其对储层孔隙发育的影响 一、请回答以下概念 1、成岩作用 2、同生成岩阶段 3、表生成岩阶段 二、简答题 1、论述储层的主要成岩作用类型及其对储层发育的影响。 2、碎屑岩成岩阶段划分依据。 第八章储层非均质性 一、简答题

储层地质学读书报告

储层地质学读书报告 储层和封盖是形成油气田(藏)必要的条件之一,是控制油气分布的重要因素。无论在勘探油气过程中,还是开发油气的过程中,石油地质学家和石油工程技术人员都十分关注储集层(体)的研究。为了寻找更多的大油气田,研究者们在不断的加速提高储集层地质学的理论认识和研究方法。近十年来储集层(体)的理论认识和研究方法得到迅速的发展。、近期国内外皆召开过专门的会议,探讨储集层地质学的理论和研究方法。概括起来储集层地质学的发展有如下方面。 1储层地质学理论和内容方面 1.1在碎屑岩和碳酸盐岩深部都找到了孔隙带 研究者们认为存在二种模式:一种是次生孔隙模式(Mctunna,1979) ;另一种是原生孔隙模式(S.Apixon,1989)。这个进展为勘探家们寻找油气指出了方向。这对从事储集层地质学的研究者提出了明确的研究任务:寻找深部的孔隙带。关于深部次生孔隙带,是根据在碎屑岩深部找到的孔隙带提出的。关于它的成因解释,已出现两种理论,一种是广泛运用的由Schmidt和McDonald(1979)提出的,认为深部次生孔隙带的出现是由于有机质尚烃类转化时,在成熟阶段出现的脱梭基作用放出大量的co2,形成弱酸性溶液发生溶解作用而成。这就是说在有机质向烃类转化过程中,势必发生溶解作用,产生次生孔隙。这些孔隙必将储存油气。另一种理论是被人们忽视的挪威学者Kmiit(1984)提出的,他根据大量的盆地计算,认为深部有机物质向烃类转化、脱梭基作用放出的CO:不足以形成巨大的次生孔隙带,相反是地下水淋滤作用的结果。关于这两种理论,通过我们的实践,实际都是存在的。运用这些理论,关键取决于研究地区的本身特征,不能简单套用。 1.2微孔是储集油气的一个重要的场所 国内外一些盆地(阿巴拉契盆地、落基山地区的尤莫塔盆地、加利福尼亚州的文图拉盆地、墨西哥湾第三系、西伯利亚盆地、厄瓜多尔;我国柴达木盆地、江汉盆地、东营凹陷、沾化凹陷等)中都发现了泥岩油气藏及工业性油气藏。自然其中部分是裂缝起着作用。而有一些油气藏,研究证明是微孔储油。其孔径达1 m左右。这为寻找油气又揭开了新的领域。但这方面的研究仅仅开始。除此之外,90年代不少资料证明,缝合线是一种有意义的储集空间。不仅为实际观察所证

相关文档
最新文档