马氏体、铁素体、奥氏体、双相不锈钢的化学成分

马氏体、铁素体、奥氏体、双相不锈钢的化学成分
马氏体、铁素体、奥氏体、双相不锈钢的化学成分

表1国内不锈钢标准钢号对照表

不锈钢化学成分和性能对照

常用不锈钢种化学成分及性能对照 SUS304(不銹鋼):用途最多之不銹鋼種,因含有 Ni 故比 Cr 鋼較富耐蝕性耐熱性,且具低溫強度,故機械特性非常好,加工硬化性非常大,加熱處理不硬化,非磁性,強度佳,較沒彈性,常使用厚度 0.4T ~ 1.0T 之間。故目前在Notebook 常被廣泛運用在需 結構強度之Bracket ,運用上必須 指定級數,以期達到設計之需求.一般最好取3/4H 為宜.若是須引伸抽型,若運用於LCD bracket ,一般最好取1/2H 為宜. 參考價格: 98NT$/Kg --0.5T , 130NT$/Kg--0.3T , 195NT$/Kg--0.2T . SUS301(不銹鋼):Cr (鉻) 成分比 SUS304 低,耐蝕性較差,但冷間加工能得到非常高度的拉加及硬度,其特性用途廣大,因彈性佳,故目前在Notebook 常被廣泛運用在防EMI 上,做彈性接觸部份,但常用厚度在 0.4T ~ 0.07T 之間。運用上必須指定級數,以期達到設計之需求(例如彈力,強度).並須注意301材料有金屬結晶性方向性,越高級數者越是硬且脆,若成型上不注意,易造成隅角及側壁裂紋. 參考價格: 142NT$/Kg --0.5T , 183NT$/Kg--0.3T , 180NT$/Kg--0.2T . 285NT$/Kg --0.1T . SUS 301 與 SUS 304 材質硬度比較 SUS 301 H 材質 硬度 硬度 硬 度 硬度 SUS 301 H HV 480°±20° SUS 304 H HV 380°±20° SUS 430 HV 200° SUS 301 3/4H HV 380°±20° SUS 304 3/4H HV 300°±20° SUS 301 1/2H HV 300°±20° SUS 304 1/2H HV 260°±20° SUS 304 HV200°±20° 436L 436L ≤0.025 16.0~19.0 - 0.75~1.25 Ti 、Nb 、 Zr8×(C%+N%)~0.8 A ≥245 ≥410 ≥20 444 444 ≤0.025 17.0~20.0 1.75~2.50 Ti,Nb,Zr8×C%+N%)~0.8 A ≥245 ≥410 ≥20 马氏体 MARTENSITE 410 410 ≤0.15 11.5~13.5 - - - A ≥205 ≥440 ≥20 420J1 420J1 0.16~ 0.25 12.0~14.0 - - - A ≥225 ≥520 ≥18 420J2 420J2 0.26~0.4 12.0~14.0 - - - A ≥225 ≥540 ≥18

奥氏体珠光体铁素体贝氏体马氏体

结构 奥氏体的面心立方点阵具有多个滑移系,使其容易塑性变形,牛产中利用上述性质进行钢的热变形。又因面心立方点阵是一种最密排的点阵结构,致密度高,所以奥氏体的比热容最小,奥氏体在与其他组织发生相互转变时,会产生体积变化,引起残余内应力和一系列的相变。密排六方、面心立方致密度0.74,体心致密度0.68, 性能 奥氏体的面心立方结构使其具有良好的塑性、低的屈服强度和硬度。 奥氏体中铁原子激活能大,扩散系数小,因此奥氏体钢的热强性好。 线膨胀系数大 导热性能差 奥氏体晶粒度 实际生产中习惯用晶粒度来表示奥氏体晶粒大小。奥氏体晶粒通常分为8级标准评 定,1级最粗,8级最纫,超过8级以上者称为超细晶粒。 晶粒度级别N与晶粒大小的关系为: 式中,n为放大100倍的视野中每平方英寸(6.45cm2)所含的平均奥氏体晶粒数目。奥氏体晶粒越细小爪就越大,N也就越大。 1.起始晶粒度:起始晶粒度是指在临界温度以上,奥氏体形成刚刚完成,其晶粒边界 刚刚相互接触时的品粒大小,取决于奥氏体的形核率N和长大速度G。 2.实际晶粒度:实际生产中,各式各样热处理工艺处理后得到的奥氏体晶粒大小。 3.本质晶粒度:钢在规定加热条件下奥氏体晶粒长大的倾向性。1-4级为本质细晶粒, 5-8为本质粗晶粒。 种类 颗粒状奥氏体:奥氏体的组织形态与原始组织、加热速度、加热转变的程度有关,一般由多边形等轴晶粒组成,这种形态也称为颗粒状,在晶粒内部经常可以看到相变孪品。 针状奥氏体:非平衡态时低碳钢以适当的速度加热到(a十r)两相区可得到针状奥氏体。 一般热处理手册上列出的实际临界点数据,多是在30-50度/小时的加热或冷却速度下测定的。 奥氏体等温形成动力学曲线 时间-温度-奥氏体化图,简称TTA图 奥氏体等温形成动力学油线指在一定温度下,奥氏体形成量与等温时间的关系曲线,常用金相法进行测定。将一纽厚度为1—2MM的薄片共析碳钢试样,在盐浴中迅速加热至AC1点以上某一指定温度,保温不同时间后在盐水中急冷至室温,然后制取金相试样进行观察。因加热转变所得的奥氏体在快冷时转变为马氏体,故根据观察到的马氏体量的多少即可了解奥氏体的形成数量。作出各温度下奥氏体形成量与保温时间的关系曲线,即得奥氏体等温形成动力学曲线。

关于奥氏体、马氏体、珠光体的分析

1奥氏体——碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 2铁素体——碳与合金元素溶解在a-Fe中的固溶体。 亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 3渗碳体——碳与铁形成的一种化合物。 在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 4珠光体——铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 5上贝氏体——过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。 过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od 铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 6下贝氏体——同上,但渗碳体在铁素体针内。 过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。 7粒状贝氏体——大块状或条状的铁素体内分布着众多小岛的复相组织。 过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,可能全部保留成为残余奥氏体;也可能部分或全部分解为铁素体和渗碳体的混合物(珠光体或贝氏体);最可能部分转变为马氏体,部分保留下来而形成两相混合物,称为M-A组织。 8回火马氏体——马氏体分解得到极细的过渡型碳化物与过饱和(含碳较低)的a-相混合组织它由马氏体在150~250℃时回火形成。 这种组织极易受腐蚀,光学显微镜下呈暗黑色针状组织(保持淬火马氏体位向),与下贝氏体很相似,只有在高倍电子显微镜下才能看到极细小的碳化物质点。 9回火屈氏体——碳化物和a-相的混合物。 它由马氏体在350~500℃时中温回火形成。其组织特征是铁素体基体内分布着极细小的粒状碳化物,针状形态已逐渐消失,但仍隐约可见,碳化物在光学显微镜下不能分辨,仅观察到暗黑的组织,在电镜下才能清晰分辨两相,可看出碳化物颗粒已明显长大。 10回火索氏体——以铁素体为基体,基体上分布着均匀碳化物颗粒。

常用不锈钢化学成分.

常用不锈钢化学成分 钢号国内号 各化学成分含量(%) C Cr Ni Ti Mn Si S Mo P Al Cu Fe 3040Cr19Ni9≤0.0818.0~20.08.0~10.5——≤2.00≤1.00≤0.030≤0.045————余量304L00Cr19Ni11≤0.0318.0~20.09.0~13.0——≤2.00≤1.00≤0.030≤0.045余量309S0Cr23Ni13≤0.0822.0~24.012.0~15.0——≤2.00≤1.00≤0.030≤0.035————余量3160Cr17Ni12Mo2≤0.0816.0~18.010.0~14.0——≤2.00≤1.00≤0.030 2.0~3.0≤0.045————余量316L00Cr17Ni14Mo2≤0.0316.0~18.012.0~15.0——≤2.00≤1.00≤0.030 2.0~3.0≤0.045————余量3211Cr18Ni9Ti≤0.1217.0~19.08.00~11.0≥5×C≤2.00≤1.00≤0.030≤0.035————余量322≤0.1216.0~18.0 6.00~8.00 1.00≤2.00≤1.00≤0.030≤0.045 1.00——余量332≤0.0819.0~23.030.0~40.0≤0.60≤2.00≤0.75≤0.030≤0.040≤0.60——余量4301Cr17≤0.1216.0~18.0≤0.60——≤1.00≤0.75≤0.030≤0.035——余量430LX1Cr17(铁素体)≤0.0316.0~19.0≤0.600.1~1.0≤1.00≤0.75≤0.030≤0.040——余量英格莱600≤0.1514.0~17.0≥72.0——≤1.00≤0.50≤0.015————≤0.506~10英格莱801≤0.0520.5032.0 1.10——————————0.15余量英格莱8250Cr21Ni42Mo3Cu2Ti≤0.0219.5~23.538.0~46.00.6~1.2≤1.00≤0.50≤0.030 2.5~3.5——≤0.20 1.5~3.022.0min 英格莱840≤0.0818.0~22.018.0~22.0—— 1.00 1.00————≤0.60——余量334≤0.0818.0~22.018.0~22.0≤0.60≤2.00≤0.75≤0.030≤0.040≤0.60——余量NAS840≤0.0818.0~22.018.0~22.0≤0.60余量310S0Cr25Ni20≤0.0824.0~26.019.0~22.0——≤2.00≤1.50≤0.030≤0.045————余量840REP≤0.0824.0~26.019.0~22.0——余量英格莱8001Cr21Ni33AlTi≤0.1019.0~23.030.0~35.00.40≤1.50≤1.00≤0.015——0.15~0.6≤0.7539.5min NAS800≤0.1019.0~23.030.0~35.00.15~0.6余量钢号国内号C Cr Ni Ti Mn Si S Mo P Al Cu Fe 注:钢号是美国命名法 各成分作用:C含量增加,合金硬度和耐磨性都增大,而塑性跟韧性减小; Si抗氧化;Mn在奥氏体中可耐磨,韧性好;P、S为有害杂质,P冷脆,S热脆; Cr、Ni、Mo具有抗蚀性,Ni只有与Cr一起才起作用;Al抗氧化;Cu耐蚀。

奥氏体不锈钢化学成份和该成份对其组织性能影响

1.碳的影响: 碳在奥氏体不锈钢中是强烈形成并稳定奥氏体且扩大奥氏体区的元素,碳形成奥氏体的能力为镍的30倍。钢中随着含碳量增加,奥氏体不锈钢强度也随之提高。此外,还能提高奥氏体不锈钢在高浓氯化物(如42%MgCl2沸腾溶液)中的耐应力腐蚀性能。但是在奥氏体不锈钢中,碳通常被视为有害元素,因为在焊接或加热到450度到850度,碳可以和钢中的铬形成Cr23C6型碳化物。导致局部铬贫化,使钢的耐晶间腐蚀性能下降。20世纪60年代以来新发展的铬镍奥氏体不锈钢,为含碳量小于0.03%或0.02%的超低碳型不锈钢。因此,在冷、热加工及焊接与碳弧气刨时应防止不锈钢表面增碳,以免铬的碳化物析出。 2.铬的影响: 在奥氏体不锈钢中,铬是强烈形成并稳定铁素体的元素,可以缩小奥氏体区。在铬镍奥氏体不锈钢中,当碳含量为0.1%,铬含量为18%时,为获得稳定单一奥氏体组织,所需镍的含最最低为8%,铬能增大碳的溶解度而降低铬的贫化度,因而提高铬含量对奥氏体不锈钢的耐晶间腐蚀是有益的。铬还能极有效地改善奥氏体不锈钢的耐点蚀及缝隙腐蚀性能。因此铬对奥氏体不锈钢性能影响最大的是耐蚀性。铬可提高钢的耐氧化性介质和酸性氯化物介质的性能,在镍、钼、铜的复合作用下,铬可提高钢耐一些还原性介质、如有机酸、碱介质的性能。 3.镍的影响: 奥氏体不锈钢中主要合金元素镍,其主梌用是形成并稳定奥氏体,获得完全奥氏体组织,使强有良好的强度、塑性和韧性并具有优良的冷、热加工性、可焊性及低温与无磁性,镍还可以显著降低奥氏体不锈钢的冷加工硬化倾向。由于镍能改善铬的氧化膜成份、结构和性能,从而提高奥氏体不锈钢耐氧化性介质的性能。但是降低了钢的抗高温硫化性能,这是由于钢中晶界处形成低熔点硫化镍所致。 4.钼的影响: 钼的作用主要是提高钢在还原性介质(比如H2So4、H2PO4以及一些有机酸和尿素环境)的耐蚀性,并提高钢的耐点蚀及缝隙腐蚀等性能。含钼不儿钢的热加工性比不含钼的差,钼含量越高,热加工越坏。另外含钼奥氏体不锈钢中容易形成X(σ)沉淀,这会恶化钢的塑性和韧性。钼的耐点蚀和耐缝隙腐蚀能力相当于铬的3倍左右。 5.氮的影响: 氮日益成为铬镍氮奥氏体不锈钢的重要合金元素,氮能提高钢的耐局部腐蚀(耐晶间腐蚀、点蚀和缝隙腐蚀)性,氮形成奥氏体的能力与碳相当,约为镍的30倍。作为间隙元素的氮,其固溶强化作用很强,因为它的加入可以显著提搞奥氏体不锈钢的强度。每加入0.1%氮可使铬镍奥氏体不锈钢的室温强度提高60~100MPa。在酸介质中,氮可提高奥氏体不锈钢的耐一般腐蚀能力,适量的氮还可提高敏经态奥氏体不锈钢的耐晶间腐蚀能力。在氯化物环境中,氮提高奥氏体不锈钢耐点蚀和缝隙腐蚀性能十分显著。 6.铜的影响: 铜能显著降低铬镍奥氏体不锈钢的冷作硬化倾向,提高冷国工成型性能。奥氏体不锈钢中的铜含量为1%~4%时,铜对钢的组织没有影响,对钢的冷成型性有良好的作用,因此含铜的奥氏体锈钢多用于要求冷作的一些用途中,铜可以显著降低热加工性,特别是当奥氏休不锈钢中含镍量较低时更为明显,因此当钢中铜含量较高时,镍含量应相应提高。

301系列不锈钢化学成分

301系列不锈钢化学成 分 https://www.360docs.net/doc/408592075.html,work Information Technology Company.2020YEAR

SUS301不锈钢-1Cr17Ni7 不锈钢材质性能及用途介绍 SUS301(L)-1Cr17Ni7对比304含有低Ni,Cr及高N成分,301 不锈钢在形变时呈现出明显的加工硬化现象。被用于要求较高强度的各种场合。根据粗压延可以达到的高强度化,对比Steel Al有优秀的高温强度,抗疲劳强度及耐腐蚀性,使用在电车上达到重量轻,优秀的稳定性及经济性(301L) 化学成分:(单位:wt%) 301特性及用途: 机械性能: 301(L)— 1Cr17Ni7 —相对304含有低Ni,Cr及高N成分,经过粗压延可以达到高强度化 —相对碳钢,铝有优秀的高温强度,抗疲劳强度及耐腐蚀性,使用在电车上可以减轻重量 ● 简介 301是一种亚稳奥氏体不锈钢,在充分固溶的条件下,具有完全奥氏体组织。在奥氏体不锈钢中,301是最易冷变形强化的钢种,通过冷变形加工可使钢的强度、硬度提高,并且保留足够的塑、韧性,加之此钢在大气条件下具有良好的耐锈性,但在还原性介质耐蚀性欠佳,在酸碱盐等化工介质耐蚀性较差,因此不推荐用于腐蚀苛刻的环境。301主要以冷加工状态应用于承受较高负荷,又希望减轻装备重量和不生锈的设备部件。此外,此钢在受外力撞击时易产生加工硬化可吸收更多的撞击能量,对设备和人员将提供更可靠的安全保障。 ● ●工艺性能

热加工工艺性能良好,可生产棒、板、管、带等冶金产品,热加工温度范围:1150~850℃,软化退火温度1050~1100℃。301焊接性良好,冷轧薄板焊接后在焊缝区产生低强度区。 ● 301L 在301基础上降低C的含量,改善耐晶间腐蚀,添加N,弥补C量下降引起的强度下降。

马氏体奥氏体珠光体贝氏体的区别

马氏体奥氏体珠光体贝氏体 马氏体(martensite)是黑色金属材料的一种组织名称。马氏体(M)是碳溶于α-Fe的过饱和的固溶体,是奥氏体通过无扩散型相变转变成的亚稳定相。其比容大于奥氏体、珠光体等组织,这是产生淬火应力,导致变形开裂的主要原因。马氏体最初是在钢(中、高碳钢)中发现的:将钢加热到一定温度(形成奥氏体) 奥氏体(austenite)A、γ是晶体结构:面心立方(fcc)。是碳在γ-Fe中形成的间隙固溶体。奥氏体是一种塑性很好,强度较低的固溶体,具有一定韧性。不具有铁磁性。因此,分辨奥氏体不锈钢刀具(常见的18-8型不锈钢)的方法之一就是用磁铁来看刀具是否具有磁性。古代铁匠打铁时烧红的铁块即处于奥氏体状态。另外,奥氏体因为是面心立方,四面体间隙较大,可以容纳更多的碳。 珠光体pearlite 珠光体是奥氏体(奥氏体是碳溶解在γ-Fe中的间隙固溶体)发生共析转变所形成的铁素体与渗碳体的共析体。得名自其珍珠般(pearl-like)的光泽。其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。用符号P表示,含碳量为ωc=%。在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多.在球化退火条件下,珠光体中的渗碳休也可呈粒状,这样的珠光体称为粒状珠光体。珠光体的性能介于铁素体和渗碳体之间,强韧性较好.其抗拉强度为750 ~900MPa,180 ~280HBS,伸长率为20 ~25%,冲击功为24 ~32J.力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好。

铁素体(ferrite,缩写:FN,用F表示)即α-Fe和以它为基础的固溶体,具有体心立方点阵。亚共析成分的奥氏体通过先共析析出形成铁素体。在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;室温下的铁素体的机械性能和纯铁相近。铁素体的强度、硬度不高,但具有良好的塑性与韧性。 经过硝酸溶液侵蚀后,从颜色上观察区分金相组织形态. 铁素体是白色,珠光体是黑色,马氏体(M)是碳溶于α-Fe的过饱和的固溶体,在金相观察中为细长的板条状或针叶状。

奥氏体马氏体铁素体的区别

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 奥氏体/马氏体/铁素体 奥氏体(钢的组别:A1, A2, A3 A4, A5)(性能等级:50软,70冷加工,80高强度) 马氏体(钢的组别:C1,C2,C3) (性能等级:50软,70、110淬火并回火,80淬火并回火) 铁素体(钢的组别:F1) (性能等级:45软,60冷加工) 马氏体不锈钢属于铬不锈钢。由于含碳量高,碳化铬多,钢的耐蚀性能下降,虽可通过热处理的方法改善,但防腐性不高。马氏体不锈钢多用于制造力学性能要求较高,并有一定耐蚀性能要求的零件,如汽轮机叶片、喷嘴、阀座、量具、刃具等。 铁素体不锈钢也属于铬不锈钢。含碳量小,抗大气、硝酸及盐水溶液的腐蚀能力强,有高温抗氧化性能好等特点。主要用于制作化工设备中的容器、管道。 奥氏体不锈钢属于铬镍不锈钢。具有很高的耐蚀性,优良的塑性,良好的焊接性及低温韧性,不具有磁性,易加工硬化。主要用于在腐蚀介质中工作的零件、容器、管道、医疗器械以及抗磁环境中。 奥氏体 奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。它仍保持γ-Fe的面心立方晶格。其溶碳能力较大,在727℃时溶碳为ωc= 0.77%,1148℃时可溶碳2.11%。奥氏体是在大于727℃高温下才能稳定存在的组织。奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。奥氏体是没有磁性的。 马氏体分级淬火 是将奥氏体化工件先浸入温度稍高或稍低于钢的马氏体点的液态介质(盐浴或碱浴)中,保持适当的时间,待钢件的内、外层都达到介质温度后取

出空冷,以获得马氏体组织的淬火工艺,也称分级淬火。分级淬火由于在分级温度停留到工件内外温度一致后空冷,所以能有效地减少相变应力和热应力,减少淬火变形和开裂倾向。分级淬火适用于对于变形要求高的合金钢和高合金钢工件,也可用于截面尺寸不大、形状复杂地碳素钢工件。 马氏体不锈钢 通过热处理可以调整其力学性能的不锈钢,通俗地说,是一类可硬化的不锈钢。典型牌号为Cr13型,如2Cr13 ,3Cr13 ,4Cr13等。粹火后硬度较高,不同回火温度具有不同强韧性组合,主要用于蒸汽轮机叶片、餐具、外科手术器械。根据化学成分的差异,马氏体不锈钢可分为马氏体铬钢和马氏体铬镍钢两类。根据组织和强化机理的不同,还可分为马氏体不锈钢、马氏体和半奥氏体(或半马氏体)沉淀硬化不锈钢以及马氏体时效不锈钢等。 马氏体就是以人命命名的: 对于学材料的人来说,“马氏体”的大名如雷贯耳,那么说到阿道夫·马滕斯又有几个人知道呢?其实马氏体的“马”指的就是他了。在铁碳组织中这样以人名命名的组织还有很多,今天我们就来说说这些名称和它们背后那些材料先贤的故事。 马氏体Martensite,如前所述命名自Adolf Martens (1850-1914)。这位被称作马登斯或马滕斯的先生是一位德国的冶金学家。他早年作为一名工程师从事铁路桥梁的建设工作,并接触到了正在兴起的材料检验方法。于是他用自制的显微镜(!)观察铁的金相组织,并在1878年发表了《铁的显微镜研究》,阐述金属断口形态以及其抛光和酸浸后的金相组织。(这个工作我们现在做的好像也蛮多的。)他观察到生铁在冷却和结晶过程中的组织排列很有规则(大概其中就有马氏体),并预言显微镜研究必将成为最有用的分析方法之一(有远见)。他还曾经担任了柏林皇家大学附属机械工艺研究所所长,也就是柏林皇家材料试验所("Staatliche Materialprüfungsamt")的前身,他在那里建立了第一流的金相试验室。1895年国际材料试验学会成立,他担任了副主席一职。直到现在,在德国依然有一个声望颇高的奖项以他的名字命名

奥氏体马氏体铁素体不锈钢区别

奥氏体马氏体铁素体不锈钢区别? 铁素体型不锈钢 它的内部显微组织为铁素体,其铬的质量分数在11.5%~32.0%范围内。随着铬含量的提高,其耐酸性能也提高,加入钼(Mo)后,则可提高耐酸腐蚀性和抗应力腐蚀的能力。这类不锈钢的国家标准牌号有00Cr12、1Cr17、00Cr17Mo、00Cr30Mo2等。 430是铁素体不锈钢。 铁素体不锈钢是含铬大于14%的低碳铬不锈钢,含铬大于27%的任何含碳量的铬不锈钢,以及在上述成分基础上再添加有钼、钛、铌、硅、铝、、钨、钒等元素的不锈钢,化学成分中形成铁素体的元素占绝对优势,基体组织为铁素。这类钢在淬火(固溶)状态下的组织为铁素体,退火及时效状态的组织中则可见到少量碳化物及金属间化合物。 属于这一类的有Crl7、Cr17Mo2Ti、Cr25,Cr25Mo3Ti、Cr28等。铁素体不锈钢因为含铬量高,耐腐蚀性能与抗氧化性能均比较好,但机械性能与工艺性能较差,多用于受力不大的耐酸结构及作抗氧化钢使用。 马氏体型不锈钢 它的显微组织为马氏体。这类钢中铬的质量分数为11.5%~18.0%,但碳的质量分数最高可达0.6%。碳含量的增高,提高了钢的强度和硬度。在这类钢中加入的少量镍可以促使生成马氏体,同时又能提高其耐蚀性。这类钢的焊接性较差。列入国家标准牌号的钢板有1Cr13、2 Cr13、3Cr13、1Cr17Ni2等。 410是马氏体不锈钢,其中碳最大含量为0.15%,锰最大含量1.00%,硅最大含量为1.00%,铬含量为11.50~13.50%。为通用型可热处理不锈钢,耐腐蚀,耐热,硬度可达42HRC或更高些。 奥氏体型不锈钢 其显微组织为奥氏体。它是在高铬不锈钢中添加适当的镍(镍的质量分数为8%~25%)而形成的,具有奥氏体组织的不锈钢。奥氏体型不锈钢以Cr18Ni19铁基合金为基础,在此基础上随着不同的用途,发展成图1-2所示的铬镍奥氏体不锈钢系列。 奥氏体、铁素体、马氏体不锈钢在用途上如何区分? 工业上应用的不锈钢按金相组织可分为三大类:铁素体不锈钢,马氏体不锈钢,奥氏体不锈钢。可以把这三类不锈钢的特点归纳(如下表),但需要说明的是马氏体不锈钢并不是都不可焊接,只是受某些条件的限制,如焊前应预热焊后应作高温回火等,而使焊接工艺比较复杂。实际生产中一些马氏体不锈钢如1Cr13,2Cr13以及2Cr13与45钢焊接还是比较多的。 马氏体不锈钢属于铬不锈钢。 由于含碳量高,碳化铬多,钢的耐蚀性能下降,虽可通过热处理的方法改善,但防腐性不高。马氏体不锈钢多用于制造力学性能要求较高,并有一定耐蚀性能要求的零件,如汽轮机叶片、喷嘴、阀座、量具、刃具等。 铁素体不锈钢也属于铬不锈钢。 含碳量小,抗大气、硝酸及盐水溶液的腐蚀能力强,有高温抗氧化性能好等特点。主要用于制作化工设备中的容器、管道。 奥氏体不锈钢属于铬镍不锈钢。

AL-6XN等超级奥氏体不锈钢性能

254SMO、AL-6XN等超级奥氏体不锈钢性能 1.1 化学成分与金相组织 一些主要高合金奥氏体不锈钢的主要化学成分在表1中给出。其中AL-6XN 和254 SMO为典型的6钼超级奥氏体不锈钢,而654 SMO为典型的7钼超级奥氏体不锈钢。 超级奥氏体不锈钢的基本金相组织为典型的,百分之百的奥氏体。但由于铬和钼的含量均较高,很有可能会出现些金属中间相,如chi和σ相。这些金属中间相常常会出现在板材的中心部位。但是如果热处理正确,就会避免这些金属中间相的生成,从而得到近百分之百的奥氏体。254 SMO 的金相组织没有任何其它金属中间相。该组织是经在1150~12000C温度下热处理之后得到的。 在使用过程中,如果出现了少量的金属中间相,它们也不会对机械性能和表面的耐腐蚀性能有很大的影响。但是要尽量避免温度范围600~10000C,尤其是在焊接和热加工时。 1.2 机械性能 奥氏体结构一般具有中等的强度和较高的可锻性。在加入一定量的氮之后,除提高了防腐能力外,在保持奥氏体不锈钢可锻性和韧性的同时,高氮超级奥氏体不锈钢还具有很高的机械强度。其屈服强度比普通奥氏体不锈钢要高出50~100%。在室温和较高温度下氮对机械性能的影响分别在表2和表3有所显示。

如表2和表3所示,在所有温度下机械强度均随氮含量的增加而提高。尽管强度增加了许多,但超级奥氏体不锈钢的延伸率仍然很高。甚至高于许多低合金钢的延伸率。这主要是由于其较高的含氮量和与之相关的另一个特点——高加工硬化率,见图2和图3。因此经冷加工成型的部件就可获得很高的强度。可利用这一特性的用途包括较深井中的管道及螺栓等。和普通奥氏体不锈钢一样,超级奥氏体不锈钢的低温性能也是很好的。超级奥氏体不锈钢的抗撞击及抗断裂能力是很高的,并且只有在低达-196℃时才会略有下降。 1.3 物理性能 物理性能主要取决于奥氏体结构,同时也部分地取决于材料的化学成分。就是说超级奥氏体不锈钢较普通奥氏体不锈钢,如304或316型,在物理性能方面是没有很大区别的。表4列出不同合金的一些典型物理性能值。 在结合部位上可能会出现一些变形。虽然镍基合金的热膨胀度一般较低,但其较差的导热性正好将其这一优点抵消。这些物理性能在设计用不锈钢制作部件或不锈钢与其它合金连接时,具有很重要的意义。 2 超级奥氏体不锈钢的耐腐蚀性能 在很大程度上,奥氏体不锈钢的发展是为了满足各种环境中对防腐性能的要求。许多合金曾是被设计用于一种特定环境的,随后其应用范围发展得越来越广泛。因此,对超级奥氏体不锈钢的选用,其耐腐蚀性能是一个很重要的依据。这里主要介绍均匀腐蚀、点蚀、缝隙腐蚀和应力腐蚀破裂。 3.1 均匀腐蚀 提高不锈钢稳定性的最重要合金元素为铬和钼。超级奥氏体不锈钢中这些成分的含量均较高,因此在各种溶液中都显出很好的耐腐蚀性。在有些环境中,硅、铜和钨等元素的添加可进一步提高材料的耐腐蚀性。图1所示是一些奥氏体不锈钢在纯硫酸中的等腐蚀速度曲线图。可以看出,合金含量较高的不锈钢,如904L,254 SMO和654 SMO等,在较大浓度和温度范围内比普通型奥氏体不锈钢,如304和316等,具有更好的耐腐蚀性。该图同时也显示了高硅不锈钢SX具有非常强的,抵抗浓硫酸的能力。

铁素体奥氏体马氏体等归纳

1铁素体,奥氏体,马氏体是钢在不同温度下,或是不同处理使得存在形式,首先碳溶在铁中若含量极少,小于0.0218%,在较低温度时就会形成铁素体,碳含量增加的话就会存在铁素体和渗碳体,铁素体和渗碳体机械混合结构和成珠光体,将碳含量小于0.77%的铁加热到727摄氏度以上就会变成奥氏体,奥氏体与铁素体的不同是结构不一样,奥氏体是面形立方,铁素体是体心立方,将奥氏体以极快的速度冷却,它就不能变为低温下的铁素体和渗碳体混合结构,因为碳原子无法扩散,直接就切变成体心立方的马氏体,马氏体是碳过饱和溶于体心立方的铁中,之所以研究这些东西,在于这些结构的性质不同,如,铁素体有好的塑形,但是非常软,马氏体是很硬的,但塑形不怎么样,一般淬火得到的就是马氏体,2正火得到珠光体组织,淬火是将奥氏体变化为马氏体,回火是将马氏体变为铁素体。 加入锰和镍能将奥氏体临界转变温度降至室温以下,使钢在室温下保持奥氏体组织,即所谓奥氏体钢。 3铁素体,奥氏体都有很好的塑性,韧性,珠光体有较高的综合机械性能;莱氏体\渗碳体都是脆性的,硬度高,耐磨性好;索氏体较珠光体有更高的综合机械性能;马氏体分2种:低碳M有很高的强韧性,高碳M有更高的耐磨性;屈氏体较索氏体的层片间距更小,屈服强度更高,弹性更好. 4奥氏体——碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处铁素体——碳与合金元素溶解在a-Fe中的固溶体。 亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 渗碳体——碳与铁形成的一种化合物。 在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 珠光体——铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 上贝氏体——过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。 过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 下贝氏体——同上,但渗碳体在铁素体针内。 过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度

奥氏体、马氏体、珠光体

奥氏体——碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 铁素体——碳与合金元素溶解在a-Fe中的固溶体。 亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 渗碳体——碳与铁形成的一种化合物。 在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 珠光体——铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 上贝氏体——过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。 过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od 铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 下贝氏体——同上,但渗碳体在铁素体针内。 过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。 粒状贝氏体——大块状或条状的铁素体内分布着众多小岛的复相组织。 过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,可能全部保留成为残余奥氏体;也可能部分或全部分解为铁素体和渗碳体的混合物(珠光体或贝氏体);最可能部分转变为马氏体,部分保留下来而形成两相混合物,称为M-A组织。 回火马氏体——马氏体分解得到极细的过渡型碳化物与过饱和(含碳较低)的a-相混合组织它由马氏体在150~250℃时回火形成。 这种组织极易受腐蚀,光学显微镜下呈暗黑色针状组织(保持淬火马氏体位向),与下贝氏体很相似,只有在高倍电子显微镜下才能看到极细小的碳化物质点。 回火屈氏体——碳化物和a-相的混合物。 它由马氏体在350~500℃时中温回火形成。其组织特征是铁素体基体内分布着极细小的粒状碳化物,针状形态已逐渐消失,但仍隐约可见,碳化物在光学显微镜下不能分辨,仅观察到暗黑的组织,在电镜下才能清晰分辨两相,可看出碳化物颗粒已明显长大。 回火索氏体——以铁素体为基体,基体上分布着均匀碳化物颗粒。

316不锈钢组成化学成分,耐腐蚀和耐高温度

316不锈钢组成化学成分,耐腐蚀和耐高温度 316不锈钢,18Cr-12Ni-2.5Mo 因添加Mo,故其耐蚀性、耐大气腐蚀性和高温强度特别好,可在苛酷的条件下使用;加工硬化性优(无磁性)。海水里用设备、化学、染料、造纸、草酸、肥料等生产设备;照相、食品工业、沿海地区设施、绳索、CD杆、螺栓、螺母。316不锈钢化学成分:C≤0.08,Si≤1.00,Mn≤2.00,P≤0.035,S≤0.03,Ni:10.0-14.0,Cr:16.0-18.5,Mo:2.0-3.0。316不锈钢机械性质,抗拉强度(Mpa) 620 MIN,屈服强度(Mpa) 310 MIN,伸长率(%) 30 MIN,面积缩减(%) 40 MIN,316不锈钢的密度8.03 g/cm3,奥氏体不锈钢一般都用这个值 目录 种类

不锈钢一般是不锈钢和耐酸钢的总称。不锈钢是指耐大气、蒸汽和水等弱介质腐蚀的钢,而耐酸钢则是指耐酸、碱、盐等化学浸蚀性介质腐蚀的钢。不锈钢自20世纪初问世,到2013年已有100多年的历史。不锈钢的发明是世界冶金史上的重大成就,不锈钢的发展为现代工业的发展和科技进步奠定了重要的物质技术基础。不锈钢钢种很多,性能各异,它在发展过程中逐步形成了几大类。按组织结构分,分为马氏不锈钢(包括沉淀硬化不锈钢)、铁素体不锈钢、奥氏体不锈钢和奥氏体加铁素体双相不锈钢等四大类;按钢中的主要化学成分或钢中的一些特征元素来分类,分为铬不锈钢、铬镍不锈钢、铬镍钼不锈钢以及低碳不锈钢、高钼不锈钢、高纯不锈钢等;按钢的性能特点和用途分类,分为耐硝酸不锈钢、耐硫酸不锈钢、耐点蚀不锈钢、耐应力腐蚀不锈钢、高强不锈钢等;按钢的功能特点分类,分为低温不锈钢、无磁不锈钢、易切削不锈钢、超塑性不锈钢等。2013年常用的分类方法是按钢的组织结构特点和钢的化学成分特点以及两者相结合的方法分类。一般分为马氏体不锈钢、铁素体不锈钢、奥氏体不锈钢、双相不锈钢和沉淀硬化型不锈钢等,或分为铬不锈钢和镍不锈钢两大类。 不锈钢一般用于防腐蚀性的环境,以及医疗器械和生活用品. 按主要化学组成分为铬不锈钢、铬镍不锈钢和铬锰氮不锈钢等;也可以以性能特点分成耐酸不锈钢和耐热不锈钢等;通常以金相组织进行分类。按金相组织分类为:铁素体(F)型不锈钢、马氏体(M)型不锈钢、奥氏体(A)型不锈钢、奥氏体-铁素体(A-F)型双相不锈钢、奥氏体-马氏体(A-M)型双相不锈钢和沉淀硬化(PH)型不锈钢。 铁素体型 它的内部显微组织为铁素体,其铬的质量分数在11.5%~32.0%范围内。随着铬含量的提高,其耐酸性能也提高,加入钼(Mo)后,则可提高耐酸腐蚀性和抗应力腐蚀的能力。这类不锈钢的国家标准牌号有00Cr12、1Cr17、00Cr17Mo、00Cr30Mo2等。 马氏体型 它的显微组织为马氏体。这类钢中铬的质量分数为11.5%~18.0%,但碳的质量分数最高可达0.6%。碳含量的增高,提高了钢的强度和硬度。在这类钢中加入的少量镍可以促使生成马氏体,同时又能提高其耐蚀性。这类钢的焊接性较差。列入国家标准牌号的钢板有1Cr13、2 Cr13、3 Cr13、1 Cr17Ni2等。 奥氏体型 其显微组织为奥氏体。它是在高铬不锈钢中添加适当的镍(镍的质量分数为 8%~25%)而形成的,具在奥氏体组织的不锈钢。奥氏体型不锈钢以Cr18Ni19铁基合金为基础,在此基础上随着不同的用途,发展成图1-2所示的铬镍奥氏体不锈钢系列。 奥氏体型不锈钢一般属于耐蚀钢,是应用最广泛的一类钢,其中以18-8型不锈钢最有代表性,它是有较好的力学性能,便于进行机械加工、冲压和焊接。在氧化性环境中具有优良的耐腐蚀性能和良好的耐热性能。但对溶液中含有氯离子

纯铁,奥氏体,马氏体和铁素体

纯铁在室温时具有体心立方晶格,其晶格常数 a = 2 . 86A ,这种铁称为 a 一 Fe 。若温度升高到 912 ℃ ,纯铁的晶休结构会发生变化,由体心立方晶格转变为面心立方晶格,其晶格常数a =3 . 64 人,这种铁称为γ一 Fe 。当扭度继续升高到 1394 ℃ ,面心立方晶格又重新变为体心立方品格,其晶格常数 a =2 . 93 人,为与 912 ℃ 以下的。γ一 Fe 相区别,称它为e F -δ。若得度降低,则发生可逆转变。上述变化过程可表达如下: 这种随温度变化.固态金属由一种晶格转变为另一种晶格的现象,称为同素异晶转变. 铁素体 F 碳溶于a 一 Fe 铁中的固溶体,称为铁素体,用符号 F 衷示。它仍保待 a 铁的体心立方晶格,铁素体的性能与纯铁相似,即塑性、韧性较好,强度,硬度较低。 奥氏体 A 碳溶于γ一 Fe 铁中的固溶体,称为奥氏体,用符号 A 表示。它仍保持护铁的面心立方品格,其有良好的塑性和低的变形拢力,适合于锻造。 渗碳体 渗碳体是铁和碳的化合物,分子式为分子式为 C F 3e ,含碳量为6.69%。对铸铁有重要意义。 珠光体 P 由铁素体和渗碳体组成的机械混合物,称为珠光体.用符号 P 表示。珠光体的平均含碳爪为 0.77%。珠光体的性能介于硬的渗碳体和软的铁素体之间,硬度适中,强度较好,脆性不大。 莱氏体 L 在 727 ℃ 以上,莱氏体主要由奥氏休和渗碳体组成,称为莱氏体或高温莱氏体,用符号 L 表示.在 727 ℃ 以下,莱氏体主要由珠光体和渗碳体组成,称为变态莱氏体或低温莱氏体,用符号 L 益表示。莱氏体的平均含碳吸为 4.3 %。是一种婴硬而脆的组织。

铁素体马氏体和奥氏体的区别

铁素体和奥氏体的区别 钢的组织和特性?铁是钢的基本组成元素。铁在固态有两种晶体结构,一是体心立方结构(存在于两个温度范围内,?912?℃?以上称?α? 铁,?1394?℃?以上称?δ?铁);另一是面心立方结构(存在 于?912?~?1394?℃?之间,称?γ?铁)。碳是钢中另一主要元素,对钢的组织和性能起重要作用,通常随着含碳量的增加,钢的强度增加、塑性下降。碳在钢中主要有两种存在形式,一是溶入铁中与铁形成固溶体(两种以上化学组分互相溶解而形成的均匀固相);另一是与铁形成铁碳化合物,称渗碳体(?Fe?3C?),其硬度高、脆性大。碳溶于?α?铁中形成的固溶体称铁素体;溶于?γ?铁中形成的固溶体称奥氏体,其最大溶解度为??%。钢在冷却过程中,过饱和的奥氏体将发生分解,形成铁素体和渗碳体。铁素体和渗碳体组成的呈片状相间排列的混合物称珠光体。一般碳素钢在室温下的金相组织由铁素体、珠光体和渗碳体组成? 铁素体是碳溶解在a-Fe中的间隙固溶体,常用符号F表示。 不锈钢中的“铁素体”,指的是碳溶解在a-Fe中的间隙固溶体,其溶碳能力很小,常温下仅能溶解为%的碳,在727℃时最大的溶碳能力为%, 它仍保持的体心立方晶格.常用符号F表示。

由于铁素体含碳量很低,其 c:\iknow\docshare\data\cur_work\&aid=6148&sid=&click=1&url=http:的是在使用状态下以铁素体组织为主的不锈钢。它的含铬量在11%~30%,具有体心立方晶体结构,至于不锈钢含铁量与它是否是铁素体不锈钢并无关系.铁素体不锈钢只取决于在使用状态下,它是否以铁素体组织为主. 铁素体有磁性. 在使用状态下以铁素体组织为主的不锈钢。含铬量在11%~30%,具有体心立方晶体结构。这类钢一般不含镍,有时还含有少量的Mo、Ti、Nb等到元素,这类钢具导热系数大,膨胀系数小、抗氧化性好、抗应力腐蚀优良等c:\iknow\docshare\data\cur_work\&aid=6025&sid=&click=1&url=http:727℃1148℃727℃是奥氏体不锈钢的三大元素之一(碳、铬、镍)。镍在奥氏体不锈钢中的作用是与碳紧密结合(不锈钢含碳量越大越容易生锈,为了使奥氏体不锈钢既具有强度又不容易生锈,就需要控制碳的含量,而镍正好弥补这一缺陷),增加其强度及硬度。因为镍抗磁性元素,所以奥氏体不锈钢是没有磁性的。因为铁素体不锈钢主要用于加工装饰方面,需具有良好的塑性与韧性,所以它只含极少量的镍元素,因而它是有磁性的。B. 因为马氏体和铁素体的内部电子都有规则的排列;决定磁性的关键因素是排列规则的电子有规律的运动.而镍正好破坏了电子间这种有规则的排列。 为什么不锈钢不生锈铬具有耐腐蚀性。奥氏体不锈钢、马氏体和铁素体不锈钢都含有12%——30%的铬元素,所以它们不生锈。

相关文档
最新文档