2018届一轮复习人教A版5.4 平面向量的综合应用 学案

2018届一轮复习人教A版5.4 平面向量的综合应用 学案
2018届一轮复习人教A版5.4 平面向量的综合应用 学案

1.向量在平面几何中的应用

(1)用向量解决常见平面几何问题的技巧:

(2)用向量方法解决平面几何问题的步骤:

平面几何问题――→设向量

向量问题――→运算

解决向量问题――→还原

解决几何问题. 2.平面向量在物理中的应用

(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相似,可以用向量的知识来解决.

(2)物理学中的功是一个标量,是力F 与位移s 的数量积,即W =F·s =|F||s |cos θ(θ为F 与s 的夹角).

3.向量与相关知识的交汇

平面向量作为一种工具,常与函数(三角函数),解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题. 【知识拓展】

1.若G 是△ABC 的重心,则GA →+GB →+GC →

=0.

2.若直线l 的方程为:Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行. 【思考辨析】

判断下列结论是否正确(请在括号中打“√”或“×”) (1)若AB →∥AC →

,则A ,B ,C 三点共线.( √ ) (2)向量b 在向量a 方向上的投影是向量.( × )

(3)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( × ) (4)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( × )

(5)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →

),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ )

1.(教材改编)已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形

答案 B

解析 AB →=(2,-2),AC →=(-4,-8),BC →

=(-6,-6), ∴|AB →|=22+(-2)2=22,|AC →

|=16+64=45, |BC →

|=36+36=62, ∴|AB →|2+|BC →|2=|AC →|2, ∴△ABC 为直角三角形.

2.已知在△ABC 中,|BC →|=10,AB →·AC →=-16,D 为边BC 的中点,则|AD →

|等于( ) A .6 B .5 C .4 D .3

答案 D

解析 在△ABC 中,由余弦定理可得,AB 2+AC 2-2AB ·AC ·cos A =BC 2,又AB →·AC →=|AB →|·|AC →|·cos A =-16,所以AB 2+AC 2+32=100,AB 2+AC 2=68.又D 为边BC 的中点,所以AB →+AC →=2AD →,两边平方得4|AD →|2=68-32=36,解得|AD →

|=3,故选D.

3.(2017·武汉质检)平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →

=4,则点P 的轨迹方程是____________. 答案 x +2y -4=0

解析 由OP →·OA →=4,得(x ,y )·(1,2)=4, 即x +2y =4.

4.(2016·银川模拟)已知向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 答案 4

解析 设a 与b 夹角为α, ∵|2a -b |2=4a 2-4a·b +b 2 =8-4|a||b |cos α=8-8cos α, ∵α∈[0,π],∴cos α∈[-1,1], ∴8-8cos α∈[0,16],即|2a -b |2∈[0,16], ∴|2a -b |∈[0,4]. ∴|2a -b |的最大值为4.

5.已知一个物体在大小为6 N 的力F 的作用下产生的位移s 的大小为100 m ,且F 与s 的夹角为60°,则力F 所做的功W =________ J. 答案 300

解析 W =F ·s =|F ||s |cos 〈F ,s 〉 =6×100×cos 60°=300(J).

题型一 向量在平面几何中的应用

例1 (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.

(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →

),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .内心B .外心 C .重心D .垂心 答案 (1)1

2

(2)C

解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →

又∵AC →=AD →+AB →,

∴AC →·BE →=(AD →+AB →)·(AD →-12AB →)

=AD →2-12AD →·AB →+AD →·AB →-12AB →2

=|AD →

|2+12|AD →||AB →|cos 60°-12|AB →|2

=1+12×12|AB →|-12

|AB →

|2=1.

∴????12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12

. (2)由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →

的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究

本例(2)中,若动点P 满足OP →=OA →

+λ? ????AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________. 答案 内心

解析 由条件,得OP →-OA →=λ? ????AB →|AB →|+AC →|AC →|,即AP →=λ? ????AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →

平分∠BAC ,所以点P 的轨迹必过△ABC

的内心.

思维升华 向量与平面几何综合问题的解法 (1)坐标法

把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法

适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.

(1)在△ABC 中,已知向量AB →与AC →

满足(AB →|AB →|+AC →|AC →|)·BC →=0,且AB →|AB →|·AC →|AC →|

=12,则

△ABC 为( ) A .等边三角形 B .直角三角形

C .等腰非等边三角形

D .三边均不相等的三角形

(2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →

|的最小值为________. 答案 (1)A (2)5

解析 (1)AB →|AB →|,AC →|AC →|分别为平行于AB →,AC →

的单位向量,由平行四边形法则可知AB →|AB →|+AC →|AC →|为

∠BAC 的平分线.因为(AB →|AB →|+AC →

|AC →|)·BC →

=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .

又AB →|AB →|·AC →

|AC →

|=??????AB →|AB →|·??????AC →|AC →|·cos ∠BAC =12,所以cos ∠BAC =12,又0<∠BAC <π,故∠BAC =π3,所以△ABC 为等边三角形.

(2)以D 为原点,分别以DA ,DC 所在直线为x 轴、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =y .

则D (0,0),A (2,0),C (0,a ),B (1,a ), P (0,y ),

P A →=(2,-y ),PB →

=(1,a -y ), 则P A →+3PB →

=(5,3a -4y ), 即|P A →+3PB →

|2=25+(3a -4y )2, 由点P 是腰DC 上的动点,知0≤y ≤a . 因此当y =34a 时,|P A →+3PB →

|2的最小值为25.

故|P A →+3PB →

|的最小值为5. 题型二 向量在解析几何中的应用

例2 (1)已知向量OA →=(k,12),OB →=(4,5),OC →

=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________________.

(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →

=0,则y

x

=________________________________________________________________________.

答案 (1)2x +y -3=0 (2)±3

解析 (1)∵AB →=OB →-OA →

=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.

由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.

(2)∵OM →·CM →=0,∴OM ⊥CM ,

∴OM 是圆的切线,设OM 的方程为y =kx , 由

|2k |1+k 2

=3,得k =±3,即y

x =±3.

思维升华 向量在解析几何中的“两个”作用

(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题的关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.

(2)工具作用:利用a ⊥b ?a·b =0(a ,b 为非零向量),a ∥b ?a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较简捷的方法.

(2016·合肥模拟)如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A 、

B 的任意一点,若P 为半径O

C 上的动点,则(P A →+PB →)·PC →

的最小值为________.

答案 -92

解析 ∵圆心O 是直径AB 的中点,

∴P A →+PB →=2PO →,∴(P A →+PB →)·PC →=2PO →·PC →, ∵PO →与PC →

共线且方向相反,

∴当大小相等时,乘积最小.由条件知,当PO =PC =32时,最小值为-2×32×32=-9

2.

题型三 向量的其他应用 命题点1 向量在不等式中的应用

例3 已知x ,y 满足????

?

y ≥x ,x +y ≤2,

x ≥a ,

若OA →=(x,1),OB →=(2,y ),且OA →·OB →

的最大值是最小值的

8倍,则实数a 的值是________. 答案 1

8

解析 因为OA →=(x,1),OB →=(2,y ),所以OA →·OB →

=2x +y ,令z =2x +y ,依题意,不等式组所表示的可行域如图中阴影部分所示(含边界),观察图象可知,当目标函数z =2x +y 过点C (1,1)时,z max =2×1+1=3,目标函数z =2x +y 过点F (a ,a )时,z min =2a +a =3a ,所以3=8×3a ,解得a =18

.

命题点2 向量在解三角形中的应用

例4 (2016·合肥模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →

+12cAB →

=0,则△ABC 最小角的正弦值等于( ) A.45 B.3

4 C.3

5 D.74

答案 C

解析 ∵20aBC →+15bCA →+12cAB →

=0, ∴20a (AC →-AB →)+15bCA →+12cAB →

=0, ∴(20a -15b )AC →+(12c -20a )AB →

=0, ∵AC →与AB →

不共线,

∴?

??

??

20a -15b =0,12c -20a =0????

b =4

3a ,c =5

3a ,

∴△ABC 最小角为角A , ∴cos A =b 2+c 2-a 2

2bc

=169a 2+259a 2-a 2

2×43a ×53a =45,

∴sin A =3

5

,故选C.

命题点3 向量在物理中的应用

例5 如图,一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态.已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为(

)

A .27

B .2 5

C .2

D .6

答案 A

解析 如题图所示,由已知得F 1+F 2+F 3=0,则F 3=-(F 1+F 2),即F 23=F 21+F 22+2F 1·F 2=F 21+F 22+2|F 1|·

|F 2|·cos 60°=28.故|F 3|=27. 思维升华 利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.

(1)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最

低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是______.

(2)已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________. 答案 (1)3 (2)3

解析 (1)由图象可知,M ????12,1,N ()x N ,-1, 所以OM →·ON →=????12,1·(x N ,-1)=12x N -1=0,

解得x N =2,

所以函数f (x )的最小正周期是2×???

?2-1

2=3.

(2)∵OP →=(x ,y ),OM →=(1,1),ON →=(0,1),OQ →

=(2,3), ∴OP →·OM →=x +y ,OP →·ON →=y ,OQ →·OP →=2x +3y ,

即在?

????

0≤x +y ≤1,0≤y ≤1条件下,求z =2x +3y 的最大值,由线性规划知识得,当x =0,y =1时,

z max =3.

三审图形抓特点

典例 (2016·太原一模)已知A ,B ,C ,D 是函数y =sin(ωx +φ)????ω>0,0<φ<π

2一个周期内的图象上的四个点,如图所示,A ????-π

6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →

在x 轴上的投影为π12,则ω,φ的值为

( )

A .ω=2,φ=π

3

B .ω=2,φ=π

6

C .ω=12,φ=π

3

D .ω=12,φ=π

6

E 为函数图象的对称中心,C 为图象最低点―――――――――――→作出点C 的对称点M

D 、B 两点对称 CD 和MB 对称

―――――――――――→CD →

在x 轴上

的投影是

π

12

BM 在x 轴上的投影OF =π

12

――――――→A (-π

6

,0),

AF =π

4―→T =π―→ω=2

――――――――→y =sin (2x +φ)

和y =sin 2x 图象比较φ2=π6―→φ=π3

解析 由E 为该函数图象的一个对称中心,作点C 的对称点M ,作MF ⊥x 轴,垂足为F ,如图.B 与D 关于点E 对称,CD →

在x 轴上的投影为π12,知OF =π12

.

又A ????-π6,0,所以AF =T 4=π2ω=π

4,所以ω=2.同时函数y =sin(ωx +φ)图象可以看作是由y =sin ωx 的图象向左平移得到,故可知φω=φ2=π6,即φ=π3

.

答案 A

1.在△ABC 中,(BC →+BA →)·AC →=|AC →|2

,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形

答案 C

解析 由(BC →+BA →)·AC →=|AC →|2, 得AC →·(BC →+BA →-AC →)=0, 即AC →·(BC →+BA →+CA →)=0, 2AC →·BA →=0, ∴AC →⊥BA →

,∴A =90°.

又根据已知条件不能得到|AB →|=|AC →|, 故△ABC 一定是直角三角形.

2.(2016·山东)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=1

3.若n ⊥(t m +n ),则实数

t 的值为( )

A .4

B .-4 C.94 D .-9

4

答案 B

解析 ∵n ⊥(t m +n ),∴n ·(t m +n )=0, 即t m ·n +n 2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0, 由已知得t ×34|n |2×1

3

+|n |2=0,解得t =-4,故选B.

3.(2016·南宁模拟)已知向量a =(cos α,-2),b =(sin α,1)且a ∥b ,则sin 2α等于( ) A .3

B .-3

C.45 D .-45

答案 D

解析 由a ∥b 得cos α+2sin α=0,

∴cos α=-2sin α,又sin 2α+cos 2α=1, ∴5sin 2α=1,sin 2α=15,cos 2α=4

5,

sin 2α=2sin αcos α=-cos 2α=-4

5

.

4.(2016·武汉模拟)设△ABC 的三个内角为A ,B ,C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m·n =1+cos(A +B ),则C 等于( ) A.π6 B.π

3 C.2π3 D.5π6

答案 C

解析 依题意得3sin A cos B +3cos A sin B =1+cos(A +B ),3sin(A +B )=1+cos(A +B ),3sin C +cos C =1,2sin(C +π6)=1,sin(C +π6)=1

2.

又π6

3

. 5.已知点A (-2,0),B (3,0),动点P (x ,y )满足P A →·PB →=x 2,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 答案 D

解析 ∵P A →=(-2-x ,-y ),PB →

=(3-x ,-y ), ∴P A →·PB →=(-2-x )(3-x )+y 2=x 2, ∴y 2=x +6,即点P 的轨迹是抛物线.

*6.若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为1

2,则α

与β的夹角θ的取值范围是________. 答案 ????

π6,5π6

解析 如图,向量α与β在单位圆O 内,由于|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,故以向量α,β为两边的三角形的面积为1

4,故β的终点在如图所示的线

段AB 上(α∥AB →

,且圆心O 到AB 的距离为12

),因此夹角θ的取值范围为????π6,5π6.

7.在菱形ABCD 中,若AC =4,则CA →·AB →

=________. 答案 -8

解析 设∠CAB =θ,AB =BC =a ,

由余弦定理得:a 2=16+a 2-8a cos θ,∴a cos θ=2, ∴CA →·AB →=4×a ×cos(π-θ)=-4a cos θ=-8.

8.已知平面向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为π

3.以a ,b 为邻边作平行四边形,

则此平行四边形的两条对角线中较短的一条的长度为______. 答案

3

解析 ∵|a +b |2-|a -b |2=4a·b =4|a ||b |cos π

3

=4>0,

∴|a +b |>|a -b |,又|a -b |2=a 2+b 2-2a·b =3, ∴|a -b |= 3.

9.已知|a |=2|b |≠0,且关于x 的函数f (x )=13x 3+1

2|a |x 2+a ·b x 在R 上有极值,则向量a 与b

的夹角的范围是__________. 答案 ????

π3,π

解析 设a 与b 的夹角为θ. ∵f (x )=13x 3+1

2|a |x 2+a ·b x ,

∴f ′(x )=x 2+|a |x +a ·b . ∵函数f (x )在R 上有极值,

∴方程x 2+|a |x +a ·b =0有两个不同的实数根, 即Δ=|a |2

-4a ·b >0,∴a ·b <a 2

4

又∵|a |=2|b |≠0,

∴cos θ=a ·b |a ||b |<a 2

4a 22=12,即cos θ<1

2

又∵θ∈[0,π],∴θ∈????

π3,π.

*10.已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →

的最小值是________. 答案 6

解析 圆(x -2)2+y 2=4的圆心C (2,0),半径为2,

圆M (x -2-5cos θ)2+(y -5sin θ)2=1,圆心M (2+5cos θ,5sin θ),半径为1, ∵CM =5>2+1,故两圆相离.

如图所示,设直线CM 和圆M 交于H ,G 两点,

则PE →·PF →最小值是HE →·HF →,HC =CM -1=5-1=4,HF =HE =HC 2-CE 2=16-4=23, sin ∠CHE =CE CH =12

∴cos ∠EHF =cos 2∠CHE =1-2sin 2∠CHE =1

2,

HE →·HF →=|HE →|·|HF →

|·cos ∠EHF =23×23×12

=6.

11.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足P A →·AM →=0,AM →

=-32MQ →

,当点A 在x 轴上移动时,求动点M 的轨迹方程. 解 设M (x ,y )为所求轨迹上任一点, 设A (a,0),Q (0,b )(b >0),

则P A →=(a,3),AM →=(x -a ,y ),MQ →

=(-x ,b -y ), 由P A →·AM →=0,得a (x -a )+3y =0.① 由AM →

=-32

MQ →,得

(x -a ,y )=-3

2

(-x ,b -y )=????32x ,32(y -b ), ∴???

x -a =32

x ,

y =32y -3

2b ,

∴???

a =-x 2

b =y

3.

∴b >0,y >0,

把a =-x 2代入①,得-x

2???

?x +x 2+3y =0,

整理得y =1

4

x 2(x ≠0).

∴动点M 的轨迹方程为y =1

4

x 2(x ≠0).

12.已知角A ,B ,C 是△ABC 的内角,a ,b ,c 分别是其所对边长,向量m =(23sin A

2,

cos 2A 2),n =(cos A

2,-2),m ⊥n .

(1)求角A 的大小; (2)若a =2,cos B =

3

3

,求b 的长. 解 (1)已知m ⊥n ,

所以m·n =(23sin A 2,cos 2A 2)·(cos A

2,-2)

=3sin A -(cos A +1)=0,

即3sin A -cos A =1,即sin(A -π6)=1

2,

因为0

6.

所以A -π6=π6,所以A =π

3

.

(2)在△ABC 中,A =π3,a =2,cos B =3

3,

sin B =1-cos 2B =

1-13=63

. 由正弦定理知a sin A =b

sin B ,

所以b =a ·sin B

sin A =2×

633

2

=423.

*13.已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且(PC →+12PQ →)·(PC →-12PQ →)=0.

(1)求动点P 的轨迹方程;

(2)若EF 为圆N :x 2+(y -1)2=1的任意一条直径,求PE →·PF →

的最值. 解 (1)设P (x ,y ),则Q (8,y ). 由(PC →+12PQ →)·(PC →-12PQ →)=0,

得|PC →

|2-14

|PQ →|2=0,

即(2-x )2+(-y )2-1

4(8-x )2=0,

化简得x 216+y 2

12

=1.

∴动点P 在椭圆上,其轨迹方程为x 216+y 2

12=1.

(2)∵PE →=PN →+NE →,PF →=PN →+NF →, 且NE →+NF →

=0.

∴PE →·PF →=PN →2-NE →2=(-x )2+(1-y )2-1 =16(1-y 212)+(y -1)2-1=-1

3y 2-2y +16

=-1

3(y +3)2+19.

∵-23≤y ≤2 3.

∴当y =-3时,PE →·PF →

的最大值为19, 当y =23时,PE →·PF →的最小值为12-4 3. 综上,PE →·PF →的最大值为19,最小值为12-4 3.

高中数学《平面向量的实际背景及基本概念》公开课优秀教学设计

第二章平面向量 2.1平面向量的实际背景及基本概念 教学设计 一、内容和内容解析 向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何和三角函数的一种工具,它有着丰富的现实背景和物理背景。向量是刻画位置的重要数学工具,在诸如卫星定位、飞船设计等领域有着广泛的应用。向量也是刻画物理量——力、位移、速度、加速度、动量、电场强度这些物理量的数学工具,它体现了数学和物理的天然联系。向量的学习有助于学生认识数学和实际生活以及物理学科的紧密联系,体会向量在刻画和解决实际问题中的作用,从中感受数学的应用价值。在教学中需要引导学生对现实原型的观察分析和比较,得出抽象的数学模型,所以本节内容是渗透“数学抽象”很好的载体。在本节中,学生将了解平面向量丰富的实际背景,理解平面向量的意义,能用向量的语言和方法表达和解决数学和物理中的一些问题。 本节课是一节概念课,在向量基本概念的形成过程中,需要将学生已有的旧知识作为新知识的固着点和生长点,在探究向量的几何表示时让学生经历以物理中学习力的图示,位移的表示,速度的表示为起点,归纳并确定向量的几何表示以及符号表示,而在探索向量间的特殊关系时,引导学生借助图形进行,这样不仅使研究有序,同时更锻炼学生的直观想象能力,有助于感受向量集数与形于一身的特性。通过类比学习数量的过程,让学生自然的获得新知识的探究方向,在基本概念的学习中,要让学生体验概念的生成过程,获得这些概念的“基本思路”即获得数学研究对象,认识数学新对象的基本方法,用数学的观点刻画和研究现实事物的方法和途径。 二、目标和目标解析 1. 通过对平面向量概念的抽象概括,体验数学概念的形成过程,了解平面向量的实际背景; 2. 理解平面向量的意义和两个向量相等的含义; 3. 理解平面向量的几何表示和基本要素,会用有向线段表示向量,会判断零向量,单位向量,能做一个向量和已知向量相等,能根据图形判定向量是否是平

平面向量基本定理教案(区公开课)

仁爱/诚信/勤奋/创新 授课教师:蒋金凤 课程名称:平面向量基本定理授课地点:高一(12)班

授课日期: 3 月 15 日星期四序号课题 2.3.1平面向量基本定理共 1 课时第 1 课时 教学目标1.了解平面向量基本定理,会运用它来解决一些简单的问题. 2.通过观察、猜想、验证、概括得到平面向量基本定理,使学生体会研究问题的过程与方法. 3.通过定理的推导使学生感受到数学思维的严谨性,体会化归转化的方法和数与形的完美结合. 重 点 平面向量基本定理 难点在平面向量基本定理探究过程中“不共线”和 “任意性”的验证 突破 方法 通过实例画图和类比平面直角 坐标系的象限归纳总结 教学模式讲授式、探究式 板书设计 平面向量基本定理 平面向量基本定理例题:定理说明:多媒体投影 小结: 教学过程 教学活动学生活动设计意图一、情景引入 两个小朋友在荡秋千,那么在所有条件都相同 的前提条件下,哪个秋千的绳子更容易断掉? 二、新课探究 1.给定向量 2 1 e,e请根据平面坐标的线性运算 (1)作出向量) e ( ) e ( 2 1 3 2+ 下面我们把刚刚的作图痕迹擦去,给定向量 2 1 e,e和 1 OC,你能将 1 OC用 2 1 e,e表示成 2 2 1 1 e eλ λ+的形式吗? 看图观察并 思考,说出自己 的判断和依据 学生口述,作图 过程得结果 独立完成,个别 展示 从实际生活 问题入手,贴近 学生的日常生 活,能很好地激 发学生的求知欲 望 复习向量的 线性运算和共线 向量定理,为后 续的向量的分解 和唯一性作铺垫 进入向量分解的 探究,刚刚作图 的过程还记忆犹 新,按照来的痕 迹寻找构造平行 四边形的方法

2.3.1平面向量基本定理(教学设计)

2.3.1平面向量基本定理(教学设计) [教学目标] 一、知识与能力: 1.掌握平面向量基本定理; 2.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 二、过程与方法: 体会数形结合的数学思想方法;培养学生转化问题的能力. 三、情感、态度与价值观: 培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题. 教学重点:平面向量基本定理,向量的坐标表示;平面向量坐标运算 教学难点:平面向量基本定理. 一、复习回顾: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 二、师生互动,新课讲解: 思考:给定平面内任意两个向量e 1,e 2,请作出向量3e 1+2e 2、e 1-2e 2,平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?. 在平面内任取一点O ,作OA =e 1,OB =e 2,OC =a ,过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N . 由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2. 由于OC OM ON =+,所以a =λ1e 1+λ2e 2,也就是说任一向量a 都可以表示成λ1e 1+λ2e 2的形式. 1. 平面向量基本定理 (1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使得

2.3.1平面向量基本定理(教、学案)

2. 3.1 平面向量基本定理 教学目标: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量 解决实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ 2使 a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被 a ,1e ,2e 唯一确定的数量 三、讲解范例:

例1 已知向量1e ,2e 求作向量-2.51e +32e . 例2 如图 ABCD 的两条对角线交于点M ,且=a , =b ,用a ,b 表示,,和 例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任意一点,求证:+++=4 例4(1)如图,,不共线,=t (t ∈R)用,表示. (2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且 (1)()OP t OA tOB t R =-+∈.求证:A 、B 、P 三点共线. 例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实数,d a b λμλμ=+、使与c 共线. 四、课堂练习:见教材 五、小结(略) 六、课后作业(略): 七、板书设计(略) 八、教学反思

2018版高中数学平面向量2.1平面向量的实际背景及基本概念导学案新人教A版必修4含解析

2.1平面向量的实际背景及基本概念 【学习目标!1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区 别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念. ET问题导学-------------------------- 知识点一向量的概念 思考i在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别?答案面积、质量只有大小,没有方向;而速度和位移既有大小又有方向 思考2两个数量可以比较大小,那么两个向量能比较大小吗? 答案数量之间可以比较大小,而两个向量不能比较大小 梳理向量与数量 (1)向量:既有大小,又有方向的量叫做向量 (2)数量:只有大小,没有方向的量称为数量. 知识点二向量的表示方法 思考1向量既有大小又有方向,那么如何形象、直观地表示出来? 答案可以用一条有向线段表示. 思考2 0的模长是多少? 0有方向吗? 答案 0的模长为0,方向任意. 思考3单位向量的模长是多少? 答案单位向量的模长为1个单位长度. 梳理(1)向量的几何表示:向量可以用一条有向线段表示.带有方向的线段叫做有向线段, 它包含三个要素:起点、方向、长度,如图所示. 以A为起点、B为终点的有向线段记作X B ⑵向量的字母表示:向量可以用字母a, b , c,…表示(印刷用黑体a, b, c,书写时用 b , c). ⑶向量AB勺大小,也就是向量AB勺长度(或称模),即有向线段AB勺长度,记作|AB.长度为 0的向量叫做零向量,记作 0;长度等于1个单位的向量,叫做单位向量 . 知识点三相等向量与共线向量

2.3.1平面向量基本定理教案(人教A必修4)

2.3平面向量的基本定理及坐标表示 第4课时 §2.3.1 平面向量基本定理 教学目的: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决 实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 授课类型:新授课 教 具:多媒体、实物投影仪 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时 λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b = λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内 的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;

(4) 基底给定时,分解形式惟一. λ1,λ 2是被a ,1e ,2e 唯一确定的数量 三、讲解范例: 例1 已知向量1e ,2e 求作向量-2.51e +32e . 例 2 如图 ABCD 的两条对角线交于点M ,且=a ,=b ,用a ,b 表示,,和 例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任 意一点,求证:+++=4 例4(1)如图,,不共线,=t (t ∈R)用, 表示. (2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且 (1)()OP t OA tOB t R =-+∈ .求证:A 、B 、P 三点共线. 例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实 数,d a b λμλμ=+ 、使与c 共线. 四、课堂练习: 1.设e 1、e 2是同一平面内的两个向量,则有( ) A.e 1、e 2一定平行 B .e 1、e 2的模相等 C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R ) D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系 A.不共线 B .共线 C.相等 D.无法确定 3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( ) A.3 B .-3 C.0 D.2 4.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= . 5.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填 共线或不共线). 五、小结(略)

2021年高考数学一轮复习第七单元平面向量学案理

2021年高考数学一轮复习第七单元平面向量学案理 B.平面内的单位向量是唯一的 C.方向相反的向量是共线向量,共线向量不一定是方向相反的向量 D.共线向量就是相等向量 解析:选C 对于A,零向量是有方向的,其方向是任意的,故A不正确;对于B,单位向量的模为1,其方向可以是任意方向,故B不正确;对于C,方向相反的向量一定是共线向量,共线向量不一定是方向相反的向量,故C正确;对于D,由共线向量和相等向量的定义可知D不正确,故选C.

3.下列命题中,正确的个数是( ) ①单位向量都相等; ②模相等的两个平行向量是相等向量; ③若a,b满足|a|>|b|且a与b同向,则a>b; ④若两个向量相等,则它们的起点和终点分别重合. A.0 B.1 C.2 D.3 解析:选A 对于①,单位向量的大小相等,但方向不一定相同,故①错误; 对于②,模相等的两个平行向量是相等向量或相反向量,故②错误; 对于③,向量是有方向的量,不能比较大小,故③错误; 对于④,向量是可以平移的矢量,当两个向量相等时,它们的起点和终点不一定相同,故④错误. 综上,正确的命题个数是0. [清易错] 1.对于平行向量易忽视两点: (1)零向量与任一向量平行. (2)两平行向量有向线段所在的直线平行或重合,易忽视重合这一条件. 2.单位向量的定义中只规定了长度没有方向限制. 1.若m∥n,n∥k,则向量m与向量k( ) A.共线B.不共线 C.共线且同向D.不一定共线

解析:选D 可举特例,当n =0时,满足m∥n ,n∥k ,故A 、B 、C 选项都不正确,故D 正确. 2.设a ,b 都是非零向量,下列四个选项中,一定能使a |a |+b |b | =0成立的是( ) A .a =2b B .a ∥b C .a =-1 3b D .a ⊥b 解析:选C “ a |a|+b |b| =0,且a ,b 都是非零向量”等价于“非零向量a ,b 共线且反向”,故答案为C. 1.向量共线定理 向量b 与a(a ≠0)共线的充要条件是有且只有一个实数λ,使得b =λa. 2.平面向量的基本定理 如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. 其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. [小题速通] 1.已知a ,b 是不共线的向量,AB ―→=λa +b ,AC ―→ =a +μb ,λ,μ∈R ,则A ,B ,C 三点共线的充要条件为( ) A .λ+μ=2 B .λ-μ=1 C .λμ=-1 D .λμ=1 解析:选D ∵A ,B ,C 三点共线, ∴AB ―→∥AC ―→, 设AB ―→=m AC ―→ (m ≠0),即λa +b =m a +mμb , ∴? ?? ?? λ=m ,1=mμ,∴λμ=1. 2.(xx·南宁模拟)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0,若a ∥b ,则m n 的值为( ) A .-12 B.12 C .-2 D .2

高考数学一轮复习第25讲平面向量的概念及运算精品学案

2013年普通高考数学科一轮复习精品学案 第25讲 平面向量的概念及运算 一.课标要求: (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示; (2)向量的线性运算 ①通过实例,掌握向量加、减法的运算,并理解其几何意义; ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义; ③了解向量的线性运算性质及其几何意义。 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义; ②掌握平面向量的正交分解及其坐标表示; ③会用坐标表示平面向量的加、减与数乘运算; ④ 理解用坐标表示的平面向量共线的条件。 二.命题走向 本讲内容属于平面向量的基础性内容,与平面向量的数量积比较出题量较小。以选择题、填空题考察本章的基本概念和性质,重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。此类题难度不大,分值5~9分。 预测2013年高考: (1)题型可能为1道选择题或1道填空题; (2)出题的知识点可能为以平面图形为载体表达平面向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。 三.要点精讲 1.向量的概念 ①向量 既有大小又有方向的量。向量一般用c b a ,,……来表示,或用有向线段的起点与终点 的大写字母表示,如:AB 几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。 向量不能比较大小,但向量的模可以比较大小。 ②零向量 长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ?|a | =0。由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。(注意与0的区别) ③单位向量 模为1个单位长度的向量,向量0a 为单位向量?|0a |=1。 ④平行向量(共线向量)

平面向量应用举例(教学案)

2.5平面向量应用举例 一、教材分析 向量概念有明确的物理背景和几何背景,物理背景是力、速度、加速度等,几何背景是有向线段,可以说向量概念是从物理背景、几何背景中抽象而来的,正因为如此,运用向量可以解决一些物理和几何问题,例如利用向量计算力沿某方向所做的功,利用向量解决平面内两条直线平行、垂直位置关系的判定等问题。 二、教案目标 1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐标法,可以用向量知识研究物理中的相关问题的“四环节”和生活中的实际问题 2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的积极主动的探究意识,培养创新精神。 三、教案重点难点 重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何和物理问题. 难点:选择适当的方法,将几何问题或者物理问题转化为向量问题加以解决. 四、学情分析 在平面几何中,平行四边形是学生熟悉的重要的几何图形,而在物理中,受力分析则是其中最基本的基础知识,那么在本节的学习中,借助这些对于学生来说,非常熟悉的内容来讲解向量在几何与物理问题中的应用。 五、教案方法 1.例题教案,要让学生体会思路的形成过程,体会数学思想方法的应用。 2.学案导学:见后面的学案 3.新授课教案基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 六、课前准备 1.学生的学习准备:预习本节课本上的基本内容,初步理解向量在平面几何和物理中的应用 2.教师的教案准备:课前预习学案,课内探究学案,课后延伸拓展学案。 七、课时安排:1课时 八、教案过程 (一)预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教案具有了针对性。 (二)情景导入、展示目标 教师首先提问:(1)若O为ABC 重心,则OA+OB+OC=0 (2)水渠横断面是四边形ABCD,DC=1 2 AB,且|AD|=|BC|,则这个四边形 为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系? (3)两个人提一个旅行包,夹角越大越费力.为什么? 教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。 (设计意图:步步导入,吸引学生的注意力,明确学习目标。) (三)合作探究、精讲点拨。

平面向量的概念学案

必修4第二章 平面向量 2.1.1 向量的概念与几何表示 【内容分析】 向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,它也是解决一些数学问题的工具.向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题。向量与代数、三角、几何均有密切的联系与交汇,是沟通代数、几何与三角函数的一种工具,在数学和物理学科中具有广泛的应用和极其重要的地位,也是高考的必考点. 【学习目标】 1.通过物理学中力的分析等实例,知道向量的实际背景,能能举例说明向量的概念; 2.会用几何法表示向量,掌握向量的模,能举例说出零向量、单位向量、平行向量概念的含义; 3.通过对向量的学习,使同学们初步认识现实生活中的向量和数量的本质区别,掌握对向量与数量的识别能力,培养同学们认识客观事物与数学本质的能力. 【学习重点】理解并掌握向量、零向量、单位向量、相等向量、平行向量的概念,会用几何法表示向量. 【难点提示】平面向量概念的理解以及平行向量、相等向量的区别和联系. 【学法提示】1.请同学们课前将学案与教材7479P 结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题、阅读与思考、小结等都要仔细阅读)、小组组织讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备; 2.在学习过程中用好“十二字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“听”、“问”、“通”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达. 【学习过程】 一、学习准备 1.请同学们回顾一下,从小学到现在你们学过或知道哪些度量单位、度量方法? 2.我们见过的线段的长度、物体的重量、水的温度、任意角的弧度等有哪些特点? 3.思考:如图2.1.1-1,老鼠由A 向西北逃窜,猫在B 处向东 追去,请问猫能否追到老鼠吗?为什么? 4.生活中还存在着与长度、温度不同特征的“量”吗? 图2.1.1-2中的AB 属于什么“两”呢?这就是本节课要研 究的问题! 二、学习探究 1.向量的物理背景与概念 阅读探究 请同学们结合“学习准备”的问题,仔细阅读课 本P72-74页,可知在现实生活中,我们会遇到很多量,其中一 些量在取定单位后用一个实数就可以表示出来,如长度、质量等. 还有一些量,如我们在物理中所学习的位移、弹力、速度以及上面 图2.1.1-2的AB 等量,它们有怎样的特点呢? A B C D 图2.1.1-1

2.3.1平面向量基本定理教案

2.3.1 平面向量的基本定理 教学目的: 要求学生掌握平面向量的基本定理,能用两个不共线向量表示一个向量;或一个向量分解为两个向量. 教学重点: 平面向量的基本定理及其应用. 教学难点: 平面向量的基本定理. 教学过程: 一、复习提问: 1.向量的加法运算(平行四边形法则); 2.向量的减法运算; 3.实数与向量的积; 4.向量共线定理。 二、新课: 1.提出问题:由平行四边形想到: (1)是不是每一个向量都可以分解成两个不共线向量?且分解是唯一? (2)对于平面上两个不共线向量1e ,2e 是不是平面上的所有向量都可以用它们来表示? 2.新课 1e ,2e 是不共线向量,a 是平面内任一向量, =1e ,=λ1 2e ,=a =+=λ1 1e +λ2 2e , =2e ,=λ 2 2e . 1e 2e a C

得平面向量基本定理: 如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ 1 ,λ2使a =λ 1 1e +λ2 2e . 注意几个问题: (1)1e ,2e 必须不共线,且它是这一平面内所有向量的一组基底; (2)这个定理也叫共面向量定理; (3)λ1,λ2是被a ,1e ,2e 唯一确定的数量. 例1 已知向量1e ,2e ,求作向量-2.51e +32e . 作法:(1)取点O ,作=-2.51e ,=32e , (2)作平行四边形OACB ,即为所求. 已知两个非零向量a 、b ,作OA = a ,OB = b ,则∠AOB =θ(0°≤θ≤180°),叫做向量a 与b 的夹角. 当θ=0°,a 与b 同向;当θ=180°时,a 与b 反向,如果a 与b 的夹角为90°,我们说a 与b 垂直,记作:a ⊥b . 三、小结: 平面向量基本定理,其实质在于:同一平面内任一向量都可以表示为两个不共线向量的线性组合. 1 e 2e

高中数学《平面向量基本定理》导学案

2.3.1平面向量基本定理 1.平面向量基本定理 2.向量的夹角

1.判一判(正确的打“√”,错误的打“×”) (1)平面向量的一组基底e 1,e 2一定都是非零向量.( ) (2)在平面向量基本定理中,若a =0,则λ1=λ2=0.( ) (3)在平面向量基本定理中,若a ∥e 1,则λ2=0;若a ∥e 2,则λ1 =0.( ) (4)表示同一平面内所有向量的基底是唯一的.( ) 答案 (1)√ (2)√ (3)√ (4)× 2.做一做 (1)设e 1,e 2是同一平面内两个不共线的向量,以下各组向量中不能作为基底的是( ) A .e 1,e 2 B .e 1+e 2,3e 1+3e 2 C .e 1,5e 2 D .e 1,e 1+e 2 答案 B 解析 ∵3e 1+3e 2=3(e 1+e 2), ∴两个向量共线,不能作为基底. (2)(教材改编P 94向量夹角的定义)在锐角三角形ABC 中,关于向量夹角的说法正确的是( ) A.AB →与BC → 的夹角是锐角 B.AC →与AB → 的夹角是锐角 C.AC →与BC → 的夹角是钝角 D.AC →与CB → 的夹角是锐角 答案 B 解析 AB →与BC →的夹角是钝角,AC →与AB →的夹角是锐角,AC →与BC →

的夹角是锐角,AC →与CB → 的夹角是钝角.故选B. (3)若向量a ,b 的夹角为30°,则向量-a ,-b 的夹角为( ) A .60° B .30° C .120° D .150° 答案 B 解析 将向量移至共同起点,则由对顶角相等可得向量-a ,-b 的夹角也是30°. (4)在等腰直角三角形ABC 中,∠A =90°,则向量AB →,BC → 的夹角为________. 答案 135° 解析 将向量移至共同起点,由向量的夹角的定义知AB →,BC → 夹角为135°. 探究1 正确理解基底的概念 例1 设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB → ,其中可作为这个平行四边形所在平面的一组基底的是( ) A .①② B .①③ C .①④ D .③④ 解析 ①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA → 与DC →不共线;④OD →=-OB →,则OD →与OB → 共线. 由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.

2019-2020学年新教材高中数学 第六章 平面向量及其应用 6.1 平面向量的概念学案 新人教A版必修第二册

6.1 平面向量的概念 问题导学 预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些? 3.两个向量(向量的模)能否比较大小? 4.如何判断相等向量或共线向量?向量AB →与向量BA → 是相等向量吗? 1.向量的概念及表示 (1)概念:既有大小又有方向的量. (2)有向线段 ①定义:具有方向的线段. ②三个要素:起点、方向、长度. ③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB →. ④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB → |. (3)向量的表示 ■名师点拨 (1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素.

(2)用有向线段表示向量时,要注意AB → 的方向是由点A 指向点B ,点A 是向量的起点,点 B 是向量的终点. 2.向量的有关概念 (1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB → |. (2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系 (1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b . 规定:零向量与任意向量平行,即对任意向量a ,都有0∥a . (2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨 (1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同. 判断(正确的打“√”,错误的打“×”) (1)两个向量,长度大的向量较大.( ) (2)如果两个向量共线,那么其方向相同.( ) (3)向量的模是一个正实数.( ) (4)向量就是有向线段.( ) (5)向量AB →与向量BA → 是相等向量.( ) (6)两个向量平行时,表示向量的有向线段所在的直线一定平行.( ) (7)零向量是最小的向量.( ) 答案:(1)× (2)× (3)× (4)× (5)× (6)× (7)× 已知向量a 如图所示,下列说法不正确的是( ) A .也可以用MN → 表示 B .方向是由M 指向N C .起点是M D .终点是M 答案:D 已知点O 固定,且|OA → |=2,则A 点构成的图形是( ) A .一个点 B .一条直线

高中数学优质课比赛 平面向量基本定理教案

《平面向量基本定理》教学教案 ----新余一中蒋小林 一、背景分析 1.教材分析 函向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。此前的教学内容主要研究了向量的的概念和线性运算,集中反映了向量的几何特征。本节课要讲解“平面向量基本定理”的概念和应用,是研究向量的正交分解和向量的坐标运算基础,向量的坐标运算正是向量的代数形态。通过平面向量基本定理,平面中的向量与它的坐标建立起了一一对应的关系,即“数”的运算处理“形”的问题完美结合,在整个向量知识体系中处于承上启下的核心地位。本节课教学重点是“平面向量基本定理探究过程和利用平面向量基本定理进行向量的分解”。 2.学情分析 从学生知识层面看:本节课之前已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的认识。 从学生能力层面看:通过以前的学习,已经初步具备类比归纳概括的能力,能在教师的引导下解决问题。 教学中引入生活实例类比出向量的分解,让学生通过课件的直观感受和动手探索总结归纳出平面向量基本定理,尤其是将图形语言转化为文字语言,对学生的能力要求比较高.因此,我认为平面向量的分解及对这种分解唯一性的理解是本节课的教学难点. 二.学习目标 1)知识与技能目标 1、了解平面向量基本定理及其意义,会选择基底来表示平面中的任一向量。 2、能用平面向量基本定理进行简单的应用。 2)过程与方法目标 1、通过平面向量基本定理的探究,让学生体验数学定理的产生、形成过程,培

养学生观察发现问题、由特殊到一般的归纳总结问题能力。 2、通过对平面向量基本定理的运用,增强学生向量的应用意识,让学生 进一步体会向量是处理几何问题强有力的工具之一。 3)情感、态度与价值观目标 1、用现实的实例,激发学生的学习兴趣,培养学生不断发现、探索新知的精神, 发展学生的数学应用意识; 2、经历定理的产生过程,让学生体验由特殊到一般的数学思想方法,在探究活 动中形成锲而不舍的钻研精神和科学态度。 [设计意图]:这样设计目标,可操作性强,容易检测目标的达成度,同时也体现 了培养学生核心素养的要求. 三.教学过程设计 教学过程 1.创设问题、引出新课 (一)通过击鼓传花游戏复习的向量的运算及平行向量基本定理,我们知道可以用(0)a a λ≠表示任意和a 共线的向量,那么再随便画一个方向的向量b ,你还可以用a 表示出来吗?一个向量不够那么需要几个向量来表示呢?za 此问题激发了学生的学习兴趣,蕴含着本节课设计主线,即从共线定理的一维关系转向研究平面向量基本定理的二维关系。(二)情景1:火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度;情景2:斜坡上物体所受的重力G ,课分解为力沿斜坡向下的力和垂直于斜坡的力;让学生对数学中的任意向量也可以用两个不共线的向量表示,有了充分的事实根据和感性认识。总之,整个引入,是从学生熟知的数学基础知识和物理基础知识为入手点,让学生轻松接受本节课的内容,让本节课的内容新而不新,难而不难了。 [设计意图]:两个生活常景抓住学生的兴趣,完成从生活到数学的建模过程,培养了学生,在生活中感知和发现数学,即知识问题化,问题情景化,情景生活化,生活学科化。体现了数学与生活密不可分的关系,为探究定理作好铺垫。 2.问题驱动、探究新知 问题(1)给定平面内任意两个向量21,e e 请你做出2121223e e e e -+和两个向量。 [设计意图]:利用向量的加减法和数乘向量,利用平行四边形法则可以表示

平面向量基本定理导学案

§2.3.1平面向量基本定理 高一( )班 姓名: 上课时间: 【目标与导入】 1、学习平面向量基本定理及其应用; 2、学会在具体问题中适当选取基底,使其他向量能够用基底来表达。 【预习与检测】 1、点C 在线段AB 上,且35 AC AB --→ --→ = ,AC BC λ--→--→=,则λ等于( ) A 、23 B 、32 C 、-23 D 、-32 2、设两非零向量12,e e →→不共线,且12k e e →→+与12e k e →→ +共线,则k 的值为( )。 .1.1.1.0A B C D -± 3、已知向量12,e e → → ,作出向量1223OA e e → → =+与 122(3)OB e e → →=+-。 两个向量相加与物理学中的两个力合成相似,如果与力的分解类比,上述所作的OA 分解成两个向量:在1e → 方向上的____与在2e → 方向上的______,OB 则分解成_____与_____。 4、阅读课本P93—94,了解平面向量基本定理:如果 12 ,e e →→ 是同一平面内的两个_______ 向量,那么对于这一平面内的______向量a → ,有且只有一对实数12,λλ, 使_____________, 其中不共线的向量 12 ,e e → →叫做表示这一平面内所有向量的一组__________。 5、已知两个非零向量,a b →→,作,O A a O B b →→→→==,则()0180A O B θθ∠=?≤≤?叫做向量a → 与 b → 的__________,若0θ=?,则a →与b →_______;若180θ=?,则a →与b → __________;若 90θ=?,则a → 与b → _______,记作______。 【精讲与点拨】 如图所示,在平等四边形ABCD 中,AH=HD ,MC= 1 4 BC ,设,AB a AD b →→→→==,以,a b →→ 为基底表示,,AM MH MD →→ 。 C 2 e → 1 e → A B

苏教版高中数学《平面向量基本定理》word导学案

课题: 2.3.1平面向量基本定理 班级: 姓名: 学号: 第 学习小组 【学习目标】 1、了解平面向量基本定理; 2、掌握平面向量基本定理及其应用。 【课前预习】 1、共线向量基本定理 一般地,对于两个向量() b a a ,0≠, 如果有一个实数λ,使___________( ),那么b 与a 是共线向量;反之,如果 b 与)0(≠a a 是共线向量,那么有且只有一个实数λ,使______________。 2、(1)火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度。 (2)力的分解。 (3)平面内任一向量是否可以用两个不共线的向量来表示。如图,设21,e e 是平面内两个不共线的向量,a 是平面内的任一向量。 3、平面向量基本定理。 4、基底,正交分解。 思考:平面向量基本定理与前面所学的向量共线定理,在内容和表述形式上有什么区别和联系? 【课堂研讨】 例1、如图,平行四边形ABCD 的对角线AC 和BD 交于点M ,b AD a AB ==,, 试用基底b a ,表示MB MA MC ,,和MD 。 例2、如图,质量为m 的物体静止地放在斜面上,斜面与水平面的夹角为θ, 求 斜 面 对 物 体 的 摩 擦 力 f 。 O j v y v 1e a A B M D C 2e

例3、设21,e e 是平面内的一组基底,若1232,AB e e =-124,BC e e =+2198e e CD -= 求证:D B A ,,三点共线。 【学后反思】 θ W p f f -

课题: 2.3.1平面向量的基本定理 班级: 姓名: 学号: 第 学习小组 【课堂检测】 1、如图,已知向量21,e e ,求作下列向量: (1)2132e e +- (2)215.15.2e e + 2、若21,e e 是表示平面内所有向量的一组基底,则下面的四组向量中不能作为一组基底的是( ) A 、2121e e e e -+和 B 、12216423e e e e --和 C 、122133e e e e ++和 D 、212e e e +和 3、已知ABC ?中,D 是BC 的中点,用向量AC AB ,表示向量AD 。 4、设Q P ,分别是四边形的对角线AC 与BD 的中点,a BC =,b DA =并且b a ,不是共线向量,试用基底b a ,表示向量PQ 。 【课后巩固】 1、设b a ,是不共线向量,若b a 4-与b a k +共线,则实数________=k 2、ABC ?中,若F E D ,,依次是AB 的四等分点,则以21,e CA e CB ==为基底时, __________=CF 3、若21213,e e OB e e OA -=+=,215e e m OC -=,且C B A ,,三点共线, 则实数=m _________________。 4、设() 011≠e e ,四边形ABCD 中,e AD e DC e AB 2,5,3===,e BC 2=,则四边形是____________ 5、如图,ABCD 是一个梯形,CD AB //且CD AB 2=,M 、N 分别是DC 和AB 中 1e 2e A C D M N

平面向量概念教学设计

篇一:平面向量概念教案 平面向量概念教案 一.课题:平面向量概念 二、教学目标 1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。 2、让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法。 3、通过本节的学习,让学生感受向量的概念方法源于现实世界,从而激发学生学习数学的热情,培养学生学习数学的兴趣 三.教学类型:新知课 四、教学重点、难点 1、重点:向量及其几何表示,相等向量、平行向量的概念。 2、难点:向量的概念及对平行向量的理解。 五、教学过程 (一)、问题引入 1、在物理中,位移与距离是同一个概念吗?为什么? 2、在物理中,我们学到位移是既有大小、又有方向的量,你还能举出一些这样的量吗? 3、在物理中,像这种既有大小、又有方向的量叫做矢量。 在数学中,我们把这种既有大小、又有方向的量叫做向量。而把那些只有大小,没有方向的量叫数量。 (二)讲授新课 1、向量的概念 练习1 对于下列各量: ①质量②速度③位移④力⑤加速度⑥路程⑦密度⑧功⑨体积⑩温度 其中,是向量的有:②③④⑤ 2、向量的几何表示 请表示一个竖直向下、大小为5n的力,和一个水平向左、大小为8n的力(1厘米表示1n)。思考一下物理学科中是如何表示力这一向量的? (1)有向线段及有向线段的三要素 (2)向量的模 (4)零向量,记作____; (5)单位向量 练习2 边长为6的等边△abc中,=__,与相等的还有哪些? 总结向量的表示方法: 1)、用有向线段表示。 2)、用字母表示。 3、相等向量与共线向量 (1)相等向量的定义 (2)共线向量的定义 六.教具:黑板 七.作业 八.教学后记 篇二:平面向量的实际背景及基本概念教学设计 平面向量的实际背景及基本概念教学设计

平面向量基本定理教案新部编本

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

§2.3.1 平面向量基本定理 教学目的: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解 决实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 授课类型:新授课 教 具:多媒体、实物投影仪 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使 b =λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面 内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量 三、讲解范例:

相关文档
最新文档