怎样进行系统“电源管理”

怎样进行系统“电源管理”

怎样进行系统“电源管理”

电源管理的主要任务是设置电源方案,即指定系统空闲多长时间后关闭监视器或硬盘,从而延长设备的使用寿命。

[方法一]

第一步:在桌面上单击“开始”一“设置”一“控制面板”。

第二步:双击“电源管理”图标,缺省状态下,打开的是“电源使用方案”选项卡。

第三步:根据需要设置不同计算机状态的关闭或等待时间,并可选择其他需要的设置,多数情况下可采用系统缺省设置。

第四步:单击“应用”可以使修改生效。

第五步:单击“确定”使修改生效并关闭“电源管理”对话框。

[方法二]

第一步:在桌面上右键单击任意空白处,在弹出菜单中单击“属性”。

第二步:单击“屏幕保护”一“设置”,即打开“电源管理”对话框,根据需要设置,操作同方法一。

1

——文章来源网络,仅供参考

电源技术的进展与电源管理的应用

电源技术的进展与电源管理的应用 一、引言 电能是目前人类生产和生活中最重要的一种能源形式。合理、高效、精确和方便地利用电能仍然是人类所面临的重大问题。采用电力电子技术的电源装置给电能的利用带来了革命。在世界范围内,用电总量中经过电力电子装置变换和调节的比例已经成为衡量用电水平的重要指标,目前全球范围内该指标的平均数为40%,据美国国家电力科学研究院预测,到2010年将达到80%。这对电源技术提出了新的挑战。 上世纪80年代,提出了电源制造中电力电子集成概念,明确了集成化是电力电子技术未来发展的方向,是解决电力电子技术发展面临障碍的最有希望的出路。电源集成电路逐步成为功率半导体器件中的主导器件,把电源技术推向了电源管理的新时代。电源管理集成电路分成电压调整器和接口电路两方面。正是因为这么多的集成电路(IC)进入电源领域,人们才更多地以电源管理来称呼现阶段的电源技术。 二、电源技术的进展 电源技术是一种应用功率半导体器件,综合电力变换技术、现代电子技术、自动控制技术的多学科的边缘交叉技术。随着科学技术的发展,电源技术又与现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关。目前电源技术已逐步发展成为一门多学科互相渗透的综合性技术学科。它对现代通讯、电子仪器、计算化、工业自动化、电力工程、国防及某些高新技术提供高质量、高效率、高可靠性的电源起着关键的作用。 上世纪40年代晶体管问世,随后不到十年,晶闸管在晶体管渐趋成熟的基础上问世,从而揭开了电源技术长足发展序幕。半个世纪以来,电源技术的发展不断创新。 1、高频变换是电源技术发展的主流

电源技术的精髓是电能变换。利用电能变换技术,将市电或电池等一次电源变换成适合各种用电对象的二次电源。开关电源在电源技术中占有重要地位,从20kHz发展到高稳定度、大容量、小体积、开关频率达兆赫兹的高频开关电源,为高频变换提供了物质基础,促进了电源技术的发展。高频化带来的最直接的好处是降低原材料消耗,电源装置小型化,提高功率密度,加快系统的功态响应,进一步提高电源装置的效率,有效抑制环境噪声污染,并使电源进入更广泛的领域,特别是高新技术领域,进一步扩展了它的应用范围。 2、新理论、新技术的指导 单管降压、升压电路、谐振变换、移相谐振、软开关PWM、零过渡PWM等电路拓扑理论;计算机辅助设计(CAD)、功率因数校正、有源箍位、并联均流、同步整流、高频磁放大器、高速编程、遥感遥控、微机监控等新技术,指导厂电源技术的发展。 3、新器件、新材料的支撑 晶闸管(SCR)、可关断晶闸管(GTO)、大功率晶体管(GTR)、绝缘栅双极型晶体管 (IGBT)、功率场效应晶体管(MOSFET)、智能ICBT(IPM)、MOS 栅控晶闸管(MCT)、静电感应晶体管(SIT)、超快恢复二极管、无感电容器、无感电阻器、新型铁氧体、非晶和微晶软磁合金、纳米晶软磁合金等元器件,装备厂现代电源技术、促进电源产品升级换代。并正在研究开发砷化镓(GaAs)、半导体金刚石、碳化硅(SiC)半导体材料。 4、控制的智能化 控制电路、驱动电路、保护电路采用集成组件。数字信号处理器DSP 的采用,实现控制全数字化。控制手段用微处理器和单片机组成的软件控制方式,达到了较高的智能化程度,并且进一步提高电源装置的可靠性。 5、电源电路的模块化、集成化 单片电源和模块电源取代整机电源,功率集成技术简化了电源的结构,已经在通讯、电力获得广泛应用,并且派生出新的供电体制――分布式供电,使集中供电单一体制走向多元化。电路集成的进一步发展是

DC-DC电源管理应用中的功率MOSFET的热分析方法

DC/DC电源管理应用中的功率MOSFET的热分析方法 作者:Kandarp Pandya Vishay Siliconix公司 电子系统的小型化趋势对电子产业产生了一系列重要影响,其中,合理的热设计和优化的重要性与日俱增。现在的手持设备和便携式系统可以实现很高的功率重量比,其好处包括节省材料和降低总体成本。但是小型化是有代价的,尤其是对热管理而言。从一个紧凑的系统把热量散发出去,要比在大系统中完成此项任务的设计难度更大,这要求所有的系统设计师都对功率半导体器件的热行为有一定的了解。在很多系统中,MOSFET是核心的功率管理器件,而且MOSFET还容易受到各种应力的影响,因此了解功率MOSFET的发热行为显得尤其重要。 虽然在理论上可以用通用热分析软件来了解功率MOSFET的热行为,还是需要一定程度的器件专业知识,而除了MOSFET制造商自己,其他人对这些知识知之甚少。基于RC网络的行为模型是不够的,因为难以保持边界条件的独立性,也难于把不同层次的模型组合到一起。二维或半维仿真也有同样的局限,只有三维模型才可行。系统设计师需要的是专用软件,要求有功率建模功能,而不是供非专业用户使用的非常简单的软件。 当然根据它们各自的应用领域,这些工具的先进功能只能在封装、PCB级别发挥出来,或者是在外壳级别,但肯定不是在所有的级别。 ANSYS和其他有限元分析工具在分析MOSFET热行为时相当有效,但是需要很复杂的专业知识,而且它们的功能也要比应用所需的功能要多很多。这种多功能的工具不仅仅只是用来解决某类问题,例如电子、传热和机械问题。然而,软件的复杂程度使得只有专家才能使用这种建模功能。Flopack、Flotherm、Icepak和ISE等专用工具的好处是简化了创建模型和组合的过程。 在使用功率MOSFET时,系统级设计师需要了解这些器件的实际三维状况。MOSFET制造商拥有所有这些信息,但是如果把这些信息全部公开,就相当于公布了很多知识产权和技术秘密。因此,难题就在于既要以模型的方式提供这些信息,又不会透露器件的技术细节。 Vishay就利用这种方法开发了在线热仿真工具ThermaSim。设计所需的全部数据都被提取到复杂的模型中,然后设计者就可以直接利用模型,仿真各种应用和设计方案中的任何Vishay Siliconix的MOSFET。

电源管理系统及故障诊断

电源管理系统及故障诊断 现代汽车的电气装置及电控单元的增加,对电源系统提出了更严格的要求,越来越多的车辆上出现 了专门的电源管理系统。如凌志430、宝马、奥迪A6L、皇冠、通用林荫大道等多种车型均配备了监测 蓄电池和控制发电机的电源管理系统,下面以通用林荫道轿车和凌志430轿车为例,说明电源管理系统 的组成、工作原理及常见故障的排除。 1、电源管理系统的功能 电源管理系统一般是利用车上原有的电控网络装置,如发动机控制模块(ECM)、车身控制模块 (BCM)、仪表控制模块等,通过车载局域网,形成一个闭环控制系统。电源管理系统的主要功能如下。 (1)全面监测蓄电池各项参数——充电与放电的电流、端电压、电容量、电解液温度等。 (2)保证蓄电池至少具备能起动发动机的电容量,对用电负荷采取分级放电管理方式。 (3)实现最佳充电,提高整车的燃油经济性,如当蓄电池电压较低时调节发动机怠速转速,高效 控制发电机的输出电压。 (4)在延长蓄电池寿命的前提下,根据蓄电池充电状态和电解液的温度,控制合理的充电电流, 实现蓄电池的快速充电。 及时提醒驾驶人。 2、通用林荫大道轿车电源管理系统电路的分析 图1是简化了的通用林荫大道轿车电源管理系统的基本 电路原理图,配套的蓄电池电容量为80AH,冷起动时能提供 720A的强大电流,起动储备容量RC为133min。RC的概念 是在蓄电池充足状况下以25A的电流放电,到端电压下降为 10.5V时能持续的时间。 2.1发电机特点及其输出电压的调节 图1 通用“林荫大道”轿车电源管理系统的基本电路通用林荫大道车配装硅整流发电机,其三相交流发电机 采用三角形绕组,与传统发电机的星形绕组形式相比,相电压提升1.73倍,发电机的功率得以增大, 输出电流可高达155A,完全可满足电控装置及蓄电池的需要。采取专门的电源管理系统,最高发电机 电压可增至15.9V,极大地提高了电容量和蓄电池的充电效率。 发电机输出电压的调节,亦是通过磁场线圈的电流大小来控制的,电源管理系统根据蓄电池电容 量、蓄电池端电压等多项参数,合理调节充电电流的大小。其遵循下列状况进行电压调节。 (1)BCM测量蓄电池端电压、电解液温度、蓄电池现有容量及放电电流等信息,以确定蓄电池 充电电流的大小。BCM是多路传输局域网的一个装置,它检测出的数据与ECM通过Class-2串行数据 线进行通讯。 (2)发动机ECM控制一个5V的128Hz固定脉冲,进行脉宽调制信号的调制,即实现0—100% 磁场电流占空比调节,来实现对发电机磁场电流的调节,以实现对其输出电压的控制。 (3)正常情况下,维持对蓄电池的充电及向汽车整个电路系统供电,发电机的磁场电流占空比应 在5%—95%变化。而占空比的0—5%用95—100%,只用于对发电机及网络系统的检测使用。发电机 的输出电压与磁场电流占空比间的对应关系,如表1所示。 2.2电流传感器及其工作原理 电流传感器安装在蓄电池负极或正极上。 电流传感器完全与蓄电池的粗搭铁电缆装置于一体,紧贴在蓄电池的负极上,它是一个霍尔式传

DCDC开关电源管理芯片的设计

DC-DC开关电源管理芯片的设计 引言 电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。而开关电源更为如此,越来越受到人们的重视。目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。 目前电力电子与电路的发展主要方向是模块化、集成化。具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。 从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动,应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种 PWM控制结构的研究就成为研究的热点。在这样的前提下,设计开发开关电源DC-DC控制芯片,无论是从经济,还是科学研究上都是是很有价值的。 1. 开关电源控制电路原理分析 DC-DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成另—等级直流输出电压。在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间长度来控制平均输出电压,这种方法也称为脉宽调制[PWM]法。 PWM从控制方式上可以分为两类,即电压型控制(voltage mode control)和电流型控制(current mode control)。电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PWM信号。从控制理论的角度来讲,电压型控制方式是一种单环控制系统。电压控制型变换器是一个二阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。图1即为电压型控制的原理框图。 图1 电压型控制的原理框图 电流型控制是指将误差放大器输出信号与采样到的电感峰值电流进行比较.从而对输出脉冲的占空比进行控制,使输出的电感峰值电流随误差电压变化而变化。电流控制型是一个一阶系统,而一阶系统是无条件的稳定系统。是在传统的PWM电压控制的基础上,增加电流负反馈环节,使其成为一个双环控制系统,让电感电流不在是一个独立的变量,从而使开关变换器的二阶模型变成了一个一阶系统。信号。从图2中可以看出,与单一闭环的电压控制模式相比,电流模式控制是双闭环控制系统,外环由输出电压反馈电路形成,内环由互感器采样输出电感电流形成。在该双环控制中,由电压外环控制电流内环,即内环电流在每一开关周期内上升,直至达到电压外环设定的误差电压阂值。电流内环是瞬时快速进行逐个脉冲比较工作的,并且监测输出电

双电源管理办法

屏南县供电有限公司双电源(自备电源)管理办法 (试行) 第一条本办法对双回路供电、客户自备电源的安装以及投入运行的管理进行规定,适用于营业、用电检查受理客户申请双回路供电、安装自备电源以及投入运行的管理。 第二条供电所营业窗口负责受理客户双回路供电、安装自备电源的申请,营销部负责客户双回路供电、安装自备电源投入运行的管理。 第三条供电营业窗口按客户负荷重要性、用电容量和供电可能性,受理下列客户的双回路供电申请: (一)中断供电将会造成人身伤亡;造成环境严重污染;造成重要设备损坏,连续性生产企业长期不能恢复;造成重大的政治和社会影响的单位。 (二)重要科研单位、军工企业、医疗单位,电气化生活小区。 第四条因受电网供电条件限制,暂不可能向上列客户提供双回路供电,客户可以自备发电机组作为备用电源。 第五条营业窗口受理双回路供电或者自备发电机组 申请后,应在规定时限内通知勘测人员或用电检查人员现场勘测,双回路供电应由营销部会同生技、调度共同审查,经公司领导审批后方可实施。 第六条客户的保安电源由客户自行解决。

第七条公司应就双回路供电、自备发电机组投入运行的安全事项与用电客户签订双电源(自备电源)协议书,明确责任。协议书、副本由供电企业和用电客户各执一份。 第八条双电源(自备电源)的切换装置和接线要求。 (一)常、备用电源切换操作装置,原则上应安装于同一变电室内; (二)高压双电源供电的,电源侧的刀闸应尽量采用机械联锁装置。 (三)供电可靠性有特殊要求的,可采用电气闭锁,保证在任何情况下,只有一路电源投放运行而无误并列的可能。 (四)低压双电源供电的,应在双电源进线端(包括零线),装设四极双投刀闸,由此转换电源。如双电源的进户点距离过远,四极双投刀闸前的电源进线,应采用电缆,防止误接用电设备而造成电源倒送。 (五)自备发电机作为备用电源的,不得同时使用电网电源和自备发电机电源。如发电机装设地点较远,应采用电缆布线,严禁在双投刀闸前接用任何电器设备。如是高压供电客户,因受发电机容量限制,只能供给一部分车间或保安设备的,其线路应与由电网供电的线路严格分开架设,不得同杆架设或混接。两电源间应装设双投刀闸,由此转换电源。 第九条双电源(自备电源)的运行要求

电源管理系统

电源管理系统要求: 一、运行环境: 海上石油钻井平台或母船 进线侧电源:3*380VAC 50Hz 出线侧电源:3*1000VAC 50Hz 二、系统需要实现的基本功能: 1、对进线侧输入电源进行冗余保护,可实现一路电源故障时,自动或手动切换到另一路电源;自动切换时间尽可能短; 2、出线侧电源由进线侧电源通过变压器升压获得,同时该变压器可用于对负载电机(约100KW)进行自耦降压启动,启动过程全程监控; 3、对出线侧负载进行正常的启动/停止、紧急停车等常规功能; 4、对进线侧和出线侧电源进行实时监控,监控内容包括:电压、电流、功耗、功率、相序、温度、计时、绝缘等; 5、电源管理系统在监测到第4条中的电压、电流等参数超过额定值时需要进行相应的声光报警或跳闸等执行动作; 6、关于整个电源管理系统的绝缘,由于负载设备通过出线侧电缆连接至海底工作,对绝缘的监测和安全控制是电源管理系统的重要环节,故要求: a、对上述绝缘参数进行实时、严密的监控和记录; b、依据相关海底电气绝缘标准,设置报警值、跳闸值,且监测到整个 电源管理系统及负载侧绝缘降低至相应的设定值时进行报警或跳闸 动作;

c、电源管理系统应有对上述绝缘的测试功能,可在电源管理系统、海 底设备和连接电缆合闸工作前进行绝缘测试,测试值低于报警值或 跳闸值时,整个电源管理系统不得启动; 7、人机界面采用触摸屏或其他数字仪表进行监测、操作及数据记录等; 8、整个系统设有相应的通讯端口,以便于对其进行远程监测和操作; 三、其他要求: 1、上述功能的实现必需达到稳定可靠,故障率低; 2、所有元器件的必须用进口国际知名品牌; 3、电源管理系统的其他设计参照符合使用环境的相关技术规范,上述内容中如有与相关国家和行业规范冲突之处,请及时沟通; 4、上述内容为基本要求,贵公司如有更优化、合理的建议,请及时沟通;

电源管理芯片工作原理和应用

电源管理芯片工作原理和应用 本文主要是关于电源管理芯片的相关介绍,并着重对电源管理芯片进行了详尽的阐述。 电源管理芯片电源管理芯片(Power Management Integrated Circuits),是在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责的芯片。主要负责识别CPU供电幅值,产生相应的短矩波,推动后级电路进行功率输出。常用电源管理芯片有HIP6301、IS6537、RT9237、ADP3168、KA7500、TL494等。 基本类型 主要电源管理芯片有的是双列直插芯片,而有的是表面贴装式封装,其中HIP630x系列芯片是比较经典的电源管理芯片,由著名芯片设计公司Intersil设计。它支持两/三/四相供电,支持VRM9.0规范,电压输出范围是1.1V-1.85V,能为0.025V的间隔调整输出,开关频率高达80KHz,具有电源大、纹波小、内阻小等特点,能精密调整CPU供电电压。 应用范围 电源管理芯片的应用范围十分广泛,发展电源管理芯片对于提高整机性能具有重要意义,对电源管理芯片的选择与系统的需求直接相关,而数字电源管理芯片的发展还需跨越成本难关。 当今世界,人们的生活已是片刻也离不开电子设备。电源管理芯片在电子设备系统中担负起对电能的变换、分配、检测及其它电能管理的职责。电源管理芯片对电子系统而言是不可或缺的,其性能的优劣对整机的性能有着直接的影响。 提高性能 所有电子设备都有电源,但是不同的系统对电源的要求不同。为了发挥电子系统的最佳性能,需要选择最适合的电源管理方式。 首先,电子设备的核心是半导体芯片。而为了提高电路的密度,芯片的特征尺寸始终朝着减小的趋势发展,电场强度随距离的减小而线性增加,如果电源电压还是原来的5V,产生的电场强度足以把芯片击穿。所以,这样,电子系统对电源电压的要求就发生了变化,

智能手机电源管理模块的设计

龙源期刊网 https://www.360docs.net/doc/4111223044.html, 智能手机电源管理模块的设计 作者:芦昱昊 来源:《电子技术与软件工程》2017年第04期 摘要随着国民生活质量的不断提高,电子产品更新换代的速度也越来越快。通讯产品中的电源动力系统一直是开发者关注的重点,也是用户选择智能手机的关键选项,因此对智能手机电源管理模块的设计分析是十分必要的。 【关键词】智能手机电源模块设计管理 手机行业的发展变化可谓是日新月异,近年来肉眼可见的黑白屏到彩色屏、仅有通话功能到目前的各种实用应用,都是智能手机功能进步的体现。然而这些复杂功能的实现都是需要稳定的电源系统作为支持的,因此开展电源模块的电压以及效率设计管理是为智能手机的良好发展前景奠定基础。 1 智能手机电源管理模块的设计原则 智能手机的设计过程是设计师明确消费者对设备要求下进行的,因此需要从体积、重量、续航时间上等多方面进行详细考虑。智能手机体积的缩小处理是针对系统集中功能和元件封装技术的体现,因此需要考虑到减小PCB板后产生的各种影响。在体积和重量都有限制的情况下,提高电池的容量和密度是最佳的创新选择,同时注重电源系统在工作状态下的转化频率,也是处理续航时间的主要方案。由此可知,电源管理模块的转化率和能耗是手机改革重点,手机厂家需要从电能转化的效率和电源的使用效率两方面提高设备的科技含量,制造出具备高性价比和满足消费者需求的优势产品。 2 智能手机电源管理模块的设计分析 2.1 PMU 市面上很多电子产品需要根据实际功能调节出不同电压的电源,也就意味着电池在供电的同时还需要根据芯片迅速转换电压,转换期间的功率损耗也应当保持在规定范围之内,同时该电源模块还需要维持电源的充电安全。这样的新型电源模块电路被称作是电源管理单元,英文缩写为PMU,是为提高电源转化效率和降低能耗的电源管理方案。PMU的构架分为集中式和分布式,但是二者共同存在的几率很小,设计者需要在系统划分之初决定好使用哪种方案。集中式是仅执行PMU附近的单一处理器进行电压调节和电源切换工作,而分布式系统则是作用于每一个电源子系统上。二者的选择重点是从智能手机应用的数量和响应速度的要求,同时还要考虑到电源模块管理过程中的间隔距离。通过比较来看,PMU分布式的方案较集中式的灵活一些,只需要在系统之间加入一根电源轨,作为所有外围的电源连接线,那么每一个外围电

备用电源管理办法

凯宏矿业二选厂备用电源管理办法 负责人:刘立刚张亚年日常负责人:李童 一、概述 我公司二选厂装备了400V事故发电机二台,发电机额定功率为1200KW,由康明斯发动机(北京)有限公司出品,机组型号:DY1340A。输入/输出:10000V/400V。经升压变压器升压至10KV后接入高压供电系统。在市电中断供电的情况下,保证全厂及生活区用电。 二、管理规定 1、发电机房严禁非工作人员入内,严禁堆放杂物。应在机组和配电装置周围装设围栏并悬挂显著的标示牌。 2、管理人员和值班人员必须熟悉发电机的基本性能及操作,应由日常负责人进行例行性检查。 3、平时应检查电瓶电压,发电机的机油油位及冷却水水位是否正常,储备的柴油油量是否足够运行八小时。 4、发电机应每周空载试运行一次,每次10-15分钟。 5、柴油发电机组不可以低于25%的负荷运行超过30分钟,否则对柴油机的使用会造成不利的影响。 6、由电气负责人监督确定执行发电机保养工作,并保存完整的运行记录及保养记录。 7、保持发电机房的清洁,如有漏水、漏油现象应立即处理。 三、发电机启动的原则和流程 1、原则:当市电供电中断后,为保证车间生产系统安全、顺利停车,检修以及生活区用电,应立即启动发电机。 2、流程: ●接到上级通知停电或事故停电后,立刻检查电瓶电压、水温、机油 是否满足启动要求(电瓶电压一般在27-30V,水温15℃左右)并对发电机进行盘车不少于两圈,满足要求后启动发电机,但不可送电。 ●与35KV变电所联系停电后,记录高压总电量,分断所有负荷,包括 高压进线柜,并对高压进线柜电源侧进行验电、放电、装设接地线等安全技术措施。 ●做完安全技术措施后,确认无任何安全隐患时,对发电机变压器一 次侧与高压进线柜电源侧连接(电缆不可带力)。 ●连接完成后,检查进线柜内是否有遗漏工具或其它东西,确认无任 何异常时,通知35KV变电所人员做送电准备。 ●在35KV工作人员允许的情况下,发电机并机送电。待车间一切正常 后。通知35KV工作人员并合上35KV联络电源,方可对生活区送电。 四、发电机启动前应注意事项和规定 1、机组外观检查,查看机组有无漏油、漏水。周围有没有影响发电机组安全运行的杂物。

数字电源管理技术及应用详解

数字电源管理技术及应用详解 本文介绍了数字电源的基本特点、数字电源相比于模拟电源的优势和数字电源管理的主要内容,也介绍了数字电源管理技术的应用。 新一代集成电路需要3.3V,1.8V甚至更低的电源电压,单个器件需要多路电压供电,而且电流的需求很大,电压也必须以正确的时序加到器件上。为这些器件供电的电压必须在电路板上(最好在距离这些器件近的地方)产生,以使压降最小和电压稳定。高性能的DC/DC 转换器适用于宽范围输入,既可作为隔离式电源,也可作为非隔离负载点转换器。因此,大多数板载电源系统已经采用DC/DC转换模块作为供电主体。但是,若缺少了电源管理电路,则无法构建一个完整、健全的电源系统。电源管理的内容包括:电源系统监控、定序和跟踪、监视和失效保护。电源管理器件在输入端处理共模抑制、起动限制、起动和关闭的控制,甚至功率因数校正等功能。配置在输出端的电源管理器件控制启动定序和输出电压调节,并为过欠压、过流情况提供相应的失效保图1电源管理器件在隔离型AC/DC电源系统中的应用护。所有相关功能电路均要求与主电路隔离。 图1所示为在隔离型AC/DC变换器中电源管理器件的主要应用。 专用的数字电源管理器件比通常采用的模拟电路或微控制器、可编程逻辑器件等方法在成本、开发周期和可靠性方面具有较大优势。新一代的数字电源管理器件内部集成了能够满足实时监控需求的快速ADC,使它能比通用微控制器的片外ADC更快地反映失效。监测数据通过I2C或PMBus总线传输给电源主控制器,用以实现精准的调压设置、故障保护等功能。内部的时钟可实现故障记录。对于多路输出的电源系统,数字电源主控制器实时地通过总线接口从各输出端的管理器件内读出各路输出的监测数据,实现了电源系统的全面监视。一旦

电池电源管理系统设计

电源招聘专家 我国是一个煤矿事故多发的国家,为进一步提高煤矿安全防护能力和应急救援水平,借鉴美国、澳大利亚、南非等国家成功的经验和做法,2010年,国家把建设煤矿井下避难硐室应用试点列入了煤矿安全改造项目重点支持方向。 为了满足井下复杂的运行环境及井下避难硐室对电池电源运行稳定、安全可靠、大电流输出等关键要求,研发了基于MAX17830的矿用电池电源管理系统。 1 总体技术方案 根据煤矿井下的环境及井下避难硐室对电池电源运行稳定、安全可靠、大电流输出等关键要求,结合磷酸铁锂电池的特性,采用MAX17830作为矿用电池管理系统的采集与保护芯片。 本矿用电池电源管理系统由五部分组成,分别为显示模块、管理模块、执行机构、电池组、防爆壳。整个电池电源管理系统共设有4对接线口:24 V直流输出端口、24 V直流充电端口、485通信端口和CAN通信端口[1-2]。 本矿用电池电源管理系统的工作流程如图1所示。 2 电池电源管理系统硬件设计 2.1 器件选择及布局 本矿用电池电源管理系统设计所采用的主要器件如表1所示。 按照器件的功能及电池管理系统的特点,对器件进行布局设计,器件布局情况如图2所示。 2.2 核心电路解析 2.2.1 MAX17830介绍 MAX17830芯片由美国的美信半导体公司生产,包含12路电压检测通道、12路平衡电路控制引脚及2路NTC温度传感器。在本电池电源管理系统中使用了8路电压检测通道、8路平衡电路控制引脚和2路NTC温度传感器。MAX17830采集8个单体电池的电压并使用IIC通信协议与CPU通信,将采集的数据发送给CPU,接受CPU的控制[3-4]。 2.2.2 电池电压采集与过充保护电路 此电路围绕着MAX17830而设计,负责整个电池组单体电池的电压采集、过充保护、平衡管理等,其电路设计的原理图如3所示。 3 电池电源管理系统软件设计 3.1 软件基本功能 为了保证电池电源系统的稳定,设计电池电源管理系统软件的基本功能如下[5]: (1)动态信息的采样,对单体电压、单体温度、电池组电流、电池组电压进行采样;(2)电管理,根据系统动态参数对充电过程、放电过程、短路情况进行报警、主动保护多级管理措施; (3)热管理,电池单体高于或低于指定界限时电池电源管理系统将采取保护措施并报警;(4)均衡管理,充、放电过程中可对单体电池持续有效地提供高达70 mA的均衡电流,每块单体电池设有一路均衡电路; (5)数据管理,使用CAN/485通信协议可实时读取、调用系统存储的数据及管理系统工作状态。详实记录过流、过压、过温等报警信息,作为系统诊断的依据; (6)电量评估,长时间精准剩余电量估计,实验室SoC估计精度在97%以上(-40 ℃~

双电源自备电源管理办法.doc

双电源(自备电源)管理办法 (修订) 第一条本办法对双回路供电、客户自备电源的安装以及投入运行的管理进行规定,适用于营业、用电检查受理客户申请双回路供电、安装自备电源以及投入运行的管理。 第二条营销部客户服务中心营业窗口负责受理客户双回路供电、安装自备电源的申请,营销部客户服务中心负责客户双回路供电、安装自备电源投入运行的管理。 第三条营销部客户服务中心窗口按客户负荷重要性、用电容量和供电可能性,受理下列客户的双回路供电申请: (一)中断供电将会造成人身伤亡;造成环境严重污染;造成重要设备损坏,连续性生产企业长期不能恢复;造成重大的政治和社会影响的单位。 (二)重要科研单位、军工企业、医疗单位,电气化生活小区。 第四条因受电网供电条件限制,暂不可能向上列客户提供双回路供电,客户可以自备发电机组作为备用电源。 第五条营业窗口受理双回路供电或者自备发电机组申请后,应在规定时限内通知勘测人员或用电检查人员现场勘测,双回路供电应由营销部客户服务中心会同生技、调度共同审查,经公司领导审批后方可实施。 第六条客户的保安电源由客户自行解决。 第七条公司营销部应就双回路供电、自备发电机组投入运行的安全事项与用电客户签订双电源(自备电源)协议

书,明确责任。协议书正、副本由公司和用电客户各执一份。 第八条双电源(自备电源)的切换装置和接线要求。 (一)常、备用电源切换操作装置,原则上应安装于同一变电室内; (二)高压双电源供电的,电源侧的刀闸应尽量采用机械闭锁装置。 (三)供电可靠性有特殊要求的,可采用电气联锁,保证在任何情况下,只有一路电源投入运行而无误并列的可能。 (四)低压双电源供电的,应在双电源进线端(包括零线),装设四极双投刀闸,由此转换电源。如双电源的进户点距离过远,四极双投刀闸前的电源进线,应采用电缆,防止误接用电设备而造成电源倒送。 (五)自备发电机作为备用电源的,不得同时使用电网电源和自备发电机电源。如发电机装设地点较远,应采用电缆布线,严禁在四极双投刀闸前接用任何电器设备。如是高压供电客户,因受发电机容量限制,只能供给一部分车间或保安设备的,其线路应与由电网供电的线路严格分开架设,不得同杆架设或混接。两电源间应装设双投刀闸,由此转换电源。 第九条双电源(自备电源)的运行要求 (一)双电源的客户应制订相应的规章制度,确保转换电源的操作在高压电源总刀闸断开的情况下进行。 (二)双回路供电的客户,其常、备用电源的转电操作,

WIN7电源管理功能全解析

很多用过和正在使用Windows Vista系统的朋友都知道,相比此前微软的操作系统,这一版本的电源管理功能更加强大,用户可根据实际需要,设置电源使用模式,让移动计算机用户在使用电池续航的情况下,依然能最大限度发挥功效。延长使用时间,保护电池寿命。而相比Vista版本,Windows 7操作系统的电源管理功能同样强大,不但继承了Vista系统的特色,还在细节上更加贴近用户的使用需求。并方便用户更快、更好的设置和调整电源属性。 本文基于Windows 7 beta版 + 中文语言包,翻译内容可能和英文原版略有差异,但步骤和选项相同。 1.全新设计的电池使用方案 为给使用电池续航的笔记本用户进一步节约能耗,在Windows 7系统中,为用户提供了包括已平衡、节能程序等多个电源使用计划和方案,同时,相比Windows Vista系统,还可快速通过电源查看选项,调整当前屏幕亮度和查看电池状态(如电源连接状态、充电状态、续航状态等)。 在默认情况下,Windows 7系统为用户提供的是已平衡使用方案。这一方案可使系统在使用电池续航的情况下,2分钟内自动灰阶显示器(通过降低亮度解决耗电)、5分钟后自动关闭显示、并在15分钟后自动将计算机进入休眠状态。同时,用户还可直接在电源选项中,对在使用电池模式和接通电源模式下,默认的屏幕亮度进行调整。 同时,节能程序计划和高性能计划的灰阶显示器、关闭显示器、进入睡眠状态设置,则分别会为用户提供如如下使用方案。 此外,用户若希望对电源使用方案,和相应功能进行详细设置,还可在Windows 7操作系统的控制面板选项中,进入电源设置选项,并通过自定义电源设置,对相应功能详细进行调整。 2.自定电源使用方案。 考虑到不同环境下,用户的实际使用需求,在Windows 7操作系统中,用户还可通过控制面板中电源选项,创建新的电源使用方案。在详细的功能设置列表中,过呢据实际需求对其进行调整。 在功能列表中,用户可分别对电池使用模式、硬盘耗电模式、无线适配器设置、睡眠时间、电源按钮和笔记本合盖后的状态进行调整。同时在创建过程中若出现失误,还可通过还原计划默认值选项进行恢复。 同时,在电源选项中。,用户也可对电源按钮进行定制,例如关机按钮、休眠按钮和关闭笔记本盖子后的状态。还可设置唤醒密码,为系统提供安全保护(唤醒密码默认为系统帐户密码)。

电源管理模块

电源管理模块 手指康复机器人的数字电路部分需要直流电源供电,故电源管理模块首先采用的开关电源将220v 的交流电转换为直流电压,再利用低压线性稳压器为各个子模块供电。 为了避免模拟信号与数字信号地相互干扰,将交流电压转换为两个独立的直流电源,再分别为模拟电路和数字电路的电源供电。电源管理系统拓扑结构如下: 具体实现如下: ① +12V 转+8V 采用的是LM7808,这是一块三端集成的稳压电路,能够准确的降压到+8V 。电路两端的电容作用都为滤波,用来平滑电压与提高抗干扰能力。其中输出端并联220uF/25V 的电解电容,它自谐频率小,可以起到储能滤波的功能,消除低频干扰。但是由于大电容的电解电容自身存在一定的电感,对于高频信号以及脉冲干扰信号无法有效滤除,故并联一个或几个容值比较小的陶瓷电容,以达到滤除高频干扰信号的作用。 220V 交流电 12V 直流电源 LM2596S5 24V 直流电源 MRF 7808 NE555 LM117-3.3 7414 7474 ARM 外围电路 AD REF TLV5620 LT3080 LM358 WD5-24S5 直流电机电源 HCPL2630 TLP185 3.3 12 5 8 -8 24 5

②+12V转-8V采用NE555芯片,这是一款将模拟功能和逻辑功能很好的结合在一起的芯片,应用的范围十分广泛。 其内部结构如上,当NE555的第三脚输出高电平,通过D1向C1充电,电压可达11V。当NE555输出为低电平时,D1被C2反偏截止。C2向C3转移电荷,重复多次后C3电压达8V,相对地线则输出视为-8V ③+12V转+5V采用的是开关型集成稳压芯片LM2596,它内含固定频率振荡器,以及基准稳压器,并具备完善的保护电路、热关断电路、电流限制等。

双电池方案 电源管理芯片(手机)

https://www.360docs.net/doc/4111223044.html, FEATURES DESCRIPTION APPLICATIONS POWER FLOW DIAGRAM (1) bq24070 SLUS694A–MARCH2006–REVISED MARCH2006 SINGLE-CHIP CHARGE AND SYSTEM POWER-PATH MANAGEMENT IC ?Small3,5mm×4,5mm QFN Package The bq24070device is a highly integrated Li-ion linear charger and system power-path management ?Designed for Single-Cell Li-Ion-or device targeted at space-limited portable Li-Polymer-Based Portable Applications applications.The bq24070offers DC supply(AC ?Integrated Dynamic Power-Path Management adapter)power-path management with autonomous (DPPM)Feature Allowing the AC Adapter to power-source selection,power FETs and current Simultaneously Power the System and sensors,high-accuracy current and voltage Charge the Battery regulation,charge status,and charge termination,in a single monolithic device. ?Power Supplement Mode Allows Battery to Supplement the AC Input Current The bq24070powers the system while independently ?Autonomous Power Source Selection(AC charging the battery.This feature reduces the charge Adapter or BAT)and discharge cycles on the battery,allows for proper charge termination and allows the system to ?Supports Up to2-A Total Current run with an absent or defective battery pack.This ?Thermal Regulation for Charge Control feature also allows for the system to instantaneously ?Charge Status Outputs for LED or System turn on from an external power source in the case of a deeply discharged battery pack.The IC design is Interface Indicates Charge and Fault focused on supplying continuous power to the Conditions system when available from the AC adapter or ?Reverse Current,Short-Circuit,and Thermal battery sources. Protection ?Power Good Status Outputs ?Smart Phones and PDA ?MP3Players ?Digital Cameras and Handheld Devices ?Internet Appliances (1)See Figure2and functional block diagram for more detailed feature information. (2)P-FET back gate body diodes are disconnected to prevent body diode conduction. Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date.Copyright?2006,Texas Instruments Incorporated Products conform to specifications per the terms of the Texas Instruments standard warranty.Production processing does not necessarily include testing of all parameters.

探究大型风力发电机组变桨后备电源管理系统设计120

探究大型风力发电机组变桨后备电源管理系统设计 摘要:当今我国风力发电技术变得愈加成熟,在大型风力发电机组变桨系统当中,为了保障整个系统的安全性与可靠性,通常都要配置变桨后备电源,这就需 要做好后备电源管理系统设计工作,提高风力发电机组运行的有效性。基于此, 本文首先提出蓄电池在变桨控制系统中的应用,进而从软硬件两个方面提出后备 电源管理系统设计。 关键词:大型风力发电机组;后备电源;管理系统;变桨;设计 引言 工业的不断发展,虽然经济有所提升,但是资源、能源紧缺问题却愈加严重。为了能够实现可持续发展道路的战略,加强可再生能源的研究与研究已经成为了 必然趋势,降低对传统能源的依赖性。风力发电是继火力发电、水利发电的又一 大发展体系,是当今电力领域研究的热点话题。风力发电技术作为当今能源领域 的新研究方向,已经从最初的几十千瓦逐渐升到了兆瓦级。但总体上来说,我国 风力发展技术还有很大的发展空间,特别是对于大型风力发电机组变桨问题来说,为了保证风力发电系统运行安全,需要全面加强后备电源管理工作,因此加强后 备电源管理系统设计尤为重要。 1蓄电池在变桨控制系统中的应用原理 结合能量守恒的原理,在能源转化当中,会在数量、时间、物质形态产生一 定差异。储能技术就是一种能量转化的“中介”,通过能量存储与释放,从而提高 能量转化与应用的灵活性。蓄电池作为化学储能的一种,具有易存储、易运输的 优势,在当今风电领域中的应用十分广泛。 为了可以提高大型风力发电系统的可靠性,变桨控制系统电源通常要设置备 用方案。后备电源主要是起到了紧急收浆的作用。如果大型风力发电机组产生了 故障问题,一组蓄电池可以为紧急变桨控制提供动力,在直流母线上并联电池组,之后统一安装到变频器上,在风电机正常运行当中,只需要通过浮点来保持电压 即可,假如在运行当中因为故障断电,系统会自动将直流电传输给变频器,变频 器通电之后即可实现相应功能,带动伺服电机运行实现收浆。 2硬件系统设计 2.1电源电路设计 (1)电池组串充电源 电源作为风电机的重要驱动装置,保证电源运行质量可以确保设备运行效率 以及运行安全性。这就需要保证电源电路设计的科学性。大部分电源管理系统都 是采用了4节电池组串充方法,电压为52VDC,因此主要的电源电路中需要融入 +52V电源电路。在实践应用当中需要采用MC34063芯片,包含了DC/DC变换器 各种功能,由单片机统一控制电路。 (2)其他电源 +15V电源,电路由MC34063芯片产生+15V电源,相比+52V电源,+15V电 源主要是采用了MC34063降压变换器形式;+5V电源,主要是采用了稳压块 7808芯片,之后通过+15V电源转化而来;+12V电源当中,主要是通过VOLTREG7812稳压块来实现相关功能,由+15V电源驱动。运行稳压7812模块过 程中,输入电源要比输出电源更大一些,通常为2V以上。 2.2 LED显示系统 LED驱动系统应用DIP-8开关和单片机I/O输出端口连接,个女警单片机实际

电气专业毕业设计外文翻译--电源管理技术及计算

附录3 英文资料 Power Management Techniques and Calculation Relevant Devices This application note applies to the following devices: C8051F000, C8051F001, C8051F002, C8051F005, C8051F006, C8051F010, C8051F011, C8051F012, C8051F012, C8051F015, C8051F016, and C8051F017. Introduction This application note discusses power management techniques and methods of calculating power in a Cygnet C8051F00x and C8051F01x Sock. Many applications will have strict power requirements, and there are several methods of lowering the rate of power consumption without sacrificing performance. Calculating the predicted power use is important to characterize the system?s power supply requirements. Key Points ? Supply volt age and system clock frequency strongly affect power consumption. ? Cygnet?s Sock?s feature power management modes: IDLE and STOP. ? Power use can be calculated as a function of system clock frequency, supply voltage, and enabled peripherals. Power Saving Methods CMOS digital logic device power consumption is affected by supply voltage and system clock (SYSCLK) frequency. These parameters can be adjusted to realize power savings, and are readily controlled by the designer. This section discusses these parameters and how they affect power usage. Reducing System Clock Frequency In CMOS digital logic devices, power consumption is directly proportional to system clock (SYSCLK) frequency: power=CV2?, where C is CMOS load capacitance, V is supply voltage, and ? is SYSCLK frequency. Equation 1.CMOS Power Equation The system clock on the C8051Fxxx family of devices can be derived from an internal oscillator or an external source. External sources may be a CMOS clock, RC circuit, capacitor, or crystal oscillator. For information on configuring oscillators, see applic ation note: “AN02 - Configuring the Internal and External Oscillators.” The internal oscillator can provide four SYSCLK frequencies: 2, 4, 8, and16 MHz. Many

相关文档
最新文档