测定水的粘度系数

测定水的粘度系数
测定水的粘度系数

水粘度系数的测定

——车辆工程4班 刘天威 20110402406

1.实验目的

1)掌握用落球法测定水的粘度系数。

2)掌握游标卡尺,停表等实验仪器的使用;了解一种减小实验误差的方法;学习用标准算数误差表示实验结果。

2实验仪器

玻璃圆筒内的待测水,圆筒(有两条标线N1和N2),米尺,停表,游标卡尺,镊子,培养皿,小球(3颗)。

3实验原理

在稳定流动的液体中,因为各层流体的速度不同,因而在相邻的流体层之间会产生切向力,此切向力即为粘性力。实验指出,此粘性力f 正比于两流层间的接触面积S 和该处的速度梯度dv/dx ,即

f =n (dv/dx )S

这就是牛顿粘性定律。式中,比例系数n 称为流体的粘度系数,它只与流体本身的性质和温度有关。

由于液体的粘性,物体在液体中运动时要受到液体的摩擦阻力,当小球在液体中下落时,若下落速度很小,球也很小,且液体在各方向上是无限宽广的,则由斯托克斯公式有 f =6πn r v 式中,v 是小球下落的速度,r 是小球的半径,n 是液体的粘度系数。

小球在液体中下落时,不仅受到流体的阻力,还有自身的重力和水的浮力,三力平衡时,小球等速下落。由三力平衡得

4/3 r v n 6g 3/4g r π03ππρρ+=

式中,0ρ是水的密度,可得

v 9/gr )-(220ρρ=n

因为液体放在容器中总不是无限广阔的,所以小球在无限广阔的液体中下落是不可能的。只考虑管壁的影响。由于小球作匀速运动,则v=L/t ,并以r=d/2,R=D/2,(d 是小球直径,D 是液注直径,L 是小球作匀速运动的距离)得

(ρρD /d 71.21L 18/t gd )-(20+=n 4实验装置

5实验步骤

1)用米尺测出小球匀速下落的距离L;

2)用游标卡尺测出小球的直径d;

3)用游标卡尺测出液注的直径D;

4)将小球置于液注中心靠近水面位置释放,用停表测出小球通过距离L所用的时间t;5)记录数据并计算得出水的粘度系数n;

6实验心得

只有认真学得理论,才能想出比较好的方法。实践是检验真理的唯一方法。

落球法测量液体粘滞系数

落球法测量液体粘滞系数 Revised by BLUE on the afternoon of December 12,2020.

落球法测量液体粘滞系数 各种实际液体具有不同程度的粘滞性,当液体流动时,平行于流动方向的各层流体速度都不相同,即存在着相对滑动,于是在各层之间就有摩擦力产生,这一摩擦力称为粘滞力,它的方向平行于接触面,其大小与速度梯度及接触面积成正比,比例系数η称为粘度,它是表征液体粘滞性强弱的重要参数。 液体的粘滞性的测量是非常重要的,例如,现代医学发现,许多心血管疾病都与血液粘度的变化有关,血液粘度的增大会使流入人体器官和组织的血流量减少,血液流速减缓,使人体处于供血和供氧不足的状态,这可能引起多种心脑血管疾病和其他许多身体不适症状。因此,测量血粘度的大小是检查人体血液健康的重要标志之一。又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘度。 测量液体粘度有多种方法,本实验所采用的落球法是一种绝对法测量液体的粘度。如果一小球在粘滞液体中铅直下落,由于附着于球面的液层与周围其他液层之间存在着相对运动,因此小球受到粘滞阻力,它的大小与小球下落的速度有关。当小球作匀速运动时,测出小球下落的速度,就可以计算出液体的粘度。 【实验目的】 1.学习用激光光电传感器测量时间和物体运动速度的实验方法 2.用斯托克斯公式采用落球法测量油的粘滞系数(粘度) 3.观测落球法测量液体粘滞系数的实验条件是否满足,必要时进行修正。【实验原理】 1.当金属小球在粘性液体中下落时,它受到三个铅直方向的力:小球的重力 ρ(V是小球体积,ρ是液体mg(m为小球质量)、液体作用于小球的浮力gV 密度)和粘滞阻力F(其方向与小球运动方向相反)。如果液体无限深广,在小球下落速度v较小情况下,有 = 6 rv Fπη (1)

液体黏度的测定-实验报告

物理实验报告 液体黏度的测定 各种实际液体都具有不同程度的黏滞性。当液体流动时,平行于流动方向的各层流体之间,其速度都不相同,即各层间存在着滑动,于是在层与层之间就有摩擦力产生。这一摩擦力称为“黏滞力”。它的方向在接触面内,与流动方向相反,其大小与接触面面积的大小及速度梯度成正比,比例系数称为“黏度”(又称黏滞系数,viscosity )。它表征液体黏滞性的强弱,液体黏度与温度有很大关系,测量时必须给出其对应的温度。在生产上和科学技术上,凡是涉及流体的场合,譬如飞行器的飞行、液体的管道输送、机械的润滑以及金属的熔铸、焊接等,无不需要考虑黏度问题。 测量液体黏度的方法很多,通常有:①管流法。让待测液体以一定的流量流过已知管径的管道,再测出在一定长度的管道上的压降,算出黏度。②落球法。用已知直径的小球从液体中落下,通过下落速度的测量,算出黏度。③旋转法。将待测液体放入两个不同直径的同心圆筒中间,一圆筒固定,另一圆筒以已知角速度转动,通过所需力矩的测量,算出黏度。④奥氏黏度计法。已知容积的液体,由已知管径的短管中自由流出,通过测量全部液体流出的时间,算出黏度。本实验基于教学的考虑,所采用的是奥氏黏度计法。 实验一 落球法测量液体黏度 一、【实验目的】 1、了解有关液体黏滞性的知识,学习用落球法测定液体的黏度; 2、掌握读数显微镜的使用方法。 二、【实验原理】 将液体放在两玻璃板之间,下板固定,而对上板施以一水平方向的恒力,使之以速度v 匀速移动。黏着在上板的一层液体以速度v 移动;黏着于下板的一层液体则静止不动。液体自上而下,由于层与层之间存在摩擦力的作用,速度快的带动速度慢的,因此各层分别以由大到小的不同速度流动。它们的速度与它们与下板的距离成正比,越接近上板速度越大。这种液体流层间的摩擦力称为“黏滞力”(viscosity force )。设两板间的距离为x ,板的面积为S 。因为没有加速度,板间液体的黏滞力等于外作用力,设为f 。由实验可知,黏滞力f 与面积S 及速度v 成正比,而与距离x 成反比,即 x v S f η= (2-5-1) 式中,比例系数η即为“黏度”。η的单位是“帕斯卡·秒”(Pa ·s )或k g ·m -1·s -1。

落球法测量液体粘滞系数

落球法测量液体的粘滞系数实验报告 一、问题背景 液体流动时,平行于流动方向的各层流体速度都不相同,即存在着相对滑动,于就是在各层之间就有摩擦力产生,这一摩擦力称为粘滞力(或粘滞系数),它的方向平行于接触面,其大小与速度梯度及接触面积成正比,比例系数η称为粘度,它就是表征液体粘滞性强弱的重要参数。液体的粘滞系数与人们的生产,生活等方面有着密切的关系,比如医学上常把血粘度的大小做为人体血液健康的重要标志之一。又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘度。 测量液体粘度可用落球法,毛细管法,转筒法等方法,其中落球法适用于测量粘度较高的透明或半透明的液体,比如:蓖麻油、变压器油、甘油等。 二、实验目的 1.学习与掌握一些基本物理量的测量。 2.学习激光光电门的校准方法。 3.用落球法测量蓖麻油的粘滞系数。 三、实验仪器 DH4606落球法液体粘滞系数测定仪、卷尺、螺旋测微器、电子天平、游标卡尺、钢球若干。 四、实验原理 处在液体中的小球受到铅直方向的三个力的作用:小球的重力mg(m为小球质量)、液体作用于小球的浮力gV ρ(V就是小球体积,ρ就是液体密度)与粘滞阻力F(其方向与小球运动方向相反)。如果液体无限深广,在小球下落速度v较小情况下,有 (1) 上式称为斯托克斯公式,其中r就是小球的半径;η称为液体的粘度,其单位就是s Pa?。

小球在起初下落时,由于速度较小,受到的 阻力也就比较小,随着下落速度的增大,阻力也 随之增大。最后,三个力达到平衡,即 (2) 此时,小球将以0v 作匀速直线运动,由(2)式可得: (3) 令 小 球 的直径 为 d ,并用 '36ρπ d m = ,t l v =0,2 d r =代入(3)式得 (4) 其中' ρ为小球材料的密度,l 为小球匀速下落的距离,t 为小球下落l 距离所用的时间。 实验过程中,待测液体放置在容器中,故无法满足无限深广的条件,实验证明上式应进行如 下修正方能符合实际情况: (5) 其中D 为容器内径,H 为液柱高度。 当小球的密度较大,直径不就是太小,而液体的粘度值又较小时,小球在液体中的平衡速度 0v 会达到较大的值,奥西思-果尔斯公式反映出 了液体运动状态对斯托克斯公式的影响: ...)Re 1080 19Re 1631(620+-+ =r v F πη (6) 其中,Re 称为雷诺数,就是表征液体运动状态的 无量纲参数。 η ρ0 dv R e = (7) 当Re<0、1时,可认为(1)、(5)式成立;当0、1

水的粘度计算表-水的动力粘度计算公式

水的黏度表(0?40 C)

水的物理性质

F3 Viscosity decreases with p ressure (at temp eratures below 33 Water's p ressure-viscosity behavior [534] can be explained by the in creased p ressure (up to about 150 MPa) caus ing deformatio n, so reduci ng the stre ngth of the hydroge n-bon ded n etwork, which is also p artially res pon sible for the viscosity. This reduct ion in cohesivity more tha n compen sates for the reduced void volume. It is thus a direct con seque nee of the bala nee betwee n hydroge n bonding effects and the van der Waals dis persion forces [558] in water; hydroge n bonding p revaili ng at lower temp eratures and p ressures. At higher p ressures (and den sities), the bala nee betwee n hydroge n bonding effects and the van der Waals dis persi on forces is tipped in favor of the dis persion forces and the rema ining hydroge n bonds are stron ger due Viscous flow occurs by molecules movi ng through the voids that exist betwee n them. As the p ressure in creases, the volume decreases and the volume of these voids reduces, so no rmally in creas ing p ressure in creases the viscosity. |:| k -二 _ r 1 3ire S C 去 * . i i screr - 丁" \ . / . 一 '气:r J J: V .; r "舄 ■ 3 口二 K n PV ■ ■ L T 三 n 曲 ? ■ 5 M r 丐 町寸 -; J 百* " T N ; 【 I bl ■呻口 " 口寸津 a “ d c i 0 290 八 rao 800 i woo Pressure, MPa g 亠 C) Co? 4 — □ ] J %一 M J s 」气1 □ u 古 气 a 15 ?” ”〕 阳 "1 ■ \ ■ ID % ;: s' ¥ 口『 屮 n ◎ 9 r 奇 * =' f f- ::[ 丄 备 IT 记 |B - 3 D ■i 电- 'u O 丰759勺; 】I -一 11 L . P

实验三 液体粘度的测定

实验三 液体粘度的测定 一.实验目的 1. 掌握用Ostwald 粘度计测定液体粘度的原理和方法。 2. 进一步掌握调节恒温槽的技术。 3. 了解温度对液体粘度的影响。 二.实验原理 液体的粘度η,亦称粘度系数,是指单位面积的液层以单位速度流过相隔单位距离的固定液层时所受的力。粘度的大小与分子间力有关,即与液体的性质有关。温度对液体的粘度的影响较大,一般温度升高,液体粘度变小。 若液体在毛细管中流动,则根据波华须尔公式可得: 48r Pt VL πη= 式中,r :毛细管半径;L :毛细管长度;V :液体的体积;t :液体流经长为L 的毛细管所经历的时间;P :管两端的压力。 按上式由实验来测定液体的绝对粘度是困难的,但测定液体对标准液体的比粘度是适用的,若已知标准液体的绝对粘度,则可求出另一种液体的粘度。 奥氏粘度计是毛细管粘度计的一种,适宜于测定低粘度液体,方法是用同一粘度计,分别测定两种液体在重力作用下流经同一毛细管,且流出体积相等时各所需时间,这样有: 411 18r Pt VL πη= , 422 28r P t VL πη= 从而, 111222 Pt P t ηη=。 式中,P = hgd 。h ,推动液体流动的液位差;d ,液体密度;g ,重力加速度。 如每次取样的体积一定,则可保持h 始终一致,则有: 111 222 d t d t ηη= 假如液体2的粘度η2为已知,则液体1的粘度η1可由下式求得: 11 12 22 d t d t ηη= 由于温度对液体粘度的影响很大,故测定液体在某一温度时的粘度,必须注意控制温度恒定。 本实验以25℃时的水为标准,测定20℃、25℃温度下无水乙醇及丙酮的粘度。 已知25℃下水的粘度为0.8904×10-3 Pa·s ,水的密度为0.99707 g·cm -3 ,乙醇的密度为 图3-1奥氏粘度计

落球法测定液体的粘滞系数

目录 实验目的 (2) 实验仪器 (2) 实验原理 (2) 实验装置 (4) 实验内容 (5) 实验数据及处理 (5) 观察与思考 (12) 实验总结 (13)

落球法测定液体的粘滞系数 实验目的 1、 用落球法测定液体的粘滞系数。 2、 进一步熟悉基本测量工具的使用。 实验仪器 FD —VM —II 型落球法液体粘滞系数测定仪(激光光电传感器计时)、甘油、游标卡尺、温度计、小刚球、小磁钢、螺旋测微器、液体密度计。 实验原理 各种实际流体在流动时,平行于流动方向的内部各层速度是不同的,于是作相对运动的各层流体间存在着粘滞性摩擦阻力,简称内摩擦力。牛顿给出了表征内摩擦力 f 的定律:dx d A f υη-=,即f 的大小正比于流层移动的速度梯度和流层间的接触面积,比例系数η叫做粘滞系数,它是表征流体相邻流层内摩擦力大小的一个物理量。它的方向平行于接触面,其大小与速度梯度及接触面积成正比,比例系数η称为粘度,它是表征液体粘滞性强弱的重要参数,液体的粘滞性的测量是非常重要的,例如,现代医学发现,许多心血管疾病都与血液粘度的变化有关,血液粘度的增大会使流入人体器官和组织的血流量减少,血液流速减缓,使人体处于供血和供氧不足的状态,这可能引起多种心脑血管疾病和其他许多身体不适症状。因此,测量血粘度的大小是检查人体血液健康的重要标志之一。又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘度。 测量液体粘度有多种方法,本实验所采用的落球法是一种绝对法测量液体的粘度。如果一小球在粘滞液体中铅直下落,由于附着于球面的液层

落球法测量液体的粘滞系数

落球法测量液体的粘滞系数 、实验内容: 熟悉斯托克斯定律,掌握用落球法测量液体的粘滞系数的原理和方法。 、实验仪器: 落球法粘滞系数测定仪、小钢球、蓖麻油、千分尺、激光光电计时仪 三、实验原理: 如图1,当金属小球在粘性液体中下落时, 它受到三个铅直方向的力: 液体作用于小球的浮力 :'gV ( V 为小球体积,匸为液体密度)和粘滞阻力 球运动方向相反)。如果液体无限深广,在小球下落速度 v 较小的情况下, F rv ( 1) 图1 液体的粘滞系数测量装置 小球的重力mg 、 F (其方向于小

上式称为斯托克斯公式,式中 为液体的粘滞系数,单位是 Pa s , r 为小球的半径。 (3) 斯托克斯定律成立的条件有以下5个方面: 1 )媒质的不均一性与球体的大小相比是很小的; 2) 球体仿佛是在一望无涯的媒质中下降; 3) 球体是光滑且刚性的; 4)媒质不会在球面上滑过; 5)球体运动很慢,故运动时所遇的阻力系由媒质的粘滞性所致,而不是因球体运动所 推向前行的媒质的惯性所产生。 小球开始下落时,由于速度尚小,所以阻力不大, 但是随着下落速度的增大,阻力也随 之增大。最后,三个力达到平衡,即: mg = QgV 6二 rv 于是小球开始作匀速直线运动,由上式可得: (m-Vjg 6~vr — i d 令小球的直径为d ,并用m d 3Q ,v ,r 代入上式得: 6 t 2 (厂 - Jgd 2t 18l 实验时,待测液体盛于容器中,故不能满足无限深广的条件,实验证明上式应该进行 修正。测量表达式为: ________ 1 _______ (1 叱)(1 吨) 四、实验步骤: 1. 调整粘滞系数测量装置及实验仪器 其中L 为小球材料的密度, l 为小球匀速下落的距离, t 为小球下落I 距离所用的时间。 其中D 为容器的内径, H 为液柱高度。

实验6 落球法测液体的粘滞系数

实验6 落球法测液体的粘滞系数 【粘滞系数知识和斯托克斯公式】 液体都具有粘滞性,液体的粘滞系数(又称内摩擦系数或粘度)是液体粘滞性大小的量 度,也是粘滞流体的主要动力学参数。研究和测定流体的粘滞系数,不仅在物性研究方面, 而且在医学、化学、机械工业、水利工程、材料科学及国防建设中都有很重要的实际意义。 例如,现代医学发现,许多心血管疾病都与血液粘度的变化有关,血液粘度的增大会使流入 人体器官和组织的血流量减少,血液流速减缓,使人体处于供血和供氧不足状态,可能引发 多种心脑血管疾病和其他许多身体不适症状,因此,测量血液粘度的大小是检查人体血液健 康的重要标志之一。又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关, 因而在设计管道前,必须测量被输石油的粘度。液体的粘度受温度的影响较大,通常随着温 度的升高而迅速减小。 测定粘滞系数的方法有多种,如转筒法、毛细管法、落球法等。转筒法,利用外力矩与 内摩擦力矩平衡,建立稳定的速度梯度来测定粘度,常用于粘度为0.1~100的流体; 毛细管法,通过一定时间内流过毛细管的液体体积来测定粘度,多用于粘度较小的液体如水、 乙醇、四氯化碳等;落球法,通过小球在液体中的匀速下落,利用斯托克斯公式测定粘度, 常用于粘度较大的透明液体如蓖麻油、变压器油、机油、甘油等。本实验学习用落球法测定 蓖麻油的粘滞系数,如果一小球在粘滞液体中铅直下落,由于附着于球面的液层与周围其他 液层之间存在着相对运动,因此小球爱到粘滞阻力,它的大小与小球下落的速度有关。当小 球作匀速运动时,测出小球下落的速度,就可以计算出液体的粘度。 液体的粘滞系数又称内摩擦系数,在工程技术和生产技术以及医学等方面,测定液体的 粘滞系数具有重大的意义,例如研究水、石油等流体在长距离输送时的能量损耗,造般工等, 这些均与测定液体的粘滞系数有关,斯托克斯法是测定液体粘滞系数的基本方法。在稳定流 动的流体中,各层流体的速度不同就会产生切向力,快的一层给慢的一层以拉力,慢的一层 给快的一层以阻力,这一对力称为流体的内摩擦力或粘滞力。液体都具有粘滞性,这种粘滞 力与相对速度成正比。斯托克斯公式指出,光滑的小球在无限广延的液体中运动时,当液体 的粘滞性较大,小球的半径很小,且在运动中不产生旋涡,那么小球所受到的粘滞阻力F为: rv 6 =(1) Fπη 式中r是小球的半径,v是小球的速度,η为液体粘滞系数,是液体粘滞性的度量,单位是? s 。它与温度有密切的关系,对液体来说,η随温度的升高而减少。所以研究和测定液

液体粘滞系数测定实验

液体粘滞系数的测量与研究 一 实验目的 1.了解用斯托克斯公式测定液体粘滞系数的原理,掌握其适用条件。 2.学习用落球法测定液体的粘滞系数。 3.熟练运用基本仪器测量时间、长度与温度。 4.掌握用外推法处理实验数据。 二 实验仪器 液体粘滞系数仪、螺旋测微器、游标卡尺、钢板尺、钢球、磁铁、秒表、温度计。 三 实验原理 当物体球在液体中运动时,物体将会受到液体施加的与其运动方向相反的摩擦阻力的作用,这种阻力称为粘滞阻力,简称粘滞力。粘滞阻力并不就是物体与液体间的摩擦力,而就是由附着在物体表面并随物体一起运动的液体层与附近液层间的摩擦而产生的。粘滞力的大小与液体的性质、物体的形状与运动速度等因素有关。 根据斯托克斯定律,光滑的小球在无限广延的液体中运动时,当液体的粘滞性较大,小球的半径很小,且在运动中不产生旋涡,那么小球所受到的粘滞阻力f 为 vd f πη3= (1) 式中d 就是小球的直径,v 就是小球的速度,η为液体粘滞系数。η就就是液体粘滞性的度量,与温度有密切的关系,对液体来说,η随温度的升高而减少(见附表)。 本实验应用落球法来测量液体的粘滞系数。小球在液体中做自由下落时,受到三个力的作用,三个力都在竖直方向,它们就是重力r gV 、浮力r 0gV 、粘滞阻力f 。开始下落时小球运动的速度较小,相应的阻力也小,重力大于粘滞阻力与浮力,所以小球作加速运动。由于粘滞阻力随小球的运动速度增加而逐渐增加,加速度也越来越小,当小球所受合外力为零时,趋于匀速运动,此时的速度称为收尾速度,记为v 0 。经计算可得液体的粘滞系数为 2 018)(v gd ρρη-= (2) 式中0ρ就是液体的密度,ρ就是小球的密度,g 就是当地的重力加速度。 可见,只要测得v 0,即可由(2)式得到液体的粘滞系数。但就是注意,上述推导包括(1)、(2)式都在特定条件下方才适用(见原理的第一段黑体字部分),通过对实验仪器与实验方法的设计,

测定水的粘度系数

水粘度系数的测定 ——车辆工程4班 刘天威 20110402406 1.实验目的 1)掌握用落球法测定水的粘度系数。 2)掌握游标卡尺,停表等实验仪器的使用;了解一种减小实验误差的方法;学习用标准算数误差表示实验结果。 2实验仪器 玻璃圆筒内的待测水,圆筒(有两条标线N1和N2),米尺,停表,游标卡尺,镊子,培养皿,小球(3颗)。 3实验原理 在稳定流动的液体中,因为各层流体的速度不同,因而在相邻的流体层之间会产生切向力,此切向力即为粘性力。实验指出,此粘性力f 正比于两流层间的接触面积S 和该处的速度梯度dv/dx ,即 f =n (dv/dx )S 这就是牛顿粘性定律。式中,比例系数n 称为流体的粘度系数,它只与流体本身的性质和温度有关。 由于液体的粘性,物体在液体中运动时要受到液体的摩擦阻力,当小球在液体中下落时,若下落速度很小,球也很小,且液体在各方向上是无限宽广的,则由斯托克斯公式有 f =6πn r v 式中,v 是小球下落的速度,r 是小球的半径,n 是液体的粘度系数。 小球在液体中下落时,不仅受到流体的阻力,还有自身的重力和水的浮力,三力平衡时,小球等速下落。由三力平衡得 4/3 r v n 6g 3/4g r π03ππρρ+= 式中,0ρ是水的密度,可得 v 9/gr )-(220ρρ=n 因为液体放在容器中总不是无限广阔的,所以小球在无限广阔的液体中下落是不可能的。只考虑管壁的影响。由于小球作匀速运动,则v=L/t ,并以r=d/2,R=D/2,(d 是小球直径,D 是液注直径,L 是小球作匀速运动的距离)得 ) (ρρD /d 71.21L 18/t gd )-(20+=n 4实验装置

用落球法测量液体的粘滞系数

实验报告 实验题目: 落球法测定液体的黏 度 实验目的: 本实验的目的是通过用落球法测量油的粘度,学习并掌握测量的原理和方 法。 实验原理: 1、 斯托克斯公式 粘滞阻力是液体密度、温度和运动状态的函数。如果小球在液体中下落时的速度 v 很小,球的半径 r 也很小,且液体可以看成在各方向上都是无限广阔的 F 6 vr ( 1) η 是液体的粘度, SI 制中,η 的单位是 Pa s 2、 雷诺数的影响 雷诺数 R e 来表征液体运动状态的稳定性。设液体在圆形截面的管中的流速为 v ,液 体的密度为 ρ0,粘度为 η,圆管的直径为 2r ,则 奥西思 - 果尔斯公式反映出了液体运动状态对斯托克斯公式的影响: F 6 rv (1 3 R e 19 R e 2 ...) 16 e 1080 e 2 式中 3R e 项和 19R e 项可以看作斯托克斯公式的第一和第二修正项 16 1080 随着 R e 的增大,高次修正项的影响变大。 因 F 是很难测定的 ,利用小球匀速下落时重力、 浮力 、粘滞阻力合力等于零 ,由式(4)R e 2v r 2) 3) 3、 容器壁的影响 考虑到容器壁的影响,修正公式为 r3 3.3 )(1 R e h 16 F 6 rv (1 2.4 1080 R e ...) 4) 4、 η 的表示

...) ( 5) 实验内容 : 1、利用三个橡皮筋在靠近量筒下部的地方, 分出两个长度相等的区域, 利用秒表 测 量小球通过两段区域的时间, 调整橡皮筋的位置, 并保持两段区域等长, 寻找两 次测量时间相等的区域,测出两段区域总长度 l 。 2、选用大、中、小三种不同直径的小球进行实验。 3、用螺旋测微器测定 6 个同类小球的直径,取平均值并计算小球直径的误差。 4、将一个小球在量筒中央尽量接近液面处轻轻投下,使其进入液面时初速度为零, 5、分别测出 6 个小球通过匀速下降区 l 的时间 t ,然后求出小球匀速下降的速度。 6、用相应的仪器测出 R 、h 和 ρ0,各测量三次及液体的温度 T ,温度 T 应取实验开 始时的温度和实验结束时的温度的平均值。应用式( 7)计算 η 0。 7、计算雷诺数 R e ,并根据雷诺数的大小,进行一级或二级修正。 4 r 3( 0)g 6 rv(1 2.4 r )(1 3.3r )(1 3 R e 19 R e 2 3 0 R h 16 e 1080 e 0 )gd 2 η 1 ( η 18 d d 3 19 2 18v(1 2.4 )(1 3.3 )(1 R e R e 2 ...) 2R 2h 16 1080 6) a. 当 R e <时,可以取零级解,则式( 6)就成为 0 )gd 2 1( 18 v(1 2.42d R )(1 3.32d h ) 7) 即为小球直径和速度都很小时,粘度 η 的零级近似值 时,可以取一级近似解,式( 6)就成为 它可以表示成为零级近似解的函数: 0 3 dv 0 0 16 0 还必须考虑二级修正,则式( 6)变成 c.当 R e >时, 2 21 1[1 1 270 19 (dv 0 )2] 1 8) 9)

恒温槽调节及液体粘度的测定

实验1 恒温槽调节及液体粘度的测定 一、实验目的 1.了解恒温槽的构造、控温原理,掌握恒温槽的调节和使用。 2.掌握一种测量粘度的方法。 二、实验原理 1. 恒温槽 许多化学实验中的待测数据如粘度、蒸气压、电导率、反应速率常数等都与温度密切相关,这就要求实验在恒定温度下进行,常用的恒温槽有玻璃恒温水浴和超级水浴两种,其基本结构相同,主要由槽体、加热器、搅拌器、温度计、感温元件和温度控制器组成,如图1所示。 恒温槽恒温原理是由感温元件将温度转化为电信号输送给温度控制器,再由控制器发出指令,让加热器工作或停止工作。 水银定温计是温度的触感器,是决定恒温程度的关键元件,它与水银温度计的不同之处是毛细管中悬有一根可上下移动的金属丝,从水银球也 引出一根金属丝,两根金属丝温度控制器相联接。调节温度时,先松开固定螺丝,再转动调节帽,使指示铁上端与辅助温度标尺相切的温度示值较欲控温度低1~2℃。当加热到下部的水银柱与铂丝接触时,定温计导线成通路,给出停止加热的信号(可从指示灯辨出),此时观察水浴槽中的精密温度计,根据其与欲控温度的差值大小进一步调节铂丝的位置。如此反复调节,直至指定温度为止。 恒温槽恒温的精确度可用其灵敏度衡量,灵敏度是指水浴温度随时间变化曲线的振幅大小。即 灵敏度 = 2 ()(最低温度)最高温度t t 灵敏度与水银定温计、电子继电器的灵敏度以及加热器的功率、搅拌器的效率、各元件的布局等因素有关。搅拌效率越高,温度越容易达到均匀,恒温效果越好。加热器功率大,则到指定温度停止加热后释放余热也大。一个好的恒温槽应具有以下条件:①定温灵敏度高;②搅拌强烈而均匀;③加热器导热良好且功率适当。各元件的布局原则:加热器、搅拌器和定温计的位置应接近,使被加热的液体能立即搅拌均匀,并流经定温计及时进行温度控制。 图1 恒温槽装置示意图 1— 浴槽;2—加热器;3搅拌器;4—温度计; 5—水银定温计;6—恒温控制器;7—贝克曼温度计

用毛细管法测定液体的粘滞系数

用毛细管法测定液体的粘滞系数 自然界中,一切实际流体(气体、液体)都具有一定的粘 滞性,这可以由流体抗拒形变的内摩擦而显示出来。众所周 知,作用于静止流体及运动中的所谓理想流体任一表面上的 力只有法向力(即正压力);但是对于实际流体而言,当相邻 两层流体各以不同的定向速度运动时,由于流体分子的相互 作用,就会产生平行于接触面的切向力。如图26-1所示, 运动快的流层对运动慢的流层以拉力f ',运动慢的流层则对运动快的流层施以阻力f ,这一对力被称为内摩擦力,或粘滞力。 实验表明,对于给定的流体,作用于接触面积为ds 的相邻两流层上的粘滞力f ,系与垂直于s d 方向上的速度梯度y u d /d 以及接触面积s d 呈正比,其方向与运动方向相反,即: s y u f d d d ?=η 式就是决定流体内摩擦力大小的牛顿粘滞定律。其中,比例系数η是由流体本身性质决定的、反应流体粘滞性大小的物理量,称为粘滞系数(又称动力粘度,简称粘度),其单位为:帕·秒(s Pa ?)。s Pa 1?相当于速度梯度为1s 1-时,作用在2m 1接触面积上的力为N 1的流体所具有的粘度,即: 2m s N 1s Pa 1-??=?。 不同流体具有不同的粘度,同一种流体在不同温度下的粘度也很不相同,而且流体的粘度还与压强有关,但不甚显著。气体的粘度很小,且于2/1T 成比例。由于液体分子间距比气体小千倍以上,层间分子的相互作用力成为产生内摩擦的主要原因,所以其粘度比气体大4210~10倍。且其粘度随温度的升高几乎按指数规律地减小,有经验公式: ()c b a -+=θηθ 其中,θη为流体在C θ时的粘度,c b a ,,为因液体种类或温度范围而异的常数。对水而言:当252.43,60070.0==b a 及5423.1=c 时,温度在C 100~C 0 范围内,与精确 实验结果的误差不大于%40.0。因此, 式可以用来验证我们的实验结果。 测定流体的粘度可以有很多种方法,诸如:(1)用各种毛细管粘滞计、 (2)旋

液体黏度的测定实验报告记录

液体黏度的测定实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

物理实验报告 液体黏度的测定 各种实际液体都具有不同程度的黏滞性。当液体流动时,平行于流动方向的各层流体之间,其速度都不相同,即各层间存在着滑动,于是在层与层之间就有摩擦力产生。这一摩擦力称为“黏滞力”。它的方向在接触面内,与流动方向相反,其大小与接触面面积的大小及速度梯度成正比,比例系数称为“黏度”(又称黏滞系数,viscosity )。它表征液体黏滞性的强弱,液体黏度与温度有很大关系,测量时必须给出其对应的温度。在生产上和科学技术上,凡是涉及流体的场合,譬如飞行器的飞行、液体的管道输送、机械的润滑以及金属的熔铸、焊接等,无不需要考虑黏度问题。 测量液体黏度的方法很多,通常有:①管流法。让待测液体以一定的流量流过已知管径的管道,再测出在一定长度的管道上的压降,算出黏度。②落球法。用已知直径的小球从液体中落下,通过下落速度的测量,算出黏度。③旋转法。将待测液体放入两个不同直径的同心圆筒中间,一圆筒固定,另一圆筒以已知角速度转动,通过所需力矩的测量,算出黏度。④奥氏黏度计法。已知容积的液体,由已知管径的短管中自由流出,通过测量全部液体流出的时间,算出黏度。本实验基于教学的考虑,所采用的是奥氏黏度计法。 实验一 落球法测量液体黏度 一、【实验目的】 1、了解有关液体黏滞性的知识,学习用落球法测定液体的黏度; 2、掌握读数显微镜的使用方法。 二、【实验原理】 将液体放在两玻璃板之间,下板固定,而对上板施以一水平方向的恒力,使之以速度v 匀速移动。黏着在上板的一层液体以速度v 移动;黏着于下板的一层液体则静止不动。液体自上而下,由于层与层之间存在摩擦力的作用,速度快的带动速度慢的,因此各层分别以由大到小的不同速度流动。它们的速度与它们与下板的距离成正比,越接近上板速度越大。这种液体流层间的摩擦力称为“黏滞力”(viscosity force )。设两板间的距离为x ,板的面积为S 。因为没有加速度,板间液体的黏滞力等于外作用力,设为f 。由实验可知,黏滞力f 与面积S 及速度v 成正比,而与距离x 成反比,即 x v S f η= (2-5-1) 式中,比例系数η即为“黏度”。η的单位是“帕斯卡·秒”(Pa ·s )或k g ·m -1·s -1。

液体粘度的测定 实验报告

六、数据处理 由(4)可知,待 ,则 标 25时, 待标待 时, 待标待 时, 待标待 时, 待标待 表3黏度实验数据处理I 实验温度/25 30 35 40 水的密度 0.9970 0.9959 0.9940 0.9922 水 水的黏度 0.8904 0.7975 0.7194 0.6529 水 0.7852 0.7809 0.7767 0.7720 乙醇的密度 乙 水的流经时间 104.6 93.10 83.27 75.85 水 乙醇的流经时间154.9 141.6 130.6 117.2

乙 乙醇的黏度 乙 1.039 0.9507 0.8815 0.7981 以对作图,根据式(5)的直线关系求出无水乙醇的温度特性常数A 和B ,将数据处理结果列表 0.00318 0.003200.003220.003240.003260.003280.00330 0.003320.00334 0.003361/T (K -1 ) lg (Pa s) 表4 黏度实验数据处理II 实验温度 25 30 35 40

/ 乙0.01645 -0.02196 -0.05478 -0.09794 (1/T)/K 0.003356 0.003300 0.003247 0.003195 A/K 0.00142 B 0.00333 七、思考题 (1)液体黏度与温度有何关系? 温度越高,黏度越低。 (2)简述测定流体黏度的原理和方法。 测定黏度通常测定一定体积的流体经一定长度垂直的毛细管所需的时间,然后根据泊赛耳公式计算其黏度,然而直接由实验测定液体黏度的黏度是比较困难的,通常采用测定液体对标准液体的相对黏度,用已知的标准流体的黏度来求出待测流体的黏度。 方法:奥氏黏度计、乌氏黏度计。

液体粘滞系数

液体粘滞系数 一、实验内容: 1.用天平测小球的质量; 2.用螺旋测微计测量小球的直径,用游标卡尺和米尺测量玻璃管的直径及刻度线间的长度; 3.用密度计测量蓖麻油的密度。 二、实验步骤: (一)清点主要仪器 1.玻璃圆筒 ( ) 2.温度计 ( ) 3.密度计 ( ) 4.螺旋测微计 ( ) 5.游标卡尺 ( ) 6.米尺 ( ) 7.落球 ( ) 8.秒表 ( ) 9.镊子 ( ) 10.待测液 (蓖麻油 ) (二)测量 1.调节粘度仪底板上的可调螺钉,使玻璃筒轴线沿铅直方向; 2.用游标卡尺测量玻璃筒内直径R ,在圆筒油面下面7~8cm 和筒底上方7~8cm 处作标记线,用米尺测出两标记线间的距离L ; 3.用螺旋测微计测出10个小球的直径取平均值,同时测10个小球质量,求出1个球的质量; 4.用镊子夹起小球在油面中心处放下,用秒表测出小球通过两标记线的距离S 时所需的时间t ,将数据填入表①中; 5.实验前后分别测量一次油液温度,温度计的液泡应在两标记线的正中。 (三)数据表格 量筒内径 R = cm , 蓖麻油温度T = ℃ , T 末= ℃ 小球质量 10m = g , 蓖麻油密度 ρ= g/cm 3 标记线间距 L = cm , 油深 H = cm 表① (四)请老师检查数据签字 (五)请实验技术人员检查仪器签字 (六)清理仪器 (七)数据处理要求 1.计算出η及误差; 2.计算误差时可按以下进行: ()()t L d V m rv g V m 266πρπρη-=-= ∵ V =334r π , Δ(V ρ) =V ρ(ρ ρ?+?r r 3 )

∴ d d t t L L V m V m ?+?+?+-?+?=?ρρηη)( 式中V 为小球体积,v 为小球速度。

水的流量与管径的压力的计算公式

1、如何用潜水泵的管径来计算水的流量 Q=4.44F*((p2- p1)/ P 0.5 流量Q,流通面积F,前后压力差p2-p1,密度p, 0.5是表示0.5次方。以上全部为国际单位制。适用介质为液体,如气体需乘以一系数。 由Q = F*v可算出与管径关系。 以上为稳定流动公式。 2、请问流水的流量与管径的压力的计算公式是什么? 管道的内直径205mm,高度120m,管道长度是1800m,请问每小时的流量是多少?管道的压力是多少,管道需要采用多厚无缝钢管? 问题补充: 从高度为120米的地方用一根管道内直径为205mm管道长度是1800米放水下来,请问每个小时能流多少方水?管道的出口压力是多少?在管道出口封闭的情况下管道里装满水,管道底压力有多大 Q=[H/ ( SL )]人(1/2) 式中管道比阻S=10.3* 门人2/9人5.33)=10.3*0.012人2/(0.205人5.33)=6.911 把H=120米,L=1800米及S=6.911代入流量公式得 Q=[120/ ( 6.911*1800 ) ]A(1/2) = 0.0982 立方米/秒= 353.5 立方米/时 在管道出口封闭的情况下管道里装满水,管道出口挡板的压力可按静水压力计算: 管道出口挡板中心的静水压强P=pgH=1000*9.8*180=1764000 帕 管道出口挡板的静水总压力为 F : F=P* (3.14dA2 /4 ) =1764000* (3.14*0.205八2 /4 ) =58193.7 牛顿 3、管径与流量的计算公式 请问2寸管径的水管,在0.2MPA压力的情况下每小时的流量是多少?这个公式是如何计算出来的? 流体在水平圆管中作层流运动时,其体积流量Q与管子两端的压强差Ap管的半径r,长 度L,以及流体的粘滞系数n有以下关系: Q=nX「人4 XA p/(8 n L) 4、面积,流量,速度,压力之间的关系和换算方法、 对于理想流体,管道中速度与压强关系:P + p V2/2 =常数,V2表示速度的平方。 流量二速度X面积,用符号表示Q =VS 5、管径、压力与流量的计算方法 流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L/s或

液体黏性系数的测定

液体粘性系数的测定 一、 实验目的 1. 观察球型物体在流体中受内摩擦力的运动状况。 2. 掌握用斯托克斯公式测定液体黏性系数的方法。 3. 学会测量显微镜的使用。 二,仪器用具 圆筒形玻璃仪器,小球,测量显微镜,游标卡尺,米尺,秒表,密度计,镊子,蓖麻油 二、 实验原理 ①实际液体流动时,由于各层液体流速不同,互相接触的两层液体之间有力 的相互作用,流速较慢的与流速较快的两相邻液体层之间的相互作用力,称为粘性力 S dz dv f ?=η 其中η为粘性系数 ②小球在液体中运动时,若速度不大,将受粘滞阻力作用,它是由于黏附在 小球表面的液层与邻近液层的内摩擦而产生。若液体无限广延,黏滞性较大,小球的直径与速度较小,根据斯托克斯公式,有 dv f πη3= 式中d 为小球直径,v 为小球运动的速度。 ③当小球开始在液体中下落时,重力向下,浮力和粘滞阻力向上,由斯托克 斯公式可以看出,粘滞阻力随小球运动速度增加而增加。小球刚开始下落时,速度很小,黏滞阻力较小,所以小球做加速运动,随着速度的增加,黏滞阻力逐渐变大,而小球运动速度达到一定大小时,小球受到的合力为零,小球将以匀速v

下降,即 036 1 61033=--ndv g d g d πρπρπ 其中ρ是小球的密度,是0ρ液体的密度,是g 重力加速度,故可得 g d v 2 0)(181ρρη-= 如图,玻璃筒内盛待测液体,筒上有相隔一定距离L 的水平刻线与,距离液体表面有一定距离,使得小球运动一定距离后,达到时已经开始做匀速运动,在贴近液体表面玻璃筒中心处轻轻放入小球,小球到达开始计时,到达停止计时,算出小球经过匀速区间L 的时间t ,由L/t 求得小球下落速度v ,用读数显微镜测量小球直径,再查得液体密度,即可算出黏性系数。 由于小球不是在无限广延的液体中下落,则需考虑器壁影响。且小球还受液体的阻力,则公式可修正为 实验误差 ①要求小球在无限延长的液体中下落,这是不可能的,如果小球沿着直径为 D 的圆筒形容器的轴线下落,液面高度为h ,则不考虑器壁的影响,修正为 g d h d D d v 20) 23.31)(4.21()(181 ++-= ρρη ②物体所受来自液体的阻力,有粘滞阻力和压差阻力,设小球直径为d,速度 为v,液体密度为0ρ,粘度为η,则前者与dv η成正比,后者与220v d ρ成正比,流动缓慢时,粘滞系数起主要作用,这时流体为流程,流动一加快,流动的情形就完全改变成紊流,压差阻力占优势,两者之比 η ρηρdv dv v d R e 0220= = 其中e R 远小于1

讲义 液体粘滞系数的测定

实验N 液体粘滞系数的测定 各种流体(液体、气体)都具有不同程度的粘性。当物体在液体中运动时,会受到附着在物体表面并随物体一起运动的液层与邻层液体间的摩擦阻力,这种阻力称为粘滞力(粘滞力不是物体与液体间的摩擦力)。流体的粘滞程度用粘滞系数表征,它取决于流体的种类、速度梯度,且与温度有关。 液体粘滞系数的测量非常重要。例如,人体血液粘度增加会使供血和供氧不足,引起心脑血管疾病;石油在封闭管道长距离输送时,其输运特性与粘滞性密切相关,在设计管道前必须测量被输石油的粘度。 液体粘滞系数的测量方法有毛细管法、圆筒旋转法和落球法等。本实验采用落球法测定液体的粘滞系数。 【实验目的】 1.了解用斯托克斯公式测定液体粘滞系数的原理,掌握其适用条件; 2.掌握用落球法测定液体的粘滞系数。 【预备问题】 1.如何判断小球作匀速运动如何测量小球的收尾速度 2.为什么实验中不能用手摸圆筒,不能正对并靠近圆筒液面呼吸 3.为什么在实验过程中要保持待测液体的温度稳定 【实验仪器】 液体粘滞系数测定仪、螺旋测微计、游标卡尺、温度计、小钢球、待测液体等。 【实验原理】 如图1所示,当质量为m 、体积为V 的金属小球在密度为液的粘滞液体中下落时,受到三个铅直方向的力作用:重力mg 、液体浮力f=Vg 和液体的粘性阻 力F 。 假设小球半径r 和运动速度v 都很小,而且液体均匀 且无限深广,则粘滞阻力F 可写为: (1) v r F 6ηπ= 式(1)称为斯托克斯公式。其中称为液体的粘滞系数,单位为Pas (帕秒),它与液体的性质和温度有 关。 小球开始下落时,速度v 很小,阻力F 不大,小球加速向下运动。随着小球下落速度的增大,粘滞阻力逐渐加大,当速度达到一定值时,三个力达到平衡,即: 图1 液体粘度测量原理

液体粘度的测定

实验二液体粘度的测定 测量液体粘度的方法很多,有落球法,扭摆法,转筒法及毛细管法。本实验所采用的落球法(也称斯托克斯法)是最常用的测量方法。 【实验目的】 ?观察液体的内摩擦现象;用落球法测定液体的粘度。 ?学习用比重计测定液体的密度和秒表的使用方法。 【实验仪器】 量筒、小球、秒表、米尺、螺旋测微计、游标卡尺、镊子、比重计、温度计等。 (图 2 游标卡尺)

(图3 比重计)(图4 实验全图) 【注意事项】 ?实验过程中油应保持静止,油中无气泡。 ?为保持实验时液体温度不变,应避免用手捧握量筒。 ?量筒应铅直放置,使小球沿筒的中心线下降。

?量筒上、下部的环线标志 M 1和 M 2 应水平。 【思考题】 1. 小球在液体中的运动方程是什么,请用牛顿第二定律与微分方程求解。 2. 实验中测量误差的主要因素有哪些?小球的大小对测量结果有什么影响? 3. 如何使用计算器的统计功能计算一个测量列的标准差? 【应用提示】 在生产过程中,为确保产品质量,需要在生产线上随时检测产品各种性质的参数。如果待测物质是液体,通常需检测液体的粘度。在连续生产中测定液体粘度常选用旋转空管法。该方法不需要将待测液体从生产过程中取出,只需要把测量装置浸入待测液体,即可测量液体的粘度。 实物如图 5 所示。在旋转空管装置中有两个共轴且长度相同的外圆筒和内圆管,内圆管用金属丝悬挂。使用时,整个装置浸入待测的液体中,外圆筒与内圆管之间及内圆管里都充满待测液体。外圆筒在驱动装置作用下匀速转动,就会形成分层流动,内圆管亦在粘滞力矩的作用下转动。如要其保持不转,必须使内圆管还受到大小相等而方问相反的扭转力矩的作用。这个力矩由两部分组成:一为悬挂内圆管的金属丝受扭转产生的扭转力矩,另一个是液体作用于内圆管表面阻止内圆管转动的内摩擦力矩,其值与待测液体的粘度有关。 由于内圆管的内表面摩擦力矩对恒定的内圆管和固定的液体是恒定的,所以在实

相关文档
最新文档