浅析54-80坐标转换至CGCS2000坐标的方法

浅析54-80坐标转换至CGCS2000坐标的方法
浅析54-80坐标转换至CGCS2000坐标的方法

浅析54\80坐标转换至CGCS2000坐标的方法

摘要:本文通过分析1954北京坐标系和1980西安坐标系的不足,介绍了北京54坐标和西安80坐标转换至CGCS2000坐标的过程及方法,最后通过对广西某市城区101个控制点54、80坐标转换至CGCS2000坐标的分析比较,得出了有益的结论。

关键字:北京54坐标、西安80坐标、CGCS2000坐标、坐标转换

1、引言

自新中国成立以来,我国先后建立了1954年北京坐标系(BJ54)和1980西安坐标系(XIAN80),二者为国家经济的发展起到了很好的作用,但是随着科学技术的发展,二者无法满足当今和今后空间技术发展的要求,无法提供高精度的、地心、动态、统一、实用的大地坐标系的基础性保障。根据《中华人民共和国测绘法》,我国自2008年7月1日起,启用2000国家大地坐标系。如何将已有的54、80坐标转换为CGCS2000成果,这是我们日常工作中,经常碰到的问题。本文介绍了一种将54、80成果转换为CGCS2000成果的方法。

2、坐标转换方法

2.1 Bursa七参数坐标转换模型

由于CGCS2000椭球与北京54椭球、西安80椭球有差异,因此要将54、80成果转换为CGCS2000成果,首先需完成CGCS2000椭球与54椭球和CGCS2000椭球与80椭球的之间的转换,两不同参考椭球之间的空间转换可采用布尔萨公式:

其中为两空间坐标系之间的三个平移参数,为三个旋转参数,m为尺度因子。测绘信息网https://www.360docs.net/doc/4611455204.html,

2.2、坐标转换实现过程

利用Bursa七参数坐标转换模型,转换参数的计算步骤如下:

(1)将所有点的高斯平面直角坐标(x 、y),利用高斯反算求得大地坐标(B、L)。

(2)引入基于CGCS2000椭球的高程异常值,由水准高求得基于CGCS2000椭球的大地高H。

(3)将所有点的三维大地坐标(B、L、H)(54和80经纬度)按化算为三维

空间直角坐标系坐标转换方法

坐标转换方法 空间直角坐标系如果其原点不动,绕着某一个轴旋转而构成的新的坐标系,这个过程就叫做坐标旋转。在旧坐标系中的坐标与在旋转后新坐标系中的坐标有一定的转换关系,这种转换关系可以用转换矩阵来表示。 如图5.7,直角坐标系XYZ,P点的坐标为(x, y, z),其相应的在XY 平面,XZ平面,YZ平面分别为M(x, y,0),Q(x,0, z)和N(0, y, z)。 图5.7直角坐标系XYZ 设?表示第j 轴的旋转角度,R j (?) 表示绕第j 轴的旋转,其正方向是沿坐标轴向原点看去的逆时针方向。很明显当j 轴为旋转轴时,它对应的坐标中的j 分量是不变的。由于直角坐标系是对称的,下面我们以绕Z轴旋转为例推导其旋转变换矩阵,其它两个轴推导和它是一样的。 设图5.7的坐标绕Z轴逆时针旋转θ角度,新坐标为X 'Y'Z',如图5.8所示: 图5.8 坐标绕Z 轴逆时针旋转θ角度 由于坐标中的z 分量不变,我们可以简化地在XY 平面进行分分析,如图

5.9所示: 图5.9坐标绕Z 轴逆时针旋转θ 角度的XY 平面示意图 点 M X 和点M X ' 分别是M 点在X 轴和X '轴的投影。如图5.9 cos cos() sin sin() X X X X x OM OM MOM OM y MM OM MOM OM ?θ?θ==∠=-??==∠=-? (5-1) cos cos sin sin X X X X x OM OM MOM OM y MM OM MOM OM ? ?'''''==∠=??'==∠=? (5-2) 把(5-1)式按照三角函数展开得: cos cos sin sin sin cos cos sin x OM OM y OM OM ?θ?θ ?θ?θ=+??=+? (5-3) 把(5-2)式代入(5-3)式得: cos sin sin cos x x y y x y θθ θθ''=+??''=-+? (5-4) 坐标中的z 分量不变,即z = z'这样整个三维坐标变换就可以写成(用新坐标表 示旧坐标) cos sin sin cos x x y y x y z z θθ θθ''=+? ?''=-+??' =? (5-5) 把式(5-5)用一个坐标旋转变换矩阵R Z (θ) 表示可以写成:

坐标转换工具说明书-1208

§10.2坐标转换工具 HGO 数据处理软件包提供了坐标转换程序,可以进行地方坐标与WGS-84坐标的相互转换,同时具备参数求解功能。 下面对这个工具进行介绍: 10.2.1概述 首先,介绍一下常见的三种坐标表示方法:经纬度和椭球高(BLH),空间直角坐标(XYZ),平面坐标和水准高程(xyh/NEU)。注意:椭球高是一个几何量,而水准高是一个物理量。 我们通常说的WGS-84坐标是经纬度和椭球这一种,北京54坐标是平面坐标和水准高程这一种,实质是有平面基准和高程基准组成的。 此外,再注意一下坐标转换的严密性问题,在同一个椭球里的纯几何转换都是严密的(BLH<->XYZ),而在不同的基准之间的转换是不严密的。举个例子,在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,因为前者是一个地心坐标系,后者是一个参心坐标系。高程转换是由几何高向物理高转换。因此在每个地方必须用椭球进行局部拟合,通常用7参数模型来拟合。 那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法(或称布尔莎模型),即X平移,Y平移,Z平移,X旋转,Y旋转,Z旋转,尺度变化K。要求得七参数就需要在一个地区需要3个以上的已知点(7个参数至少7个方程可解,所以需要三个点列出9个方程),如果区域范围不大、最远点间的距离不大于30Km(经验值)的情况可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化K视为0,所以三参数只是七参数的一种特例。 七参数模型的实质是用一个局部椭球去拟合地方坐标系的形态;所以转换后获得的地方椭球高就是水准高。当然我们也可以把平面和高程两个方向分别进行拟合。例如平面用四参数模型拟合,高程方向则用二次曲面等模型来拟合。这样分开处理的模式相对七参数模型自由度更高。但是由于四参数模型参数较少,表达能力较弱,通常只用于小区域坐标转换。 综上所述,从实用的角度出发,坐标转换程序提供了两种转换策略供给客户选择使用: 1.七参数模型,一步得到地方平面和水准数据。 2.四参数加高程拟合模型,分两步得到地方平面和水准数据。 由于各厂家的模型和流程定义可能是不一样的,这里就我们公司的转换流程描述如下:七参数的转换过程是这样的:

坐标转换计算方式

72绝对坐标转换为相对坐标在直线段施工测量中,可以把绝对坐标转换为相对坐标进行放线测量,此方法比较快捷实用。 如,已知直线段线路中线A点的里程与绝对坐标X1,Y1.和其直线A点至线路前进方向的方位角a。同样已知附近的控制点Q的绝对坐标QX1,QY1.那么现在为了使用方便,要将其Q点的绝对坐标转换为相对于直线段的相对坐标,计算方法如下: 根据以上所知,根据坐标发算可以得出点A至控制点Q 的距离为L,以及点A至控制点Q方向的方位角简称R。已知线路中心线前进方向的方位角a,那么由点A至线路前进方向,和点A至控制点Q方向就形成一个夹角r,r=R-a。现在做控制点到线路中线的垂直线Y,(也就是所谓的Y坐标数据)。根据直角三角形计算方式得出Y=SIN r×L(L,是点A至点Q的距离)那么相对于线路X的坐标计算方式(X坐标表示里程)。X=COSr×L+A点里程。 即得出控制点Q相对于直线的相对坐标。 例题:例如,ZDK400至ZDK700为直线段,已知里程400的线路中心线坐标X=22580.40165 Y=27356.42893 里程700的线路中心线坐标X=22558.58105 Y=27655.63522 欲求J2点X=22562.1789 Y=27510.4874相对于400至700的相对坐标,图示如下:

解:根据已知,经过坐标反算可以求得点A至点B的坐标方位角为94 10 16 AB距离为300。 A 至D的坐标方位角为96 44 45.26 距离为155.132 那么可求得角FAD=2 34 29.26 因现已知AD=155.132 角FAD=2 24 29.26 根据三角函数可计算DF=sinfa d×AD=0.045×155.132=6.969 AF=cosfad×AD=0.999×155.132=154.975

坐标转换源代码--GPS定位程序(C--)

坐标转换源代码--GPS定位程序(C++) GPS数据处理中为了满足不同的需要,处理的数据要进行坐标转换,得到在不同坐标系统下的结果,下面是笛卡尔坐标系,大地坐标系,站心地平坐标系(线型和极坐标形式)之间的转换源代码: 头文件: #ifndef _COORDCOVERT_H #define _COORDCOVERT_H #include "stdlib.h" //WGS-84椭球体参数 const double a=6378137.0;//长半轴 const double flattening=1/298.257223563;//扁率 const double delta=0.0000001; typedef struct tagCRDCARTESIAN{ double x; double y; double z; }CRDCARTESIAN; typedef CRDCARTESIAN *PCRDCARTESIAN;

//笛卡尔坐标系 typedef struct tagCRDGEODETIC{ double longitude; double latitude; double height; }CRDGEODETIC; typedef CRDGEODETIC *PCRDGEODETIC; //大地坐标系 typedef struct tagCRDTOPOCENTRIC{ double northing; double easting; double upping; }CRDTOPOCENTRIC; typedef CRDTOPOCENTRIC *PCRDTOPOCENTRIC; //站心地平坐标系(线坐标形式) typedef struct tagCRDTOPOCENTRICPOLAR{ double range;

南方CASS坐标转换方法

南方CASS坐标转换方法 摘要本文介绍了1954年北京坐标系、1980西安坐标系及其相互关系、转换原理及利用软件进行数据转换的两种方法。 关键词:坐标系坐标转换方法 近几年来,在测绘行政主管部门的推动下,我国西安80坐标系正在逐步得到使用,第二次全国土地调查已明确要求平面控制使用80西安坐标系统,省级基础测绘成果1:10000地形图也采用了1980西安坐标系,现有1954年北京坐标系将逐渐向1980西安坐标系过渡,但是,五十年来,我国在1954年北京坐标系下完成的大地控制及基本系列地形图数量巨大,价值巨大,必须充分利用。在当前测绘生产中既存在将54系转成80系的问题,也有相反的情况。

一、北京54坐标系、西安80坐标系及其相互关系 1954年北京坐标系是我国五十年代由原苏联1942年普尔科沃坐标系传算而来,采用克拉索夫斯基椭球体,其参数为:长半轴为6378245米,扁率为1/298.3。这个坐标系的建立在我国国民经济和社会发展中发挥了巨大的作用,但该坐标系存在着定位后的参考椭球面与我国大地水准面不能达到最佳拟合,在中国东部地区大地水准面差距自西向东增加最大达+68米;其椭球的长半轴与现代测定的精确值相比109米的缺陷;定向不明确,椭球短轴未指向国际协议原点CIO,也不是中国地极原点JYD1968.0;起始大地子午面也不是国际时间局BIH所定义的格林尼治平均天文台子午面。同时,该系统提供的大地点坐标是通过局部平差逐级控制求得的,由于施测年代不同、承担单位不同,不同锁段算出的成果相矛盾,给用户使用带来困难。 1978年4月,中国在西安召开了全国天文大地网平差会议,在会议上决定建立中国新的国家大地坐标系,有关部门根据会议纪要,开展并进行了多方面的工作,建成了1980西安国家大地坐标系(GDZ80),该坐标系全面描述了椭球的4个基本参数,同时反映了椭球的几何特性和物理特性,这4个参数的数值采用的是1975年国际大地测量与地球物理联合会第16届大会的推荐值(简称IGA-1975椭球) 。其主要参数为:长半轴为6378140 米,扁率为1/298.257。IAG-1975椭球参数精度较高,能更好地代表和描述地球的几何形状和物理特征。在其椭体定位方面,以我国范围内高程异常平方和最小为原则,做到了与我国大地水准面较好的吻合。

ARCGIS中坐标转换

ArcGIS 坐标转换 1.坐标分析 问题:对于某地A中心点坐标为455299.845,3223622.525的CAD矩形,CAD施工图。将其转换为WGS-84坐标,如何转换? 分析:分析455299.845为6位,则为东向Y坐标,省去了带号,加上了5000000加常数,其最大为为4,说名在中央子午线的左侧(左侧为负值,加上500万后肯定小于500万,首位为4。若在中央子午线右侧,则最大位数为5);3223622.525为7位,为北向X坐标。 查看“某地A”的经度为92.5度,因为为CAD施工图,比例尺肯定大于1:5万,所以为3度带,所以此点的中央子午线为93E,带号为Beijing_54_Zone_31。 2.CAD转为shp格式并设定坐标系: ArcTool box-Convesion Tools->To Geodatabse->CAD to Geodatabase: 其中空间参考坐标系选择Beijing_1954_3_Degree_GK_CM_93E。 具体原因:选择投影坐标系-Gauss Kruger-Bei Jing54,此时3度带有两种:Beijing_1954_3_Degree_GK_CM_93E和Beijing_54_Zone_31,前者表示中央子午线为93E的3度带,后者表示北京54 31度带,二者意义一样,但选择哪种呢?因为点坐标东向为455299.845为6位,不带带号,因此选择Beijing_1954_3_Degree_GK_CM_93E(若东向坐标

为31455299.845,则选择Beijing_54_Zone_31), 3.北京54到WGS84坐标的转换 1.1加载图层: 打开ArcTool box-Data Management Tools->Project and transformation->feature->Project,加载shp图层,弹出下列窗口: 出现红色“X”号,说明原始图层坐标系没有识别出,则需要首先设定其坐标系后再转换。具体设坐标系参考“9 设置或改变Shp文件坐标系” 1.2选择输出图层地址和名称: 在Out Put Dataset or Feature处输入输出图层名:

坐标转换流程

坐标转换流程: 第一步:在ArcMap中将公里网坐标的图上画一个矩形框,这个框不是随意的, 是与已有经纬度的图的的框的大小一致(即所框的范围一致),请附注这个矩形的大小: 第二步:在toolbox中的Conversion Tools的to coverage,将biankuang.shp和行政区域.shp(或其他公里网图)转成cov的文件夹(注意是转换出一个文件夹) 假设分别名为bbb和ccc,都是在c:\test下 (建议不在这里转,workstation有一个毛病,转换后面数据都会变成线数据, 这一步可以用ArcToolBox来做) 第三步:打开workstation的arc 第四步:将目录转到cov文件夹所在目录 命令:&work c:\test 第五步:进入arcedit 命令:arcedit disp 9999(这时才是进入编辑状态) 第六步:加cov,你先加那个图,再把边框 边框以背景的形式添上去 命令:editcov ccc drawen all -------------是按顺序执行 draw backcov bbb 2 backen all draw 第七步:加四个控制点,顺序:左下角-》左上角-》右上角-》右下角 (editfea tic(编辑控制点) select all delete (删除原来的控制点) save) add (加新控制点) 快捷键:ctr+v放大 ctr+f满平显示就是返回放大前 这时有1,3,5,6,7,8,9的option操作 5是删除last点 加完四个点,按9退出加了就存盘,退出编辑状态, save ccc q 第八步:那个经维度的文件转换成cov,目的是看四个控制点的坐标 找到社会要素的区镇_region.shp等四个文件 复制到c:\test

坐标转换步骤

坐标转换步骤 1、总平图找个已知的点的坐标 2、首先用快捷键 D 调出标注样式 3、把精度调成0.00000000000 测量这个点的角度 4、因为总平图都是倾斜的和正交的情况下有一定的角度 5、把单项的图纸打开 6、全部框选 7、右键旋转 8、输入总平图的角度 9、然后enter 确认 10、从总平图中记录交点的坐标 11、在单项图纸中usc 命令N命定-鼠标左键点击交点,此时此交点已被定 义为0 点 12、输入zbbz 命令点击交点显示坐标为0,0,0 13、再次ucs 命令--- 鼠标左键移动到交点位置(切记不要点击)此时输入 坐标值

再输入X 坐标(坐标值前输入负号)输入标14、输入坐标的方法为先输入Y 坐标(坐标值前输入负号)输入 标 点“,”- 八、、? 点 八、、 ---- 再输入Z 坐标(一般都为0) 15、连续点击两次enter 键,此时此交点已被定义为输入的坐标值 16、再次zbbz 命令此时会显示和从总平图中记录交点的坐标一致 17、大功告成 截图如下 1、打开总平图,总平图找个已知的点的坐标 2、快捷键 D -E Nter--- 如下 3、点击修改,调节右下角精度为最大 4、点击置为当前,点击关闭 5、点击标注角度 6、打开单项图纸如下 7、全部框选- 右键旋转点击交点 8、输入角度

9、enter 确定

再输入X 坐标(坐标值前输入负号)输入标10、ucs 命令输入N 11、enter 确定点击交点 12、输入zbbz 命令 13、e nter 确定 14、再次ucs 命令 15、enter 确定输入坐标 16、鼠标十字丝移动到交点位置(切勿点击)连续 点击两次enter 键 17、输入zbbz 命令 18、e nter 确定 大功告成

北京54坐标系转换工具

北京54坐标系转换工具 利用ARCGIS进行自定义坐标系和投影转换 ARCGIS种通过三参数和其参数进行精确投影转换 注意:投影转换成54坐标系需要下载无偏移卫星图像进行转换,有偏移的转换将导致转换后的卫星图像扭曲,坐标错误,无法配准。 第一步:选择无偏移地图源,下载你所需要的卫星图像。 第二步:选择BIGEMAP软件右边工具栏,选择【投影转换】,如下图所示: 2.1 选择说明: 1. 源文件:选择下载好的卫星图像文件(下载目录中后缀为tiff的文件) 2. 源坐标系:打开的源文件的投影坐标系(自动读取,不需要手动填写) 3. 输出文件:选择转换后你要保持文件的文件路径和文件名 4. 目标坐标系:选择你要转换成的目标坐标系,如下图:

选择上图的更多,如下图所示: 1:选择 -Beijing 1954 2:选择地区3:选择分度带对应的带号(一般默认,也可以手动修改)

选择对应的分度带或者中央子午线(请参看:如何选择分度带?),点击【确定】 5. 重采样算法:投影转换需要将影像的像素重新排列,一次每种算法的效率不一样,一般选择【立方卷积采样】,以达到最好的效果。如下图: 6. 指定变换参数:在不知道的情况下,可以不用填此处信息,如果√上,则如下图:

此参数为【三参数】或者【七参数】,均为国家保密参数,需要到当地的测绘部门或者国土部门,以单位名义签保密协议进行购买,此参数各地都不一样,是严格保密的,请不要随便流通。 第三步:点击【确定】,开始转换,如下图:

第四步:完成后,打开你刚才选择的输出文件夹,里面就是转换后的卫星图像。 第五步:如果你需要套合你手里已经有的矢量文件,请参看:【BIGEMAP无偏移影像叠加配准】

各种测量坐标转换

不同坐标系介绍及相互转换关系 一、各坐标系介绍 GIS的坐标系统大致有三种:Plannar Coordinate System(平面坐标系统,或者Custom用户自定义坐标系统)、 Geographic Coordinate System(地理坐标系统)、 Projection Coordinate System(投影坐标系统)。这三者并不是完全独立的,而且各自都有各自的应用特点。如平面坐标系统常常在小范围内不需要投影或坐标变换的情况下使用,地理坐标系统和投影坐标系统是相互联系的,地理坐标系统是投影坐标系统的基础之一。 1、椭球面(Ellipsoid) 地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。采用的3个椭球体参数如下

2、高斯投影坐标系统 (1)高斯-克吕格投影性质 高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。德国数学家、物理学家、天文学家高斯(Carl FriedrichGauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。

坐标转换器使用说明

大地坐标(BLH) 平面直角坐标(XYZ) 四参数:X 平移、Y 平移、旋转角和比例 七参数:X平移,Y平移,Z 平移,X 轴旋转,Y 轴旋转,Z 轴旋转,缩放比例(尺度比) GPS控制网是由相对定位所求的的基线向量而构成的空间基线基线向量网,在GPS控制网的平差中,是以基线向量及协方差为基本观测量。 图3-1表示为HDS2003数据处理软件进行网平差的基本步骤,从图中可以看到,网平差实际上可以分为三个过程: l、前期的准备工作,这部分是用户进行的。即在网平差之前,需要进行坐标系的设置、并输入已知点的经纬度、平面坐标、高程等。 2、网平差的实际进行,这部分是软件自动完成的; 3、对处理结果的质量分析与控制,这部分也是需要用户分析处理的过程。 图3-1 平差过程 坐标系选择 针对不同的平差,要相应选择不同的坐标系,是否输入相应信息。在笔者接触过的项目中,平差时先通过三维无约束平差后,再进行二维约束平差。由于先进行的时三维无约束平差,是在WGS84坐标系统下进行的。 首先更改项目的坐标系统。在菜单“项目”->“坐标系统”或在工具栏“坐标系统”,则弹出“坐标

系统”对话框,选择WGS-84坐标。 图3-2 坐标系统 这里注意的是,在“投影”下见图,中央子午线是114°。很多情况下这里需要进行修改。 图3-3 WGS84投影 软件中自带的“中国-WGS 84”是允许修改的,我们换种方法:就是新建一个坐标文件,其他参数都和“中国-WGS84”一致,仅仅将中央子午线修改下。 在上图中,点击“新建”,得到“COORD GM”对话框,在“文件”->“新建”,如图

图3-4 新建坐标系统 然后在“设置”->“地图投影”,直接修改中央子午线,这里以81°为例,点击确定后,返回“COORD GM”对话框。 图3-5 投影设置 将输入源坐标和输入目标坐标的椭球,均改为WGS84。在“文件”->“保存”,输入名称和国家(中国),退出操作。

坐标转换方法

在工作过程中许多朋友会遇到坐标转换的问题,下面笔者就经常使用的一个坐标转换软件的使用方法做一个稍微详细的说明。 1、坐标系的确定 图1 软件使用界面 图1为软件使用界面,目前我们在工作过程中碰到的XY坐标系大多为全国80(也称西安1980)坐标系,也会有少量的设计会使用北京54坐标系。 图2和图3为同一点转换成全国80和北京54后差别,从两个转换结果来看,两个坐标系相差较小,可能比系统误差还小。(坐标转换过程中会产生系统误差,在不同位置误差也会有差异,所以转换出来的坐标只能是大概位置的参考。有兴趣的可以去研究下大地坐标系和投影坐标系,研究明白了就知道了为啥会有一定程度的误差,而且偏离中心线越远,误差越大)

图2(北京54) 图3(全国80) 2、中央子午线的确定 中央子午线一般为三度带和六度带的中央子午线坐标(至于什么是三度带和六度带,有兴趣的可以自行去研究投影坐标系的由来)。三度带的中央子午线经度为3的整数倍,六度带的中央子午线经度为6的整数倍,以图3中坐标为例,经度为112°30′至115°30′以内的坐标均为以114°为中

央子午线经度的三度带分区内;经度为111°至117°以内的坐标均为以114°为中央子午线经度的六度带分区内。 无法确定所在区域的中央子午线经度,可将区域的经度转换成小数后除3或者6,四舍五入后再乘3或者6即为中央子午线经度,如图中114°30′,转换后为114.5°,除3,四舍五入后再乘3即为114°。 3、经纬度转XY坐标 图4 图4为经纬度转XY坐标方法示意,在确定区域的中央子午线经度后,在BL处填上相应的纬度和经度,点击转换即可转出所需坐标。 4、完整的XY坐标转经纬度 目前国内部分设计单位在设计时,出于某些目的,会省略XY坐标中的某些位数,因此在此处分完整的XY坐标转经纬度和不完整的XY坐标转经纬度。

公路测量中平面坐标系之间的转换方法

公路测量中平面坐标系之间的转换方法 一、公路测量中产生不同平面坐标系的原因 近二十年来,我国公路基础设施建设实现了跨越式的发展,取得了举世瞩目的成就。据交通部最新发布的统计数据,1989年全社会交通投资仅156亿元,“八五”期间年均投资619亿元,“九五”期间年均已达2062亿元,2002年达3150亿元,“十一五”开局之年的2006年,公路投资更高达6231.05亿元。1989年我国高速公路通车里程仅为271公里,到1999年突破1万公里,2002年已达2.52万公里,跃居世界第二,2006年更高达4.53万公里,至2020年,还将重点建设3.5万公里高等级公路,组成国道主干线“五纵七横”十二条路线。 公路基础设施的建设并不是一蹴而就的,是随着我国国民经济综合实力的不断增强,分段分批建设的,每一段建设的公路项目之间由于下列原因,所采用的平面测量坐标系是不相同的。 1、根据《公路勘测规范》规定,选择路线平面控制测量坐标系时,应使测区内投影长度变形值不大于2.5cm/km。大型构造物平面控制测量坐标系,其投影长度变形值不应大于1cm/km。 当采用标准高斯正形投影的3°带或6°带分带,投影基准为1954年北京坐标系或1980西安坐标系时,6°带边缘最大变形值可达1.4m/km,3°带边缘最大变形值可达0.4m/km,测量面高度为2000m时,投影变形将达到0.3m/km,因此,测量长度投影变形对公路、桥梁和隧道施工产生较大的影响是客观存在的,如果投影变形值大到一定程度,该部分因素对施工影响的程度比测量误差的影响还要显著。鉴于此,根据公路设计、施工的需要,《公路勘测规范》规定,选择路线平面控制测量坐标系时,应使测区内投影长度变形值不大于2.5cm/km。大型构造物平面控制测量坐标系,其投影长度变形值不应大于1cm/km。 根据这一规定,对于一个具体的公路工程项目,就要根据工程所处的位置和高度,采用选择任一中央子午线和投影面的方法,建立变形值符合要求的独立坐标系。这是造成不同的公路项目具有不同坐标系统的主要原因。 2、由于原有国家控制网精度较差以及测量误差积累的原因,即就是采用统一的标准高斯正形投影的3°带或6°带分带,投影基准为1954年北京坐标系或1980西安坐标系,不同时期以及不同公路工程段落相互衔接时,同样存在相互不能很好兼容的问题。某种意义上看,相当于两个相互衔接的公路工程项目采用了不同的坐标系统。 3、由于《公路勘测规范》和《公路勘测细则》]对路线平面控制测量和大型构造物平面控制测量的投影长度变形值要求不一样,导致在同一个公路工程项目中可能采用不同的坐标系统,大型构造物平面控制测量可能采用与路线平面控制测量相对独立的坐标系统。 上述原因导致了在公路工程建设中,经常出现相互衔接的路段出现不同平面坐标系统的问题,因此在公路设计、施工过程中必然经常遇到平面坐标系之间相互转换的问题。 二、平面坐标系之间的转换方法 1、三参数转换法

CORS坐标转换软件使用说明

坐标转换软件使用说明  1、功能介绍  在南京进行测量的同行一直受到坐标系统和已知控制点的困扰, 所以往往许多测量成果因坐标系统问题得不到承认,浪费了大量的人 力物力。基于此:本公司集全部精干技术力量,研发本款坐标转换软 件,可以说:它是全体测量工作者的福音。  南京CORS因为其免费,应用十分广泛,但是使用南京CORS在 很多情况下,因为已知控制点原因无法实地取得平面坐标而限制了 CORS优势的发挥。本软件可以实现基于南京CORS测量的WGS84 坐标与92南京地方坐标双向自由转换,转换精度与权威部门转换成 果比较(在南京市6800平方公里范围内,包括高淳、溧水、六合、 浦口):平面残差中误差优于±5mm、高程残差中误差均优于±1cm。精度完全具有保障,免去到处寻找控制点带来的人力、财力和时间浪费。按照最新城市规范规定,这种模式可以实现城市E级GPS控制 点的平面测量。  本软件是一款后处理软件,即:内业处理软件,它不能在实地计 算坐标,通过事后(采集)或事前(放样)数据处理,同样可以让你 在野外无忧无障碍开展工作。  适用平台:Windows 32位所有系统平台。  2、外业采集数据转换操作介绍  外业测量数据从RTK手簿中以WGS84坐标格式导出,导出以后 将文件复制到计算机,假设文件名为0513.dat。在电脑中启动软件,

界面如下:  图一:程序启动界面  首先选择转换方向下拉列表框,此时选择“WGS84—>NJ92”,表示将WGS84坐标转向92南京地方坐标,此时软件会出现一个按钮 键读入数据并转换,点击该按钮,在弹出的文件对话框中选择从手簿 导出的外业坐标文件。如:0513.dat,点击打开按钮即可完成转换。如图二:  图二:选择原始数据文件  记得一定要选择你的原始数据文件格式在点击打开按钮。转换完 成以后又会在对话框中再出现一个按钮导出转换成果,点击它即可将

手持GPS坐标系转换方法

手持GPS坐标系转换方法 杜大彬,张宽房,张开盾,李明贵 (陕西省地质调查院,西安710058) 摘要:导航型手持GPS目前在中小比例地质调查等领域得到广泛应用,由于坐 标系之I'.-1存在差异,在实际应用过程中,必须将手持机的WGS84坐标系转换为我 国应用的BJ54或西安8O坐标系。坐标转换的准确与否,直接影响到工程测量定位 的精度,传统的坐标转换计算所需要的起算资料不易收集,计算过程过于繁琐,非 专业人员难以掌握。本文根据收集的三角点BJ54坐标(或西安8O坐标),和现场 测定的过渡坐标,求出各参数在本工作地区的变化率,建立参数方程,反向求出适 合于当地的各项改正参数,方法简便易行,为手持GPS定位的坐标转换方法提出 一种新的思路。 关键词:坐标转换;WGS84坐标系;BJ54坐标系;过渡坐标;变化率 中图分类号:P228.4 文献标识码:B 随着技术的不断完善,导航型GPS的定位精度及功能较之以前有很大提高。它以其全 天候工作、携带方便、数据记录及回放快捷等功能,倍受使用者青睐。经过参数校正后的GPS,其平面精度完全可以取代地形图定点,因而在中小比例尺地质矿产调查数字填图、地球物理、地球化学勘探野外作业的点位测量中有着广泛的应用前景。 坐标系转换问题提出 由于GPS卫星星历是以WGS84坐标系(经纬度坐标)为依据而建立的,我国目前应 用的地形图一般采用1954年北京坐标(以下简称BJ54坐标)系或西安8O大地坐标系,不 同的坐标系之间存在平移和旋转关系,在不同地区,同一点位的WGS84坐标值与我国应用的坐标系的坐标值,有约6O~150 In的差值。在实际应用中,不同的坐标系必须进行坐标转换。由于手持机测量通常是短时间近似测量,采用单次测量或多次测量值取平均值,一般不作差分处理,从某种意义上讲,手持机的相对定位精度受其接收信号强度影响,坐标转换参数的准确与否,直接影响其绝对定位精度。 坐标转换的关键是求出不同坐标系之间的坐标转换参数,在实际工作过程中,坐标系统 收稿日期:2OO7一O5一O8 作者简介:杜大彬,男,37岁,工程测绘工程师,主要从事物化探及地质测量工作。 维普资讯https://www.360docs.net/doc/4611455204.html, 第1期杜大彬等:手持GPS坐标系转换方法 的转换通常采用方法是在应用区域内GPS“B”级网内,收集三个以上网点的WGS84坐标 系B、L、H值及我国坐标系(BJ54或西安80)B、L、h、x(高程异常),按其参考球体的 投影方式,计算各参数的差值。由于各地GPS建网及重力研究工作程度不同,通常在某些地区,常用参数尤其是高程异常,一般不易收集,并且其计算过程较为繁琐。 为了寻求一种快捷、方便、精度满足工作要求的GPS坐标转换方法,作者经反复试验, 总结出坐标转换的一些规律。以台湾GARMIN仪器公司的ETREX VISTA (展望)机型使 用为例,这里给出一种只用一个三角点,推算其BJ54(西安80)坐标改正参数的方法。 2 参数变化在坐标系转换的规律 作者曾在陕南某地从事物探电法工作时,特意在一已知三角点作GPS参数变化试验, 、该三角点的BJ54坐标值为:X—XXX0433.217;Y—XXX67605.110,三角点位于汉江南岸,视野开阔,有利于GPS观测。在观测时设置当地中央经线、DA、DF等参数,DX、 DY、DZ均为0,在星况稳定且仪器显示估计误差为5 m 时,在已知点上读取若干组数据,取得其平均值为x—XXX0445;Y—XXX644。此值作为WGS84与BJ54坐标系之间转换的 过渡坐标。

实时动态(RTK)测量中坐标转换参数计算的几种方法

实时动态(RTK)测量中坐标转换参数计算的几种方法 摘要:RTK所接收到的数据是WGS-84坐标系下的数据,而我们使用的坐标系一般是1954北京坐标系、1980年国家大地坐标系以及一些城市工矿使用的独立坐标,因此,需要将RTK接收到的WGS-84坐标转换成我们工程所使用的坐标系坐标。为此,如何计算这些坐标系统转换参数成为RTK使用过程中的一个非常重要的环节。 关键词:GPS-RTK测量坐标转换 1、RTK技术概述 实时动态(RTK)测量系统,是GPS测量技术与数据传输技术的结合,是GPS测量技术中的一个新突破。GPS测量中,静态、快速静态、动态测量都需要事后进行解算处理才能获得待测点的坐标,而RTK测量实时差分定位是一种能够在野外实时得到厘米级精度的测点坐标。 RTK实时测量技术具有全天候、作业效率高、定位精度高、操作简便等优点,因而得到了广泛的应用,而且技术设备越来越先进与方便。RTK测量系统一般由以下三部分组成:GPS接收设备、数据传输设备、软件系统。数据传输系统由基准站的发射电台与流动站的接收电台组成,它是实现实时动态测量的关键设备。 2、RTK实时测量坐标参数转换 RTK所接收到的数据是WGS-84坐标系下的数据,而我们一般使用的坐标系是1954北京坐标系、1980年国家大地坐标系以及一些城市工矿使用的独立坐标,因此,需要将RTK接收到的WGS-84坐标转换成我们使用的1954北京坐标系坐标或1980年国家大地坐标系坐标或城市工矿使用的独立坐标系坐标。为此,如何计算坐标系统转换参数成为RTK使用过程中的很重要的一个环节。 根据RTK的原理,参考站和流动站直接采集的都为WGS84坐标,参考站一般以一个WGS84坐标作为起始值来发射,实时地计算点位误差并由电台发射出去,流动站同步接收WGS84坐标并通过电台来接收参考站的数据,条件满足后就可达到固定解,流动站就可实时得到高精度的相对于参考站的WGS84三维坐标,这样就保证了参考站与流动站之间的测量精度。如果要符合到已有的已知点上,需要把原坐标系统和现有坐标系统之间的转换参数求出。 3、三参数转换

GPS坐标系转换方法

手持GPS坐标系转换方法 点击次数:695 发布时间:2009-7-2 22:10:36 GPS卫星星历是以WGS-84大地坐标系为根据而建立的,所以手持式GPS使用的坐标系统是WGS-84坐标系统。目前,市面上出售的手持GPS所使用的坐标系统基本都是WGS-84坐标系统,而我们使用的地图资源大部分都属于1954年北京坐标系或1980年西安国家大地坐标系。不同的坐标系统给我们的使用带来了困难,于是就出现了如何把WGS-84坐标转换到1954北京坐标系或1980西安国家大地坐标系上来的问题。大家知道,不同坐标系之间存在着平移和旋转的关系,要使手持GPS所测量的数据转换为自己需要的坐标,必须求出两个坐标系(WGS-84和北京54坐标系或西安80坐标系)之间的转换参数。因此,如果您最后希望得到的不是WGS-84坐标系数据,必须进行坐标转换,输入相应的坐标转换参数。只要用户计算出五个转换参数(DX、DY、DZ、DA、DF)并按提示输入GPS中,即可在GPS仪器上自动进行坐标转换,得出该点对应的北京54坐标系(或西安80坐标系)的坐标值。 下面以北京54坐标系为例,求手持GPS接收机坐标转换五个参数的方法。 一.收集应用区域内高等级控制点资料 在应用手持GPS接收机取土的区域内(如一个县)找出三个(或以上)分布均匀的等级点(精度越高越好)或GPS“B”级网网点,点位最好是周围无电磁波干扰,视野开阔,卫星信号强。到当地的测绘管理部门(如:本地测绘局、测绘院)抄取这些点的北京54坐标系的高斯平面直角坐标(x、y),高程h 和WGS-84坐标系的大地经纬度(B、L),大地高H。 二.求坐标转换参数 将上述获得的控制点的坐标数据提供给技术支持单位北京合众思壮公司各地分公司相关负责人求解出坐标 转换参数,或者获取转换软件自己进行转换。转换参数求出后按提示输入手持型GPS中。只需经过这样一次设置,以后所有在该区域内测土时GPS所读出的坐标就为该点的北京54坐标值了。 三.参数检验 DX、DY、DZ、DA、DF五个转换参数求出后,必须按提示分别输入手持GPS中,同时输入测区中央子午线经度。E代表东经,投影比例参数为1,东西偏差为500000,南北偏差为0,并设单位为米。输入这些参数后,应拿到实地检测,检验这五个参数是否正确。方法是,在野外选定视野开阔、GPS接收信号强的特征点(如线状地物交叉点、独立地物等),最好是埋石控制点进行测量,然后找出这些点的理论坐标与之比较。如比较结果超过仪器标称精度,则应重新测算转换参数或查找出现的问题。 手持GPS坐标转换方法: 1.按翻页键,翻至菜单画面,选择▼键,移至设置处,按输入键进入设置画面;

测量坐标系转换及COORD转换实例

测量坐标系转换及COORD转换实例 坐标转换问题的详细了解对于测量很重要,那么请和我一起来讨论这个问题。 首先,我们要弄清楚几种坐标表示方法。大致有三种坐标表示方法:大地坐标经纬度和高程(B、L、H),空间直角坐标(X、Y、H),高斯平面坐标和高程(X、Y、H)。 我们通常说的WGS-84坐标是大地坐标经纬度和高程这一种,北京54坐标是高斯平面坐标和高程这一种。 现在,再搞清楚转换的严密性问题,在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密的。举个例子,在WGS-84坐标系和北京54坐标系之间是不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。 那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法,即X平移,Y平移,Z平移,X旋转,Y旋转,Z旋转,尺度变化K。要求得七参数就需要在一个地区需要3个以上的已知点,如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化K 视为0,所以三参数只是七参数的一种特例。在本软件中提供了计算三参数、七参数的功能。 在一个椭球的不同坐标系中转换需要用到四参数转换,举个例子,在深圳既有北京54 坐标又有深圳坐标,在这两种坐标之间转换就用到四参数,计算四参数需要两个已知点。本软件提供计算四参数的功能。 现在举个例子说明:在珠江有一个测区,需要完成WGS-84坐标到珠江坐标系(54椭球)的坐标转换,整个转换过程是这样的:

本软件使用说明: 本软件采用文件化管理,用户可以将一种转换作为一个文件保存下来,下次使用时从文件菜单中选择打开这个文件来调用所有已有的转换参数。 实例一: 转换要求: 用户在一个佛山测区内使用RTK GPS接收机接收了一些点的WGS-84的坐标,现在希望将其转换为北京54和佛山坐标系下的坐标。用户有佛山测区的一些控制点,这些控制点有WGS-84坐标,也有北京-54坐标也有佛山坐标。 分析:

大地坐标与大地空间坐标转换工具

#include "stdafx.h" #include #include #include "resource.h" #include "MainDlg.h" #include #include BOOL WINAPI Main_Proc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { switch(uMsg) { HANDLE_MSG(hWnd, WM_INITDIALOG, Main_OnInitDialog); HANDLE_MSG(hWnd, WM_COMMAND, Main_OnCommand); HANDLE_MSG(hWnd,WM_CLOSE, Main_OnClose); } return FALSE; } BOOL Main_OnInitDialog(HWND hwnd, HWND hwndFocus, LPARAM lParam) { return TRUE; } void Main_OnCommand(HWND hwnd, int id, HWND hwndCtl, UINT codeNotify) { double a=0; double e2=0; switch(id) { case IDC_B1: { a=6378245.0000; e2=0.00669342162297; if(a==0) { MessageBox(hwnd,TEXT("请选择坐标系"),TEXT("警告"),MB_OK); } else{

空间直角坐标系与空间大地坐标系的相互转换及其C++源程序

空间直角坐标系与空间大地坐标系的相互转换 1.空间直角坐标系/笛卡尔坐标系 坐标轴相互正交的坐标系被称作笛卡尔坐标系。三维笛卡尔坐标系也被称为空间直角坐标系。在空间直角坐标系下,点的坐标可以用该点所对应的矢径在三个坐标轴上的投影长度来表示,只有确定了原地、三个坐标轴的指向和尺度,就定义了一个在三维空间描述点的位置的空间直角坐标系。 以椭球体中心O为原点,起始子午面与赤道面交线为X轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴构成右手坐标系O.XYZ,在该坐标系中,P点的位置用X,Y,Z表示。 在测量应用中,常将地球空间直角坐标系的坐标原点选在地球质心(地心坐标系)或参考椭球中心(参心坐标系),z轴指向地球北极,x轴指向起始子午面与地球赤道的交点,y轴垂直于XOZ面并构成右手坐标系。 空间直角坐标系 2.空间大地坐标系 由于空间直角坐标无法明确反映出点与地球之间的空间关系,为了解决这一问题,在测量中引入了大地基准,并据此定义了大地坐标系。大地基准指的是用于定义地球参考椭球的一系列参数,包括如下常量: 2.1椭球的大小和形状

2.2椭球的短半轴的指向:通常与地球的平自转轴平息。 2.3椭球中心的位置:根据需要确定。若为地心椭球,则其中心位于地球质心。 2.4本初子午线:通过固定平极和经度原点的天文子午线,通常为格林尼治子午线。 以大地基准为基础建立的坐标系被称为大地坐标系。由于大地基准又以参考椭球为基准,因此,大地坐标系又被称为椭球坐标系。大地坐标系是参心坐标系,其坐标原点位于参考椭球中心,以参考椭球面为基准面,用大地经度L、纬度B 和大地高H表示地面点位置。过地面点P的子午面与起始子午面间的夹角叫P 点的大地经度。由起始子午面起算,向东为正,叫东经(0°~180°),向西为负,叫西经(0°~-180°)。过P点的椭球法线与赤道面的夹角叫P点的大地纬度。由赤道面起算,向北为正,叫北纬(0°~90°),向南为负,叫南纬(0°~-90°)。从地面点P沿椭球法线到椭球面的距离叫大地高。大地坐标坐标系中,P点的位置用L,B表示。如果点不在椭球面上,表示点的位置除L,B外,还要附加另一参数——大地高H。 空间大地坐标系 3.空间直角坐标与大地坐标间的转换 3.1大地坐标转换为空间直角坐标

相关文档
最新文档