350MW热电联产机组选型优化

350MW热电联产机组选型优化
350MW热电联产机组选型优化

350MW热电联产机组选型优化

摘要针对我国供热机组的发展趋势,从技术、经济等角度对超临界350MW机组进行详细深入的论述,提出350MW超临界机组应是低碳时代科学合理的选择。

关键词超临界机组;选型;参数;经济性

1概述

350MW等级超临界与亚临界机组的比较及优势。

1.1主机设备的技术比较

350MW等级超临界机组锅炉、汽机与亚临界机组区别不大,仅锅炉、汽机高温部件的材质由于参数提高而变化。

1)锅炉:超临界过热蒸汽温度从542℃提高到571℃,再热蒸汽温度从540℃提高到569℃,锅炉高温受热面的材料级别就必须提高到更高的等级。

2)汽轮机:①超临界汽机由于温度的提升,高、中压缸高温部分及主要部件的材料级别有所提高。②在汽机结构上超临界与亚临界有所不同。350MW亚临界汽机一般采用两缸两排汽,而350MW超临界汽机主要采用两缸两排汽、三缸两排汽两种形式。两缸两排汽比三缸两排汽少一个缸,所以汽机长度可缩短,主厂房长度可适当缩短,但两缸两排汽汽轮机主要是纯凝机、单抽机组和不可调抽汽机组,如果要求双抽双可调,需采用三缸两排汽机组。

3)汽轮发电机:350MW等级超临界发电机与亚临界发电机在设计及结构上没有区别。

1.2主要附属系统及辅机技术比较

350MW等级超临界电厂与亚临界电厂相比,除了热力系统中的主机和少数主要辅机设备有所不同外,其他系统实际相差不大。

1.3管道材料选型比较

350MW级超临界机组采用了更高的蒸汽温度和压力,这种变化主要影响高温高压汽水系统(主要是四大管道)的材料选择,而低压管道选材与亚临界机组基本相同。对超临界机组来说,主汽压力提高,主汽和热段温度也提高,主汽、热段、给水、冷段管材需提高等级。

我国超临界机组的发展是建立在引进技术的基础上的,其高温管材的应用也与国际发展是同步的。经过多年来的技术经济比较和工程实践,我国在超临界机

柴油发电机容量选择计算

柴油发电机容量如何选择 1、设置原则一类高层建筑应按一级负荷要求供电,二类高层建筑应按二级负荷要求供电。《民用建筑电气设计规范》JGJ/T16—92 3.1条规定:一级负荷应由两个电源供电,当一个电源发生故障时,另一个电源应不致同时受到损坏;二级负荷条件允许时,也宜采用二路电源来供电,特别是消防用的二级负荷,更应该按两个回路要求供电;一级负荷中的特别重要负荷,除上述两个电源外,还必须增设应急电源。根据这些规定,笔者总结了自备柴油发电机组的设置原则:(1)当民用建筑需按一级负荷要求供电时,若城市电网能提供二路独立电源(一用一备或相互备用),则可不设柴油发电机组;但当一级负荷中有特别重要的负荷时,则一般应设柴油发电机组作为应急电源。(2)当电网只能提供一路电源时,为满足对一、二级负荷的供电要求,一般应设置柴油发电机组,此时柴油发电机组将作备用电源及应急电源使用。(3)大、中型商业建筑中为确保市电中断时不造成较大的经济损失,也宜设柴油发电机组。由于城市电网不可能完全独立,有时一个电源故障或检修时,另一电源有可能同时故障,因此,即使有两路或以上电源供电,为确保民用建筑中消防及其他重要设备(如智能化设备、通讯设备等)的可靠供电,一般都设置柴油发电机组。 2、容量选择自备柴油发电机组容量的选择,目前国家尚无统一的计算公式:有的简单地按电力变压器容量的10%-20%确定;有的按消防设备的容量相加;有的则根据投资者的意愿选择,造成了自备发电机组容量选择的不准确性,若容量选择太大造成一次投资浪费,选

择太小则在事故时满足不了使用要求。那么,如何选择自备发电机组的容量呢? (一)方案或初步设计阶段自备发电机的容量按供电变压器总容量的10%-20%计算。 (二)施工图阶段(1)建筑物的用电负荷可分为三类:第一类为保安型负荷,即保证大楼内人身及设备安全和可靠运行的负荷,如消防水泵、消防电梯、防排烟设备、应急照明、通讯设备、重要的计算机及相关设备等;第二类为保障型负荷,即保障大楼运行的基本设备负荷,主要是工作区照明、部分电梯、通道照明;第三类为一般负荷,即除了上述负荷以外的其它负荷,例如:空调、水泵及其他一般照明、动力设备。计算自备发电机组的容量时,第一类负荷必须考虑在内,即必须采用柴油发电机组:第二类负荷则根据大楼功能及电网情况来定,若大楼功能要求较高或城市电网供电不稳定,则应将第二类负荷考虑在内,但若将第一类、第二类负荷简单相加来选择柴油发电机容量,则所选容量偏大,因为在消防状态时,只需保证消防设备的运行,第二类负荷不使用;而在非消防状态下电网停电时,消防设备不使用。可以选择两者中较大者作为柴油发电机组的容量。 设备容量统计出来后,根据实际情况选择需要系数Kx(一般取0.85-0.95),计算出计算容量Pj=KxP∑,自备柴油发电机组的功率按下式计算P=kPj/η式中:P—自备柴油发电机组的功率kw;Pj —负荷设备的计算容量kw;P∑—总负荷kw;η—发电机并联运行不均匀系数一般取0.9,单台取1;k—可靠系数,一般取1.1。

空调机组机外余压计算与选型

空调机组机外余压计算与选型 一、动压: 指空气流动时产生的压力,只要风管内空气流动就具有一定的动压,动压是单位体积气体所具有的动能,也是一种力,它的最直接的表现是使管内气体改变速度,动压只作用在气体的流动方向恒为正值,气体的动压与空气密度以及流动速度有关。 二、静压: 由于空气分子不规则运动而撞击于管壁上产生的压力称为静压。计算时,以绝对真空为计算零点的静压称为绝对静压。以大气压力为零点的静压称为相对静压。空调中的空气静压通常指相对静压;静压是单位体积气体所具有的势能,是一种力,它的表现将气体压缩、对管壁施压。管道内气体的绝对静压,可以是正压,高于周围的大气压(通常送风管是正压);也可以是负压,低于周围的大气压(通常回、排风是负压)。 三、全压: 全压是静压和动压的代数和:全压=静压+动压,全压代表单位气体所具有的总能量。若以大气压为计算的起点,它可以是正值,亦可以是负值。 四、机外余压: 机外余压是我们通风设计的一个重要参数,关系到整个系统能否满足使用功能,他的概念一般来自厂商样本,样本上所提供的机外余压一般是考虑机组本身的压力损失后所能提供的压力,

那么,关于机外余压到底是机外全压还是机外静压呢?可以理解为机外全压,写成机外静压是测试时通常把动压看为0。可见,机外余压的概念并非一个标准性概念,但必然是考虑机组本身的压力损失后所能提供的全压 五、静压是由于分子运动力产生的对壁面的压能,在流场内各点大小都一致;动压是因为流体动量形成的压能,仅在迎着来流方向存在。这是一对理论范畴。全压是静压和动压的总和,反应了流体的做功能力水平。理想状态下,流体的静压和动压之和是一个常数,单在流体实际流动过程中,扣除阻力损失后,静压和动压会相互转化,并不是不变的。 六、机外余压是风机克服自身阻力损失后的全压值,即进出口全压差。风机出口风速较高,动压也较大,静压相对较低;但像有的AHU出口马上就进入一个静压箱,则在静压箱内几乎所有的风机能都转化为静压了,有的厂家通过减小风机出口口径来提高“机外余压”,实际上提高的只是动压,静压降低了,其实减小风机出口口径反而会使阻力增大,对系统反而不利。所以我们一般说的风机压头都是说全压,反应的是这台风机的做功能力。说风机动压和静压都是相对场合的说法,有特定条件的。动压实际是由于流体的宏观流动所产生的能量。因此,如果没有流体的宏观流动也就不会产生动压。静压则是由于流体本身的分子热运动所形成的内在能量,不管流体在宏观上是运动的,还是静止的,它的分子都时刻在作热运动,静压能的存在只决定于分子的热运动,而与宏观流动与否没有关系。换言之,不论是静止的,

循环泵选型计算书(1)

水泵选型计算书 一、设计工况 已知太原某建筑面积A为3.3万m2,楼高24层,每层3米,5层以上为高区,以下为低区,供暖面积各为1.25万m2,预留0.8万m2供暖住宅。现设20台GG-399型96kW锅炉。 二、设计参数 2.1气象资料(太原) 采暖室外计算温度-12℃ 采暖室外平均温度-2.7℃ 采暖期天数135天 室外平均风速3m/s 2.2室内设计参数 采暖室内计算温度18℃ 2.3采暖设计热负荷指标 2.3.1采暖设计负荷指标qs(W/m2) 46.37 在采暖室外计算温度条件下,为保持室内计算温度,单位建筑面积在单位时间内需由锅炉房或其他供热设施供给的热量。 2.3.2耗热量指标qh(W/m2) 32 全国主要城市采暖期耗热量指标和采暖设计热负荷指标 城市名采暖期 天数(d) 采暖室外 计算温度 (d) 采暖室外 平均温度 (d) 节能建筑现有建筑 耗热量指标 q h(W/m2) 设计负荷指 标q h(W/m2) 耗热量指标 q h(W/m2) 设计负荷指 标q h(W/m2) 北京120 -9 -1.6 20.6 28.37 31.82 43.82 天津119 -9 -12 20.5 28.83 31.54 44.36 石家庄112 -8 -0.6 20.3 28.38 31.23 43.66 太原135 -12 -2.7 20.8 30.14 32 46.37 沈阳152 -19 -5.7 21.2 33.10 32.61 50.91 大连131 -11 -1.6 20.6 30.48 31.69 46.89 长春170 -23 -8.3 21.7 33.83 33.38 52.04 哈尔滨176 -26 -10 21.9 33.69 34.41 52.93 济南101 -7 -0.6 20.2 31.38 29.02 45.08

供热电厂选用背压机组的主要边界条件

供热电厂选用背压机组的主要边界条件 发表时间:2018-11-11T12:24:31.797Z 来源:《电力设备》2018年第20期作者:杨青山[导读] 摘要:背压机由于消除了凝汽器的冷源损失,在热力循环效率方面是最高的。(中国能源建设集团黑龙江省电力设计院有限公司黑龙江哈尔滨 150078)摘要:背压机由于消除了凝汽器的冷源损失,在热力循环效率方面是最高的。然而,供热效能很高的背压式机组确遭到了企业一致摒弃。本文选定具有代表性的绥芬河热电项目,进行背压机项目经济效益测算。提出建设背压机项目的主要边界条件。关键词:热电联产;背压机组;边界条件在以发改能源[2004]864号文印发的产业政策中,国家发改委再次推荐背压式机组。明确指出,即使已建成的单机150MW等级及以下抽汽供热机组,也必须按“以热定电”的原则进行调度。以体现进行结构改革,严禁“小凝汽”存在的决心。因此,背压机组在供热电厂的机组选型中重新被各发电公司所重视。本文选定具有代表性的绥芬河热电项目,进行背压机项目经济效益测算。提出建设背压机项目的主要边 界条件。 1 项目概况 1.1 绥芬河市概况绥芬河市位于黑龙江省东南部,地处我国北方高纬度地区,冬季漫长,气候寒冷,采暖期长达190天,年平均气温 2.3℃,极端最低气温-37.5℃,采暖室外计算气温-23℃。城区现有常驻人口15万,现有采暖面积400万平方米。 1.2装机方案 该项目设计采暖面积按450万平方米,不考虑工业及生活热水负荷。根据设计热负荷,按照以热定电原则拟定装机方案为:方案一:2×B30-8.83/0.294+2×160t/h CFB循环流化床高温高压机组,2×70MW热水锅炉调峰。拟建热源与厂外热网统一由电厂运营管理,直接对用户售热。全年供热量 304.42万GJ。现有热水锅炉房供热均由新建热电厂取代。方案二:2×B30-8.83/0.294+2×160t/h CFB循环流化床高温高压机组,保留厂外现有锅炉房作为调峰热源。拟建热源由电厂运营管理,对外售热;厂外热网由市供热企业管理,对用户售热。电厂全年供热量 219.22万GJ,占全部供热量的72%;调峰热水锅炉房全年供热量85.2万GJ,占全部供热量的28%。上述方案均以背压机组带基本采暖热负荷,供热能力149MW,热化系数0.52。 2 投资估算及经济评价 2.1 投资估算 注:热网配套费按40元/m2考虑。 2.2 计划工期 1号机组自主厂房开工至投入商业运行为14个月,2号机组间隔2个月后投入商业运行。热网与热源同步建设,建成投产(带满负荷)时间分别按2年(16%、100%)、3年(30%、70%、100%)、5年(16%、35%、60%、80%、100%)三个方案考虑,即从电厂投产年度开始逐年接带热负荷。 2.3 经济评价 2.3.1 经济评价原则及依据国家计委和建设部联合颁布的《建设项目经济评价方法与参数》(第三版)。 2.3.2 资金来源与资金使用计划注册资本金占20%,融资部分占80%,年利率为5.94%。 2.3.3 评价范围 以该工程全部设计方案进行财务评价。 2.3.4 经济评价基本数据经济评价基本数据

空调设计设备选型指南

内容: 1 水冷冷水机空调系统 ☆主要设备 (1)制冷主机(2)冷冻水泵(3)冷却水泵(4)冷却塔 (5)电子水处理仪(6)水过滤器(7)膨胀水箱 (8)末端装置(组合式空调机组、柜式空调机组、风机盘管等) 2 冷、热源的选择 1. 冷、热源系统设计选型注意的几个方面 1.1 各种冷、热源系统的能效特性 1.2 冷、热源系统的部分负荷性能 1.3 冷、热源系统的投资费用 1.4 冷、热源系统的运行费用 1.5 冷、热源系统的环境行为 2. 冷源设备选择 2.1 冷水机组的总装机容量 冷水机组的总装机容量应以正确的空调负荷计算为准,可不作任何附加,避免所选冷水机组的总装机容量偏大,造成大马拉小车或机组闲置的情况。 2.2 冷水机组台数选择 制冷机组一般以选用2~4台为宜,中小型规模宜选用2台,较大型可选用3台,特大型可选用4台。机组之间要考虑其互为备用和切换使用的可能性。 同一机房内可采用不同 类型、不同容量的机组搭配的组合式方案,以节约能耗。并联运行的机组中至少应选择一台自动化程度较高、调节性能较好、能保证部分负荷下能高效运行的机组。 为保证运转的安全可靠性,当小型工程仅设1台时,应选用调节性能优良、运行可靠的机型,如选择多台压缩机分路联控的机组,即多机头联控型机组。 2.3 冷水机组机型选择 2.3.1水冷电动压缩式冷水机组的机型宜按制冷量范围,并经过性能价格比 进行选择。 2.3.2冷水机组机型选择

电机驱动压缩机的蒸气压缩循环冷水机组,在额定制冷工况和规定条件下,性能系数(COP)不应低于以下规 定。 2.3.3冷水机组的制冷量和耗功率 冷水机组铭牌上的制冷量和耗功率,或样本技术性能表中的制冷量和耗功率是机组名义工况下的制冷量和耗功率,只能作冷水机组初选时参考。冷水机组在设计工况或使用工况下的制冷量和耗功率应根据设计工况或使用工况(主要指冷水出水温度、冷却水进水温度)按机组变工况性能表、变工况性能曲线或变工况性能修正系数来确定。 2.4热源设备 2.4.1热源设备类型 提供空调热水的锅炉按其使用能源的不同,主要分为两大类:(1)电热水锅炉(2)燃气、燃油热水锅炉 电热水锅炉 电热水锅炉的优点是使用方便,清洁卫生,无排放物,安全,无燃烧爆炸危险,自动控制水温,可无人值守。 《公共建筑节能设计标准》(GB50189-2005)规定:除了符合下列情况之一外,不得采用电热锅炉、电热水器作为直接采暖和空气调节系统的热源:电力充足、供电政策支持和电价优惠地区的建筑; 以供冷为主,采暖负荷较小且无法利用热泵提供热源的建筑; 无集中供热与燃气源,用煤、油等燃料受到环保或消防严格限制的建筑; 夜间可利用低谷电进行蓄热、且蓄热电锅炉不在日间用电高峰和平段时间启用的建筑; 利用可再生能源发电地区的建筑; 内、外区合一的变风量系统中需要对局部外区进行加热的建筑.

暖气片如何选型及计算

暖气片报价如何选型及计算 机械循环热水采暖系统,摩擦阻力损失占50%,局部阻力损失占50%; 换热器按0.1-0.15MPa估算; 设计裕量:10-20%。 1MPa=10KGF/CM2=100MH2O 1MMH2O=10Pa 循环水泵如何选择? 应根据计算所得的水量G及总循环阻力H来选择水泵.与外网连接的系统应换算外网在本楼接口处的供回水压差,是否够用(城市热网一般预留压差≥5MH2O)。 金旗舰散热器的工作压力定多少是合适的? 我国暖通空调设计规范规定,采暖系统高度超过50M时就应分区设置.这时系统的静压约为55MH2O。而采暖系统的动压(推动水循环,包括换热器等)约为20M-30M H2O,动压和静压的总和约为70-90MH2O (即0.7-0.9MPa)。所以散热器的工作压力取1.0MPa已够用了。关于个别城市热网直连的情况可作特殊处理。 系统运行前的压力测试如何进行? 在系统或系数的某部分投入运行前,必须对其进行压力测试.首先,所测系统应排出空气并充满处理过的水,然后用泵将压力升到至少为工作压力的1.5倍。这一压力应该至少保持10分钟,压力下降

不超过0.02 Mpa才为合格,在压力测试过程中,应对接头,连接处和设备进行目测检查以确保无泄漏。测试人员应进行记录,该记录应包括时间、地点、观测设备以及测试的初始和终了压力等信息,也应包括注意到的可能渗漏.最后测试人员在测试记录上签字。具体测点位置及系统试压的压力值均应按施工验收规范要求确定。 热水供暖系统设计应强调哪些问题? 应从以下6方面考虑: 1、必须保证满水条件下的闭式循环,最好实现密闭式热水采暖系统; 2、必须强调供暖水质的处理及控制; 3、必须保证有足够的水量,足够的资用压头; 4、必须有良好的排气,保证水循环畅通; 5、必须考虑水力平衡,保证各组散热器均能通水; 6、对较长的直管段,必须考虑热补偿。 三散热器选择与比较 购房要注意有关供暖系统的哪些问题? 可以从7个方面加以考虑: 1、注意散热器的热负荷,即每平方米的散热量.华北地区的砖混结构住宅,一般配置70W/㎡;节能型保温建筑配置50W/㎡;华中及华东地区的独立供暖住宅,一般配置120~130W/㎡。 2、看散热器类型是否安全舒适.面积很大的房间最好选用R021B 1800的散热器,散热均匀又安全舒适;

浅析工业热负荷对供热机组选型的影响

浅析工业热负荷对供热机组选型的影响 发表时间:2017-11-01T19:51:57.097Z 来源:《基层建设》2017年第20期作者:徐培培苏博 [导读] 摘要:本论文结合350MW工程实际情况以及目前国内成熟的350MW等级供热机型,对超临界、亚临界机组技术参数、技术经济指标进行了简单比较;此外,分析了某350MW超临界机组工业热负荷变化对热经济指标的影响,得出工业热负荷对供热机组选型具有重要影响。 河北省电力勘测设计研究院河北石家庄市 050000 摘要:本论文结合350MW工程实际情况以及目前国内成熟的350MW等级供热机型,对超临界、亚临界机组技术参数、技术经济指标进行了简单比较;此外,分析了某350MW超临界机组工业热负荷变化对热经济指标的影响,得出工业热负荷对供热机组选型具有重要影响。 关键词:超临界机组;工业热负荷;发电标准煤耗率;热效率 1 前言 超临界技术是国际上成熟、先进的发电技术,通过提高蒸汽的压力和温度,提高燃煤电厂的效率,降低供电煤耗,可以带来巨大的环境效益,是发电企业有效实现环境保护的重要途径之一。目前国内多家主机厂已具备350MW超临界机组主机设备的设计和制造能力,已有多台国产350MW超临界机组投运。国产350MW超临界机组主机设计和制造技术已经相当成熟可靠。 供热机组因其运行原理不同,产生的工业蒸汽负荷、采暖负荷、发电负荷随之而异。而对于单一机组,这三种负荷不能在做功一定的情况下同时增大,三者之间存在矛盾。 以双抽凝汽机组为例,当热、电负荷的供应产生矛盾时,分析两者实际地域输送的特性可知,电负荷通过搭建完善的电网调度,可方便实现远距离输送,而热负荷则依赖于热力管网,受地域限制影响较大,因此机组选型应优先考虑热负荷需求。此外,高压抽汽满足工业生产负荷,低压抽汽满足采暖负荷,通常高压抽汽的参数和数量直接影响低压抽汽的参数和数量,此时优先对工业生产负荷进行分配,再分配采暖负荷。因此,确定工业热负荷是非常必要的。 2 超临界、亚临界参数汽轮机技术参数对比 对于300MW级超临界汽轮机,汽轮机可在原300MW 亚临界汽轮机的基础上进行改造。目前国内三大主机厂350MW超临界汽轮机均为成熟机型,有工程业绩。 通过上述技术经济比较,同容量超临界与亚临界机组相比,年平均发电标煤耗减少了14g/kW.h,年节约标煤约2.4万吨,年节省燃料

空调系统设备选型汇总

空调系统设备选型 1 水冷冷水机空调系统 ☆主要设备 (1)制冷主机(2)冷冻水泵(3)冷却水泵(4)冷却塔 (5)电子水处理仪(6)水过滤器(7)膨胀水箱 (8)末端装置(组合式空调机组、柜式空调机组、风机盘管等)2 冷、热源的选择 1. 冷、热源系统设计选型注意的几个方面 1.1 各种冷、热源系统的能效特性 1.2 冷、热源系统的部分负荷性能 1.3 冷、热源系统的投资费用 1.4 冷、热源系统的运行费用 1.5 冷、热源系统的环境行为 2. 冷源设备选择 2.1 冷水机组的总装机容量 冷水机组的总装机容量应以正确的空调负荷计算为准,可不作任何附加,避免所选冷水机组的总装机容量偏大,造成大马拉小车或机组闲置的情况。 2.2 冷水机组台数选择 制冷机组一般以选用2~4台为宜,中小型规模宜选用2台,较大型可选用3台,特大型可选用4台。机组之间要考虑其互为备用和切换使用的可能性。同一机房内可采用不同类型、不同容

量的机组搭配的组合式方案,以节约能耗。并联运行的机组中至少应选择一台自动化程度较高、调节性能较好、能保证部分负荷下能高效运行的机组。 为保证运转的安全可靠性,当小型工程仅设1台时,应选用调节性能优良、运行可靠的机型,如选择多台压缩机分路联控的机组,即多机头联控型机组。 2.3 冷水机组机型选择 2.3.1水冷电动压缩式冷水机组的机型宜按制冷量范围,并经过性能价格比进行选择。 冷水机组机型冷量范围(kW)参考价格(元/kcal/h) 往复活塞式≤700 0.5~0.6 螺杆式116~1758 0.6~0.7 离心式≥1758 0.5~0.6 2.3.2冷水机组机型选择 电机驱动压缩机的蒸气压缩循环冷水机组,在额定制冷工况和规定条件下,性能系数(COP)不应低于以下规定。 水冷冷水机组机型额定制冷量(kW)性能系数(W/W)活塞式/涡旋式<528 3.8 528~1163 4.0 >1163 4.2 螺杆式<528 4.10 528~1163 4.30

超临界火电机组

火力发电革命性变革 ——超临界(超超临界)机组运用 超临界(超超临界)是一个热力学概念。对于水和水蒸气,压力超过临界压力22.129MPa的状态,即为超临界状态。同时这一状态下对应的饱和温度为374.15℃。超临界机组即指蒸汽压力达到超临界状态的发电机组。蒸汽参数达到27MPa/580℃/600℃以上的高效超临界机组,属于超超临界机组。 超临界(超超临界)机组最大的优势是能够大幅度提高循环效率,降低发电煤耗。但相应地需要提高金属材料的档次和金属部件的焊接工艺水平。现在全世界各国都非常重视超临界(超超临界)机组技术的发展。 超超临界机组蒸汽参数愈高,热效率也随之提高。热力循环分析表明,在超超临界机组参数范围的条件下,主蒸汽压力提高1MPa,机组的热耗率就可下降0.13%~0.15%;主蒸汽温度每提高10℃,机组的热耗率就可下降0.25~0.30%;再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%~0.20%。在一定的范围内,如果采用二次再热,则其热耗率可较采用一次再热的机组下降1.4%~1.6%。 超临界(超超临界)机组的发展在20世纪60~70年代曾经历过低谷时期,主要是因为当时的试验条件所限,没有认识到超临界(超超临界)压力下工质的大比热容特性对水动力特性以及传热特性的影响,因而引发了水冷壁多次爆管等事故。经过理论和技术方面的不断发展,发现了超临界压力下的工质存在类膜态沸腾导致传热恶化问题,克服了技术发展障碍。与此同时,随着金属材料工业的发展,超临界(超超临界)机组获得了新的生命。 超临界(超超临界)机组具有如下特点: (1)热效率高、热耗低。超临界机组比亚临界机组可降低热耗约 2.5%,故可节约燃料,降低能源消耗和大气污染物的排放量。 (2)超临界压力时水和蒸汽比容相同,状态相似,单相的流动特性稳定,没有汽水分层和在中间集箱处分配不均的困难,并不需要象亚临界压力锅炉那样用复杂的分配系统来保证良好的汽水混合,回路比较简单。

300MW供热机组热力经济性分析

300MW供热机组热力经济性分析 摘要:我国社会经济的快速发展,带动了各个行业 的经济发展,对电力的需求也越来越大。因此,汽轮机的系统、结构等不断改善,逐渐向大容量发展。若机组设备在多种因素影响下出现故障,则会降低其预期功能,降低其经济性,甚至对整个机组的安全运行带来较大影响。所以,机组经济性性和安全性具有密切关系,只有确保机组运行的稳定性,才能提高其经济性。文章主要对300MW供热机组热力 经济性进行了分析。 关键词:300MW供热机组;热力经济性;分析 经济全球化的不断发展,促使我国经济得到了快速发展,经济发展对电力的需求逐渐增加,火力发电比例非常大。大部分火力发电机组投入生产后,不仅在很大程度上提高了机组运行效率,也节省了自然资源,改善了生态环境,也减少了劳动力,降低了投资成本。对于大型火力发电机组而言,在发展过程中必须着重考虑的是发电对不可再生资源、环境等带来的影响。因此,为了实现可持续发展,就要采取措施提高发电技术。只有确保了机组运行的稳定性,才能提高其生产的经济效益。由于机组热力系统的安全性与经济性彼此互相影响,对机组运行状况进行实时监测,并分析其经济性

具有重要意义。 1 300MW供热机组热力系统热经济性分析方法简介 对火力发电机组的运行性能、热力系统性能等进行分析意义重大。通过分析,可以对机组循环中的各项热力参数、流量平衡性等有充分的了解,利于机组各项热经济指标的计算。目前采用的热力系统经济计算方法比较多,比如常规热平衡法、循环函数法、矩阵法以及等效热降法等。 1.1 常规热平衡法 此方法应用比较广泛,是采用流量平衡与能量的方法。在计算过程中主要用两种方法,即并联、串联。常规热平衡发电原因是以物质平衡关系为基础,通过对热力系统的热经济性展开计算,可以计算出研究对象的N个热量平衡式、流量方程式,从而获得N+1个流量值,并根据得到的系统水、蒸汽的流量值、参数值,用吸热方程进行计算,就能获得系统热经济性指标。这种方法应用比较方便,但要根据系统变化不断变化,适用性比较差。因此主要用来验证其他方法的正确性,不适合直接对热力系统性能进行计算。 1.2 循环函数法 作为新兴的热力系统计算方法,其原理是把热力系统划分为多个子系统,即主系统及其他辅助系统。主系统是没有附加汽水的回热系统,辅助系统是所有附加汽水。要计算热力系统的经济参数,就要结合多个子系统的参数用热平衡法

多联机选型

二、空调系统的选型 1、多联机系统的分类 多联机式空调系统根据其制冷剂配管实际连接形式大体可分为室外直接分支方式和室外总管、室内分支的连接方式两大类。 1.1室内分支形式 采用室内分支形式的多联机式空调系统,其室外机组的所连接的制冷剂配管由一组气管和液管构成(一般称为主配管,对于部分品牌的热回收式系统则由两根气管和一根液管构成)。制冷剂主配管根据室内机组的分布情况,在合适的位置进行再分支,最终与各个室内机组相连接。 1.2室外分支形式 采用室外分支的多联机式空调系统,其室外机组连接复数组制冷剂配管,数量根据实际连接的室内机组的数量和形式来确定。 1.3本系统形式 相对而言,采用室内分支的系统,由于流量调节机构设置在各室内机组中,能较为迅速地对应室内负荷的变化,且可达到较长的配管长度以对应较为大的空调空间;而室外分支的多联机空调系统由于流量控制机构设置在室外机组,为减小管路的输送损耗,一般不宜安装较长的制冷剂配管,多用于三房至四房的家庭场合。本系统选用室内分支形式。 2、室内机的选型 2.1室内机的精确选型的几个修正

变频多联机系统的设计流程如下:首先是系统设计规划,进行空调分区的划分,拟定新风解决方案和控制解决方案。根据设计要求、气候条件、建筑状况、发热设备等进行负荷计算,由负荷计算结果初步确定室内机容量、形式、设计位置。因为在设计时有多个影响因素需要考虑,其中包括温度因素、连接率因素、管长因素等,综合考虑这些因素的修正系数可提高选型的准确性,同负荷计算更匹配,设计更完美,能有效减少设备的浪费。 2.1.1温度修正 能力修正的第一个要点是温度的修正。不同的温度条件下,机组的能力也不尽相同。可以根据具体设计条件,查询不同温度条件下机组的容量表来获得这一步的修正。 2.1.2连接率修正 室内机容量总和超过室外机所提供的实际能力时,室外机的能力不再同室内机容量总和呈线性变化,室内机的容量会有所衰减,连接率较大时必须考虑这个因素的影响。 2.1.3管长修正 变频多联机系统管长较长时会产生衰减,一般只需对制冷情况进行管长修正。首先配管的长度影响流体阻力,管长过长导致阻力加大。其次配管的长度影响系统性能,吸气管阻力增加,压缩机吸气压力降低,制冷能力下降。吸气压力下降、过热增加,系统EER相应下降。管长超过90m时可通过增加管径的方法降低管长衰减。 2.1.4室内机的实际能力 当所有室内机全开时,其实际能力是根据室外机能力按比例分配的,此时室内机能力按下式得出:室内机的实际能力=室内机总容量值∕单台室内机容量值

循环水泵选型

热网循环水泵的选型及驱动配置 专题报告

目录 一工程概况 (1) 二循环水泵配置的重要性 (1) 三热网循环水泵的选型 (1) 四选型的分析 (2) 五循环水泵的驱动方式 (3) 六计算分析 (3) 七结论 (4)

[内容提要]: 热网循环水泵组是换热首站的重要辅机之一,其选型对电站的安全性和经济性具有十分重要的影响。本专题从循环水泵选型及驱动配置方面分析比较, 一工程概况 本专题是针对某电厂1、2号2x300MW机组的纯凝改供热改造。改造后2台机共建一座换热首站,两台机组能提供2×198MW(折合1425GJ/h)的供热能力,可供873万m2的采暖需求,热网的循环水量为6400t/h。根据外网鉴定供热协议要求,供热供回水温度为130℃/70℃。由于本工程为改造项目,换热站站址的选择和现有厂用电容量的要求,对改造有很大的局限性。 二循环水泵配置的重要性 热网循环泵是热电企业向热用户输送供热介质的动力来源,是换热首站的大动脉,也是热电企业供暖期间厂用电消耗的主要辅机之一。投资在项目改造中占有较大的比例,泵组的运行可靠性与经济性显得尤为重要。而循环水系统的优化、泵组的选型及布置的优劣,不仅直接影响其自身的安全性和经济性,而且对整个工程的投资与安全经济运行都会产生十分重要的影响。 三热网循环水泵的选型 1、选型的基本原则 循环水泵选型的基本原则有一下几点: 1) 循环水泵的总流量小于设计总流量; 2) 循环水量的扬程不小于运行流量条件下的热网总阻力。 3) 流量——扬程曲线应平缓,并联运行水泵的特性曲线宜相同, 4) 循环水泵的承压、耐温能力应满足各种运行工况的要求。 5) 应尽量减少并联水泵的台数,设置3台或3台以下时,应设置备用泵,设置4台及4台以上时,可不设备用泵。 2、循环水泵选型的方法 循环水泵的运行方式是按照供热系统的运行方式确定: 1) 质调节是通过抽汽调节阀调节进汽量、进汽压力来调整供水温度。采用质调节只调节水温,不调节流量,热力工况稳定,但消耗电能较多。 2) 量调节是通过调节热网循环泵的投运台数和通过改变热网循环水泵的转速来调节循环水量。采用量调节供水温度不变,只调节流量,这种方法能够节省厂用电,但系统中

大型供热机组存在的问题与对策 沈浩

大型供热机组存在的问题与对策沈浩 发表时间:2018-03-22T16:57:56.433Z 来源:《基层建设》2017年第36期作者:沈浩 [导读] 摘要:随着我国热电联产事业的发展,供热机组逐渐向大型化发展,200MW和300MW的供热机组相继投运,供热能力和经济性随之大幅提高,代表了当今集中供热的发展方向。 中国能源建设集团山西省电力勘测设计院有限公司山西太原 030001 摘要:随着我国热电联产事业的发展,供热机组逐渐向大型化发展,200MW和300MW的供热机组相继投运,供热能力和经济性随之大幅提高,代表了当今集中供热的发展方向。但大型供热机组由于结构和系统的复杂性,出现了一些如供热系统的安全性、机组膨胀不畅、补充水方式以及重要辅机运行的经济性等新的问题。 关键词:供热机组;安全性;补充水 1 大流量补充水对热力系统运行的影响 供热机组所供热负荷一般分为两种,一种是工业热负荷,另一种是采暖(制冷)热负荷。供采暖热负荷时,热网加热器将蒸汽冷却后的疏水全部回收,没有工质损失。供工业抽汽热负荷时,由于大量工质在供热时被消耗,回水率很小(一般为15%左右)或回水水质不合格而被排掉,因此需要补充同样数量的补充水才能保证热力系统的正常运行。大量补充水进入热力系统一般有两种方式,一种是直接进入凝汽器;另一种是先进入低压除氧器进行预除氧,然后再进入热力系统。 1.1 热力除氧的原理 热力学原理表明,溶于水中的气体量与气体种类、气体在水面上的分压力以及水的温度有关,水温越高,水面上的气体分压力越低,气体的溶解度越小。当水处于沸腾状态时,水中含氧量约等于零。常温常压下(20℃、0.1MPa),补水的含氧量约为8800ppb,远远大于给水含氧量的上限值15ppb。大量的补水如直接与凝结水混合,将大大提高给水的含氧量,对给水回热系统设备带来严重腐蚀。所以补水必须经过充分除氧后才能进入热力系统。而稍有加热不足,水中含氧量就大幅增加。 1.2 补水进入低压除氧器方案 以郑新公司300MW机组为例进行说明。补水先进入120kPa的大气式除氧器,用五段抽汽进行加热除氧,再由中继泵打入3号低加出口。在最大工业负荷工况,汽轮机低压缸流量很小,凝结水流量也很小,低压缸对应的6、7、8号低加切除,仅5号低加投入运行,补水和凝结水混合后进入5号段低加,使得5号抽汽量增加,五段抽汽的蒸汽流速为68.9m/s,5号低加出口温度达到153.4℃,从而保证高压除氧的除氧效果。 该方案是供热机组传统的补水方案,技术上成熟,对水温的高低、补水量的大小等工况适应能力较强,在大中型供热机组上已广泛应用。但由于增加低压除氧器和中继泵等,投资需增加。 1.3 补水进入凝汽器方案 该方案使补充水进入凝汽器喉部,以汽轮机排汽的汽化潜热对补水进行真空除氧。利用成熟的喷射式凝汽器设计技术和鼓泡除氧技术,在凝汽器喉部高速排汽区布置高效雾化喷嘴,补水与汽轮机排汽进行充分的混合换热,吸收排汽凝结时放出的汽化潜热,使补水达到真空状态下的饱和温度,除去补充水中的氧气。特殊情况下,补充水不能在排汽的加热下达到完全除氧,我们可以在凝汽器热水井设备鼓泡除氧装置,以较高温度的蒸汽对补水进行再次加热,使之达到饱和度,实现彻底除氧。 在最大工业抽汽工况下,由于6、7、8号低加切除,仅5号低加运行,所以5号低加所需抽汽量增大,抽汽管道流速达到110m/s,以使进入高压除氧器的水温为154.1℃,保证高压除氧器的除氧效果。 该方案采用喷射式凝汽器设计技术和鼓泡式除氧器技术,补充水在凝汽器内进行真空除氧,在大型凝汽式机组和中小型供热机组上已普遍采用。该方案不但系统简单,投资省,而且补充水可以在凝汽器中充分吸收汽轮机排汽的废热,并增大了低压抽汽的流量,减少了能级较高的高压抽汽的流量,从而大大提高机组的运行效率,经济性较高。 2 主要辅机设备的选型及运行 由于供热机组的特殊性,在供工业抽汽时,排汽量较小,以较小的冷却水流量即可满足运行要求,相应地,冷却塔的冷却面积以及循环水泵的容量也可减少。但是由于供热量的季节性变化,而且还要求机组在凝汽工况时能带额定电负荷运行,所以对于其辅机的运行经济性提出了更高的要求,要在各种工况下都能保持良好的经济性和可靠性。 2.1 循环水泵的选型 国内大型机组一般每台机组配2台循环水泵,正常运行时一运一备。在冬季工业热负荷较大时,排汽量较小,同时循环水温度较低,此时仍保持一台定速循环水泵运行就很不经济。甚至一台泵供两台机组还有富余。而实际上为了保证机组的安全运行,此时仍保持每台机配一台泵运行方式,厂用电浪费很大。为此,建议在循环水泵的设计选型时考虑如下方案:(1)每台机配一台额定容量的定速泵和一台调速泵,在夏季保持一台定速泵运行或根据真空情况启动调速泵配合运行;在冬季运行调速泵。这样,机组常年运行的经济性将大为提高。(2)一期工程两台机组的四台循环水泵出口设置母管制系统,其中两台调速泵、两台定速泵。在冬季可以一台调速泵供两台机组冷却用水,并设置可靠的联动装置。 2.2 凝结水泵 国产大型机组的凝结水泵一般采用每台机配两台100%容量的立式多级泵。对于供热机组,在补水补入低压除氧器时,由于供工业热负荷时凝汽量较小,运行一台凝结水泵很不经济,建议采用3台50%容量的凝结水泵,提高调节的灵活性和运行的经济性。 2.3 热网循环泵 热网系统运行中普遍存在如下问题:(1)采暖热负荷随季节和气温的变化而变化;(2)热网系统的容量和规模不是一成不变的,在电厂建成后,热网系统不断发展扩大,所以在热网系统的设计时应考虑对热负荷中长期发展的适应性;(3)热网系统的运行可靠性问题。如郑州热电厂曾发生过热网系统水冲击事故,因此热网循环水泵之间不能互相联动备用影响着供热的可靠性。这些问题的解决,要求采用调速型的热网循环水泵,以提高对负荷的适应性和运行的经济性以及可靠性。 2.4 热网加热器 热网加热器是热网系统的关键设备之一,不但要保证经济运行,更重要的是保证其运行可靠性。大型供热机组一般配备换热面积为

中央空调系统水泵选型、扬程计算及注意事项

水泵的分类与适用特性 基础知识概念 1.水泵的特性曲线:单台泵、多台同型号泵并联

2.管路特性曲线 3.水泵工作点 1)三台泵并联时的工作点 2)并联工作时每台泵的工作点 3)一台泵单独工作时的工作点 知识点:水泵的特性曲线与管路的特性曲线的相交点,就是水泵的工作点。因为水泵是与管路相联的,所以它必然要受管路的制约。如:泵每小时可供水二百立方米,但当它连接到一小口径的管路时,该泵的供水量就受此水口径管的制约,供水量就要改变。 流量G 1.冷冻泵 1.1一次泵系统 式中:Q:冷水机组冷量(kw) C:水比热,取为1.163(kw*h/T℃) △t:蒸发器进出水温差℃,一般舒适性空调△t=5℃

(7℃/12℃);大温差△t=7、8、10℃;热水△t=60℃/50℃; 若用公制单位则上式为 式中Q:Kcal/h C:1kcal/kg℃△t:℃ 台数:与冷水机组对应一对一设置,一般设一台备用泵 1.2二次泵系统 1.2.1第一次泵:按上式 1.2.2第二次泵:按所负责空调区域冷负荷综合最大值,计算出的流量 台数:应按系统分区一般不少于2台,设置备用泵。 2.2冷却系统流量:或按冷水机组冷凝器循环水量。 扬程H 1冷冻泵 1.1一次泵系统H=1.1~1.2[蒸发器水阻+最不利回路末端空调设备水阻+∑(RL+Z)](注:RL-沿程阻力;Z-局部阻力) 式中:R-单位长度摩阻,L-管长, 估算:∑RL一般取R为3~8m/100m 按此选管径 管路总阻力=1.6~1.8[(5/100)×回路管长] (注:100为沿程阻力平均值)1.2二次泵系统 1.2.1第一次泵扬程负责机房回路,扬程为一次管路管件阻力+蒸发器水阻力。一般约18~20m,实际运行23~25m。

空气处理机组选择计算说明

空气处理机组选择计算 1 电算表格内容、适用范围和使用说明 1.1 空气状态点计算表 已知某空气状态点的任意2个常用参数,求其他参数: 1、已知干、湿球温度; 2、已知干球温度、相对湿度; 3、已知干球温度、含湿量; 4、已知干球温度、焓值; 5、已知含湿量、焓值。 1.2 一次回风空气处理机组的选择计算表 基本已知数据:冬夏季室内热湿负荷、人员所需新风量、冬夏季新风状态、冬季加湿方式(仅限于“等焓”或“等温”加湿) 注:冬季当室内热湿负荷低于设计工况时,空气处理机组则需要较大的加热和加湿量,因此冬季工况表中填入的热湿负荷值应适当考虑开机时室内较低负荷的数值。 1.2.1夏季工况计算表 1、表1:已知室内温湿度,求空气处理机组的送风量、送风参数、冷却量、冷凝水量等。适用于 允许采用最大送风温差的一般典型空气处理机组的选型计算。见图1.2.1-1处理过程1(实线)。 2、表2:已知室内温度、允许送风温差,求空气处理机组的送风量、送风参数、冷却量、冷凝水 量和室内相对湿度等。可用于要求较小送风温差、但又不采用二次加热或二次回风的空调系统 能否满足要求。见图1.2.1-1(例如下送风舒适性空调),可根据计算结果校核室内相对湿度 2 处理过程2(虚线)。 100% 图1.2.1-1 采用最大送风温差的一次回风系统夏季处理过程 3、表3:已知室内温湿度、允许送风温差,求空气处理机组的送风量、送风参数、冷却量、再热 量、冷凝水量等。适用于要求较小的送风温差,不再热不能满足室内湿度要求的情况,以及热湿比较小,采用再热才能将送风状态点处理至热湿比线上的情况等。见图1.2.1-2

100% 图1.2.1-2 带二次加热的夏季一次回风系统处理过程 4、表4:已知室内温度、空气处理机组送风量,求室内相对湿度、机组送风参数、冷却量、冷凝 水量等。适用于已按表1确定空气处理机组风量,但无室内湿度控制措施(二次加热等)的一般舒适性空调系统,在室内热湿负荷减小(部分负荷)时,进行室内湿度等校核计算。此外也适用于需全年送冷内区夏季空气处理机组送风参数的求解计算(对于需全年送冷的内区,冬夏负荷相差不大,但冬季室内设定温度较低,而送风温度不能过低,即冬季送风温差小于夏季送风温差,因此冬季送风量大于夏季,应按冬季工况确定空气处理机组送风量),见图1.2.1-1处理过程(虚线)。 1.2..2 冬季工况计算表 1、表1:已知室内温湿度、空气处理机组送风量,求送风参数、空气处理机组加热量、加湿量等。 适用于已经按夏季工况确定空气处理机组风量(对应上述1.2.1表1、2、3的计算结果),计算冬季加热量和加湿量的典型情况。见图1.2.2-1实线(等焓加湿)和虚线(等温加湿)2种处理过程。 100% W 图1.2.2-1一次回风系统冬季等温或等焓加湿处理过程(送热风) 2、表2:已知室内温湿度、允许送风温差,求空气处理机组的送风量、送风参数、空气处理机组 加热量、加湿量等。一般用于需全年送冷的内区,且有最大送风温差的限制,按冬季工况选择

热水供暖系统中循环水泵的选择和使用

热水供暖系统中循环水泵的选择和使用 摘要:本文就循环水泵的选择原则、参数确定和选择中的几个问题进行分析,指出泵的特性与热网特性不相匹配的原因和解决的方法。对并联泵的效果和管路联接方式进行了分析计算后,提出一些建设性意见和建议。 关键词:循环水泵并联管路联接 1 前言 由热源设备、热网和室内采暖系统组成的热水供暖系统是一个系统工程、一个整体,忽略任何一部分都会严重影响系统的供暖效果。循环水泵是联接热源、热网和室内采暖系统的枢纽设备,通过它把温暖送给千家万户,所以,循环水泵的性能和参数的合理性,就显得格外重要。因此合理选择和正确安装使用循环水泵,是取得较为满意的供暖效果的关键。作者在近几年的实践中,遇到因循环水泵选择和使用不当而影响供暖效果的现象有以下几种:1循环水泵出口端的阀门不能百分之百打开,只能按电动机的允许额定电流控制阀门的开度,否则会引起电动机的实际运行电流超过其允许的额定电流而烧坏电动机。2循环水泵的使用往往不是一台,而是二台、三台、多台并联使用,更有七台泵同时并联使用的先例,而且多台并联使用,有的是同型号、同性能,也有型号不同、性能也不相同。1管道系统与泵的联接方式各异,不在同一位置、不在同一平面,造成系统不顺、阻力

增加。4循环水泵的出力达不到设计参数等。在排除循环水泵因制造原因而达不到实际参数不可预见外,我们应根据供暖系统提供的参数,合理选择适用本系统的循环水泵的型号和参数,最大可能地满足系统要求。 2 循环水泵的选择 2.1 选择的原则 循环水泵在供暖系统中所占比例,无论是容量还是设备数量都是很大的,运行中的问题也比较多。因此,正确选择、合理使用和管理,确保正常供暖和提高经济效益是十分重要的。选择的原则是:设备在系统中能够安全、高效、经济地运行。选择的内容主要是确定它的型式、台数、规格、转速以及与之配套的电动机功率。 选择时应具体考虑以下几个原则:1所选的循环泵应满足系统中所需的最大流量和扬程,同时要使循环水泵的最佳工况点,尽可能接近系统实际的工作点,且能长期在高效区运行,以提高循环水泵长期运行的经济性。2力求选择结构简单、体积小、重量轻、效率相对比较高的循环水泵。1力求运行时安全可靠、平稳、振动小、噪音低、抗汽蚀性能好。4选择适用于流量变化大而扬程变化不大的水泵,即G—H特性曲线趋于平坦的水泵。 2.2 循环水泵的参数 2.2.1 流量1根据设计热负荷计算流量;2根据室内采暖系统形式,在没有任何调节手段时,计算因重力或温降引起的垂直失调,并由此能克服或基本上克服这种垂直失调所需的最佳流量值;3根据

相关文档
最新文档