基于偏振特性的伪装目标检测方法研究

基于偏振特性的伪装目标检测方法研究
基于偏振特性的伪装目标检测方法研究

光的偏振特性研究

实验7 光的偏振特性研究 光的干涉衍射现象揭示了光的波动性,但是还不能说明光波是纵波还是横波。而光的偏振现象清楚地显示其振动方向与传播方向垂直,说明光是横波。1808年法国物理学家马吕斯(Malus,1775—1812)研究双折射时发现折射的两束光在两个互相垂直的平面上偏振。此后又有布儒斯特(Brewster,1781—1868)定律和色偏振等一些新发现。 光的偏振有别于光的其它性质,人的感觉器官不能感觉偏振的存在。光的偏振使人们对光的传播规律(反射、折射、吸收和散射)有了新的认识。本实验通过对偏振光的观察、分析和测量,加深对光的偏振基本规律的认识和理解。 偏振光的应用很广泛,从立体电影、晶体性质研究到光学计量、光弹、薄膜、光通信、实验应力分析等技术领域都有巧妙的应用。 一、实验目的 1. 观察光的偏振现象,了解偏振光的产生方法和检验方法。 2. 了解波片的作用和用1/4波片产生椭圆和圆偏振光及其检验方法。 3. 通过布儒斯特角的测定,测得玻璃的折射率。 4. 验证马吕斯定律。 二、实验原理 1. 自然光和偏振光 光是一种电磁波,电磁波中的电矢量E就是光波的振动矢量,称作光矢量。通常,光源发出的光波,其电矢量的振动在垂直于光的传播方向上作无规则的取向。在与传播方向垂直的平面内,光矢量可能有各种各样的振动状态,被称为光的偏振态。光的振动方向和传播方向所组成的平面称为振动面。按照光矢量振动的不同状态,通常把光波分为自然光、部分偏振光、线偏振光(平面偏振光)、圆偏振光和椭圆偏振光五种形式。 如果光矢量的方向是任意的,且在各方向上光矢量大小的时间平均值是相等的,这种光称为自然光。自然光通过介质的反射、折射、吸收和散射后,光波的电矢量的振动在某个方向具有相对优势,而使其分布对传播方向不再对称。具有这种取向特征的光,统称为偏振光。 偏振光可分为部分偏振光、线偏振光(平面偏振光)、圆偏振光和椭圆偏振光。如果光矢量可以采取任何方向,但不同方向的振幅不同,某一方向振动的振幅最强,而与该方向垂直的方向振动最弱,这种光为部分偏振光。如果光矢量的振动限于某一固定方向,则这种光称为线偏振光或平面偏振光。如果光矢量的大小和方向随时间作有规律的变化,且光矢量的末端在垂直于传播方向的平面内的轨迹是椭圆,则称为椭圆偏振光;如果是圆则称为圆偏振光。 将自然光变成偏振光的过程称为起偏,用于起偏的装置称为起偏器;鉴别光的偏振状态的过程称为检偏,它所使用的装置称为检偏器。实际上,起偏器和检偏器是可以通用的。本实验所用的起偏器和检偏器均为分子型薄膜偏振片。

空间目标的光学偏振特性研究

第37卷第7期 光电工程V ol.37, No.7 2010年7月Opto-Electronic Engineering July, 2010 文章编号:1003-501X(2010)07-0024-06 空间目标的光学偏振特性研究 李雅男,孙晓兵,乔延利,洪津,张荞 ( 中国科学院通用光学定标与表征技术重点实验室;安徽光学精密机械研究所,合肥 230031 ) 摘要:偏振特性是光与物质相互作用所表现的重要特性之一,与物质的性质密切相关。空间目标偏振特性可能会因为特定空间目标组成材料和空间目标轨道不同而存在差异,因此为空间目标的探测和识别提供了科学依据。本文通过空间目标材料以及典型空间目标模型的多角度偏振成像特性试验测量,分析了空间目标偏振特性及其变化机理。结果表明,空间目标表面材料的偏振特性对于目标的识别具有很重要的作用,太阳能电池板的姿态对卫星的偏振特性影响尤为明显。本文研究可以为空间目标光学偏振探测与识别提供应用基础研究支持。 关键词:物理光学;目标探测;偏振特性;空间目标 中图分类号:O436.2 文献标志码:A doi:10.3969/j.issn.1003-501X.2010.07.005 Photopolarimetric Characteristic of Space Target LI Ya-nan,SUN Xiao-bing,QIAO Yan-li,HONG Jin,ZHANG Qiao ( Key Laboratory of Optical Calibration and Characterization, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China ) Abstract:Polarization is one of the important optical characteristics of target. Certain materials used in constructing satellites possess unique polarization because of certain space target designs and different orbits. Thus polarization can be considered for target detection and recognition. Photopolarimetric characteristic of space target materials and model are measured and analyzed. Results show that the polarization properties of material are significant for target detection, and the attitude of solar panel has great effect on the polarization of satellite. This research can give support to the application for space target detection and recognition. Key words:physical optics; target detection; polarization; space target 0 引 言 地基光学探测系统对深空目标的探测有重要的作用,为了达到探测和识别目标的目的目前已经发展了若干种探测手段[1],例如,Sanchez等根据高轨碎片的光度特性来判断目标的生存状态以及特征[2],通过同时性的多色测光来判断不同卫星平台[3]。Jorgensen等人表明由于不同材料的空间目标具有不同的光谱反射率,因此采用低色散光谱观测对于目标的识别有重要的作用[4]。而目标的偏振特性由于反映了材料的本征特性也在空间目标的探测中也得到了应用,Stead在美国俄亥俄州Sulphur Grove观测站,在光电望远镜上加上偏振分析器完成空间目标的偏振观测,测量到一个卫星的偏振度最大达39%[5]。Kissel研究表明空间目标反射太阳光的偏振程度是很高的,并将偏振结果看成由漫反射和镜反射混合而产生的,按照这种假设理论计算与观测结果符合的比较好,他认为这足以证明偏振特性可以作为研究空间目标材料在太空中所受的影响[6],Beavers等人通过不同形状的卫星的光学偏振观测,表明偏振观测可以作为测试在轨目标状态、判断目标材料、探测目标在深空中暴露对其光学特性影响的一种手段,并将铝质材料和太阳能板表面的卫 收稿日期:2010-01-11;收到修改稿日期:2010-05-11 基金项目:国家863计划资助课题(2002AA731041);安徽省红外与低温等离子体重点实验室基金项目资助课题(2007C003018F) 作者简介:李雅男(1984-),女(汉族),江西九江人。博士生,主要从事遥感信息定量化的研究。E-mail:yananli@https://www.360docs.net/doc/4e11729785.html,。

光的偏振现象的研究

图2 二向色性起偏 图1 平面偏振光、自然光和部分偏振光 实验名称 光的偏振现象的研究 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1406 实验日期 20 年 月 日 时段 指导教师 一. 实验目的 1. 观察光的偏振现象,加深对光偏振基本规律的认识。 2. 了解产生和检验偏振光的基本方法。 3. 验证马吕斯定律。 4.1/4波片,1/2波片的研究; 5.利用旋光现象测定蔗糖溶液浓度 二. 实验仪器 导轨和机座, 氦氖激光器(功率约5mW ), 激光器架, 偏振片波片架, 滑动座(5个), 光传感器(光电探头),光功率测试仪,偏振片(两个),1/4波片(波长632.8nm ),1/2波片(波长632.8nm ),透明蔗糖溶液,螺丝刀 三. 实验原理(请携带并参阅大学物理课本) 1. 偏振光的基本概念 光波是一种电磁波,它的电矢量 和磁矢量 相互垂直,并垂直于光的传播方向C 。通常人们用电矢量 代表光的振动方向,并将电矢量和光的传播方向C 所构成的平面称为光的振动面。在传播过程中,电矢量的振动方向始终在某一确定方向的光称为平面偏振光或线偏振光,如图1(a)所示。振动面的取向和光波电矢 量的大小随时间作有规律的变化,光波电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆时,称为椭圆偏振光或圆偏振光,人眼逆光来看,若电矢量末端按照顺时针方向旋转,则称 评 分 教师签字

图3 双折射起偏原理图 为右旋椭圆或右旋圆偏振光,反之为左旋。通常光源发出的光波有与光波传播方向相垂直的一切可能的振动方向,没有一个方向的振动比其它方向更占优势。这种光源发射的光对外不显现偏振的性质,称为自然光,如图1(b)所示;如果光波电矢量的振动在传播过程中只是在某一确定方向上占优势,则此偏振光称为部分偏振光,如图1(c)所示。将自然光变成偏振光的器件称为起偏器,用来检验偏振光的器件称为检偏器。实际上,起偏器和检偏器是互为通用的。下面介绍几种常用的起偏和检偏方法。 2. 二向色性起偏、马呂斯定律、双折射起偏及波片 物质对不同方向的光振动具有选择吸收的性质,称为二向色性。当自然光射到偏振片上时,振动方向与透振方向垂直的光被吸收,振动方向与透振方向平行的光透过偏振片,从而获得偏振光。自然光透过偏振片后,只剩下沿透光方向的光振动,透射光成为平面偏振光(见图2所示)。 若在偏振片P 1后面再放一偏振片P 2,P 2就可以用作检验经P 1后的光是否为偏振光,即P 2 起了检偏器的作用。当起偏器P 1和检偏器P 2的偏振化方向间有一夹角,则通过检偏器P 2的偏振光强度满足马呂斯定律: (1) 当θ= 时,I=I 0, 光强最大;当θ= 时,I =0,出现消光现象;当θ为其它值时,透射光强介于0~I 0之间。 (1)双折射起偏 某些单轴晶体(如方解石和石英等)具有双折射现象。当一束自然光射到这些晶体上时,在界面射入晶体内部的折射光常为传播方向不同的两束折射光线,这两束折射光是光矢量振动方向不同的线偏振光。其中一束折射光 ,称为寻常光(或O 光);另一束折射光 ,其振动在 内,称为非常光(或e 光),如图3所示。 研究发现,这类晶体存在这样一个方向,沿该方向传播的光 ,该方向称为光轴。 主平面: 主截面: (2)反射和折射时光的偏振 自然光在两种透明媒质的界面上反射和折射时,反射光和折射光就能成为部分偏振光或平面偏振光,而且反射光中垂直入射面的振动较强,折射光中平行入射面的振动较强。实验发现,当改变入射角i 时,反射光的偏振程度也随之改变,当i 等于特定角0i 时,反射光只有垂直于入

偏振光谱

第四章振动光谱Chapter Four Vibrate Spectroscopy

4.1、基本原理Principles 4.2、红外光谱Infrared spectroscopy 4.3、红外光谱实验技术Experiment Technique of IR

4.1 基本原理Principles 4.1.1 光谱学基础Spectroscopy 4.1.1.1 光谱Spectroscopy 4.1.1.2 光的波粒二象性Wave-particle duality 4.1.1.3 光的能量组成The Compose of light 4.1.1.4 分子的能量组成The Compose of Molecular energy 4.1.2 分子振动模型 The model of Molecular Vibration 4.1.2.1 双原子分子的弹簧模型 The Spring Model of diatomic molecule 4.1.2.2 基本振动的类型 The Type of Fundamental Vibration 4.1.2.3 红外吸收产生的必要条件

4.1 基本原理principles 4.1.1 光谱学基础Spectroscopy 4.1.1.1 Spectroscopy Spectroscopy 光谱 研究光谱理论及其应用的光学学科分支 IR、UV-Vis、NMR、AAS…spectroscopy

4.1 基本原理principles 4.1.1 光谱学基础Spectroscopy 4.1.1.2 光的波粒二象性wave-particle duality 光是一种电磁波(electromagnetic wave),同时具有粒子性,具有波粒二象性(wave-particle duality) 波动性可用波长(wavelength) (λ),频率(frequency)(ν)和波数(wavenumber)(σ)来描述。

光的偏振特性研究

光的偏振特性研究 光是一种电磁波。干涉和衍射现象揭示了光的波动性,而光的偏振现象证实了光的横波性。本实验主要研究光的一些基本的偏振特性,深入学习光的偏振理论。 一、实验目的 (1)观察光的偏振现象,加深对偏振光的基本概念的理解。 (2)了解偏振光的产生和检验方法。 (3)观测布儒斯特角及测定玻璃折射率。 (4)观测椭圆偏振光和圆偏振光。 二、实验仪器 光具座,激光器,偏振片,1/4波片,光屏,光电转换装置,观测布儒斯特角装置。 三、实验原理 光波的振动方向与光波的传播方向垂直。自然光的振动在垂直于其传播方向的平面内,取所有可能的方向,某一方向振动占优势的光叫部分偏振光,只在某一个固定方向振动的光线叫线偏振光或平面偏振光。将非偏振光(如自然光)变成线偏振光的方法称为起偏,用以起偏的装置或元件叫起偏器。 1.偏振光的产生 偏振光的产生有以下几种方式: (1)由非金属镜面的反射。当自然光由空气照射在非金属镜面上时,反射光和透射光都将成为部分偏振光,当入射角增大到某一特定值是,反射光成为完全偏振光,只剩下垂直于入射面分量,此时的入射角φ称布儒斯特角,介质的折射率n=tan φ。 (2)由玻璃堆折射。当自然光以布鲁斯特角入射到迭在一起的多层玻璃上时,经过多次反射后,透射的光就近似为线偏振光; (3)用偏振片可得到一定程度的线偏振光; (4)利用双折射晶体产生的寻常光和非常光,均为线偏振光。 2.偏振片 偏振片一般用具有网状分子结构的高分子化合物—聚乙烯醇薄膜作为片基,将这种薄膜浸染具有强烈二向色性的碘,经过硼酸水溶液的还原稳定后,再将其单向拉伸4~5倍以上而制成。偏振片既可以用来使自然光变为平面偏振光——起偏,也可以用来鉴别线偏振光、自然光和部分偏振光——检偏。用作起偏的偏振片叫做起偏器,用作检偏的偏振器件叫做检偏器。实际上,起偏器和检偏器是通用的。 3.马吕斯定律 设两偏振片透射方向夹角为θ,自然光通过起偏器后变成光强为I 0的线偏振光,再经过检偏器后,透射光的强度变为 θ20cos I I = (1) 上式即为马吕斯定律。显然,以光线传播方向为轴,转动检偏器时,透射光强度I 将发生周期变化。若入射光是部分偏振光或椭圆偏振光,则极小值不为0。若光强完全不变化,则入射光是自然光或圆偏振光。这样,根据透射光强度变化的情况,可将线偏振光和自然光和部分偏振光区别开来。 nemo xatu 2011.11.21

光的偏振现的研究

图 2 二向色性起偏 图1 平面偏振光、自然光和部分偏振光 实验名称 光的偏振现象的研究 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1406 实验日期 20 年 月 日 时段 指导教师 一. 实验目的 1. 观察光的偏振现象,加深对光偏振基本规律的认识。 2. 了解产生和检验偏振光的基本方法。 3. 验证马吕斯定律。 4.1/4波片,1/2波片的研究; 5.利用旋光现象测定蔗糖溶液浓度 二. 实验仪器 导轨和机座, 氦氖激光器(功率约5mW ), 激光器架, 偏振片波片架, 滑动座(5个), 光传感器(光电探头),光功率测试仪,偏振片(两个),1/4波片(波长632.8nm ),1/2波片(波1. 偏振光的基本概念 光波是一种电磁波,它的电矢量 和磁矢量 相互垂直,并垂直于光的传播方向C 。通常人们用电矢量 代表光的振动方在传播过程中,电矢量的振动方向始终在某一确定方向的光称为平面偏振光或线偏振光,如图1(a)所示。振动面的取向和光波电矢 量的大小随时间作有规律的变化,光波电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆时,称为椭圆偏振光或圆偏振光,人眼逆光来看,若电矢量末端按照顺时针方向旋转,则称 评 分 教师签字

图3 双折射起偏原理图 为右旋椭圆或右旋圆偏振光,反之为左旋。通常光源发出的光波有与光波传播方向相垂直的一切可能的振动方向,没有一个方向的振动比其它方向更占优势。这种光源发射的光对外不显现偏振的性质,称为自然光,如图1(b)所示;如果光波电矢量的振动在传播过程中只是在某一确定方向上占优势,则此偏振光称为部分偏振光,如图1(c)所示。将自然光变成偏振光的器件称为起偏器,用来检验偏振光的器件称为检偏器。实际上,起偏器和检偏器是互为通用的。下面介绍几种常用的起偏和检偏方法。 2. 二向色性起偏、马呂斯定律、双折射起偏及波片 物质对不同方向的光振动具有选择吸收的性质,称为二向色性。当自然光射到偏振片上时,振动方向与透振方向垂直的光被吸收,振动方向与透振方向平行的光透过偏振片,从而获得偏振光。自然光透过偏振片后,只剩下沿透光方向的光振动,透射光成为平面偏振光(见图2所示)。 若在偏振片P 1后面再放一偏振片P 2,P 2就可以用作检验经P 1后的光是否为偏振光,即P 2 起了检偏器的作用。当起偏器P 1和检偏器P 2的偏振化方向间有一夹角,则通过检偏器P 2的偏振光强度满足马呂斯定律: (1) 当θ= 时,I=I 0, 光强最大;当θ= 时,I =0,出现消光现象;当θ为其它值时,透射光强介 于0~I 0之间。 (1)双折射起偏 某些单轴晶体(如方解石和石英等)具有双折射现象。当一束自然光射到这些晶体上时,在界面射入晶体内部的折射光常为传播方向不同的两束折射光线,这两束折射光是光矢量振动方向不同的线偏振光。其中一束折射光 ,称为寻常光(或O 光);另一束折射光 ,其振动在 内,称为非常光(或e 光),如图3所示。 研究发现,这类晶体存在这样一个方向,沿该方向传播的光 ,该方向称为光轴。 主平面: 主截面: (2)反射和折射时光的偏振 自然光在两种透明媒质的界面上反射和折射时,反射光和折射光就能成为部分偏振光或平面偏振光,而且反射光中垂直入射面的振动较强,折射光中平行入射面的振动较强。实验发现,当改变入射角i 时,反射光的偏振程度也随之改变,当i 等于特定角0i 时,反射光只有垂直于入

(最新整理)反射光的偏振特性

(完整)反射光的偏振特性 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)反射光的偏振特性)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)反射光的偏振特性的全部内容。

反射光的偏振特性—布儒斯特角的测量 1808年马吕斯(1775-1812)发现了光的偏振现象。通过深入研究,证明了光波是横波,使 人们进一步认识了光的本质。随着科学技术的发展,偏振光技术在各个领域都得到了广泛应用, 特别是在光学计量、实验应力分析、晶体性质研究和激光等方面更为突出.在我们日常生活和工 作中,太阳光、照明用光一般多为自然光。而自然光经过一些材料的反射和透射后可能变成部分 偏振光.自然光经过一些特殊材料,如偏振片或双折射晶体材料制作的棱镜后,就会变成线偏振光. 线偏振光经过波片后就可能成为椭圆偏振光。 【目的与要求】 1.用最小偏向角法测量棱镜材料的折射率。 2.测量通过起偏器、1/4波片后的光的偏振特性,了解线偏振光、圆偏振光和椭圆偏振光的特点. 3。通过观察从棱镜材料表面反射回来的光的偏振特性,了解反射光的偏振特性,测量出布儒斯特角。 4.用测量值验证布儒斯特角公式的正确性。 【实验原理】 一、棱镜材料的折射率的测量 当一束光斜入射于棱镜表面时,其光路如图1所示。

n 为材料的折射率. 同理出射角γ/ 为sinγ/= sini//n (–1) 根据几何关系可以证明入射光与出射光之间的夹角为:δ=i+γ/-A,而且δ有一个极小值δmin ,可以证明:当光束偏转角为δmin时,有i=γ/γ= i/, 此时δ=2i-A 即i=(δ+A)/2 而A=γ+i/=2γγ=A/2 由(–1)式可得: n=sin[(A+δmin)/2]/sin(A/2)(–2)因此,只要我们测量出δmin,用(–2)就可得到材料相对于该测量光的折射率n。 二、偏振光 光是一种横波,它的振动方向是与传播方向相互垂直的。偏振是指光波的振动方向在空间上的一种相对取向的现象。当这个振动方向在垂直于传播方向的平面内可取所有可能的方向,并且没有一个方向占优势时,我们称之为自然光或非偏振光。而如果有某一个方向上的振动占优势时,则称之为部分偏振光。只有一个单一的振动方向的光叫线偏振光,而在一个振动周期内其振动矢量的端点的轨迹为一个圆或椭圆时,我们称之为圆偏振光或椭圆偏振光。 在我们日常生活和工作中,太阳光、照明用光一般多为自然光。而自然光经过一些材料的反射和透射后可能变成部分偏振光.自然光经过一些特殊材料,如偏振片或双折射晶体材料制作的棱镜后,就会变成线偏振光,一些激光器也可产生很好的线偏振光。线偏振光经过波片后就可能成为椭圆偏振光。 在本实验中,我们将通过多种实验手段来产生线偏振光和椭圆偏振光(圆偏振光被看成是一个特例)。 偏振光的数学描述: 对于线偏振光和椭圆偏振光,在数学上我们常用两个垂直振动的合成来描述。在与光传播方向相垂直的平面内取一个直角坐标系,将代表振动特性的电矢量E分解成Ex和Ey,它们是同频ω,假设相位相差δ,振幅分别为Ax和Ay,即

1光的偏振现象的研究134

光的偏振现象的研究 光的偏振现象是波动光学中的一种重要现象,在诸如光调制器、光开关、应力分析等方面有着广泛的应用。 实验目的 1.观察光的偏振现象,掌握起偏和检偏的方法,验证马吕斯定律。 2.了解产生椭圆偏振光和圆偏振光的方法及波片的作用,检测偏振光干涉的光强。 实验原理及方法 1. 自然光和偏振光 光波是一种电磁波,其电矢量E和磁矢量H相互垂直,且均与光的传播方向垂直。由于光对物质的作用主要是电矢量的作用,所以电矢量又称为光矢量。通常以电矢量的方向代表光的振动方向,并将电矢量和光传播方向所构成的平面称为振动面。 普通光源含有大量发光原子或分子。单个原子和分子发出的光,其光矢量有一定的方向,但大量的原子和分子发出的光其光矢量具有一切可能的方向,没有一个方向的振动比其它方向更占优势。在与光传播方向垂直的平面内,光矢量有均匀对称分布的特点。这种光称为自然光(非偏振光)。如果光振动在某一方向占优势,这种光称为部分偏振光;如果光矢量只沿某一固定方向振动,这种光称为线偏振光或平面偏振光,见图1。如果在垂直于光传播方向的平面内,光矢量以一定频率绕传播方向转动,其矢端轨迹为一个圆或椭圆,这种光称为圆偏振光或椭圆偏振光。 图1 能使自然光变为偏振光的器件称为起偏器,能够检验偏振态的器件称为检偏器(起偏器和检偏器一般可以通用)。产生和检验偏振光的过程分别称为起偏和检偏。下面介绍起偏和检偏的常用方法。 2. 产生平面偏振光的方法 2.1 二向色性起偏 某些晶体内部有一个特殊的方向(称为透光方向),沿透光方向的光振动几乎可以全部

透过,与透光方向垂直的光振动几乎全被吸收。这种选择吸收的特性称为二向色性。偏振片就是利用二向色性制成的器件,自然光透过偏振片后,只剩下沿透光方向的光振动,透射光成为平面偏振光,如图2所示。 图2 二向色性起偏 图3 晶体双折射起偏 2.2 双折射现象 自然光射到某些各向异性晶体(如方解石、石英等)上时,在晶体内分为两束平面偏振光,如图3所示。一束称为寻常光(o 光),另一束称为非常光(e 光),两束光的振动面相互垂直。这种现象称为双折射。利用双折射制成的起偏器有尼科尔棱镜、格兰棱镜等。 研究发现,光沿某特殊方向在晶体传播时不发生双折射,也不能起偏,这个方向称为双折射晶体的光轴。 如图4所示,当自然光投射到两种透明媒质的界面上时,反射光和折射光一般成为部分偏振光。如果入射角B ?满足布儒斯特定律 21/B tg n n ?= (n 1,n 2为二种媒质的折射率) 则反射光成为平面偏振光,其振动面垂直入射面,而透射光仍为部分偏振光。利用多块玻璃叠成的玻璃片,可以提高透射光的偏振程度,如图5所示。 图4 反射光和折射光的偏振态的变化 图5 用玻璃堆产生平面偏振光 3.1/4波片和圆偏振光、椭圆偏振光的产生 如图6所示,当振幅为A 的单色平面偏振光垂直射入双折射晶片后,产生双折射,入

偏振-成像-光谱整理

一、偏振探测原理 在介质中传输的光,与介质发生相互作用后,其偏振状态的斯托克斯参数或琼斯矩阵会发生变化,改变的程度与介质的物理特性(如其介质特性、结构特征、粗糙度、水分含量、观察角、辐照度等条件)密切相关。 利用光(主要为偏振光)来照射被测物质,经被测物与偏振光的相互作用后偏振光的偏振信息将按规律产生相应的变化,通过检测这种偏振信息的变化来实现测量该被测物的属性,是偏振探测的物理基础。 偏振光的检测是偏振光的应用和偏振探测的一个重要问题,偏振光的检测主要包括偏振光的强度、相位、和取向三个参量的定性分析和定量测量,其基本方法是把上述三个参量的测量转化为光强的测量。 二、偏振探测与雷达探测的对比 在目标识别应用上,与主动雷达扫描方式不同,偏振成像设备体积小、功耗低,探测对象是物体主动发射或反射的电磁波中的偏振部分,便于自身隐蔽。 三、偏振探测与传统成像的对比 在传统的图像处理、分析过程中所使用的技术都是基于光的强度特征和波长特征所提供的信息,这使现有的图像处理、分析以及理解算法很复杂,并且只能对图像中目标的轮廓、类别等做一些初步的分析和理解[5];而偏振图像有其自己统一简单的算法[6],其结果在图像

目视效果方面明显。偏振探测的特点(相对于普通成像技术): ①偏振探测有助于辨别具有不同质地的目标; ②偏振图像与光强度图像相比,对比度提高; ③偏振图像对置于在背景之上物体的边缘增强效果明显; ④偏振图像与波段有依赖关系; ⑤偏振度与物体表面粗糙度、观测角等依赖关系较 四、多光谱技术 物质的化学组成或结构的不同,导致它们的能带结构以及转动、振动能级不同,其结果使它们的发射光谱、反射光谱、荧光光谱或拉曼光谱也会不同。因此,可通过探测空间光谱分布来探测物质及其在空间上的分布特性。这种技术称为多光谱技术,它建立在能带理论基础之上,其技术基础是光谱分辨和光谱探测技术。 目前多光谱技术有两种不同的含义[1]:一是利用物体的发光或反射光特性,通过光谱分辨技术获取物体的特征光谱信息,来识别物体;二是利用光与物质的相互作用使光发生某种变化,并探测光的变化来获取物质的有关特征信息。后一种多光谱技术所探测的光的变化可能是光谱的变化,或是光强度、偏振等参量的变化。

大学物理实验《偏振光的观测与研究》

实验3.8 偏振光的观测与研究 偏振光的理论意义和价值是,证明了光是横波。同时,偏振光在很多技术领域得到了广泛的应用。如偏振现象应用在摄影技术中可大大减小反射光的影响,利用电光效应制作电光开关等。 【实验目的】 1.通过观察光的偏振现象,加深对光波传播规律的认识。 2.掌握偏振光的产生和检验方法。 3.观察布儒斯特角及测定玻璃折射率。 4.观测圆偏振光和椭圆偏振光。 【实验仪器】 光具座、激光器、光点检流计、起偏器、检偏器、1/4波片、1/2波片、光电转换装置、观测布儒斯特角装置、带小孔光屏、钠光灯。 【实验原理】 按照光的电磁理论,光波就是电磁波,电磁波是横波,所以光波也是横波。在大多数情况下,电磁辐射同物质相互作用时,起主要作用的是电场,因此常以电矢量作为光波的振动矢量。其振动方向相对于传播方向的一种空间取向称为偏振,光的这种偏

振现象是横波的特征。 根据偏振的概念,如果电矢量的振动只限于某 一确定方向的光,称为平面偏振光,亦称线偏振光; 如果电矢量随时间作有规律的变化,其末端在垂直于传播方向的平面上的轨迹呈椭圆(或圆),这样的光称为椭圆偏 振光(或圆偏振光);若电矢量的取向与大小都随时间作无规则变 化,各方向的取向率相同,称为自然光,如图3-26所示;若电矢 量在某一确定的方向上最强,且各向的电振动无固定相位关系, 则称为偏振光。 1.获得偏振光的方法 (1)非金属镜面的反射,当自然光从空气照射在折射率为n 的非金属镜面(如玻璃、水等)上,反射光与折射光都将成为部 分偏振光。当入射角增大到某一特定值φ0时,镜面反射光成为完 全偏振光,其振动面垂直于射面,这时入射角φ称为布儒斯特角, 也称起偏振角,由布儒斯特定律得: 0tan n φ= (3-51) 其中,n 为折射率。 (2)多层玻璃片的折射,当自然光以布儒斯特角入射到叠在 一起的多层平行玻璃片上时,经过多次反射后透过的光就近似于 线偏振光,其振动在入射面。 图3-26 自然光

名称光的偏振现象的研究

图2 二向色性起偏 实验名称 光的偏振现象的研究 (请携带并参阅大学物理课本) 姓 名 学 号 班 级 桌 号 教 室 基教1406 实验日期 20 年 月 日 时段 指导教师 一. 实验目的 1. 观察光的偏振现象,加深对光偏振基本规律的认识; 2. 了解产生和检验偏振光的基本方法; 3. 验证马吕斯定律; 4.1/2波片,1/4波片的研究; 5.利用旋光现象测定蔗糖溶液浓度. 二. 实验仪器 导轨和机座, 带布儒斯特窗的氦氖激光器, 激光器架, 偏振片、波片架, 滑动座(4个), 光传感器(光电探头),光功率测试仪,偏振片(2个),1/2波片(波长632.8nm ),1/4波片(波 长632.8nm ),透明蔗糖溶液,螺丝刀。 三. 实验原理 1. 偏振光的基本概念 光波是一种电磁波,它的电矢量 和磁矢量 相互垂直,并垂直于光的传播方向C 。通常人们用电矢量 代表光的振动方向,并将电矢量和光的传播方向C 所构成的平面称为光的振动面。在传播过程中,电矢量的振动方向始终在某一确定方向的光称为平面偏振光或线偏振光,如图1(a)所示。振动面的取向和光波电矢 评 分 教师签字 图1 平面偏振光、自然光和部分偏振光

图3 双折射起偏原理图 量的大小随时间作有规律的变化,光波电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆时,称为椭圆偏振光或圆偏振光,人眼逆光来看,若电矢量末端按照顺时针方向旋转,则称为右旋椭圆或右旋圆偏振光,反之为左旋。通常光源发出的光波有与光波传播方向相垂直的一切可能的振动方向,没有一个方向的振动比其它方向更占优势。这种光源发射的光对外不显现偏振的性质,称为自然光,如图1(b)所示;如果光波电矢量的振动在传播过程中只是在某一确定方向上占优势,则此偏振光称为部分偏振光,如图1(c)所示。将自然光变成偏振光的器件称为起偏器,用来检验偏振光的器件称为检偏器。实际上,起偏器和检偏器是互为通用的。下面介绍几种常用的起偏和检偏方法。 2. 二向色性起偏、马呂斯定律、双折射起偏及波片 物质对不同方向的光振动具有选择吸收的性质,称为二向色性。当自然光射到偏振片上时,振动方向与透振方向垂直的光被吸收,振动方向与透振方向平行的光透过偏振片,从而获得偏振光。自然光透过偏振片后,只剩下沿透光方向的光振动,透射光成为平面偏振光(见图2所示)。 若在偏振片P 1后面再放一偏振片P 2,P 2就可以用作检验经P 1后的光是否为偏振光,即P 2起了检偏器的作用。当起偏器P 1和检偏器P 2的偏振化方向间有一夹角,则通过检偏器P 2的偏振光强度满足马呂斯定律: (1) 当θ= 时,I=I 0, 光强最大;当θ= 时, I =0,出现消光现象;当θ为其它值时,透射光强介于0~I 0之间。 (1)双折射起偏 某些单轴晶体(如方解石和石英等)具有双折射现象。当一束自然光射到这些晶体上时,在界面射入晶体内部的折射光常为传播方向不同的两束折射光线,这两束折射光是光矢量振动方向不同的线偏振光。其中一束折射光 ,称为寻常光(或O 光);另一束折射光 ,其振动在 内,称为非常光(或e 光),如图3所示。 研究发现,这类晶体存在这样一个方向,沿该方向传播的光 ,该方向称为光轴。 主平面: 主截面: (2)反射和折射时光的偏振 自然光在两种透明媒质的界面上反射和折射时,反射光和折射光就能成为部分偏振光或平面偏振光,而且反射光中垂直入射面的振动较强,折射光中平行入射面的振动较强。实验发现,

偏振光的观察与研究

实验报告 PB09214023葛志浩 PB09214047卢焘 2011-11-22 得分: 实验题目:偏振光的观察与研究 实验目的:1.观察光的偏振现象,加深偏振的基本概念。 2.了解偏振光的分类以及产生和检验方法,掌握马吕斯定律。 3.观测布儒斯特角及测定玻璃折射率。 4.观测椭圆偏振光和圆偏振光。 实验仪器:激光器,起偏器,检偏器,硅光电池,1/4波片,光电流放大器,分束板。 实验原理: 一,偏振光的基本概念和分类 光的偏振是指光的振动方向不变,或光矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆的现象。光有五种偏振态:自然光(非偏振光),线偏振光,部分偏振光,圆偏振光,椭圆偏振光 二,产生偏振光的方法: 1,利用光在界面反射和透射时光的偏振现象。 反射光中的垂直于入射面的光振动(称s 分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值(称为布雷斯特角)时,反射光成为完全线偏振光(s 分量)。折射光为部分偏振光,而且此时的反射光线和折射光线垂直,这种现象称之为布儒斯特定律。该方法是可以获得线偏振光的方法之一。通过测量介质的布雷斯特角可以得到介质的折射率。 1 2 n n tg =α )1( 2,利用光学棱镜,如尼科尔棱镜,格兰棱镜等。 3,利用偏振片。 三,改变光的偏振态的元件——波晶片。 平面偏振光垂直入射晶片,如果光轴平行于晶片表面,会产生比较特殊的双折射现象,这时非常光e 和寻常光o 的传播方向是一致的,但速度不同,因而从晶片出射时会产生相位差。 线偏振光垂直入射1/4波片,其振动方向与波片光轴成角θ,则出射光的偏振态与θ的关系如下: 1,2 0π θ或=时,出射光为线偏振光; 2,4 π θ= 时,出射光为圆偏振光; 3,θ为其它值时,出射光为椭圆偏振光。 利用偏振片可以由自然光得到线偏振光,利用1/4波

实验3 氦氖激光器的偏振与发散特性测试数据处理与分析

He-Ne激光器偏振光数据处理与分析 1、He-Ne激光器偏振光测量 表1 He-Ne激光器偏振光测量数据表 偏振角度(°)输出功率(mW)偏振角度(°)输出功率(mW)偏振角度(°)输出功率(mW) 0 1.1361250.8032500.090 5 1.0731300.8592550.096 100.9951350.9342600.119 150.835140 1.0022650.169 200.743145 1.0662700.204 250.665150 1.1172750.252 300.556155 1.1452800.315 350.464160 1.1872850.412 400.378165 1.2012900.495 450.291170 1.1722950.618 500.225175 1.1473000.710 550.170180 1.1043050.801 600.130185 1.0343100.867 650.0981900.9483150.966 700.0881950.841320 1.027 750.0922000.755325 1.102 800.1132050.659330 1.145 850.1532100.574335 1.174 900.1982150.473340 1.192 950.2812200.386345 1.183 1000.3622250.285350 1.168 1050.4592300.223355 1.147 1100.5252350.172360 1.098 1150.6082400.127 1200.6992450.099 图1 He-Ne激光器偏振特性曲线图

国内空间目标散射建模总结

国内空间目标散射建模总结 2011年,南京理工大学的徐实学在其博士论文《材质表面散射光偏振特性分析用于空间目标探测的研究》中,研究了典型空间目标材料散射光的偏振度等偏振特性,对不同飞行姿态和探测环境的空间目标偏振特性分析方法进行了讨论。文中的讨论是基于实验测量的数据进行的,没有应用具体形式的BRDF模型。 2004年,63916部队和中科院光电技术研究所的李淑军等人在《带太阳能帆板的卫星光度特性分析》中,研究了卫星主体和帆板两种基本结构在一定漫反射率情况下的地面照度计算公式,理论计算表明,虽然太阳能帆板的漫反射率要比卫星主体低30倍,但在卫星地面照度的计算和实际观测中仍不应忽略。 2010年,咸阳师范学院的王明军等人在《复杂环境下具有轨道特征目标模型光散射特性研究》中,将BRDF应用于卫星散射特性研究,但是都是测量获得而没有理论模型,文章给出了空间目标模型表面不同反射率材料对可见光散射光谱特性,以及在相同反射率条件下光散射强度随轨道高度分布特性。 2009年,长春光机所的张景旭在《国外地基光电系统空间目标探测的进展》中,介绍了国外先进地基空间监视系统的发展现状,从地基光电系统观测空间目标的角度介绍了美国星火靶场和毛伊岛光学站的情况和设备,提供了国外地基空间目标光学探测的重要参考资料。 2010年,电子工程学院的杨明等人在《基于BRDF条件下卫星可见光散射特性分析》中,将单一波长BRDF测量方法扩展到可见光波段的加权平均测量,利用实验测量的BRDF数值求解出卫星表面材料的BRDF的三维特性。 2008年,西安电子科技大学和安徽光机所的吴振森、曹运华、魏庆农等人在《基于粗糙样片光BRDF的空间目标可见光散射研究》中,利用遗传算法,结合实验测量的五参量BRDF模型参数,获得了目标样片平均BRDF的参量化统计模型。结果显示因为卫星包覆材料和太阳能电池板都比较光滑,所以整个卫星的可见光散射强度仅在卫星某些面的镜反射方向有较大值,而在其它方向的值都很小。 2009年,哈尔滨工业大学的汪洪源等人在《基于双向反射分布函数的空间卫星紫外动态特性研究》中,面向天基探测对卫星紫外特性进行建模,BRDF模型选用Davies模型,由于地球大气层吸收紫外光,文章考虑太阳光和月球漫反射光对卫星反射紫外光进行计算,给出了比较完整的目标特性计算流程。空间目标

偏振光特性的研究

光学设计性实验论文

偏振光特性的研究 摘要: 实验目的: (一)学习用光电转换的方法测定相对光强, 验证马吕斯定律。 (二)研究1/4波片的光学特性 (三)研究半导体激光器的偏振特性(测出其偏振度) (四)研究物质的旋光特性 (五)观察石英晶体的旋光特性和测量旋光度 (六)观察旋光色散,并解释现象 实验要求: (一)掌握各种偏振光的特性。 (二)学会辨别各种偏振光。 (三)了解偏振光干涉和双折射现象 关键词: 偏振、马吕斯定律、1/4波片、偏振特性、偏振度、旋光特性、旋光色散。 引言: 光的干涉和衍射现象揭示了光的波动性质,而光的偏振现象进一步验证了光波是横波。我们研究偏振现象不仅可以认识光的电磁波性质,而且可以对光的传播规律有许多新的认识。 实验原理: 1.偏振光的种类 光是电磁波,它的电矢量E和磁矢量H相互垂直,且又垂直于光的传播方向.通常用电矢量代表光矢量,并将光矢量和光的传播方向所构成的平面称为光的振动面.按光矢量的不同振动状态,可以把光分为五种偏振态:如光矢量沿着一个固定方向振动,称为线偏振光或平面偏振光;如在垂直于传播方向的平面内,光矢量的方向是任意的,且各个方向的振幅相等,则称为自然光;如果有的方向光矢量的振幅较大,有的方向振幅较小,则称为部分偏振光;如果光

矢量的大小和方向随时间作周期性的变化,且光矢量的末端在垂直于光传播方向的平面内的轨迹是圆或椭圆,则分别称为圆偏振光或椭圆偏振光. 能使自然光变成偏振光的装置或器件,称为起偏器;用来检验偏振光的装置或器件,称为检偏器. 2.线偏振光的产生 (1)反射和折射产生偏振 根据布儒斯特定律,当自然光以 n i b arctan =的入射角从空气或真空入射至折射率为n 的介质 表面上时,其反射光为完全的线偏振光,振动面垂直于入射面,而透射光为部分偏振光,b i 称 为布儒斯特角. 如果自然光以b i 入射到一叠平行玻璃片堆上,则经过多次反射和折射最后从玻璃片堆透射 出来的光也接近于线偏振光.玻璃片的数目越多,透射光的偏振度越高. (2)偏振片 它是利用某些有机化合物晶体的“二向色性”制成的.当自然光通过这种偏振片后,光矢量垂直于偏振片透振方向的分量几乎完全被吸收,光矢量平行于透振方向的分量几乎完全通过,因此透射光基本上为线偏振光. (3)双折射产生偏振 当自然光入射到某些双折射晶体(如方解石、石英等)时,经晶体的双折射所产生的寻常光(o 光)和非常光(e 光)都是线偏振光. 3.波晶片 波晶片简称波片,它通常是一块光轴平行于表面的单轴晶片,一束平面偏振光垂直入射到波晶片后,便分解为振动方向与光轴方向平行的e 光和与光轴方向垂直的o 光两部分(如图1所示).这两种光在晶体内的传播方向虽然一致,但它们在晶体内传播的速度却不相同(为么?).于 是,e 光和o 光通过波晶片后就产生固定的相位差δ, 即 l n n o e )(2-= λ π δ

大学物理实验光的偏振

实验27 光的偏振 一、实验目的 1、观察光的偏振现象,加深对光的偏振的理解。 2、了解偏振光的产生及其检验方法。 3、观测布儒斯特角,测定玻璃折射率。 4、观测椭圆偏振光与圆偏振光。 5、了解1/2波片和1/4波片的用途。 二、实验原理 1、光的偏振状态 光是电磁波,它是横波。通常用电矢量E表示光波的振动矢量。 (1)自然光其电矢量在垂直于传播方向的平面内任意取向,各个方向的取向概率相等,所以在相当长的时间里(10-5秒已足够了),各取向上电矢量的时间平均值是相等的,这样的光称为自然光,如图27-l所示。 (2)平面偏振光电矢量只限于某一确定方向的光,因其电矢量和光线构成一个平面而称其为平面偏振光。如果迎着光线看,电矢量末端的轨迹为一直线,所以平面偏振光也称为线偏振光,如图27-2所示。 (3)部分偏振光电矢量在某一确定方向上较强,而在和它正交的方向上较弱,这种光称为部分偏振光,如图27-3所示。部分偏振光可以看成是线偏振光和自然光的混合。 (4)椭圆偏振光迎着光线看,如果电矢量末端的轨迹为一椭圆,这样的光称为椭圆偏振光。椭圆偏振光可以由两个电矢量互相垂直的、有恒定相位差的线偏振光合成得到。 (5)圆偏振光迎着光线看,如果电矢量末端的轨迹为一个圆,则这样的光称为圆偏振光。圆偏振光可视为长、短轴相等的椭圆偏振光。 图27-4 椭圆偏振光

2、布儒斯特定律 反射光的偏振与布儒斯特定律 如图27-5所示,光在两介质(如空气和玻璃片等)界面上,反射光和折射光(透射光)都是部分偏振光。当反射光线与折射光线的夹角恰为90°时,反射光为线偏振光,其电矢量振动方向垂直于入射光线与界面法线所决定的平面(入射面)。此时的透射光中包含平行于入射面的偏振光的全部以及垂直于入射面的偏振光的其余部分,所以透射光仍为部分偏振光。由折射定律很容易导出此时的入射角 α 满足关系 1 2 tan n n = α (27-1) (27-1)式称为布儒斯特定律,入射角 α 称为布儒斯特角,或称为起偏角。若光从空气入射到玻璃(n 2约为1.5),起偏角约56°。 3、偏振片、起偏和检偏、马吕斯定律 (1)由二向色性晶体的选择吸收所产生的偏振 自然光 偏振光 1I 0 起偏器 检偏器 自然光 I ' 图a 偏振片起偏 图b 起偏和检偏 图27-6 偏振片 有些晶体(如电气石)、长链分子晶体(如高碘硫酸奎宁),对两个相互垂直振动的电矢量具有不同的吸收本领,这种选择吸收性称为二向色性。在两平板玻璃间,夹一层二向色性很强的物质就制成了偏振片。自然光通过偏振片时,一个方向的电矢量几乎完全通过(该方向称为偏振片的偏振化方向),而与偏振化方向垂直的电矢量则几乎被完全吸收,因此透射光就成为线偏振光。根据这一特性,偏振片既可用来产生偏振光(起偏),也可用于检验光的偏振状态(检偏)。 (2)马吕斯定律 用强度为I 0的线偏振光入射,透过偏振片的光强为I ,则有如下关系 θ 20cos I I = (27-2) (27-2)式称为马吕斯定律。θ 是入射光的E 矢量振动方向和检偏器偏振化方向之间的夹角。以入射光线为轴转动偏振片,如果透射光强 I 有变化,且转动到某位置时I =0,则表明入射 光为线偏振光,此时 θ =90°。 4、波片 (1)两个互相垂直的、同频率的简谐振动的合成 设有两各互相垂直且同频率的简谐振动,它们的运动方程分别为 )cos() cos(2211?ω?ω+=+=t A y t A x (27-3) 合运动是这两个分运动之和,消去参数t ,得到合运动矢量末端运动轨迹方程为 )(sin )cos(2122 12212 2 2212????-=--+A A xy A y A x (27-4) 上式表明,一般情况下,合振动矢量末端运动轨迹是椭圆,该椭圆在2122A A ?的矩形范围内。如果(27-3)式表示的是两线偏振光,则叠加后一般成为椭圆偏振光。下面讨论相位 差 12???-=?为几种特殊值的情况。 ①当π?k 2=?( k =0, ±1, ±2, …)时,(27-4)式变为

相关文档
最新文档