亚油酸修饰羧甲基壳聚糖纳米粒固定化

亚油酸修饰羧甲基壳聚糖纳米粒固定化
亚油酸修饰羧甲基壳聚糖纳米粒固定化

第49集海洋科学集刊No.49 2008年8月STUDIA MARINA SINICA Aug,2008

亚油酸修饰羧甲基壳聚糖纳米粒固定化

菠萝蛋白酶的研究*

谭玉龙,刘晨光,刘成圣,于乐军

(中国海洋大学海洋生命学院,青岛266003)

酶的固定化技术有很多优点,它可以显著提高酶的活力和稳定性,使酶可以在极端的pH和温度下进行反应。不同的剂型已应用于酶的固定化,比如薄膜(Tanioka et al. 1998, Arica 2000),微球(Wu et al. 2005),纳米粒(Akiyoshi et al. 1998, Li et al. 2003, Tang et al. 2007)等。最近,纳米材料因为其特别的性质与广泛的应用已越来越多地引起人们的关注,纳米胶束和纳米粒已被用于固定化酶。

由聚乙二醇-聚天冬氨酸嵌段共聚物制备的纳米胶束可用来包埋酶分子(溶菌酶、胰蛋白酶)(Harada et al., 1998, 2001, Yuan et al. 2005)。Sunamoto的研究小组(Akiyoshi et al. 1998)曾合成了普鲁兰糖的胆甾烯基衍生物,可在水中自聚集成凝胶纳米粒,并可与胰岛素等药物形成稳定的复合物。在以往的研究中发现胰蛋白酶可负载于纳米粒上(Liu et al. 2005),这与氯键疏水作用力以及离子相互作用有关。但固定化酶的性质(比如稳定性、动力学常数等)还需要进一步研究。

本文作者采用亚油酸修饰羧甲基壳聚糖,通过超声的方法制备凝胶纳米粒。选择菠萝蛋白酶应用于实验——因为其在动物炎症及人类炎性肠病等方面都有积极的治疗作用。酪蛋白作为酶解反应的底物。将菠萝蛋白酶固定于纳米粒上。探讨了影响固定化酶活力的因素(包括温度、储存稳定性等)。结果表明,酶被固定化后,热稳定性及储存稳定性均有提高。固定化酶的Km值小于自由酶,表明固定化可以提高酶的稳定性并加强酶与底物的亲和力。

一、材料及方法

1. 化学试剂

壳聚糖(低分子量),亚油酸(LA),1-乙基-3-(3-二甲基氨丙基)碳二亚胺(EDC),菠萝蛋白酶均购于Sigma公司。其他试剂都采用分析纯。

2. 制备方法

(1)制备羧甲基壳聚糖(CMCS)

Na型羧甲基壳聚糖的制备:称取5g壳聚糖于三口烧瓶中,加入100ml水/异丙醇(v/v=1/1),搅拌,使其溶胀。加入6.75g NaOH,50℃搅拌1h。让壳聚糖在碱性条件下膨胀, 形成碱化中心。将7.5g氯乙酸溶于10ml异丙醇,溶解后加到分液漏斗,向三口烧瓶中滴加,控制滴加时间30min, 50℃搅拌4h。反应结束后,布氏漏斗抽滤,70%、80%、90%乙醇水溶液、无水乙醇洗涤。所得产品放入60℃烘箱烘干, 即得白色粉状羧甲基壳聚糖(Na型)。

H型羧甲基壳聚糖的制备:称取2.5g Na型羧甲基壳聚糖,加入100ml 80%乙醇水溶液,搅拌。再加入10ml 37% HCl溶液,搅拌30min。布氏漏斗抽滤,70%、80%、90%乙醇水溶液、

* 本课题为山东省优秀中青年科学家科研奖励基金资助(2006DS03044)。

通讯作者:刘晨光副教授传真:86+532+82932586。E-mail: liucg@https://www.360docs.net/doc/4511776042.html,。

第一作者:谭玉龙硕士研究生。

收稿日期:2007年10月25日。

海洋科学集刊

无水乙醇洗涤。所得产品放入60℃烘箱烘干,即得白色粉状羧甲基壳聚糖(H型)。

(2)制备亚油酸羧甲基壳聚糖(LA-CMCS)

首先取1g羧甲基壳聚糖溶解于100ml 1%的醋酸溶液(pH4.6)中,然后分别取1ml、1.5ml、2ml亚油酸溶于100ml甲醇中。将两溶液混合,加1mlEDC,搅拌24h后,加入200ml甲醇/氨水(体积比为7:3),搅拌,5000rpm/s,离心30min,去除上清。将沉淀分别用甲醇洗两次,乙醚洗一次,每次洗涤后都要进行5000rpm/s,离心30min,去除上清。室温真空干燥24h。

(3)制备负载菠萝蛋白酶的LA-CMCS纳米粒

10mg LA-CMCS悬浮于10ml PBS缓冲液(pH7.4)。冰浴中用探头超声(Utralsonic homogenizer UH-600),超声重复两次得到澄清透明溶液(20W,工作10S,停2s)。加入不同浓度的菠萝蛋白酶溶液,然后再分别超声两次。

(4)载药量和包封率

将不同浓度的菠萝蛋白酶溶液加到1ml 0.2mg/ml的纳米粒溶液中,浓度从0.05mg/ml 到0.4mg/ml。将混合液超声,然后超滤,得到固定化酶。通过检测未固定化的酶含量来计算纳米粒对酶的的负载量与包封率。

载药量=(A-B)/C×100

包封率=(A-B)/A×100

A为加入的菠萝蛋白酶含量;B为超滤后未固定化的菠萝蛋白酶含量;C为冷冻干燥后的纳米粒质量。

(5)测定自由酶和固定化酶的酶活力

取2ml酶液加入试管中,然后加入1%的酪蛋白溶液3ml,准确保温37℃反应10min,再加入5ml三氯乙酸以终止反应, 摇匀。

空白试样,方法同上,仅在加酪蛋白溶液之前,先加入5ml三氯乙酸使酶失活,再加入酪蛋白溶液。

以空白样做对照,用分光光度计280nm波长测定试样的吸光度(O.D)。结果取三次测定的平均值。

(6)菠萝蛋白酶活力单位

将一个酶活力单位在标准实验条件下 (pH7.4,37℃时,反应10min),1min内水解酪蛋白产生1mg溶于三氯乙酸的酪氨酸时所需要的酶量。

二、结果与讨论

1. 纳米粒表征

亚油酸通过EDC共价连接于羧甲基壳聚糖的氨基上(图1)。红外谱图及核磁共振谱图表明,共价连接成功。平均粒径与粒径分布通过动态激光光散射仪来分析,平均粒径约为417.8 ± 17.8 nm (Liu et al. 2007)。透射电子显微镜照片显示纳米粒有完整的圆形结构(图2)。

2. 纳米粒的载药量与包封率

纳米粒对菠萝蛋白酶的负载量与包封率如表1所示,一方面,随加入酶的浓度的增加,从0.05到0.3mg/ml,纳米粒的包封率逐渐下降;另一方面,酶的负载量却从20.68±0.37%

谭玉龙等:亚油酸修饰羧甲基壳聚糖纳米粒固定化菠萝蛋白酶的研究

增加到 94.19±1.12%。但是,当浓度到达0.4mg/ml时,负载量却没有显著增加,表明纳米粒负载菠萝蛋白酶约0.3mg/ml时达到饱和。

3. 温度对酶活力的影响

在20℃~80℃下测定自由酶与固定化酶的活力(图3),其最适温度相同,固定化酶的最适温度(60℃)也未改变。

热稳定性是固定化酶的一个重要指标,将固定化酶和自由酶保存于0.05mol/L的PBS缓冲

n

图1 亚油酸羧甲基壳聚糖的结构图

图2 纳米粒的透射电镜照片

海洋科学集刊

液(pH7.4)中,在不同温度下保存1h,迅速冷却测其酶活力。在不同温度下保存后的相对酶活力,随着温度升高,相对酶活力均有所下降(图4)。从图中看出固定化酶的热失活曲线比自由酶要低。在90℃保存1h后,固定化酶保持了19%的相对活力,而自由酶在同样的实验条件下,几乎丧失了全部活力。固定化酶热稳定性的提高是因为酶和纳米粒之间的多重的作用(比如离子相互作用、氢键结合以及疏水作用力等)。有一部分菠萝蛋白酶被包裹于纳米粒内部,这可以保护酶的结构使其免受高温的破坏。纳米粒可以预防蛋白质不可逆的变性聚集,其机制类似于分子伴侣的作用(Akiyoshi et al. 1999, Takehiro et al. 1994, Nomura et al. 2003) 。不论是从结构上还是从酶活力上,纳米粒均可显著提高酶分子抵御变性的能力和热稳定性,所以其可作为有效的酶固定化材料(Bryjak et al., 1998, Hsieh et al. 2000, Karim et al., 2002, Li et al. 2003, Wu et al. 2005, Tu et al. 2006) 。

图3 温度对酶活力的影响

图4 自由酶和固定化酶的热稳定性

4. 储存稳定性

谭玉龙等:亚油酸修饰羧甲基壳聚糖纳米粒固定化菠萝蛋白酶的研究

在无底物存在的情况下,将固定酶和自由酶在70℃下分别保存20 min~120 min, 迅速冷却后, 测其活力(图5),固定化酶的稳定性曲线比自由酶要高,表明固定化酶的稳定性有显著地提高。

5. Km

米氏常数Km是酶的一个重要参数,它的物理意义就是催化反应速度达到最大速度一半时的底物浓度。Km一般用来检验酶与底物形成复合物的亲和能力。自由酶和固定化酶的米氏常数的测定(图6),纳米粒固定酶后,对酶与底物之间的结合影响很小。固定化酶的Km为0.36,比自由酶的0.68略低,表明固定化酶加强了酶与底物的亲和力。原因可能是固定化过程对酶的构象有影响,以及纳米粒与酪蛋白之间的电荷作用或疏水作用也加强了酶对底物的亲和力。其机制还需要进一步研究。这一结果也与Tang等(2007)的研究结果一致,这使其在将来的应用性上更有吸引力 (Tang et al. 2007) 。

图5 自由酶和固定化酶的储存稳定性

海洋科学集刊

图6 自由酶和固定化酶的Line-weaver Burk 曲线

参考文献

Akiyoshi, K. , Kobayashi, S. , Shichibe, S. , et al..1998. Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: Complexation and stabilization of insulin, J. Control. Release, 54: 313~320

Akiyoshi, K. , Sasaki, Y. , Sunamoto, J. . 1999. Molecular chaperone-like activity of hydrogel nanoparticles of hydrophobized pullulan: thermal stabilization with refolding of carbonic anhydrase B, Bioconjugate Chem. , 10: 321~324

Arica, M. Y. . 2000. Epoxy-derived pHEMA membrane for use bioactive macromolecules immobilization: Covalently bound urease in a continuous model system, J. Appl. Polym. Sci. , 77:2000~2008

Bryjak, J. , Kolarz, B. N.. 1998. Immobilization of trypsin on acrylic copolymers, Process Biochem. , 33: 409~417

Harada, A. , Kataoka, K.. 1998. Novel polyion complex micelles entrapping enzyme molecules in the core: Preparation of narrowlydistributed micelles from lysozyme and poly (ethylene glycol)-poly (aspartic acid) block copolymer in aqueous medium, Macromolecules, 31: 288~294

Harada, A. , Kataoka, K. . 2001. Pronounced activity of enzymes through the incorporation into the core of polyion complex micelles made from charged block copolymers, J. Control. Release, 72: 85~91

Hsieh, H. J. , Liu, P. C. , Liao, W. J.. 2000. Immobilization of invertase via carbohydrate moiety on chitosan to enhance its thermal stability, Biotechnol. Lett. , 22: 1459~1464

Karim, M. R. , Hashinaga, F.. 2002. Preparation and properties of immobilized pummelo limonoid glucosyltransferase, Process Biochem. , 38: 809~814

Li, J. , Wang, J. Q. , Gavalas, V. G. , et al. .2003. Alumina-Pepsin Hybrid Nanoparticles with Orientation-Specific Enzyme Coupling, NANO Lett. , 3, 55~58

Liu, C. G. , Chen, X. G. , Park, H. J. .2005. Self-assembled nanoparticles based on linoleic-acid modified chitosan:

谭玉龙等:亚油酸修饰羧甲基壳聚糖纳米粒固定化菠萝蛋白酶的研究

Stability and adsorption of trypsin, Carbohyd. Polym. , 62: 293.~298

Liu, C. G. , Fan, W. , Chen, X. G. . 2007. Self-assembled nanoparticles based on linoleic-acid modified carboxymethyl-chitosan as carrier of adriamycin (ADR), Curr. Appl. Phys. , 7S1 e125~e129

Nomura, Y. , Ikeda, M. , Masahiro, I. , et al.. 2003.Protein refolding assisted by self-assembled nanogels as novel artificicial molecular chaperone, Febs Lett. , 553: 271~276

Takehiro, N. , Kazunari, A. , Junzo, S. . 1994.Supramolecular Assembly between Nanoparticles of Hydrophobized Polysaccharide and Soluble Protein Complexation between the Self-Aggregate of Cholesterol-Bearing Pullulan and α-Chymotrypsin, Macromolecules, 27: 7654~7659

Tang, Z. X. , Qian, J. Q. , Shi, L. E. , 2007, Characterizations of immobilized neutral lipase on chitosan nano-particles, Mater. Lett. , 61: 37-40.

Tanioka, A. , Yokoyama, Y. , Miyasaka, K.. 1998.Preparation and properties of enzyme- immobilized porous polypropylene films, J. Colloid Interf. Sci. , 200:185~187

Tu, M. B. , Zhang, X. , Kurabi, A. ,et al.. 2006. Immobilization of β-glucosidase on Eupergit C for lignocellulose hydrolysis, Biotechno. Lett. , 28: 151~156

Wu, S. G. , Liu, B. L. , Li, S. J.. 2005. Behaviors of enzyme immobilization onto functional microspheres, Int. J. Biol. Macromol. , 37: 263~267

Yodoya, S. , Takagi, T. , Kurotani, M. , et al. . 2003.Immobilization of bromelain onto porous copoly (γ-methyl-L-glutamate/L-leucine) beads, Eur. Polym. J. , 39: 173~180

Yuan, X. , Yamasaki, Y. , Harada, A. , et al. .2005.Characterization of stable lysozyme-entrapped polyion complex (PIC) micelles with crosslinked core by glutaraldehyde, Polymer, 46: 7749~7758

STUD ON LINOLEIC ACID MODIFIED CARBOXYMEHYL CHITOSAN

NANOPARTICLES FIXATION BROMELAIN

TAN Yulong LIU Chenguang LIU Chengheng YU Lejun

(College of Marine Life Sciences,Ocean University of China,Qindao 266003)

A BSTRACT

Hydrogel nanoparticles can be prepared by using linoleic acid (LA) modified carboxymethyl chitosan (CMCS) after sonication. Bromelain can be loaded onto nanoparticles of LA-CMCS. Factors affecting the activity of the immobilized enzyme, including temperature, storage etc., were investigated in this study. The results showed that the stability of bromelain for heat and storage was improved after immobilization on nanoparticles. The Michaelis constant (K m) of the immobilized enzyme, was smaller than that of free enzyme which indicated that the immobilization could promote the stability of the enzyme and strengthen the affinity of the enzyme for the substrate.

海洋科学集刊

羧甲基壳聚糖制备方法

羧甲基壳聚糖制备方法 (1)将壳聚糖溶于稀乙酸中,用过量的丙酮沉淀,得到壳聚糖乙酸盐,转入带有 搅拌的反应瓶中,加入一定量的NaOH溶液和异丙醇,边搅拌边滴加氯乙酸的异丙醇溶液,控制反应温度为70℃,反应数小时,冷却至室温,用稀酸调pH值 至中性,用85%甲醇洗涤,干燥,即得羧甲基壳聚糖。[2] (2)将纯化好的壳聚糖装入带有搅拌的反应瓶中,加入一定量的20%NaOH溶液和异丙醇,在室温下搅拌60min,然后滴加氯乙酸的异丙醇溶液,在室温下反应 5h,然后用稀盐酸中和至pH值为7,用丙酮沉淀产物,过滤,用85%甲醇溶液 洗涤直至无氯离子,再用无水甲醇洗涤,60℃下真空干燥,即得产品。[2] (3)将2鲍壳聚糖加到200mL正丁醇中,室温搅拌溶胀20min,分6次加入 lOmol/L NaOH溶液,每次50mL, 40min一次,最后一次加完后再搅拌40rnin,得到碱性壳聚糖,然后把24g固体氯乙酸分5次加入,5min一次,在55~75℃ 搅拌反应3h,接着加入17mL水,用冰醋酸调pH值至7,抽滤,用70%甲醇 300mL分次洗涤,抽干后,再用300mL无水乙醇分次洗涤,于60℃真空二干燥,得产品。羧甲基化反应温度分别为55℃, 60℃, 65℃, 70℃和75℃,产量分别为31. 0g,33.8g, 36.58, 34.0g和33.2g, 65℃时最高。[2] (4)把甲壳素于一定温度下在40%~60%NaOH溶液中浸泡0. 5~5h,然后边搅拌边 加入氯乙酸,再在0~70℃反应0. 5~5h,碱酸质量比控制在(1.2~1.6):1,在 0-80℃保温5~36h,然后用稀盐酸中和,分离产物,用75%乙醇溶液洗涤,于60℃干燥。这个方法也可制备羧甲基壳聚糖。[2] (5) 15g壳聚糖先在50%(w/w) NaOH溶液中碱化,然后加150mL异丙醇搅拌, 加入18g氯乙酸,在65℃反应2h,用酸中和,70%甲醇多次洗涤,然后溶于水中,再用丙酮沉淀,过滤,用无水乙醇反复洗涤,过滤,真空干燥,得到精制 的羧甲基壳聚糖。[2] (6) 3g粉状壳聚糖悬浮于100mL浓度分别为25%, 30%, 35%,40%的NaOH溶液中,加入5g氯乙酸与冰醋酸的混合液(摩尔比为1:1),在30℃下反应,每隔1h加 入5g氯乙酸与冰醋酸的混合液搅拌反应6h,最后用盐酸中和,过滤,用甲醇 反复洗涤,干燥,得产物。[2] (7) 10g壳聚糖溶于1000mL 1%乙酸溶液中,加入200mL氯乙酸钠(氯乙酸用氢 氧化钠溶液中和)及50%氢氧化钠溶液150mL,室温间歇搅拌反应4h,用酸中和 停止反应,离心分离沉淀,溶于碱,过滤,滤液再中和,离心分离沉淀,用甲 醇洗涤,干燥,得产物。[2] (8)超声波法制备羧甲基壳聚糖,可显著缩短反应时间,提高羧甲基的取代度。将0. 5g壳聚糖与5mL异丙醇、10ml 30 %NaOH溶液混合,再加入溶于10rnl异丙醇的氯 乙酸(壳聚糖与氯乙酸的质量比为1:4~5),在三角瓶中摇荡几分钟后,置于超声波清洗器中,用水作振荡介质,调节输出功率40W,升温到60℃反应3h,之后倾去上层 清液,向粘状物中加入40rnL水,充分搅拌溶解,用1000盐酸中和到pH值为7,滤去不溶物,滤液中加入适量甲醇沉淀,过滤,无水乙醇洗涤,100℃烘干,即得产物。

羧甲基壳聚糖

羧甲基壳聚糖因为有良好的水溶性、保湿性和成膜性,安全无毒并具有抗菌、抑菌、乳化稳定作用,在日化、食品、造纸、制药等方面有重要的用途。 1保鲜剂 壳聚糖是甲壳素脱乙酰基的产物,是一种天然的阳离子高分子多糖,它来源丰富,无毒无害,无污染及可降解,已广泛应用于化工、食品、化妆品、环保及医药等诸多领域。但壳聚糖仅溶于某些酸性介质,限制了其应用范围。对壳聚糖进行化学修饰即可得羧甲基壳聚糖,根据羧甲基的取代位置不同可以获得O-羧甲基壳聚糖、N-羧甲基壳聚糖和N,O-羧甲基壳聚糖三种产物。与壳聚糖相比,羧甲基壳聚糖在果,如水溶性、成膜性、吸湿保湿性、抗菌性、安全无毒性等,更适合于现代果蔬保鲜贮运的要求。羧甲基壳聚糖是一种天然的多糖涂膜保鲜剂,来源丰富,无毒无味,抑菌性强,在果实表面形成的膜具有很好的气体选择通透性,能有效地降低果蔬的呼吸强度和蒸腾作用,从而保持果蔬的新鲜度,延长果蔬的贮藏寿命。研究表明羧甲基壳聚糖对金黄色葡萄球菌、大肠杆菌、枯草杆菌这三种常见的食品腐败菌有较强的抑制作用,其中对金黄色葡萄球菌的抑制效果最好,其最小抑制浓度为0·1%,对大肠杆菌、枯草杆菌最小抑制浓度均为0·2%。羧甲基壳聚糖对酵母菌群、黄曲酶素、黑曲霉等也有明显的抑制作用。(羧甲基壳聚糖在果蔬保鲜中的应用研究进展吴伟,林宝凤) 2对铅离子的吸附 壳聚糖是甲壳素脱乙酰基后的产物其自然资源非常丰富是性能优良的金属离子吸附剂在工业废水处理贵重金属离子回收[3]等方面具有广阔的应用前景制备水溶性壳聚糖及其衍生物引入其它功能性基团改善它的溶解性及功能拓宽其应用范围是当前研究开发甲壳素和壳聚糖的重要课题羧甲基壳聚糖是壳聚糖经化学改性得到的水溶性衍生物由于羧基的引入使其结合金属离子能力大大提高可广泛应用于水处理贵重金属离子富集回收等方面进入人体健康者血铅的正常范围为0.483~1.45μmol/L当血铅含量达2.72~3.84μmol/L时即可发生铅中毒铅中毒可直接损伤人和动物的甲状腺功能还可损伤生殖细胞及降低性功能本文将初步研究羧甲基壳聚糖CMCS对铅离子吸附的基本特性以期为含铅废水的处理提供新的途径及理论依据。羧甲基壳聚糖与壳聚糖水溶性低聚壳聚糖相比对铅离子具有更强的吸附能力且吸附能力随着羧甲基取代度的增大而增大羧甲基壳聚糖吸附铅离子的行为遵循单分子层吸附机理符合动力学方程t/Qt=t/Qeq+M/KCM影响吸附过程的因素主要有时间pH值离子强度温度等为羧甲基壳聚糖在处理含铅的工业废水方面提供了一定的理论依据。(羧甲基壳聚糖对铅离子的吸附性能研究林友文陈伟罗红斌) 3降脂作用 壳聚糖及其衍生物的调节血脂作用日益受到人们重视,关于降脂机制目前尚无定论。有人认为壳聚糖结构中含有氨基,作为聚阳离子可与胆酸、胆固醇结合并随粪便排出体外,能阻止消化系统吸收胆固醇和甘油三酷从而发挥降脂作用。(壳聚糖、梭甲基壳聚糖的降脂及抗氧化作用林友文林青郑景峰蒋智清) 4在农业上的应用 羧甲基壳聚糖易溶于水,具有植物生理调节功能。Cuezo研究表明,用其处理番茄可提高叶片中叶绿素的含量;如用羧甲基壳聚糖处理玉米开花期的果穗和种子,可提高玉米籽粒中蛋白质的含量。玉米是低蛋白作物,因为玉米在氮代谢过程中,谷氨酰胺合成酶和谷氨酸脱氢酶往往受到抑制,NH离子补偿能力下降,使得贮藏蛋白含量较低。师素云以羧甲基壳聚糖处理玉米开花期果穗,发现发育籽粒中的谷氨酰胺合成酶、谷氨酸脱氢酶和谷丙转氨酶活性均明显增强,而蛋白水解酶活性下降,其中谷氨酰胺合成酶活性比对照组高20%以上,谷氨酸脱氢酶在处理后10、15、和25天时分别比对照组高30%、40%和50%以上,谷丙转氨酶活性高20%以上,而蛋白水解酶活性下降了30%以上;羧甲基壳聚糖对作物生长和营养代谢具有调节功能。师素云等用羧甲基壳聚糖水溶液处理玉米种子,其种子发芽率、幼苗

羧甲基纤维素 MSDS

羧甲基纤维素 MSDS Carboxymethyl cellulose 羧甲基纤维素性质、用途与生产工艺 含量分析 羧甲基纤维素钠的百分含量按100减去下述氯化钠和乙醇酸钠的百分含量而得。 氯化钠含量精确称取试样约5g,移人一250m1烧杯,加水50ml和30%过氧化氢5ml,在蒸汽浴上加热20min,偶尔搅拌一下,至完全溶解。冷却,采用硫酸银和硫酸汞一硫酸钾电极,并不停搅拌,加水100ml和硝酸10ml,然后用0.05mol/L硝酸银滴定至电位终点。按下式计算试样中的氯化钠百分含量: (584.4Vc)/(100-6)ω其中,V和c分别为所耗硝酸银的体积(m1)和浓度(mol/L);6为所测得的干燥失重;ω为试样质量(g);584.4为氯化钠的分子量。 乙醇酸钠含量准确称取试样约500mg,移入一100ml烧杯,先经5ml冰乙酸随后用5ml 水湿润,然后用玻棒搅至溶液状(一般约需15min)。在搅拌下缓慢加入丙酮50ml,然后加氯化钠1g,搅拌数分钟使羧甲基纤维素钠全部沉淀。经一已用少量丙酮湿润过的软质粗孔滤纸过滤,将滤液收集于一100ml容量瓶中,另用30ml丙酮将滤渣移人滤纸并淋洗滤渣,然后用丙酮稀释,定容后混匀。 按下述制备标准液:准确称取室温下干燥器中过夜的乙醇酸100mg,移人一100ml容量瓶中,用水溶解,定容后混匀。该液应在30天之内使用。将该液1.0.、2.0、3.0和4.0m1分别移入四只100ml容量瓶中,分别加水至约5ml,然后加冰乙酸5ml,并用丙酮稀释、定容。 取前述试样液2.0ml和各标准液各2.0ml,分别移入五只25ml容量瓶中,另配一空白瓶,内含由冰乙酸和水各占5%的丙酮液2.0ml。将各容量瓶不加盖在沸水浴上保持 20min以除去丙酮,取下,冷却。每只瓶中各加2,7-二羟萘试液(TS-85)5.0ml,强力混合后再加15ml,再强烈混合。取小片铝薄盖口。将容量瓶垂直放入沸水浴中保持 20min,然后取出,冷却,用硫酸定容后混匀。 用一适当的分光光度计,以空白液为对比,在540nm处测定各液的吸光度,按标准液吸光度绘制标准曲线,然后根据标准曲线和试样的吸光度求出试样中乙醇酸的质量(mg)叫,然后按下式求出试样中 毒性 ADI不作特殊规定(FAO/WHO,2001)。 LD50(大鼠,经口)27g/kg。 GRAS(FDA,§182.1745,2000)。 使用限量

最新 O-羧甲基壳聚糖的研制与结构分析-精品

1 本科(设计) O-羧甲基壳聚糖的研制与结构分析 二级学院药科学院 专业药物制剂 班级 2008级(8)班 学生姓名张三 学号 2008080808 指导教师李四 2008年8月 诚信声明 年月日 O-羧甲基壳聚糖的研制与结构分析 【摘要】目的:……方法:……结果:……结论:…… 【关键词】甲壳素;O-羧甲基壳聚糖;胶体滴定 注:本论文(设计)题目来源于教师的国家级(或省部级、厅级、市级、校级、企业)科研项目,项目编号为:。 Study on Synthesis and Structure Analysis of O-Carboxymethyl Chitosan [Abstract] ...... [Keywords] Chitin O-Carboxymethyl Chitosan Colloid titration 目录 TU1.UT TU 前言UT 1 TU2.UT TU结构鉴定UT 2 TU2.1.UT TU红外图谱(IR)UT 2 TU3.UT TU羧甲基壳聚糖取代度及分子量的测定UT 3

TU3.1.UT TU取代度的测定――胶体滴定法UT 3 TU3.1.1.UT TU羧甲基壳聚糖氨基含量的测定UT 3 TU3.2.UT TU羧甲基壳聚糖取代度、分子量测定结果UT 3 …… TU6.UT TU结论UT 4 TU6.1.UT TU影响产物的条件分析UT 4 TU6.1.1.UT TU反应介质碱性强度的影响UT 4 TUUT 5 TU致谢UT 6 TU附录A 1/f频谱图UT 7 1 0B前言 甲壳素(chitin,几丁质)学名β-(1,4)-2-乙酰氨基-2-脱氧-D-葡萄糖,属线性多糖类的天然高分子,大量存在于甲壳动物(如蟹、虾)的甲壳中。甲壳素/壳聚糖(chitosan)与植物纤维素的结构和功能相似,被称作动物纤维素,是地球上第二大可再生生物资源,也是数量最多的含氮有机物,表现出生物相容性好、生物降解性好、生物活性优异等特性,被广泛用于保险、生态农业、绿色工业等所涉及的200多个领域,显现出巨大的科学价值、社会利益和经济价值P[1]P。 …… 2 1B结构鉴定 O-羧甲基壳聚糖的结构通过红外光谱和核磁共振谱(P1PH-NMR)进行分析鉴定。 2.1 3B红外图谱(IR) 图中甲壳素的基本特征峰是:3443cmP-1P(游离氨基和羟基合并宽峰),2927cmP-1P(-CHR3R甲基吸收),1659cmP-1P(酰胺I谱带仲酰胺-C=O吸收);(见图1) 图1 甲壳素红外光谱图 壳聚糖的基本特征峰是:3379cmP-1P(O-H伸缩振动,因受分子内氢键作用伸缩振动峰向低波数位移)P[3]P,2880cmP-1P(C-H伸缩振动),1656cmP-1P和1599cmP-1P(N-H弯曲振动, 壳聚糖酰胺I和Ⅱ谱带),1154cmP-1P(不对称氧桥伸缩振动),1080cmP-1P(C-O伸缩振动)P[4]P。 …… 3 2B羧甲基壳聚糖取代度及分子量的测定 3.1 4B取代度的测定――胶体滴定法 PVSK标准溶液的配制与标定:称取PVSK0.1g,用去离子水溶于100ml容量瓶中,稀释至刻度,用移液管准确吸取5ml,放入50ml锥形瓶中,加1滴TB指示剂,用待标定的PVSK标准液滴定至溶液呈红紫色,此时被滴液体由浑浊转清并有沉淀出现,同时作一个空白试验。 PVSK标准液的浓度W(NR1R)计算见式(3-1): (3-1)

羧甲基纤维素的生产与应用

目录 摘要 (1) 关键词 (1) 一、生产原料纤维素的来源 (1) 二、羧甲基纤维素(CMC)性质 (2) 三、羧甲基纤维素(CMC)生产工艺 (2) 四、羧甲基纤维素用途 (4) 五、羧甲基纤维素(CMC)国内外生产及利用现状 (5) 六、羧甲基纤维素(CMC)发展方向 (5) 参考文献 (5) 羧甲基纤维素的生产与应用 摘要:羧甲基纤维素(CMC),是以纤维素为原料合成的纤维素醚类产品,有着良好的化学和物理性能,在医药、陶瓷、食品添加剂、造纸、建材、涂料等方面也有着广泛的应用前景。本文将综述羧甲纤维素的生产原料来源、性质和国内外生产应用现状以及发展前景。,其中重点介绍羧甲基纤维素(CMC)的合成工艺和具体的应用。 关键词:羧甲基纤维素、生产工艺、应用、发展方向。 Abstract: Cellulose is composed of macromolecular polysaccharide, is a kind of important natural polymer, not only to the health of human body, but also has a broad prospect of application in medicine, ceramics, food additives, paper making, building materials, paint also. This paper will review the source of cellulose and its application, which mainly introduces CMC synthesis principle and application status at home and abroad, as well as the development foreground. Key words: Cellulose, CMC, Composition principle, Application, Development. 一、生产原料纤维素的来源 经过多年的研究和发展,目前可以用于合成羧甲基纤维素的原料有精制棉短绒、地脚棉、甘蔗渣、秸秆及稻草等。但生产工艺对纤维素原料中а纤维素含量的要求很高,虽然精制棉短绒价格相对其他材料昂贵,数量相对较少。但以上这些原材料中精制棉短绒的棉纤维含量高达90%以上,精制棉短绒生产出来的羧甲基纤维素比其他原材料所生产出来的产品性能更优越,故比其他原材料更是符合工业化生产。因而,目前世界上用于生产的羧甲基纤维素的主要原材料是精制棉短绒。

N-辛基-N-O-羧甲基壳聚糖制备及表面活性研究

n- 辛基-n,o- 羧甲基壳聚糖制备及表面活性研究 摘要本论文以天然高分子壳聚糖为原料,对其进行化学改性,制备出了一系列取代度不同的n- 辛基-n,o-羧甲基壳聚糖基表面活性剂。通过ftir 、ea、tg等对产物进行了表征,表明成功合 成了目标产物;产物的羧甲基取代度为79.4%,辛基取代度分别为 3.47%,17.11%,26.82%,辛基的引入使得壳聚糖的结晶性能下降;改性后壳聚糖溶解性增强。 采用芘荧光探针法以及悬滴法分别测定了壳聚糖基表面活性剂的临界胶束浓度以及表面张力,结果表明羧甲基取代度为79.4%,辛基取代度分别为 3.47%,17.11% ,26.82%时临界胶束浓度分别为 0.7879mg/ml 、0.2609mg/ml 、0.0592mg/ml ;产物能显著降低水的表面张力,最低值为 39.2mn/m,且辛基取代的越大、临界胶束浓度越低,降低水表面张力的效率越高。。其生 物官能性和相容性、安全性、血液相容性、微生物降解性等优良性能被各行各业广泛关注,广泛应用于食品、化妆品、医药、农业及环保等诸方面[5] 。 1.2 壳聚糖的改性壳聚糖以其独特的生物相容性、生物降解性、抗菌性、无毒性、生物活性和物理化学性质引起人们的重视,在化工、纺织、印染、造纸和医药等领域有广泛的应用前景。然而由于分子内、分子间的氢键作用,使其呈紧密的晶态结构,所以不溶于水和大多数有机溶剂。只有当脱乙酰度为50%左右时,二次结构破坏最大,结晶度降低,才能较好地溶于水。溶解性差成为限制壳聚糖应用的主要因素因此,有必要对壳聚糖进行改性,以达到利用其生物活性和生理活性的目的。壳聚糖的分子结构中含有活性功能基:c3-oh、c6-oh、c2-nh2,特别是c2-nh2 的存在,可以通过引入功能基团,改善壳聚糖的物理化学性能,拓宽其应用范围。壳聚糖的化学改性方法有多种,其中包括:羧甲基改性、酰化改性、季铵化改性、烷基化改性、羟烷基改性、接枝反应、交联反应、偶联反应等等。 本论文重点研究壳聚糖的羧甲基化改性与烷基化改性。 1.2.1 羧甲基壳聚糖羧甲基壳聚糖是以一氯乙酸为主要改性原料的重要的水溶性壳聚糖,可溶于中性、碱性和弱酸性水中,其成膜性、保湿性也十分优异,在日化、食品、医药、医用生物材料等领域中具有广泛的应用前景[6] 。羧甲基壳聚糖包括n- 羧甲基壳聚糖(n-cmc) , o- 羧甲基壳聚糖(o-cmc) 和n,o- 羧甲基壳聚糖(n,o-cmc) [7] ,可以通过选择反应物和反应条件来控制产物的类型。对壳聚糖进行羧甲基化改性可以改善壳聚糖的水溶性。黄攀等[8] 以壳聚糖、乙醛酸为原料, 制备了羧化度在25?78%勺水溶性n-cmc,并发现其在62.5卩g/ml?5000卩g/ml浓度范围内与小鼠成纤维细胞株l929 具有良好的细胞相容性。lin 等[9] 以2-羧基苯甲醛与壳聚糖通过席夫碱反应并还原得到n-苄氧羰基壳聚糖,用戊二醛交联制得ph响应性的水凝胶。柯仁 怀等[10] 以甲壳素为原料,采用连续操作、不分离中间产物的方法合成了羧甲基取代度为 1.08 的水溶性n,o- 羧甲基壳聚糖,并通过重构插层法制备羧甲基壳聚糖/mg2al 双层氢氧化物复合物。除此之外,羧甲基壳聚糖亦能应用于其他领域,例如絮凝剂、抗菌剂、药物载体等。刘红娅等[13] 以甲壳素为原料采用两步微波法制备了o- 羧甲基壳聚糖,产物具有良好的絮凝性能, 可作为处理模拟染料废水及实际印染废水的絮凝剂。ramchandra 等[14] 制备了n,o- 羧甲基壳聚糖与锌的络合物以及壳聚糖与锌的络合物,并用革兰氏阳性菌和革兰氏阴性菌做了抗菌性能测试,结果表明n,o- 羧甲基壳聚糖与锌的络合物的抗菌性要优于壳聚糖与锌的络合物。 anitha等[15]利用离子交联法用tpp和cacl2制备了壳聚糖、o-羧甲基壳聚糖和n,o-羧甲基壳聚糖纳米粒,并对材料的细胞毒性和抗菌性进行了检测,结果表明三种材料对乳腺癌细胞的毒性很小, 而n,o- 羧甲基壳聚糖纳米粒拥有三者中最强的抗菌性。目前羧甲基壳聚糖的制 备工艺已经相当成熟。riccardo 等[16]用乙醛酸和壳聚糖通过席夫碱反应以及硼氢化钠还原反映制备出不同取代度的n-cmc。张贵芹等[17]以壳聚糖与氯乙酸在氢氧化钾-异丙醇介质中,在壳聚糖与氯乙酸、氢氧化钾与氯乙酸质量比分别在2:1 及 2.3:1 时,室温下反应 5 h 制到取代度较高的o-cmc。

不同取代羧甲基壳聚糖的制备及其结构测定

不同取代羧甲基壳聚糖的制备及其结构测定 * 陈浩凡 潘仕荣 王琴梅 中山大学附属第一医院人工心脏研究室,广州 510089 摘要 目的 制备不同取代的羧甲基壳聚糖并测定其结构。方法 通过不同反应条件得到不同位置取代和取代度的羧甲基壳聚糖,并用物理和化学方法进行分子结构表征。结果 在O 位和(或)N 位发生了羧甲基化反应,产物为不同取代度的N ,O-羧甲基壳聚糖(N ,O -CM C),N -羧甲基壳聚糖(N -CM C)和O-羧甲基壳聚糖(O-CM C)。结论 胶体滴定法是测定羧甲基壳聚糖取代度的优选方法;壳聚糖羧甲基化后水溶性极大地改善,应用前景广泛。 关键词 羧甲基壳聚糖; 取代度; 电位滴定法; 胶体滴定法中图法分类号 R318.08 S ynthesis of Carboxymethyl Chitosan and Determination of Substitution Degree Chen Haofan ,Pan Shirong ,Wang Qinm ei T he First H osp ital Af f iliated to Sun Yat -sen University of M ed ical Sciences ,Guangz hou 510089Abstract Objective T o prepare and determine carbox ymethyl chitosan w ith different substitution .Methods A series of carboxy methy l chitosan having various degrees and positions of substitution w ere ob-tained by controlling reaction conditions,and characterized by chemical and physical methods.Results Car-boxy methylation occurred at hydrox yl groups and (or)amino group.The products of N,O-carbox ymethyl chi-tosan (N ,O -CM C )with different degree of substitution ,N -carboxym ethyl (N -CMC )and O -carboxym ethyl (O-CM C)were obtained.Conclusion Colloid titration is the optimized method to determine substitution de-gree of carboxym ethyl chitosan.T he product has superior w ater-soluble property and broad prospect of applica-tion . Key words carboxym ethy l chitosan ; substitution degree ; electrolytic titration ; colloid titration *  广东省自然科学基金资助项目(No .20001398)和广东省科技攻关项目(N o.K B02902G )陈浩凡,男,1972年生,博士研究生 甲壳素(chitin )大量存在于甲壳动物(如蟹、虾)的甲壳中,是地球上数量最多的含氮有机物。由于甲壳素不溶于普通溶剂,故难以应用。壳聚糖(chitosan)是甲壳素的N-脱乙酰基产物,能溶于酸性溶液,与人体细胞有很强的亲和性和相容性,并具有良好的吸湿性、纺丝性和成膜性,且无毒副作用,因而成为优良的生物医学材料。羧甲基壳聚糖(carbox ymethyl chitosan ,CM C )是壳聚糖羧甲基化后的产物,由于它既保留了壳聚糖的优点,又极大地改善了水溶性,因而具有更广泛的用途,在众多甲壳素衍生物中,倍受关注。取代度是壳聚糖在生产、研究和应用中一个重要的技术指标。壳聚糖分 子C 2氨基上的氢原子、C 3和C 6羟基上的氢原子均可以被羧甲基取代,但以医用材料为标准,研究不同取代位置、取代度羧甲基壳聚糖的制备,并对其结构进行测定,目前尚缺少系统报道。本实验以甲壳素和壳聚糖为原料,合成N ,O -羧甲基壳聚糖(N ,O-CMC),N-羧甲基壳聚糖(N-CMC)和O-羧甲基壳聚糖(O-CMC),通过物理和化学方法,测定不同取代羧甲基壳聚糖的分子量、取代位置、取代度及其结构特征,为研究其结构与防止手术后粘连作用之间的构效关系奠定基础并提供有关技术参数。1 材料和方法 1.1 材料和仪器 甲壳素和壳聚糖(脱乙酰度87%,江苏南通双林生物制品有限公司);乙醛酸(德国Merk - 第32卷第2期第152页2003年4月华中科技大学学报(医学版) J Huazhong U niv Sci T ech [Heal th Sci]Vol.32 No.2 P.152 Apr.2003

羧甲基壳聚糖衍生物的制备

羧甲基壳聚糖衍生物的制备 1、实验原理 壳聚糖是由氨基-D-葡萄糖单体通过β-1,4-糖苷键连接起来的直链糖,是天然多糖中惟一的碱性多糖,具有许多特殊的物理化学性质和生理功能。但壳聚糖只能溶于一些稀酸中,不能直接溶于水中,这在很大程度上限制了它的应用。因此,对壳聚糖进行化学改性,提高其溶解性能,尤其是水溶性,对拓展壳聚糖的应用领域具有重要意义。 壳聚糖的化学改性是壳聚糖研究的一个重要领域,旨在通过在壳聚糖的-NH 2和-OH 上引入新的官能团而改善其溶解性及其他物理化学及生物学性能。壳聚糖的改性研究较多的有:酰基化、烷基化、羧基化、羟基化、接枝共聚、季铵盐化等。在迄今所报道的600余种壳聚糖衍生物中,羧甲基壳聚糖(Carboxymethyl chitosan ,CMC )是研究较多的一种,是壳聚糖最重要的的衍生物之一。CMC 在日化、食品、造纸、医药、化妆品等方面都有着重要的用途,此类衍生物具有良好的水溶性、表面活性、成膜性、吸湿保湿性、安全无毒性、抗菌、抗氧化等生物性能,在化妆品、食品、生物医药等方面呈现出广阔的应用前景。羧甲基壳聚糖反应方程式如下: O CH 2OH OH NH 2H O n 2COOH O CH 2OH OH NHCH 2COONa H O n Et 3N 壳聚糖分子中的氨基和氯乙酸发生取代反应,得到N-羧甲基壳聚糖,三乙胺的作用为吸收反应释放的盐酸,促进反应的发生。 2、实验药品和玻璃仪器 壳聚糖,氯乙酸、氢氧化钠、异丙醇、乙醇、醋酸等;三口瓶、回流冷凝管、恒温加热搅拌器等。 3、实验内容 3.1 N-羧甲基化反应 在烧杯中把8g 氯乙酸[1]溶解在30ml 水中,氢氧化钠溶解在20ml 水中,在半个小时内磁力搅拌下,用胶头滴管把氢氧化钠溶液滴加到氯乙酸的水溶液中,使溶液的pH 调到8[2],滴加完后,把混合溶液和2g 壳聚糖放人三口烧瓶中,然后加入2ml 缚酸剂三乙胺,升温到90度,水浴回流,磁力搅拌反应3h-4h 。 反应结束后,向烧瓶中加入50ml 水[3],转入烧杯中,磁力搅拌下用碱液调节溶液的pH 到7-8[4],然后离心分离除去不溶物,离心后的清液倒入烧杯中,慢慢加入二倍量的乙醇,沉淀[5],并磁力搅拌洗涤5分钟,产品抽滤,滤渣用乙醇水混合溶剂洗涤10分钟[6],抽滤,最后用无水乙醇洗涤10分钟[7],105度烘干。 四、实验注释 [1] 氯乙酸为强烈的腐蚀性产品,称量时应小心。 [2] 氢氧化钠的量应计算好。 [3] 加水的目的充分溶解水溶性的羧甲基壳聚糖。 [4] 可以采用10%氢氧化钠调节,注意混合溶液的pH 应慢慢调。 [5] 加入乙醇的目的为破坏羧甲基壳聚糖在水中的溶解度,有利于羧甲基壳聚糖的析出。 [6] 乙醇和水的比例为8:2,可以把混合溶剂倒入烧杯中,放入羧甲基壳聚糖产品,磁力搅拌10分钟,目的为除去沉淀产品中夹杂的无机盐等杂质。

羧甲基纤维素钠的生产工艺

我们都知道羧甲基纤维素钠属于天然纤维素改性,可以称它为“改性纤维素”。目前在食品、化工、石油等行业中都可以见到它,但是对于其合成的工艺大部分应该不是很了解,通过下文或许可以找到答案。 具体的生产工艺为:以纤维素为原料,采用两步法制备CMC-Na。先是纤维素的碱化过程,纤维素与氢氧化钠反应后生成碱纤维素,然后是碱纤维素与氯乙酸反应生成CMC-Na,称为醚化反应。 Cell-OH+NaOH->Ce11 O-Na++H20 之后碱纤维素与氯乙酸反应生成CMC,反应方程式如下: ClCH2COOH+NaOH->C1CH2COONa+H20 Ce11 0-Na++C1CH2C00-->Ce11-OCH2C00-Na 该反应体系必须为碱性。该过程属于Williamson醚合成法。反应机制为亲核取代。反应体系属碱性,在水的存在条件下伴随一些副反应,如羟乙酸钠、羟乙酸等副产物生成,由于副反应的存在,会增加碱和醚化剂的消耗,进而降低醚

化效率;同时,副反应中会生成羟乙酸钠、羟乙酸和更多的盐类杂质,造成产物的纯度和性能降低。想要抑制副反应,不仅要合理用碱,控制水系用量、碱的浓度和搅拌方式,以碱化充分为目的,同时还要考虑到产品对黏度和取代度的要求,综合考虑搅拌速度、温度控制等因素,提高醚化速率,抑制副反应发生。 按醚化介质的不同,CMC-Na的工业生产可分为水媒法和溶媒法两大类。以水作为反应介质的方法叫做水媒法,用于生产碱性中低档CMC-Na。以有机溶剂作为反应介质的方法,叫做溶媒法,适用于生产中高档CMC-Na。这两种反应都属于捏合法工艺,下面来详细了解一下: (一)水媒法 是一种较早的工业生产工艺,该方法是将碱纤维素与醚化剂在游离碱和水的条件下进行反应。碱化和醚化过程中,体系中没有有机介质。水媒法设备要求较为简单,投资少、成本低。缺点是缺乏大量液体介质,反应产生的热量使温度升高,加快了副反应的速度,导致醚化效率低,产品质量差等。该方法用于制备中低档CMC-Na产品,如洗涤剂、纺织上浆剂等。 (二)溶媒法

MS软件在羧甲基壳聚糖水凝胶制备中的应用

MS软件在羧甲基/壳聚糖水凝胶制备中的应用 在自然界中,多糖分布极为广泛,它是一种天然的聚合物,具有独特的结构和特殊的特性,多糖物质在人们的生活的各个方面发挥着重要的作用。甲壳素(chitin)是一种碱性多糖,也是地球上第二大天然再生资源(纤维素的含量第一),其分布广泛,存在于甲壳动物(如虾、蟹等的外壳)、藻类等低等植物及微生物(菌类的细胞壁)中。甲壳素的C-2位的羟基被乙酰基取代,同植物纤维素的结构相似,它在地球上的含量极为丰富,每年自然界的生成量可多达1000亿吨。甲壳素呈无定形的白色或淡黄色固体粉末,按其来源不同,分为α和β两种构型,其分子链以螺旋形式平行排列,分子中有大量的乙酰基和羟基,分子内氢键作用较强,具有十分紧密的晶体结构,不溶于烯酸、碱、水和一般的有机溶剂,只能溶解于强酸以及少数有机溶剂中。甲壳素为N-乙酰-D-葡萄糖胺的聚糖,其结构式为: 由于其良好的生物相容性、低毒性,对酶的敏感性,在用作制备水凝胶材料方面,引起人们广泛的兴趣。在这些高分子中,多糖还具有其独特的优点,如无免疫原性,无传播动物源病菌的潜在危险性等。其中的一个多糖就是壳聚糖。 壳聚糖(chitosan)是由2-乙酰氨基葡萄糖和2-氨基葡萄糖和通过β-1,4糖苷键连接而成,结构与纤维素类似,其化学结构式为: 甲壳素在强碱性环境下,可通过脱乙酰而得到壳聚糖,壳聚糖是甲壳素最为重要的衍生物。壳聚糖具有其他天然高分子材料的优点,又不会引发免疫反应。壳聚糖(CS)不同于其他多糖,其分子结构中存在氨基,可被质子化,能形成聚电

解质络合物。壳聚糖是一种无毒、可生物降解、具有良好的生物相容性及良好的生物粘附性的天然高分子材料,在生物医药,环境工程以及生物技术领域都有广泛的应用,使之成为药物控制释放领域中的理想载体。 将壳聚糖羧甲基化,可制备得到水溶性很好的羧甲基壳聚糖(CMCS),一方面羧基的引入极大提高了壳聚糖在水中的溶解性,另一方面,羧甲基壳聚糖分子中既含有氨基又含有羧基,是一种两性高分子聚合物,应用比壳聚糖更加广泛。甲醛、戊二醛、马来酸酐、钙离子等常用来作为制备壳聚糖系水凝胶的交联剂。但甲醛、戊二醛等的毒性较大,这影响了水凝胶在生物医药领域中的应用。而经钙离子交联得到的水凝胶机械性能较差,而且容易与体内的阳离子(如钠离子等)发生离子交换,使水凝胶迅速崩解,从而使凝胶中负载的药物快速释放,影响药物的缓释效果。 1-乙基-(3-二甲氨基丙基)碳二亚胺盐酸盐(EDC)是一种无毒的肽键缩合剂,本身并没有成为交联的一部分,常作为氨基和羧基的交联。为了避免有毒的交联剂的使用,拓宽羧甲基壳聚糖在生物医药领域的应用,所以本研究以水溶性好的羧甲基壳聚糖(CMCS)为原料,以EDC为交联剂,制备得到新型的EDC/羧甲基壳聚水凝胶。 水凝胶是由带有亲水性基团(—COOH、—OH、—CONH2)的水溶性单体通过聚合反应并以物理或化学交联的方式所形成的具有三维网络结构的高分子聚合物。水凝胶能显著地溶胀与水中或者生物体液中溶胀并能保持大量水分而不被溶解。近年来,智能水凝胶引起了科研者的大量关注,因为智能水凝胶能够感知周围环境如温度、磁场、电场、pH、离子强度等刺激的微小变化并对环境刺激产生响应特性。水凝胶的响应性能是通过凝胶的可逆体积相变来实现的,并使它在传感器、人造肌肉、药物控制释放、组织工程、催化体系、酶的固定等方面具有广阔的应用前景。 由于传统的给药方式有口服和注射等,使治疗药物的毒性不仅存在于肿瘤部位,而且会散布于身体的各个部位,对正常身体部位产生一定程度的损伤。同时由于药物浓度在体内广泛分布,到达肿瘤部位的药物浓度就会变小,可能导致其低于药物的治疗浓度,以致使它达不到应有的效果。温敏性载药水凝胶可以对药物的释放起到一定的缓释作用,使药物释放变得缓慢;也可以根据病变部位与正常组织不同而识别病变器官,从而有选择性地进攻,使药物浓度更有效地分布,

O-羧甲基壳聚糖的研制与结构分析

1 本科毕业论文( 设计) O - 二级学院 专 业 班 级 学生姓名 张三

诚信声明 我声明,所呈交的毕业论文(设计)是本人在老师指导下进行的研究工作及取得的研究成果。据我查证,除了文中特别加以标注和致谢的地方外,论文(设计)中不包含其他人已经发表或撰写过的研究成果,也不包含为获得其他教育机构的学位或证书而使用过的材料。我承诺,论文(设计)中的所有内容均真实、可信。 样本2

O- O-CMC)是壳聚糖的羧甲基化衍生物,在医药、化妆品等多种领域有着广泛的应用前景。本实验通过使用氯乙酸与壳聚糖反应制备了O-羧甲基壳聚糖,即在碱性条件下,以甲壳素为基本原料,以异丙醇作为溶胀剂,采用氯乙酸途径制备方式,通过控制不同的反应条件(反应路线、时间、温度、碱的浓度和投料比等), 佳工艺路线。…… -

样本4 ,one of the derivatives of chitosan properties including biocompatibility, Retention Capacity, has a promising applicable perspective for its chitosan. ......

目 1.前言. 2.结构鉴定 (2) 2.1.红外图谱(IR) (2) 3.羧甲基壳聚糖取代度及分子量的测定 (3) 3.1.取代度的测定――胶体滴定法 (3) 3.1.1.羧甲基壳聚糖氨基含量的测定 (3) 3.2.羧甲基壳聚糖取代度、分子量测定结果 (3) …… 6.结论 (4) 6.1.影响产物的条件分析 (4) 6.1.1.反应介质碱性强度的影响 (4) 参考文献 (5) 致谢 (6) 附录A 1/f频谱图 (7) 样本5

羧甲基纤维素的合成

化学化工学院材料化学专业实验报告 实验名称:羧甲基纤维素的合成 年级:10级材料化学日期:2012.10.25 姓名:学号:同组人: 一、预习部分 1、羧甲基纤维素简介: 羧甲基纤维素是纤维素的羧甲基团取代产物。根据其分子量或取代程度,可以是完全溶解的或不可溶的多聚体,后者可作为弱酸型阳离子交换剂,用以分离中性或碱性蛋白质等。羧甲基纤维素可形成高粘度的胶体、溶液、有粘着、增稠、流动、乳化分散、赋形、保水、保护胶体、薄膜成型、耐酸、耐盐、悬浊等特性,且生理无害,因此在食品、医药、日化、石油、造纸、纺织、建筑等领域生产中得到广泛应用。 2、羧甲基纤维素的性质: 纤维素的羧甲基团取代产物。根据其分子量或取代程度,可以是完全溶解的或不可溶的多聚体,后者可作为弱酸型阳离子交换剂,用以分离中性或碱性蛋白质等。羧甲基纤维素又称作羧甲基纤维素钠。羧甲基纤维素钠(CMC)分子结构如下图所示: 由德国于1918年首先制得,并于1921年获准专利而见诸于世。此后便在欧洲实现商业化生产。当时只为粗产品,用作胶体和粘结剂。1936~1941年,羧甲基纤维素钠的工业应用研究相当活跃,发明了几个相当有启发性的专利。第二次世界大战期间,德国将羧甲基纤维素钠用于合成洗涤剂。Hercules公司于1943年为美国首次制成羧甲基纤维素钠,并于1946年生产精制的羧甲基纤维素钠产品,该产品被认可为安全的食品添加剂。上世纪七十年代我国开始采用,九十年代开始普遍使用。是当今世界上使用范围最广、用量最大的纤维素种类。 物理性质:羧甲基纤维素钠(CMC)属阴离子型纤维素醚类,外观为白色或微黄色絮状纤维粉末或白色粉末,无嗅无味,无毒;易溶于冷水或热水,形成具有一定粘度的透明溶液。溶液为中性或微碱性,不溶于乙醇、乙醚、异丙醇、丙酮等有机溶剂,可溶于含水60%的乙醇或丙酮溶液。有吸湿性,对光热稳定,粘度随温度升高而降低,溶液在PH值2~10稳定,PH低于2,有固体析出,遇多价金属盐也会反应出现沉淀。PH值高于10粘度降低。变色温度227℃,炭化温度252℃,2%水溶液表面张力71mn/n。 化学性质:有羧甲基取代基的纤维素衍生物,用氢氧化钠处理纤维素形成碱纤维素,再与一氯醋酸反应制得。构成纤维素的葡萄糖单位有3个可被置换的羟基,因此可获得不同置换度的产品。平均每1g干重导人1mmol羧甲基者,在水及稀酸中不溶解,但能

壳聚糖智能水凝胶

封面 题目壳聚糖智能水凝胶 作者吴雪辰罗育阳 壳聚糖智能水凝胶 作者:吴雪辰罗育阳 摘要:壳聚糖智能水凝胶作为一种天然高分子材料,由于其来源于自然而具有的生物可降解性、无毒、来源广泛等优良的性能,近些年已经成为研究的热点。而智能水凝胶本身对温度、PH、电磁性能等外界刺激能做出迅速的反应同时也收到广泛关注。结合两者的优点合成的壳聚糖智能水凝胶更是具有了更加突出的优势。下面从定义、制备以及应用等方面简单的对壳聚糖智能水凝胶最近几年的发展进行浅析。 关键词:壳聚糖,智能水凝胶,壳聚糖智能水凝胶,药物缓释。

1.定义 甲壳素是由N-乙酰-2-氨基-D-葡萄糖以β-1,4糖苷键形式联接而成的多糖,是一种天然高分子化合物。壳聚糖是其乙酰化产物。壳聚糖与甲壳素结构的差别在于C2位的取代基不同,壳聚糖是氨基(—NH2),而甲壳素是乙酰氨基(—NHCOCH3)。Fig.1是甲壳素与壳聚糖的化学结构式。[1] 脱乙酰基 Fig.1 水凝胶或称含水凝胶为亲水性但不溶于水的聚合物, 它们在水中可溶胀至一平衡体积仍能保持其形状。[2]智能水凝胶一般是有机高分子水凝胶材料,其上的功能基团使水凝胶的吸水量对周围环境敏感如温度、pH、电、光或离子强度等,所以称作“智能”。[3]壳聚糖分子由于主链或侧链上带有大量的亲水基团和有适当的交联网络结构,所以可形成智能水凝胶。 [4] 2.制备 (1)壳聚糖 壳聚糖可通过天然的甲壳素支链水解直接制得。 (2)智能水凝胶 智能水凝胶的制备方法比较复杂,可通过以下方法制得: Ⅰ.水溶性高分子的交联法[5] Ⅱ.接枝共聚法 (3)壳聚糖智能水凝胶的制备 翟延飞[6]研究认为壳聚糖主链上含有大量的亲水集团,尤其是2位上的氨基常作为交联点,能与甲醛、戊二醛等双官能团交联剂反应,使线性壳聚糖链间由碳氧双键交联成水凝胶。常用的交联剂有:戊二醛,甲醛,亚甲基二丙烯酰胺,京尼平等,这种方法是化学交联法。化学交联法制备的凝胶具有以下特点:交联均匀;通过不同的交联剂可以制备不同性质的水凝胶;制备薄膜纤维等形状;适合多糖类、蛋白质等生物天然高分子等。并且化学交联法制得的凝胶能在溶液中保持形成高层次结构和取向不变的交联结构,因而制得结构规整的凝胶。 接枝共聚法制备壳聚糖智能水凝胶(参照水凝胶的制备法:接枝共聚法) 聚丙烯酰胺(PAAm)及其衍生物是一类典型的温敏性水凝胶,被广泛用于药物的控制释放、酶反应控制、生物降解材料等领域。将PAAm的这些优点与壳聚糖的pH敏感性和离子强度敏感性结合起来,通过共聚法制备一种聚合物,使该聚合物具备PAAm和CS的共性,从而得到具有使用价值的材料。 具体备方法:俞玫[7]对壳聚糖接枝聚丙烯酰胺梳型水凝胶的制备进行了研究 本制备在机械搅拌及氮气环境下进行。将l g壳聚糖粉末溶于60 mL l%醋酸溶液中,通氮气3 0 m i n,水浴升温至6 0℃,加入0.2 g过硫酸钾( KPS )引发剂,6 0℃搅拌10 min,快速加入一定比例的单体A A m ( 溶于 3 0 m L 水中并预先用氮除氧) ,6 0℃反应1 h 。将产品冷至室温,用l mol/L NaOH调pH至8。加500 m L无水乙醇脱水1 h,过滤,将产品在 5 0 0 mL无水乙醇中浸泡过夜,充分除去凝胶中的水分。过滤,用5 0 mL 无水乙醇洗

pH敏感型羧甲基壳聚糖水凝胶的制备及体外释药考察

pH敏感型羧甲基壳聚糖水凝胶的制备及体外释药考察 郑施施;王增寿 【期刊名称】《中国药师》 【年(卷),期】2013(016)004 【摘要】目的:研制一种新型羧甲基壳聚糖基pH敏感性水凝胶,考察其在药物传输体系中的应用.方法:采用钙离子交联方法制备有良好pH响应性能的羧甲基壳聚糖基水凝胶,并对其pH响应性能进行相关的表征.以磺胺嘧啶钠为模型药物,考察载药水凝胶在不同pH环境条件下(pH =2和pH =7.4)的药物释放行为.结果:所制备的羧甲基壳聚糖水凝胶具有明显的孔洞结构和良好的pH响应性能,在中性磷酸盐缓冲溶液(pH=7.4)中吸水率显著大于在酸性溶液(pH=2)中的吸水率.载有磺胺嘧啶钠的羧甲基壳聚糖水凝胶在中性磷酸盐缓冲溶液(pH=7.4)中的4h的药物累计释放率达到95%,而在酸性溶液(pH=2)中的4h的药物累计释放率却只有50%.结论:本文所制备的羧甲基壳聚糖pH敏感性水凝胶具有良好的孔隙率和pH响应性能,在口服药物传输体系中有一定的应用前景.%Objective: To develop a novel carboxymethyl chitosan pH-sensitive hydrogels for the potential application in the drug delivery systems. Method: The pH-sensitive carboxymethyl chitosan hydrogels were prepared by a calcium cross-linking method and characterized. Sulfadiazine sodium was selected as the model drug to evaluate the drug release behavior of the hydrogels in various pH conditions ( pH = 2 and pH =7.4). Result: The developed carboxymethyl chitosan hydrogels showed significant porosity and pH sensitivity, and the water absorption of the hydrogels

相关文档
最新文档