简笔图

简笔图
简笔图

16QAM_星形和形星座图调制解调MATLAB代码

%% ------------------------------------------------------------ % 软件无线电课程设计 % % 方形、星形16QAM调制解调仿真 % %%------------------------------------------------------------ %%主程序 clc clear %% 定义参数 fd=250*10^6; %码元速率250M fs=2500*10^6; %滤波器采样率 fc=2500*10^6; %载波频率2.5G f=10000*10^6; %对载波采样 data_len=200000; %数据长度 sym_len=data_len/4; %码元序列长度 M_QAM=16;%QAM数 k=log2(M_QAM); SNR=1:12;%白噪声信噪比, %% ------------------------------------------------------------ bit_tx=randint(1,data_len);%产生随机序列 echo off; rec_qam16=QamMod(bit_tx,16); %方形16QAM调制 star_qam16=SrarQamMod(bit_tx); %星形16QAM调制 base_rec=base_shape(fd,fs,f,rec_qam16); %基带成型滤波 base_star=base_shape(fd,fs,f,star_qam16); %基带成型滤波 for i=1:length(SNR) %信噪比从1dB到12dB计算误码率SNR_=i %方形映射16QAM rf_rec_qam16=CarrierMod(fc,f,base_rec); %载波调制 rf_rec_qam16_n=awgn(rf_rec_qam16,SNR(i),'measured'); %加噪声 [rec_qam16_rx base_rec_rx]=CarrierDemod(fd,fs,fc,f,rf_rec_qam16_n); %载波解调bit_rec_rx=QamDemod(rec_qam16_rx,16); %MQAM解调 [num_qam16,perr_qam16_rec(i)]=biterr(bit_tx,bit_rec_rx);%误码率 qam16_data_rec(i,:)=rec_qam16_rx; %scatterplot(rec_qam16_rx); %星形映射16QAM

16QAM-星形和矩形星座图调制解调MATLAB代码

16QAM-星形和矩形星座图调制解调MATLAB代码

%% ------------------------------------------------------------ % 软件无线电课程设计 % % 方形、星形16QAM调制解调仿真% %%------------------------------------------------------------ %%主程序 clc clear %% 定义参数 fd=250*10^6; %码元速率250M fs=2500*10^6; %滤波器采样率 fc=2500*10^6; %载波频率2.5G f=10000*10^6; %对载波采样 data_len=200000; %数据长度 sym_len=data_len/4; %码元序列长度 M_QAM=16;%QAM数 k=log2(M_QAM);

SNR=1:12;%白噪声信噪比, %% ------------------------------------------------------------ bit_tx=randint(1,data_len);%产生随机序列echo off; rec_qam16=QamMod(bit_tx,16); %方形16QAM调制 star_qam16=SrarQamMod(bit_tx); %星形16QAM调制 base_rec=base_shape(fd,fs,f,rec_qam16); %基带成型滤波 base_star=base_shape(fd,fs,f,star_qam16); %基带成型滤波 for i=1:length(SNR) %信噪比从1dB到12dB计算误码率 SNR_=i %方形映射16QAM

星 座 图

星座图 星座图只对复数的基带信号有意义。对于已经调制到载波上以后的带通信号是没法显示星座图的。星座图所显示的只是每个复数的实部与虚部的几何关系而已。以接收端为例,在去除载波、经过各种基带处理并 down sampling 后但在作最后的判决之前的信号含有 I 和 Q 两路信号。在Matlab 中, "plot(I,Q,'.');" 即可显示星座图。 很简单,你实现了QAM调制的话,在Matlab里面应该是一个复数信号,有实部虚部,在基带研究的话,把实部值和虚部值,也就是I路值和Q路值构成一个二位平面上的点座标,(I,Q),然后把这串序列plot出来就是星座图了,过了AWGN信道,可以看到分散的星座图云彩,^_^。 星座图大致说起来是信号正交展开的直观表示,正交展开可以简单理解为将信号分解为正弦分量和余弦分量。横纵坐标分别是在正交基上的投影。如果把他大概看作极坐标的话模就是幅度,辅角就是相位。简单的从QPSK调制看,不追求严密性可以表示为a*coswt + b*sinwt a,b = -1,1,在星座图上就是(1,1) (-1,-1),(-1,1),(1,-1)四个点. Euclidean distance就是我们普通欧式几何中的距离。

针对现有数字调制方式识别类型有限的问题,提出一种基于星座图的分类算法.算法首先利用盲均衡技术克服信道的多径效应与系统同步误差,再对信号减法聚类,提取聚类中心与理想星座图模型进行匹配,从而实现MASK、MPSK、MQAM 等调制方式的识别.仿真证明:星座图是一个稳定的、强健的识别标志. 星座图:在数字通信中,用于显示信号幅值和相位所有可能组合的一种图示

数字通信中几种调制方式的星座图解析

数字通信中几种调制方式的星座图由于实际要传输的信号(基带信号)所占据的频带通常是低频开始的,而实际通信信道往往都是带通的,要在这种情况下进行通信,就必须对包含信息的信号进行调制,实现基带信号频谱的搬移,以适合实际信道的传输。即用基带信号对载波信号的某些参量进行控制,使载波的这些参量随基带信号的变化而变化。因为正弦信号的特殊优点(如:形式简单,便于产生和接受等),在大多数数字通信系统中,我们都选用正弦信号作为载波。显然,我们可以利用正弦信号的幅度,频率,相位来携带原始数字基带信号,相对应的分别称为调幅,调频,调相三种基本形式。当然,我们也可以利用其中二种方式的结合来实现数字信号的传输,如调幅-调相等,从而达到某些更加好的特性。一.星座图基本原理一般而言,一个已调信号可以表示为:(1)上式中,是低通脉冲波形,此处,我们为简单处理,假设,,即是矩形波,以下也做同样处理。假设一共有(一般总是2的整数次幂,为2,4,16,32等等)个消息序列,我们可以把这个消息序列分别映射到载波的幅度,频率和相位上,显然,必须有才能实现这个信号的传输。当然,我们也不可能同时使用载波信号的幅度、频率和相位三者来同时携带调制信号,这样的话,接收端的解调过程将是非常复杂的。其中最简单的三种方式是: (1.当和为常数,即时,为幅度调制(ASK。 (2.当和为常数,即时,为频率调制(FSK。(3.当和为常数,即时,为相位调制(PSK。我们也可以采取两者的结合来传输调制信号,一般采用的是幅度和相位结合的方式,其中使用较为广泛的一项技术是正交幅度调制(MQAM。我们把(1)式展开,可得:(2)根据空间理论,我们可以选择以下的一组基向量:其中是低通脉冲信号的能量,。这样,调制后的信号就可以用信号空间中的向量来表示。当在二维坐标上将上面的向量端点画出来时,我们称之为星座图,又叫矢量图。也就是说,星座图不是本来就有的,只是我们这样表示出来的。星座图对于判断调制方式的误码率等有很直观的效用。由此我们也可以看出,由于频率调制时,其频率分量始终随着基带信号的变化而变化,故而其基向量也是不停地变化,而且,此时在信号空间中的分量也为一个确定的量。所以,对于频率调制,我们一般都不讨论其星座图的。二.星座图的

(完整word版)QPSK系统的误码率和星座图仿真

目录 一、课题内容 (1) 二、设计目的 (1) 三、设计要求 (1) 四、实验条件 (1) 五、系统设计 (2) 六、详细设计与编码 (4) 1. 设计方案 (4) 2. 编程工具的选择 (4) 3. 程序代码 (5) 4. 运行结果及分析 (8) 七、设计心得 (9) 八、参考文献 (10)

一、课题内容 基于MATLAB或C语言模拟仿真OFDM通信系统。 主要功能: 1、搭建基带OFDM系统仿真平台,实现OFDM信号体制与解调; 2、能够画出输入数据与输出数据的星座图; 3、能在不同信噪比信道的情况下,对信号进行误码分析。 3、能够和理论误码率公式比较 二、设计目的 1、综合应用《Matlab原理及应用》、《信号与系统》、《通信原理》等多门课程知识,使学生建立通信系统的整体概念; 2、培养学生系统设计与系统开发的思想; 3、培养学生利用软件进行通信仿真的能力。 三、设计要求 1、每人独立完成不同子系统的详细功能; 2、对通信系统有整体的较深入的理解,深入理解自己仿真部分的原理的基础,画出对应的通信子系统的原理框图; 3、提出仿真方案; 4、完成仿真软件的编制; 5、仿真软件的演示; 6、提交详细的设计报告。 四、实验条件 计算机、Matlab软件

五、系统设计 1. 四相绝对移相键控(QPSK)的调制基本理论 四相绝对移相键控利用载波的四种不同相位来表征数字信息。由于每一种载波相位代表两个比特信息,故每个四进制码元又被称为双比特码元。我们把组成双比特码元的前一信息比特用a代表,后一信息比特用b代表。双比特码元中两个信息比特ab通常是按格雷码(即反射码)排列的,它与载波相位的关系如表1所列。 表1 双比特码元与载波相位的关系 双比特码元载波相位φ a b A方式B方式 0 0 0°45° 0 1 90°135° 1 1 180°225° 1 0 270°315° 由于四相绝对移相调制可以看作两个正交的二相绝对移相调制的合成,故两者的功率谱密度分布规律相同。 2. 四相绝对移相键控(QPSK)的调制基本方法 下面我们来讨论QPSK信号的产生与解调。QPSK信号的产生方法与2PSK信号一样,也可以分为调相法和相位选择法。

Simulink星座图显示

权利声明:此为雷声天下个人学习所用,愿意与广大网友交流,不可以被用作其他商业用途,如有违反,必究责任。 Simulink中星座图的显示 Simulink通讯系统仿真中对于星座图显示有设置专属的模块支持,而且给出了一个模型mdl 文件示例:用于显示星座点图 其中重要的模块是Discrete-Time Scatter Plot Scope模块,下面给出该模块的描述信息:The Discrete-Time Scatter Plot Scope block displays scatter plots of a modulated signal,to reveal the modulation characteristics,such as pulse shaping or channel distortions of the signal. The Discrete-Time Scatter Plot Scope block has one input port.This block accepts a complex scalar-valued or column vector input signal.The block accepts a signal with the following data types:double,single,base integer,and fixed-point for input,but will cast it as double. 此外还是用了调制模块,具体的可以参照该子库的模型。 通过修改各个模块的参数,可以得到如下结果: 2-BPSK

基于MATLAB的QAM 眼图和星座图

南昌大学信息工程学院 《随机信号分析》课程作业 题目:QAM调制信号的眼图及星座图仿真指导老师:虞贵财 作者:毕圣昭 日期:2011-12-05

QAM调制信号的眼图及星座图仿真 1. 眼图 眼图是在数字通信的工程实践中测试数字传输信道质量的一种应用广泛、简单易行的方法。实际上它的一个扫描周期是数据码元宽度1~2倍并且与之同步的示波器。对于二进制码元,显然1和0的差别越大,接受判别时错判的可能性就越小。由于传输过程中受到频带限制,噪声的叠加使得1和0的差别变小。在接收机的判决点,将“1”和“0”的差别用眼图上“眼睛”张开的大小来表示,十分形象、直观和实用。MATLAB工具箱中有显示眼图和星座图的仪器,下面通过具体的例子说明它们的应用。 图1-1所示是MATLAB Toolbox\Commblks中的部分内容,展示了四进制随机数据通过基带QPSK调制、升余弦滤波(插补)及加性高斯白噪声传输环境后信号的眼图。 图1-1 通过QPSK基带调制升余弦滤波及噪声环境后观察眼图的仿真实验系统 图1-2所示是仿真运行后的两幅眼图,上图是I(同相)信号,下图是Q(正交)信号。 图1-2 通过QPSK基带调制及噪声传输环境后观察到的眼图

2. 星座图 星座图是多元调制技术应用中的一种重要的测量方法。它可以在信号空间展示信号所在的位置,为系统的传输特性分析提供直观的、具体的显示结果。 为了是系统的功率利用率、频带利用率得到充分的利用,在特定的调制方式下,在信号空间中如何排列与分布信号?在传输过程中叠加上噪声以后,信号之间的最小距离是否能保证既定的误码率的要求这些问题的研究用星座图仪十分直观方便。多元调制都可以分解为In-phase(同相)分量及Quadrature(正交)分量。将同相分量用我们习惯的二维空间的X轴表示,正交分量用Y轴表示。信号在X-Y平面(同相-正交平面)的位置就是星座图。MATLAB通信系统的工具箱里有着使用方便、界面美观的星座图仪。 图1-3所示是随机数据通过基带QAM调制及噪声环境传输后,观察星座图的仿真系统。 图1-3 通过基带QAM调制及噪声环境传输后观察星座图的仿真系统图1-4所示是运行仿真后的星座图 图1-4 通过基带QAM调制及噪声环境传输后观察到的星座图

QPSK系统的误码率和星座图仿真

Q P S K系统的误码率和 星座图仿真 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

《MATLAB实践》报告 ——QPSK系统的误码率和星座图仿真 一、引言 数字调制就是把数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号。基本的数字调制方式有振幅键控(ASK)、频移键控 (FSK)、绝对相移键控(PSK)、相对(差分)相移键控(DPSK)。在接收端可以采用想干解调或非相干解调还原数字基带信号。 数字信号的传输方式分为基带传输和带通传输。然而,实际中的大多数信道(如)无线信道具有丰富的低频分量。为了使数字信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。 通信系统的抗噪声性能是指系统克服加性噪声影响的能力。在数字通信系统中,信道噪声有可能使传输码元产生错误,错误程度通常用误码率来衡量。因此,与分析数字基带系统的抗噪声性能一样,分析数字调制系统的抗噪声性能,也就是求系统在信道噪声干扰下的总误码率。 误码率(BER:bit error ratio)是衡量数据在规定时间内数据传输精确性的指标。误码率是指错误接收的码元数在传输总码元数中所占的比例,更确切地说,误码率是码元在传输系统中被传错的概率,即误码率=错误码元数/传输总码元数。如果有误码就有误码率。误码的产生是由于在信号传输中,衰变改变了信号的电压,致使信号在传输中遭到破坏,产生误码。 噪音、交流电或闪电造成的脉冲、传输设备故障及其他因素都会导致误码(比如传送的信号是1,而接收到的是0;反之亦然)。误码率是最常用的数据通信传输质量指标。它表示数字系统传输质量的式是“在多少位数据中出现一位差错”。 误信率,又称误比特率,是指错误接收的比特数在传输总比特数中所占的比例,即误比特率=错误比特数/传输总比特数。

(完整)QPSK系统的误码率和星座图仿真

(完整)QPSK系统的误码率和星座图仿真 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)QPSK系统的误码率和星座图仿真)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)QPSK系统的误码率和星座图仿真的全部内容。

目录 一、课题内容………………………………………..…。……。..1 二、设计目的……………………………………….。…。…。…。。1 三、设计要求…………………………………………………。.1 四、实验条件................................................。....。 (1) 五、系统设计....................................................。.。.. (2) 六、详细设计与编码……………………………。……………。.4 1. 设计方案………………………………。…….…..……。。 4 2。编程工具的选择……………………………………。…。。 4 3。程序代码…………………………………….。。.………。。5 4. 运行结果及分析 (8) 七、设计心得………………………………………。。……….。 9

八、参考文献……………………………….………。。………。10

QPSK系统的误码率和星座图仿真

《MATLAB实践》报告 ——QPSK系统的误码率和星座图仿真 一、引言 数字调制就是把数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号。基本的数字调制方式有振幅键控(ASK)、频移键控(FSK)、绝对相移键控(PSK)、相对(差分)相移键控(DPSK)。在接收端可以采用想干解调或非相干解调还原数字基带信号。 数字信号的传输方式分为基带传输和带通传输。然而,实际中的大多数信道(如)无线信道具有丰富的低频分量。为了使数字信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。 通信系统的抗噪声性能是指系统克服加性噪声影响的能力。在数字通信系统中,信道噪声有可能使传输码元产生错误,错误程度通常用误码率来衡量。因此,与分析数字基带系统的抗噪声性能一样,分析数字调制系统的抗噪声性能,也就是求系统在信道噪声干扰下的总误码率。 误码率(BER:bit error ratio)是衡量数据在规定时间内数据传输精确性的指标。 误码率是指错误接收的码元数在传输总码元数中所占的比例,更确切地说,误码率是码元在传输系统中被传错的概率,即误码率=错误码元数/传输总码元数。如果有误码就有误码率。误码的产生是由于在信号传输中,衰变改变了信号的电压,致使信号在传输中遭到破坏,产生误码。噪音、交流电或闪电造成的脉冲、传输设备故障及其他因素都会导致误码(比如传送的信号是1,而接收到的是0;反之亦然)。误

码率是最常用的数据通信传输质量指标。它表示数字系统传输质量的式是“在多少位数据中出现一位差错”。 误信率,又称误比特率,是指错误接收的比特数在传输总比特数中所占的比例,即误比特率=错误比特数/传输总比特数。 在数字通信系统中,可靠性用误码率和误比特率表示。 数字调制用“星座图”来描述,星座图中定义了一种调制技术的两个基本参数:(1)信号分布;(2)与调制数字比特之间的映射关系。星座图中规定了星座点与传输比特间的对应关系,这种关系称为“映射”,一种调制技术的特性可由信号分布和映射完全定义,即可由星座图来完全定义。 二、QPSK系统的原理 四相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四进制移相键控。QPSK是在M=4时的调相技术,它规定了四种载波相位,分别为45°,135°,225°,275°,调制器输入的数据是二进制数字序列,为了能和四进制的载波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数字序列中每两个比特分成一组,共有四种组合,即00,01,10,11,其中每一组称为双比特码元。每一个双比特码元是由两位二进制信息比特组成,它们分别代表四进制四个符号中的一个符号。QPSK中每次调制可传输2个信息比特,这些信息比特是通过载波的四种相位来传递的。解调器根据星座图及接收到的载波信号的相位来判断发送端发送的信息比特。 在QPSK体制中,由其矢量图(图1)可以看出,错误判决是由于信号矢量的相位因噪声而发生偏离造成的。例如,设发送矢量的相位为45°,它代表基带信号码元“11”,若因噪声的影响使接收矢量的相位变成135°,则将错判为“01”。

基于星座图的8QAM最优结构选取

基于星座图的8QAM最优结构选取 摘要 本文提出了8QAM中最优星座图的设计,并在MATLAB的环境下,对几种常用的8QAM星座图与所设计的星座图分别进行了仿真和对比。通过设定发送功率对比误比特率曲线的方法,证明了所设计星座图的最优性。 目录 1 QAM调制原理 (2) 2 QAM星座图设计 (2) 2.1常见星座图简介 (2) 2.2星座图的性能评价指标 (3) 2.3 最优8QAM星座图的构造 (4) 3 仿真与对比 (4) 3.1 对比对象 (4) 3.2 对比前提 (5) 3.3 程序仿真 (5) 3.4 结果分析 (6) 附:完整代码 (7) 1 QAM调制原理 QAM(Quadrature Amplitude Modulation)正交幅度调制技术,是用两路独立的基带信号对

两个相互正交的同频载波进行抑制载波双边带调幅,利用这种已调信号的频谱在同一带宽内的正交性,实现两路并行的数字信息的传输。该调制方式通常有8QAM,16QAM,64QAM。 QAM调制实际上就是幅度调制和相位调制的组合,相位+ 幅度状态定义了一个数字或数字的组合。QAM的优点是具有更大的符号率,从而可获得更高的系统效率。通常由符号率确定占用带宽。因此每个符号的比特(基本信息单位)越多,频带效率就越高。 调制时,将输入信息分成两部分:一部分进行幅度调制;另一部分进行相位调制。对于星型8QAM信号,每个码元由3个比特组成,可将它分成第一个比特和后两个个比特两部分。前者用于改变信号矢量的振幅,后者用于差分相位调制,通过格雷编码来改变当前码元信号矢量相位与前一码元信号矢量相位之间的相位差。 QAM是一种高效的线性调制方式,常用的是8QAM,16QAM,64QAM等。当随着M 的增大,相应的误码率增高,抗干扰性能下降。 2 QAM星座图设计 QAM调制技术对应的空间信号矢量端点分布图称为星座图。QAM的星座图呈现星状分层分布,同一层信号点的振幅相同,位于一个圆周上。常见的调制方式如8QAM,16QAM,64QAM所对应的星座图中分别有8,16,64个矢量端点。 2.1 常见星座图简介 多电平QAM星座图的形式主要有圆形、三角形和矩形等3种。其中,由于矩形星座图,易于实现、系统误码率较低,得到了广泛应用。 (1) 圆形星座图 圆形星座图的基本特征是所有星座点都处在以原点为圆心的一个或多个圆周上。实际应用中,为了提高系统性能,排列在各个圆周上的星座点应遵循以下原则。首先,各圆周上的星座点数与该圆的半径成正比关系,即圆的半径越大,圆周上的星座点数就越多,且半径与星座点数之比是一个常数; 其次,同一圆周上各星座点应保持均匀分布,各星座点之间应保持一定的几何位置。 (2) 三角形星座图 三角形星座图中相邻最近3点的连线构成一个正三角形。这种星座图一般不在原点处安排星座点,因而,围绕原点构成一个正六边形。这样的安排使相邻的星座点之间距离相等,从而提高了系统性能。实际应用中,应尽可能将各星座点按正三角形排列的原则布置在一个圆环内,这样可以较好地利用发信功放的输出功率。

QPSK两种不同星座图方式误码率比较及其仿真程序

clc; clear all; close all; nsymbol = 50000;%%每种信噪比下符号数的发送符号数 data = randi([0,1],1,nsymbol*2); %%产生1行,nsymbol列均匀分布的随机数0,1 qpsk_mod1 = zeros(1,nsymbol); qpsk_mod2 = zeros(1,nsymbol); data_receive1 = zeros(1,nsymbol); data_receive2 = zeros(1,nsymbol); data_receive = zeros(1,nsymbol*2); Wrongnumber = 0; SymbolWrongnumber = 0; for i=1:nsymbol %%调制 symbol1 = data(2*i-1); symbol2 = data(2*i); if symbol1 == 0 & symbol2 == 0 qpsk_mod1(i) = 1; qpsk_mod2(i) = 0; elseif symbol1 == 0 & symbol2 == 1 qpsk_mod1(i) = 0; qpsk_mod2(i) = 1; elseif symbol1 == 1 & symbol2 == 1 qpsk_mod1(i) = -1; qpsk_mod2(i) = 0; elseif symbol1 == 1 & symbol2 == 0 qpsk_mod1(i) = 0; qpsk_mod2(i) = -1; end end SNR_dB = 1:10;%%%信噪比dB形式 SNR = 10.^(SNR_dB/10);%%信噪比转化为线性值 for loop= 1:10 sigma = sqrt(1/(2*SNR(loop)));%%%根据符号功率求噪声功率 qpsk_receive1 = qpsk_mod1 + sigma * randn(1,nsymbol); qpsk_receive2 = qpsk_mod2 + sigma * randn(1,nsymbol); %%添加复高斯白噪声for k=1:nsymbol if qpsk_receive2(k) > qpsk_receive1(k)

QPSK系统的误码率和星座图仿真说课材料

Q P S K系统的误码率和星座图仿真

《MATLAB实践》报告 ——QPSK系统的误码率和星座图仿真一、引言 数字调制就是把数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号。基本的数字调制方式有振幅键控(ASK)、频移键控 (FSK)、绝对相移键控(PSK)、相对(差分)相移键控(DPSK)。在接收端可以采用想干解调或非相干解调还原数字基带信号。 数字信号的传输方式分为基带传输和带通传输。然而,实际中的大多数信道(如)无线信道具有丰富的低频分量。为了使数字信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。 通信系统的抗噪声性能是指系统克服加性噪声影响的能力。在数字通信系统中,信道噪声有可能使传输码元产生错误,错误程度通常用误码率来衡量。因此,与分析数字基带系统的抗噪声性能一样,分析数字调制系统的抗噪声性能,也就是求系统在信道噪声干扰下的总误码率。 误码率(BER:bit error ratio)是衡量数据在规定时间内数据传输精确性的指标。误码率是指错误接收的码元数在传输总码元数中所占的比例,更确切地说,误码率是码元在传输系统中被传错的概率,即误码率=错误码元数/传输总码元数。如果有误码就有误码率。误码的产生是由于在信号传输中,衰变改变了信号的电压,致使信号在传输中遭到破坏,产生误码。 噪音、交流电或闪电造成的脉冲、传输设备故障及其他因素都会导致误

码(比如传送的信号是1,而接收到的是0;反之亦然)。误码率是最常用的数据通信传输质量指标。它表示数字系统传输质量的式是“在多少位数据中出现一位差错”。 误信率,又称误比特率,是指错误接收的比特数在传输总比特数中所占的比例,即误比特率=错误比特数/传输总比特数。 在数字通信系统中,可靠性用误码率和误比特率表示。 数字调制用“星座图”来描述,星座图中定义了一种调制技术的两个基本参数:(1)信号分布;(2)与调制数字比特之间的映射关系。星座图中规定了星座点与传输比特间的对应关系,这种关系称为“映射”,一种调制技术的特性可由信号分布和映射完全定义,即可由星座图来完全定义。 二、QPSK系统的原理 四相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四进制移相键控。QPSK是在M=4时的调相技术,它规定了四种载波相位,分别为45°,135°,225°,275°,调制器输入的数据是二进制数字序列,为了能和四进制的载波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数字序列中每两个比特分成一组,共有四种组合,即00,01,10,11,其中每一组称为双比特码 元。每一个双比特码元是由两位二进制信息比特组成,它们分别代表四进制四个符号中的一个符号。QPSK中每次调制可传输2个信息比特,这些信息比特是通过载波的四种相位来传递的。解调器根据星座图及接收到的载波信号的相位来判断发送端发送的信息比特。

通信中星座图简介

数字通信中几种调制方式的星座图 由于实际要传输的信号(基带信号)所占据的频带通常是低频开始的,而实际通信信道往往都是带通的,要在这种情况下进行通信,就必须对包含信息的信号进行调制,实现基带信号频谱的搬移,以适合实际信道的传输。即用基带信号对载波信号的某些参量进行控制,使载波的这些参量随基带信号的变化而变化。因为正弦信号的特殊优点(如:形式简单,便于产生和接受等),在大多数数字通信系统中,我们都选用正弦信号作为载波。显然,我们可以利用正弦信号的幅度,频率,相位来携带原始数字基带信号,相对应的分别称为调幅,调频,调相三种基本形式。当然,我们也可以利用其中二种方式的结合来实现数字信号的传输,如调幅-调相等,从而达到某些更加好的特性。 一.星座图基本原理 一般而言,一个已调信号可以表示为: ()()cos(2)N m n k s t A g t f t π?=+ 0t T ≤< (1) 0000 1,2......1,2.......1,2........1,2........N N m m n n k k ==== 上式中,()g t 是低通脉冲波形,此处,我们为简单处理,假设()1g t =,0t T <≤,即()g t 是矩形波,以下也做同样处理。假设一共有0N (一般0N 总是2的整数次幂,为2,4,16,32等等)个消息序列,我们可以把这0N 个消息序列分别映射到载波的幅度m A ,频率n f 和相位k ?上,显然,必须有 0000N m n k =?? 才能实现这0N 个信号的传输。当然,我们也不可能同时使用载波信号的幅度、频率和相位三者来同时携带调制信号,这样的话,接收端的解调过程将是非常复杂的。其中最简单的三种方式是: (1).当n f 和k ?为常数,即0000,1,1m N n k ===时,为幅度调制(ASK)。 (2).当m A 和k ?为常数,即00001,,1m n N k ===时,为频率调制(FSK)。 (3).当m A 和n f 为常数,即00001,1,m n k N ===时,为相位调制(PSK)。 我们也可以采取两者的结合来传输调制信号,一般采用的是幅度和相位结合的方式,其中使用较为广泛的一项技术是正交幅度调制(MQAM)。 我们把(1)式展开,可得:

16QAM-星形和矩形星座图调制解调MATLAB代码

%% % 软件无线电课程设计 % % 方形、星形16QAM 调制解调仿真 % %% ----------------------------------------------------------- %%主程序 clc clear %%定义参数 fd=250*10A 6; fs=2500*10A 6; fc=2500*10A6; f=10000*10A6; data_le n=200000; sym 」 en=data_len/4; %码 元序列长度 M_QAM=16;%QAM 数 k=log2(M_QAM); SNR=1:12;%白噪声信噪比, %% ----------------------------------------------------------- bit_tx=randint(1,data_len);% 产生随机序列 echo off; rec_qam16=QamMod(bit_tx,16); star_qam16=SrarQamMod(bit_tx); base_rec=base_shape(fd,fs,f,rec_qam16); % 基带成型滤波 base_star=base_shape(fd,fs,f,star_qam16); % 基带成型滤波 %方形映射16QAM rf_rec_qam16=CarrierMod(fc,f,base_rec); % 载波调制 rf_rec_qam16_ n=awg n( rf_rec_qam16,SNR(i),'measured'); % 加噪声 [rec_qam16_rx base_rec_rx]=CarrierDemod(fd,fs,fc,f,rf_rec_qam16_ n); % 载波解调 bit_rec_rx=QamDemod(rec_qam16_rx,16); %MQAM 解调 [nu m_qam16,perr_qam16_rec(i)]=biterr(bit_tx,bit_rec_rx);% 误码率 qam16_data_rec(i,:)=rec_qam16_rx; %scatterplot(rec_qam16_rx); %星形映射16QAM rf_star_qam16=CarrierMod(fc,f,base_star); % 载波调制 rf_star_qam16_n=awg n(rf_star_qam16,SNR(i),'measured'); % 加噪声 %码元速率250M %滤波器采样率 %载波频率2.5G %对载波采样 %数据长度 %方形16QAM 调制 %星形16QAM 调制 for i=1:le ngth(SNR) SNR_=i %信噪比从1dB 到12dB 计算误码率

相关主题
相关文档
最新文档