BSA和FN在纳米化钛表面的蛋白吸附及释放行为_史婕

BSA和FN在纳米化钛表面的蛋白吸附及释放行为_史婕
BSA和FN在纳米化钛表面的蛋白吸附及释放行为_史婕

第26卷 第12期 无 机 材 料 学 报

Vol. 26

No. 12

2011年12月

Journal of Inorganic Materials Dec., 2011

收稿日期: 2011-01-01; 收到修改稿日期: 2011-03-18

基金项目: 国家自然科学基金(50871093); 教育部高等学校全国优秀博士学位论文作者专项基金(200554)

National Natural Science Foundation of China (50871093); Foundation for the Author of National Excellent Doctoral Dissertation of China (200554)

作者简介: 史 婕(1986?), 女, 硕士研究生. E-mail: shilinyue98@https://www.360docs.net/doc/4912040175.html, 文章编号: 1000-324X(2011)12-1299-05 DOI: 10.3724/SP.J.1077.2011.01299

BSA 和FN 在纳米化钛表面的蛋白吸附及释放行为

史 婕, 冯 波, 鲁 雄, 汪建新, 段 可, 翁 杰

(西南交通大学 材料先进技术教育部重点实验室, 成都 610031)

摘 要: 通过阳极氧化技术, 在钛表面制备一层管径为100nm 左右的氧化钛纳米管. 选取小牛血清白蛋白(BSA)和纤维连接蛋白(FN)两种蛋白质进行蛋白吸附实验, 并在仿生条件下进行蛋白质的体外释放. 对吸附了蛋白的纳米管试样表面进行红外和荧光定性分析, 同时采用考马斯亮蓝法对纳米管表面的蛋白吸附进行定量检测, 实验发现纳米管试样更有利于蛋白质的吸附, 且FN 在试样表面吸附时的吸附率大于BSA. 氧化钛纳米管的蛋白释放分为突释和缓释两个阶段, 其释放机制符合Fickian 扩散.

关 键 词: 氧化钛纳米管; 蛋白质吸附及释放; 小牛血清白蛋白; 纤维连接蛋白 中图分类号: TQ819 文献标识码: A

Adsorption and Release Behavior of BSA and FN on Nanostructural Ti Surface

SHI Jie, FENG Bo, LU Xiong, WANG Jian-Xin, DUAN Ke, WENG Jie

(Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering,

Southwest Jiaotong University, Chengdu 610031, China)

Abstract: The titanium dioxide (TiO 2) nanotube arrays with 100 nm diameters on titanium were fabricated by an-odic oxidation. The adsorption behaviors of bovine serum albumin (BSA) and fibronectin (FN) onto the nanotube arrays were investigated, and then the protein releases were examined in vitro. Fourier transform infrared spectroscope and Fluorescence microscope were used to qualitative analysis for TiO 2 nanotube arrays surfaces after protein adsorption. Adsorbance of protein was detected with the method of Coomassie brilliant blue G-250. The re-sults showed that TiO 2 nanotube arrays could obviously improve the adsorption, and the adsorption percentage of FN on samples was larger than that of BSA. The release experiment results suggested that the release behaviors of BSA and FN on the nanotube arrays involved the bust release and the gradual release, and the release mechanism was consistent with Fickian diffusion.

Key words: TiO 2 nanotube; protein adsorption and release; bovine serum albumin; fibronectin

利用阳极氧化技术在金属钛表面制备的TiO 2纳米管, 具有极高的有序结构和大的比表面积[1], 从而具有优良的吸附能力[2]. 材料植入体内首先是与蛋白质相互作用, 因此医用金属表面的蛋白质吸附能力对于其生物学性能有重要影响. 而血清白蛋白是血浆中最丰富的蛋白质,对许多内源和外源配

体的传输、分布和代谢等均有显著贡献. 纤维连接蛋白(FN)是一种重要的细胞外基质蛋白质, 可以促进细胞的粘附和扩展. 蛋白质吸附是一个复杂的过程, 受到来自材料表面化学组成、形貌、电荷分布以及润湿性的影响, 同时蛋白质本身的化学功能基团的存在、构象稳定性以及分子大小等也影响其与

1300

无 机 材 料 学 报 第26卷

材料表面的相互作用, 从而决定它在材料表面的吸附及脱附[3-7]. 本工作研究了钛表面TiO 2纳米管对小牛血清白蛋白(BSA)和FN 的吸附行为, 同时考察了所吸附的蛋白质在体外的短期释放行为.

1 试验

1.1 试样制备

纯钛片(TA2, φ10mm×1.5mm)经打磨和预处理. 一组试样采用文献[1]的方法, 在0.15mol/L HF + 2mol/L H 3PO 4的电解液中, 经20V 电化学阳极氧化1h 和450℃热处理, 在表面形成管径约100nm 的纳米管(记为T100). 另一组试样经预处理之后直接热处理, 得到光滑的钛片(记为T). 试样T100的表面形貌如图1所示. 由前面的研究可知, 450℃热处理使纳米管的晶型由无定型二氧化钛转化为锐钛矿型[8-9].

1.2 蛋白吸附实验

FN, 美国Sigma 公司. BSA 及其它化学试剂, 成都溶海生化试剂公司.

根据人体白蛋白与纤连蛋白所占比例(约193: 1), BSA 及FN 溶液均用磷酸缓冲液(PBS, pH 7.4)配制成浓度分别为1mg/mL 和5μg/mL 的蛋白溶液. 将T 和T100试样分别浸泡在50mL 的蛋白质溶液中, 恒温37, ℃在0、10、30、45、60min, 2、4、6、12和 24h 各取出1mL. 测量时, 取出50μL 蛋白溶液并置于10mL EP 管中, 向每个EP 管中加入50 μL 蒸馏水, 混匀后每管中加入5mL 考马斯亮蓝G-250溶液, 混匀, 室温放置2min, 用酶标仪进行测定, 读取OD 595nm 并记录. BSA 和FN 的浓度采用分光光度法分析, 吸附量按照方程(1)和(2)计算:

Y A B X =+× (1) ()21/AQ M X C C =?× (2) 式(1)是BSA 和FN 溶液的标准曲线, Y 为吸光度值

,

图1 电化学阳极氧化1h 试样的SEM 照片

Fig. 1 SEM image of the sample after oxidation for 1 h

X 为吸光度对应的蛋白浓度值, A 和B 为线性回归方程拟合参数, 其值见表1(R 为拟合相关系数). 式(2)中AQ 为蛋白质的吸附量(mg), M 为蛋白溶液的初始量(mg), C 1为蛋白质的初始浓度(mg/mL), C 2为吸附后所测定的蛋白溶液浓度(mg/mL).

用方程(3)所得吸附率比较两种蛋白质在试样表面的吸附能力.

吸附率(%)= AQ

M

×100% (3) 吸附完成后将试样取出, 用PBS 溶液冲洗3次, 25℃真空干燥, 试样分别标记为T+BSA 、T+FN 、T100+BSA 和T100+FN.

1.3 蛋白释放实验

将T+BSA 、T+FN 、T100+BSA 和T100+FN 四组试样分别依次放在离心管中, 各加入 1.5mL 的PBS, 在5、10、30、60min, 2、4、6、12、24、48、72h 各取出1mL, 并用1mL 新的PBS 补充, 恒温37. ℃各个时间点蛋白质的释放量采用前面吸附量的公式进行计算.

1.4 试样的表征

分别用扫描电镜(SEM, FEI Quanta 200型)观察氧化钛纳米管的形貌, 傅里叶变换红外光谱(FTIR, Nicolet SXFYIRI 70/Magna 550型)考察试样表面蛋白吸附后的化学成分. 采用荧光显微镜(Leica DMR, Germany)检测蛋白吸附后试样表面的蛋白图像.

2 结果和讨论

2.1 表面蛋白吸附层的化学分析

图2为T 和T100分别吸附两种蛋白质BSA 和FN 后的红外光谱图. 波长1650 cm ?1处的峰是酰胺Ⅰ带中的C=O 伸缩振动和酰胺键中的N–H 弯曲振动峰, 波长1545 cm ?1处为酰胺Ⅱ带中的N–H 变形振动峰. 由图可见, 纳米管试样上均可以观察到明显的蛋白特征峰, 而无纳米管的光滑钛试样上几乎没有检测到蛋白质特征峰, 这说明在光滑钛的表面上制备一层纳米管有利于蛋白质的吸附.

图3为T 和T100吸附BSA 和FN 后的荧光显微照片. 荧光强度与试样表面蛋白质的吸附量成正

表1 BSA 和FN 的线性回归方程参数

Table 1 Parameters of linear regression equation of standard curve for BSA and FN solutions

Solution A B R

BSA 0.038 0.054 0.999 FN 0.003 0.005 0.998

第12期

史 婕, 等: BSA 和FN 在纳米化钛表面的蛋白吸附及释放行为 1301

图2 T 和T100分别吸附BSA 和FN 后的红外光谱图

Fig. 2 FTIR spectra of T and T100 immersed in BSA or FN

solutions for 24 h

图3 T 和T100吸附BSA 和FN 后的荧光显微照片

Fig. 3 Fluorescence microscope photographs of BSA or FN adsorbed samples

(a) BSA adsorbed on T (T + BSA); (b) FN adsorbed on T (T + FN); (c) BSA adsorbed on T100 (T100 + BSA); (d) FN adsorbed on T100 (T100 + FN)

比, 由此可以得到表面蛋白的相对吸附量和表面蛋白的分布信息. 与光滑钛试样(T+BSA 和 T + FN)相比较, 纳米管试样(T100+BSA 和 T100 + FN)的荧光点分布更多, 吸附的蛋白更多, 这与红外光谱的结论一致, 表面纳米化更有利于蛋白的吸附. 分别比较(a)与(b)和(c)与(d), 可以看到在同样表面处理下, 试样对于FN 的吸附强于BSA, 或者说, FN 比BSA 更易吸附到材料的表面. 由于FN(等电点5.8)在PBS(pH = 7.4)中所带的负电比BSA(等电点 4.6)要少, 与试样(锐钛矿等电点 6.2)之间的静电斥力小.另外, BSA 分子是一种分子半径为4~7nm 左右的椭圆形蛋白质, 远远小于纳米管的半径(50nm), 因此吸附过程中, 理论上BSA 分子在纳米管毛细力的

作用下比较容易进入纳米管内. 而FN 分子是一种长度为140nm, 半径2nm 左右的棒状蛋白质, 这种形状和尺寸的蛋白质在吸附时要进入纳米管内则受到限制, 因此更容易堆积于表面.

2.2 吸附动力学分析

T 和T100吸附两种不同的蛋白质BSA 和FN 时, 蛋白质吸附量随时间的变化曲线如图4所示. 由图4可见, 试样的吸附趋势均一致, 在吸附的开始阶段, BSA 和FN 快速吸附到试样的表面, BSA 在2h 左右达到吸附前期的吸附极大值, FN 由于分子量大, 泳动速率慢, 在3h 左右达到吸附前期极大值. 随着吸附的进行, 脱附速率逐渐大于吸附速率, 部分吸附的蛋白质重新解吸附回到溶液中. 6h 左右, BSA 的脱附/吸附速率渐渐达到平衡, 试样表面的吸附量基本保持恒定. FN 的脱附/吸附速率达到平衡则要经过12h 左右. 24h 后, 1mg/mL 的BSA 在T 和T100上的吸附量分别为(13.46 ± 1.23)和(50.95 ± 1.09) mg/cm 2, 吸附率分别为21%和79%. 5 μg / mL 的FN 在T 和T100上的吸附量分别为(73.25 ± 3.67)和(280.33±10.12) μg/cm 2, 吸附率分别为23%和88%. 由此可以看出, 钛表面纳米化后可以明显提高蛋白质的吸附量, 并且对FN 的吸附率优于BSA, 这与前面的实验结果相符. 纳米管氧化钛试样的蛋白质吸附能力更好是由于材料表面的锐钛矿纳米晶体和纳米管的共同作用. 锐钛矿在水溶液中发生羟基化, 其等电点6.2, 比PBS 的pH 值7.40要低, 因此锐钛矿在该溶液中表面会富集一层带负电荷的水合二氧化钛, 试样浸泡在与人体组织内环境相似的模拟体液中时, 为吸附提供了更多的吸附位点[9]. 一般来说, 静电力提供蛋白吸附的主要驱动力, 但BSA 和FN 在溶液中也带负电, 因此, 本实验中静电力不是蛋白吸附的主要驱动力. 表面纳米管的存在使试样比表面积显著增加, 使其具有高的表面能和高反应活性, 并为蛋白质的吸附提供了更多的位点, 由此提高了表面吸附能力. 试样的表面能越高, 吸附过程中吉布斯自由能的降低值越大, 吸附的驱动力也越大. 从吸附速率来看, FN 的分子量(450kDa)远大于BSA 的分子量(65kDa), 分子的泳动速率低, 因此FN 的吸附速率要小于BSA, FN 达到平衡所需要的时间也更长.

2.3 释放分析

图5是T 和T100吸附两种蛋白质后在不同时间点的蛋白质释放曲线, 两种蛋白质在光滑钛或纳米管表面的释放趋势相似. 不同的是, 吸附了BSA

1302 无机材料学报第26卷

图4 T和T100吸附BSA和FN的动力学曲线

Fig. 4 Protein adsorption kinetics curves on T and T100

(a) Initial concentration of 1.0 mg/mL BSA, (b) Initial concentration of 5 μg / mL FN, error bar indicates one standard deviation

和FN的光滑钛表面几乎只有突释阶段, 即在释放进

行了15h左右, 表面98%左右的蛋白质已释放到溶液

中. 而对于纳米管表面的蛋白质的释放, 则可分为

前18h左右的快速释放和随后的缓慢释放两个阶段.

光滑钛表面的蛋白质吸附得不牢固, 很容易从表面

释放出来, 应主要为物理吸附. 比较(a)和(b)还可以

看出, T100试样对BSA的累积释放率要低于FN的

累积释放率, 也就是说, 同样释放72h的时间, T100

试样释放BSA的相对量少于FN. 这可能是由于部分

BSA进入了纳米管内, 导致释放的速率更为缓慢.

为了研究纳米管表面蛋白质的扩散机制, 利用

Ritger-Peppas方程[10]:

e ()n

t

M

R t kt

M∞

==(4) 式中, R e (t)是在时间点t处蛋白质的累积释放率, M t 是在时间点t时蛋白质的累积释放量, M∞是试样上蛋白质的吸附总量. n是用于研究蛋白质释放机制的扩散指数, k为动力学常数.

根据拟合后释放指数n值的大小可以判断蛋白质的释放机制. 对于蛋白质释放, 当0.41

根据Fickian扩散第一定律

d d

d d

B B

c c

DA

t x

ν==?

图5 T和T100吸附BSA和FN后的释放曲线

Fig. 5 Release profiles of BSA and FN protein adsorption on T and T100 (a) Initial concentration of 1.0mg/mL BSA; (b) Initial concentration of 5μg / mL FN

第12期

史 婕, 等: BSA 和FN 在纳米化钛表面的蛋白吸附及释放行为 1303

图6 T100+BSA 和T100+FN 的释放拟合曲线

Fig. 6 Fitting curves of release for T100+BSA and T100+FN

式中, D 为扩散系数, A 是垂直于扩散方向的截面积,

d c B /d x 为沿扩散方向的浓度梯度. 可知, 分子的扩散主要与垂直于扩散方向的截面积和扩散方向的浓度梯度有关. 因此, 纳米管表面蛋白分子的扩散主要由纳米管的比表面积和材料表面吸附的蛋白与溶液中的蛋白浓度差来决定. 结合图5和图6可以得出与上面相同的结论, 释放开始时, PBS 溶液中蛋白浓度几乎为零, 远小于材料表面的蛋白浓度, 因此蛋白质释放速率快, 即突释阶段; 随着溶液中蛋白浓度的增大, 释放速率逐渐减慢, 进入缓释阶段. 扩散除了与材料表面积和浓度梯度有关外, 还与蛋白质分子的性质有关. 由前面的吸附可知, 材料表面FN 的吸附率要大于BSA, 释放时, 溶液中FN 的浓度梯度大于BSA, 因此FN 的扩散速率应大于

BSA. 但是, FN 的分子量(450kDa)远远大于BSA 的分子量(65kDa), 分子的泳动速率小于BSA. 因此, 由图6可以看出, 在释放的整个过程中, 两种蛋白质的释放速率相当.

表2 T100+BSA 和T100+FN 释放曲线的拟合参数 Table 2 Fitting data of the release profiles of T100+BSA

and T100+FN e ()/n t R t kt M M ∞==

Parameters n k R T100+BSA 0.48±0.03 3.16±0.48 0.979 T100+FN

0.41±0.01

5.20±0.27

0.996

3 结论

1) 钛表面氧化钛纳米管层较光滑钛表面有更好的蛋白吸附能力.

2) 在氧化钛纳米管层表面和光滑钛表面, 纤维连接蛋白的吸附率均高于小牛血清白蛋白.

3)纳米管表面的蛋白质的释放分为突释和缓释两个阶段, 而光滑钛表面的蛋白质释放则在15h 左右几乎全部释放到溶液中, 只有突释阶段.

参考文献:

[1] 刘达理, 冯 波, 鲁 雄, 等(LIU Da-Li, et al ). 两段式阳极氧化

法制备大管径TiO 2纳米管. 稀有金属材料与工程(Rare Metal Mat. Eng.), 2010, 39(2): 325?328.

[2] Richert L, Variola F, Rosei F, et al. Adsorption of proteins on na-noporous Ti surfaces. Surf. Sci., 2010, 604(7): 1445?1451. [3] 武 楠, 冯 波, 鲁 雄, 等.有机磷酸酯改性钛表面的蛋白质吸附

行为. 复合材料学报, 2008, 25(6): 63?66.

[4] Wei Z, Huang W, Hou G, et al . Studies on adsorption isotherms of

endotoxin and BSA using an affinity column. Process. Biochem., 2007, 42(2): 285?287.

[5] Simi C K, Abraham E. Nanocomposite based on modified

TiO 2-BSA for functional applications. Colloid. Surf. B: Biointer-face., 2009, 71(8): 319?324.

[6] Feng B, Weng J, Yang B C, et al . Surface characterization of tita-nium and adsorption of bovine serum albumin. Mater. Character ., 2003, 49(2): 129?137.

[7] Nakanishi K, Sakiyama T, Imamura K. On the adsorption of pro-teins on solid surfaces, a common but very complicated phenome-non. J. Biosci. Bioeng., 2001, 91(3): 233?244.

[8] Feng B, Chu X J, Chen J M, et al. Hydroxyapatite coating on tita-nium surface with titania nanotube layer and its bond strength to substrate. J. Por. Mater., 2010, 17(4): 453?458.

[9] Gao L, Feng B. Wang J X, et al. Micro/nanostructural porous sur-face on titanium and bioactivity. J. Biomed. Mater. Res. B: Appl. Biomater., 2009, 89B (2): 335?341.

[10] Narasimhan B, Peppas N. Molecular analysis of drug delivery sys-tems controlled by dissolution of the polymer carrier. J. Pharm.

Sci., 1997, 86(1): 297?304.

[11] Siepmann J, Podual K, Sriwongjanya M, et al. A new model de-scribing the swelling and drug release kinetics from hydroxypropyl methylcellulose tablets. J. Pharm. Sci., 1999, 88(1): 65?72.

锐钛型二氧化钛与金红石型二氧化钛的区分

1、(锐钛型二氧化钛与金红石型二氧化钛)的区分 1.1 方法 利用X射线衍射仪得到XRD图谱进行分析 1.2用到的仪器 X射线衍射仪 X射线产生原理: 高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1%左右)能量转变为X射线,而绝大部分(99%左右)能量转变成热能使物体温度升高 1.2.1 X射线管的结构 阴极:又称灯丝(钨丝),通电加热后便能释放出热辐射电子。 阳极:又称靶,通常由纯金属制成(Cr,Fe,Co,Ni,Cu,Mo,Ag, W等),使电子突然减速并发射X射线。阳极需要水强制冷却。 窗口:是X射线射出的通道,维持管内高真空,对X射线吸收 较少,如金属铍、含铍玻璃、薄云母片 X射线管中心焦点

在X射线衍射中,总希望有较小的焦点(提高分辨率)和较强的X射线强度(缩短爆光时间)。 一般采用在与靶面成一定角度的位置接受X射线,这样可以达到焦点缩小,X射线相应增强的目的。 1.2.2 X射线特点

1.2.3理论基础:布拉格方程 1.2.4具体方法 用X射线衍射分析法中的粉末法来分析两种结构。 只有满足Bragg方程,才能产生衍射现象,因此用粉末法对测定的晶体样品,不改变λ,要连续改变θ。: ?用单色的X射线照射多晶体试样,利用晶体的不同取向来改变θ,以满足 Bragg方程。试样要求:粉末,块状晶体。 ?特点:试样容易获得,衍射花样反映晶体的全面信息。

粉末法:由于多晶体由无数取向无规的单晶组成,相当于单晶绕所有取向的轴转动,晶体内某等同晶面族{HKL}的倒易点,形成-相应倒易矢量gHKL为半径的倒易球。一系列的倒易球与反射球相交,其交集是一系列园,则相应的衍射线束分布于以样品为中心、入射方向为轴、上述交线园为底的园锥面上。 1.2.5 两者结构分析 晶胞结构的不同 金红石型二氧化钛及锐钛型二氧化钛结晶类型均为正方结晶,前者为R型,后者为A型。金红石型二氧化钛晶格结构致密,比较稳定,光化学活性小,因而耐久性由于锐钛型二氧化钛。另外,金红石型二氧化钛晶体结构是细长的成对的孪生晶体,每个金红石晶胞含有2个二氧化钛分子,以两个棱相连,这比锐钛型二氧化钛八面体的形式体积更小、结构更密,因而硬度和密度增大,介电常数和导热性增加,所以耐候性好,不易粉化 (a)金红石型 (b)锐钛型 金红石型和锐钛型晶胞中TiO2分子数分别是2和4。晶胞参数分别是:金红石型a:4.593A,c=2.959A;锐钛型a=3.784A,c=9.515^。金红石型二氧化钛比锐钛型二氧化钛稳定而致密,有较高的硬度、密度、介电常数及折射率,其遮

标准溶液配制方法

中华人民共和国国家标准 UDC543.06:54—41 GB601—88 化学试剂 滴定分析(容量分析)用标准溶液的制备 Chemicalreagent Preparationsofstandardvolumetriesolutions 1主题内容与适用范围 本标准规定了滴定分析(容量分析)用标准溶液的配制和标定方法。 本标准适用于制备准确浓度之溶液,应用于滴定法测定化学试剂的主体含量及杂质含量,也可供其他的化学产品标准选用。 2引用标准 GB603化学试剂试验方法中所用制剂及制品的制备 GB6682实验室用水规格 GB9725化学试剂电位滴定法通则 3一般规定 3.1本标准中所用的水,在没有注明其他要求时,应符合GB6682中三级水的标 准。 3.2本标准中所用试剂的纯度应在分析纯以上。 3.3工作中所用的分析天平的砝码、滴定管、容量瓶及移液管均需定期校正。3.4本标准中标定时所用的基准试剂为容量分析工作基准试剂;制备标准溶液是 所用的试剂为分析纯以上试剂。 3.5本标准中所制备的标准溶液的浓度均指20c时的浓度。在标定和使用时,如 温度有差异,应只能附录A(补充件)补正。 3.6“标定”或“比较”标准溶液浓度时,平行试验不得少于8次,两人各作4 平行,每人4平行测定结果的极差与平均值之比不得大于0.1%。两人测定结果的差值与平均值之比不得大于0.1%,最终取两人测定结果的平均值。浓度值取四位有效数字。 3.7本标准中凡规定用“标定”和“比较”两种方法测定浓度时,不得略去其中 的任何一种,且两种方法测得的浓度值之差值与平均值之比不得大于0.2%,最终以标定结果为准。 3.8制备的标准溶液与规定浓度之差不得超出规定浓度的+—5%。。 3.9配制浓度等于或低于0.02mol/L标准溶液时乙二胺四乙酸二钠标准滴定溶液 除外,应于临用前将浓度高的标准溶液用煮沸并冷却的水稀释,必要时重新标定。 3.10碘量法反应时,溶液的温度不能过高,一般在15~20c之间进行滴定。 3.11滴定分析(容量分析)用标准溶液在常温(15~25)下,保存时间一般不 得超过两个月。

各种缓冲液的配制方法

1.甘氨酸–盐酸缓冲液(0.05mol/L) 2.邻苯二甲酸–盐酸缓冲液(0.05 mol/L) 24 Na2HPO4-2H2O分子量= 178.05,0.2 mol/L溶液含35.01克/升。C4H2O7·H2O分子量= 210.14,0.1 mol/L溶液为21.01克/升。

①使用时可以每升中加入1克克酚,若最后pH值有变化,再用少量50%氢氧化钠溶液或浓盐酸调节,冰箱保存。 ② 687·H2 柠檬酸钠Na3 C6H5O7·2H2O:分子量294.12 ,0.1 mol/L溶液为29.41克/毫升。 7.磷酸盐缓冲液

2 4·2H 2Na 2HPO 4·2H 2O 分子量 = 358.22,0.2 mol/L 溶液为71.64克/升。 Na 2HPO 4·2H 2O 分子量 = 156.03,0.2 mol/L 溶液为31.21克/升。 24·2H 2KH 2PO 4分子量 = 136.09,1/15M 溶液为9.078克/升。 8.磷酸二氢钾–氢氧化钠缓冲液(0.05M )

10.Tris –盐酸缓冲液(0.05M ,25℃) C HOCH2 NH2 分子量=121.14; 0. 1M 溶液为12.114克/升。Tris 溶液可从空气中吸收二氧化碳,使用时注意将瓶盖严。 247·H 2硼酸H 2BO 3,分子量=61.84,0.2M 溶液为12.37克/升。 硼砂易失去结晶水,必须在带塞的瓶中保存。

247·10H 2硼酸H 2BO 3,分子量=61.84, 0.2M 溶液为12.37克/升。 硼砂 易失去结晶水,必须在带塞的瓶中保存。 12.甘氨酸–氢氧化钠缓冲液( 0.05M ) 13.硼砂-氢氧化钠缓冲液(0.05M 硼酸根) 2 47·10H 2 14.碳酸钠-碳酸氢钠缓冲液(0.1M ) 2+2+22·10H 2

蛋白质芯片的综述

蛋白质芯片的综述 摘要蛋白质芯片技术是一种高通量、微型化和自动化的蛋白质分析技术,已在多个领域得到应用,如蛋白质组学研究、新药的开发、酶与底物的相互作用和疾病检测等。论文详细介绍了蛋白质芯片技术的原理、芯片介质及蛋白质的固定技术,论述了蛋白质芯片在肿瘤研究,食品检验的应用以及传染病检测中的研究概况。分析了蛋白质芯片的问题以及应用前景。 关键词蛋白质芯片,肿瘤,食品检验,传染病检测,应用 蛋白质芯片的研究工作起始于20世纪80年代,到90年代技术日趋成熟。蛋白质芯片(protein chip)技术因具有高通量平行分析、信噪比较高、所需样品量少,以及可直接关联DNA序列和蛋白质信息等优点,自问世以来,已广泛应用于蛋白质组学、医学诊断学等领域研究,具有广阔的发展。 1.蛋白质芯片介绍 1.1 技术原理 蛋白质芯片是由固定于不同介质上的蛋白微阵列组成,这些蛋白包括抗原、抗体及标志蛋白,然后用标记的或未经标记的另外一个蛋白,如抗原、抗体或配体进行反应,有的需要经洗涤后再加入标记的二抗进行反应,从而达到放大抗原抗体反应的目的。所用的标记物有荧光物质,如Cy3(青色素,一种荧光染料)和Cy5等;酶,如辣根过氧化物酶,化学发光物质等;其他分子,如免疫金标记,然后再进行银染对反应结果显色。反应结果用扫描装置进行检测或用肉眼直接进行观察。 1.2 蛋白质芯片的介质 目前作为蛋白芯片的介质有滤膜类、凝胶类和玻璃片类,前2种介质的优点是能够保持所固定的蛋白的三维结构,但缺点是由于其质地较软,所以不能满足机械点样的强度,同时凝胶类的蛋白质芯片所点样品容易发生扩散。玻璃片的优点是成本低和性能稳定,可满足高强度的机械点样。此外,20世纪90年代中期发展的液相芯片技术使蛋白芯片技术得到进一步提高。其被喻为后基因组时代的芯片技术,也可称为灵活的多种被分析物质的检测 ( flexible multi-analyte profiling,xMAP)技术,xMAP技术是集流式技术、荧光微球、激光、数字信号处理和传统化学技术为一体的一种新型生物分子高通量检测技术,这种技术将流式检测与芯片技术有机地结合在一起,使生物芯片反应体系由固相反应改变为接近生物系统内部环境的完全液相反应体系,因此也被称为液相芯片技术[1]。 光学蛋白芯片也是新发展起来的一项技术,是将高分辨的椭偏生物传感器技术和集成化多元蛋白质芯片技术相结合发展形成的生物分子识别和检测技术。该技术的优点是无需标记待检样品,无需预处理直接检测非纯化分析物,样品用量少,检测时间短并且可以进行多元检测。 1.3 蛋白质的固定 将蛋白质固定于芯片上的方法很多,各方法的最终目的是在单位面积/体积上固定最大量的蛋白质并保持其天然构象,该环节成为蛋白质芯片技术的关键步骤之一。 蛋白质的固定可以分为两类:非专一性固定和专一性固定,非专一性固定即通过被动吸附的方式使蛋白质结合到相应的介质上,如硝酸纤维素膜和多聚赖氨酸包被的玻片通过被动吸附蛋白质的氨基或羧基来固定蛋白质,此方法产生的芯片背景值往往较高。 1. 4 蛋白质芯片的检测

论文 生物芯片技术

生物芯片技术——生物化学分析论文 08应化2 江小乔温雪燕袁伟豪张若琦 2011-5-3

一、摘要: 生物芯片技术,被喻为21世纪生命科学的支撑技术,是便携式生化分析仪器的技术核心,是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将极其大量的探针同时固定于支持物上,所以一次可以对大量的生物分子进行检测分析,从而解决了传统核酸印迹杂交(Southern Blotting 和Northern Blotting 等)技术复杂、自动化程度低、检测目的分子数量少、低通量(low through-put)等不足。 二、关键词 生物芯片;检测;基因 三、正文 (一)、生物芯片的简介 生物芯片技术是一种高通量检测技术,通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization, SBH)等,为"后基因组计划"时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给药个性化等方面取得重大突破,为整个人类社会带来深刻广泛的变革。该技术被评为1998年度世界十大科技进展之一。(1)它包括基因芯片、蛋白芯片及芯片实验室三大领域。 基因芯片(Genechip)又称DNA芯片(DNAChip)。它是在基因探针的基础上研制出的,所谓基因探针只是一段人工合成的碱基序列,在探针上连接一些可检测的物质,根据碱基互补的原理,利用基因探针到基因混合物中识别特定基因。它将大量探针分子固定于支持物上,然后与标记的样品进行杂交,通过检测杂交信号的强度及分布来进行分析。 蛋白质芯片与基因芯片的基本原理相同,但它利用的不是碱基配对而是抗体与抗原结合的特异性即免疫反应来检测。蛋白质芯片构建的简化模型为:选择一种固相载体能够牢固地结合蛋白质分子(抗原或抗体),这样形成蛋白质的微阵列,即蛋白质芯片。 芯片实验室为高度集成化的集样品制备、基因扩增、核酸标记及检测为一体

纳米二氧化钛的制备

纳米TiO2的制备方法 1 前言 20世纪80年代以前,纳米TiO2的研究开发目的主要是作为精细陶瓷原料、催化剂、传感器等,需求量不大,没有形成大的生产规模。80年代以后,开发的纳米TiO2用作透明效应和紫外线屏蔽剂,为纳米TiO2打开了市场,使纳米TiO2的生产和需求大大增加,成为钛白工业和涂料工业的一个新的增长点。 二氧化钛俗称钛白,是钛系最重要的产品之—,也是一种重要的化工和环境材料。纳米二氧化钛由于其具有粒径小、比表面积大、磁性强、光催化、吸收性能好、吸收紫外线能力强、表面活性大、热导性好、分散性好、所制悬浮液稳定等优点而倍受关注,制备和开发纳米二氧化钛已成为国内外科技界研究的热点之一。 日本、美国、英国、德国和意大利等国对纳米TiO2进行了深入的研究,并已实现纳米TiO2的工业化生产。目前全世界已经有十几家公司生产纳米TiO2,总生产能力估计在(6000~10000)t/a,单线生产能力一般为(400~500)t/a。根据莎哈里本公司统计,2003年全球纳米TiO2销售量仅为1800t左右,其消费量与产品应用见表1。近几年,有关纳米TiO2的新建装置已很少报道,主要是已建成装置的生产能力已远远超出市场的实际消费量,多数厂家处于开工不足或停产的状态。主要原因是目前国际上公认的纳米TiO2制备和应用技术还有待于提高,技术要点和难点主要表现在以下几个方面:①国际上纳米TiO2的价格为(30~40)万元/t,其成本大致是销售价格的2/5,原料和工艺路线的选择是降低生产成本的关键因素;②纳米TiO2的晶型和粒度控制技术;③金红石型纳米TiO2的表面处理技术;④纳米TiO2应用分散技术;⑤纳米TiO2应用功能的提升技术;⑥纳米TiO2产业化成套技术。由于以上条件的制约,使得纳米TiO2的应用和发展受到限制 1.1制备方法介绍 1.1.1溶胶凝胶法 溶胶凝胶法是一种较为重要的制备纳米材料的湿化学方法,主要包括4个步骤[1]:第一步,胶溶。Ti(OR)4与水不能互溶,但与醇、苯、等有机溶剂无限混溶,所以先配制Ti(OR)4的醇溶液(多用无水乙醇),再配制水的乙醇溶液,并向B中添加无机酸或有机酸作水解抑制剂(负催化剂),也可加,将A 和B按一定方式混合、搅拌得透明溶胶。第二步,溶胶凝一定量NH 3 胶转变制湿凝胶。第三步,使湿凝胶转变成干凝胶。第四步,热处理。将干凝胶磨细,在氧化性气氛中在一定温度下热处理,便可得到<100nm的TiO 。 2

常用标准溶液的配制和标定

标准溶液的配制与标定 实训一氢氧化钠标准溶液的配制和标定 一、目的要求 1.掌握NaOH标准溶液的配制和标定。 2.掌握碱式滴定管的使用,掌握酚酞指示剂的滴定终点的判断。 二、方法原理 NaOH有很强的吸水性和吸收空气中的CO2,因而,市售NaOH中常含有Na2CO3。 反应方程式:2NaOH + CO2→Na2CO3+ H2O 由于碳酸钠的存在,对指示剂的使用影响较大,应设法除去。 除去Na2CO3最通常的方法是将NaOH先配成饱和溶液(约52%,W/W),由于Na2CO3在饱和NaOH溶液中几乎不溶解,会慢慢沉淀出来,因此,可用饱和氢氧化钠溶液,配制不含Na2CO3的NaOH溶液。待Na2CO3沉淀后,可吸取一定量的上清液,稀释至所需浓度即可。此外,用来配制NaOH溶液的蒸馏水,也应加热煮沸放冷,除去其中的CO2。 标定碱溶液的基准物质很多,常用的有草酸(H2C2O4?2H2O)、苯甲酸(C6H5COOH)和邻苯二甲酸氢钾(C6H4COOHCOOK)等。最常用的是邻苯二甲酸氢钾,滴定反应如下: C6H4COOHCOOK + NaOH →C6H4COONaCOOK + H2O 计量点时由于弱酸盐的水解,溶液呈弱碱性,应采用酚酞作为指示剂。 三、仪器和试剂 仪器:碱式滴定管(50ml)、容量瓶、锥形瓶、分析天平、台秤。 试剂:邻苯二甲酸氢钾(基准试剂)、氢氧化钠固体(A.R)、10g/L酚酞指示剂:1g酚酞溶于适量乙醇中,再稀释至100mL。 四、操作步骤 1.0.1mol/L NaOH标准溶液的配制 用小烧杯在台秤上称取120g固体NaOH,加100mL水,振摇使之溶解成饱和溶液,冷却后注入聚乙烯塑料瓶中,密闭,放置数日,澄清后备用。 准确吸取上述溶液的上层清液5.6mL到1000毫升无二氧化碳的蒸馏水中,摇匀,贴上标签。 2.0.1mol/L NaOH标准溶液的标定 将基准邻苯二甲酸氢钾加入干燥的称量瓶,于105-110℃烘至恒重,用减量法准确称取邻苯二甲酸氢钾约0.6000克,置于250 mL锥形瓶中,加50 mL无CO2蒸馏水,温热使之溶解,冷却,加酚酞指示剂2-3滴,用欲标定的0.1mol/L NaOH溶液滴定,直到溶液呈粉红色,半分钟不褪色。同时做空白试验。 要求做三个平行样品。

各种缓冲液的配制方法

24 Na2HPO4-2H2O 分子量 = 178.05,0.2 mol/L 溶液含 35.01 克/升。C4H2O7·H2O 分子量 = 210.14,0.1 mol/L 溶液为 21.01 克/升。

① 使用时可以每升中加入 1 克克酚,若最后 pH 值有变化,再用少量 50% 氢氧化钠溶液或浓盐酸调节,冰箱保存。 柠檬酸C6H8O7·H2O:分子量 210.14,0.1 mol/L溶液为 21.01 克/升。柠檬酸钠 Na3 C6H5O7·2H2O:分子量294.12,0.1 mol/L溶液为29.41 克/毫升。 22 7.磷酸盐缓冲液

242 Na2HPO4·2H2O 分子量 = 358.22,0.2 mol/L 溶液为 71.64 克/升。Na2HPO4·2H2O 分子量 = 156.03,0.2 mol/L 溶液为 31.21 克/升。 242 KH2PO4 分子量 = 136.09,1/15M 溶液为 9.078 克/升。 8.磷酸二氢钾–氢氧化钠缓冲液(0.05M) X 毫升 0.2M K2PO4 + Y 毫升 0.2N NaOH 加水稀释至 29 毫升

10.Tris–盐酸缓冲液(0.05M,25℃) 50毫升0.1M 三羟甲基氨基甲烷(Tris)溶液与X 毫升0.1N 盐酸混匀后,加水稀释至 100毫升。 C HOCH2 NH2 分子量=121.14; 0. 1M 溶液为 12.114 克/升。Tris 溶液可从空气中吸收二氧化碳,使用时注意将瓶盖严。 硼砂 Na2B4O7·H2O,分子量=381.43;0.05M 溶液(=0.2M 硼酸根)含19.07 克/升。硼酸 H2BO3,分子量 =61.84,0.2M 溶液为 12.37 克/升。硼砂易失去结晶水,必须在带塞的瓶中保存。

原子吸收标准溶液的配制

原子吸收常用的标准溶液配制方法 点击次数:1081 发布时间:2012-5-17 标准溶液的配备方法 钙元素符号-Ca 相对原子量 -40.08 仪器操作条件 波长 422.7nm 狭缝 0.4nm 灯电流 3.0毫安 燃烧器高度 8毫米 空气压力 0.3兆帕 乙炔压力 0.09兆帕 空气流量 7.0升/分 乙炔流量 1.5升/分 火焰类型氧化性兰色焰 钙Ca 标准溶液的配置 钙标准溶液浓度1000微克/毫升 称取经灼烧后的高纯氧化钙1.3992克,置于250毫升烧杯中,加入盐酸20毫升,低温加热溶解,冷却后移入1000毫升容量瓶中,用去离子水定容刻度,摇匀。此溶液1毫升=1000微克Ca。 或购置国家标准GBW(E)080261 1000微克/毫升Ca(基体5%盐酸) 标准系列与线性工作范围 配置每毫升含钙0.0, 1.0, 2.0,3.0,4.0,5.0微克2%盐酸溶液和0.2%氯化锶溶液。 钙标准使用液:吸取1毫升=1000微克钙标准溶液10.0毫升于100毫升容量瓶中,加入2毫升盐酸,用去离子水定容刻度,摇匀。此溶液1毫升=100微克钙。 氯化锶应为GR试剂 在仪器推荐条件下,标准曲线线性范围:0.0-5.0微克/毫升。 特征浓度 在仪器推荐条件下,钙的特征浓度约为:0.080微克/毫升(1%吸收)。 浓度为2微克/毫升的钙标准溶液,通常可获得0.110左右的吸光度值。 其他分析线

波长(nm) 狭缝(nm) 特征浓度之比 422.7 0.4 1.0 239.9 0.4 120 干扰及分析提示 据文献报道,在空气-乙炔焰中,铝、Be、硅、钛、钒、锆、磷酸盐、硫酸盐都会干扰钙的测定。将0.1-1%的镧或锶加进样品和标准中,能抑制上述干扰。硫酸、磷酸干扰钙的测定,测定时,样品和标准中酸的浓度应该一致,同样一份样品,酸的浓度不同所测吸光度值也不相同。要严格控制水和试剂空白,仪器喷雾系统注意防止沾污。钙有轻微的电离干扰。 试验表明,钙的吸光度与燃气和助燃气的比例、燃烧器的高度有关。在开始分析以前,应用该得标准溶液调节吸光度到最大,然后进行分析。 标准溶液的配备方法 镉元素符号-Cd 相对原子量—112.4仪器操作条件 波长228.8 nm 狭缝0.4 nm 灯电流 3.0毫安 燃烧器高度 6.5毫米 空气压力0.3兆帕 乙炔压力0.09兆帕 空气流量7.0升/分 乙炔流量 1.5升/分 火焰类型氧化性蓝色焰 镉 标准溶液的配置 镉标准溶液浓度1000微克/毫升 称取高纯镉(99.9%)0.1000克,置于250毫升烧杯中,加入10毫升盐酸,在低温电热板上加热溶解。移入100毫升容量瓶中,用去离子水定容刻度,摇匀。此溶液1毫升=1000微克镉。或购置国家标准GBW 08612 1000微克/毫升镉 (基体1%硝酸) 标准系列与线性工作范围 配置每毫升含镉0.0,0.2,0.4,0.6,0.8,1.0微克2%盐酸溶液。

2液相蛋白芯片技术

液相蛋白芯片技术 液相蛋白芯片技术由美国纳斯达克上市公司Luminex研制开发并于2 O世纪9O年代中期发展起来,就是在流式细胞技术、酶联免疫吸附试验(en zyme linked immunosorbent assay,ELISA)技术与传统芯片技术基础上开发的新一代生物芯片技术与新型蛋白质研究平台。液相蛋白芯片技术推动了功能基因组时代的蛋白质研究,相关的仪器、分析软件以及试剂盒研发备受瞩目并已形成一定的市场规模。现拟对该技术的基本原理、技术特点及其在免疫诊断与分析领域的研究与应用情况进行综合介绍。 一、液相蛋白芯片技术的基本原理 传统的蛋白芯片技术就是将蛋白质分子有序地固定在滤膜、滴定板与载玻片等固相载体上,用标记了特定荧光抗体的蛋白质等生物分子与芯片 作用,再利用荧光或激光扫描技术测定其荧光强度,通过荧光强度分析蛋白 质与蛋白质的相互作用,从而达到研究蛋白质功能或免疫诊断的目的。但固相载体难于维持蛋白质的天然构象,不利于蛋白质功能研究。 液相芯片技术在国际上被称之为xMAP(flexible MultilyteProfiling) 技术,其核心技术就是乳胶微球包被、荧光编码以及液相分子杂交。液相芯片体系以聚苯乙烯微球( beads ) 为基质,微球悬浮于液相体系,每种微球 可根据不同研究目的标定上特定抗体或受体探针,可对同一样品中多个不 同的分子同时进行检测。微球表面可进行一系列修饰以适合固定各种蛋白、

多肽或核酸等生物分子。xMAP技术可应用于蛋白或核酸的功能及其相互作用研究,分别称之为液相蛋白芯片技术与液相基因芯片技术。 液相蛋白芯片体系主要包括微球、蛋白探针分子、被检测物与报告分子四种成分。在液相系统中,为了区分不同的探针,每一种用于标记探针的微球都带有独特的色彩编码,其原理就是在微球中掺入不同比例的红色分类荧光及发色剂,可产生100种颜色差别的微球,可标记上100种探针分子,能同时对一个样品中多达100种不同目标分子进行检测。反应过程中,探针与报告分子都分别与目标分子特异性结合。结合反应结束后,使单个的微球通过检测通道,使用红、绿双色激光同时对微球上的红色分类荧光与报告分子上的绿色报告荧光进行检测,可确定所结合的检测物的种类与数量。 二、液相蛋白芯片技术的特点 液相蛋白芯片技术有机地整合了微球、激光检测技术、流体动力学、高速的数字信号处理系统与计算机运算功能,不仅检测速度极快,而且在免疫诊断以及蛋白质分子相互作用分析方面,其特异性与敏感性往往也超越常规技术。其技术特点可归纳如下。 1、反应快速,灵敏度高。反应环境为液相、微球上固定的探针与待检样品均在溶液中反应,其彼此间碰撞几率与速度相对于固相芯片或ElISA等反应模式,可增加10倍以上,因此可提高反应速度及灵敏度。抗原---抗体等蛋白

常用标准溶液配制方法

常用标准溶液配制方法

1

2一般规定 本标准中所用的水,在没有注明其他要求时,应符合GB6682中三级水的标准。 本标准中所用试剂的纯度应在分析纯以上。 工作中所用的分析天平的砝码、滴定管、容量瓶及移液管均需定期校正。 本标准中标定时所用的基准试剂为容量分析工作基准试剂;制备标准溶液是所用的试剂为分析纯以上试剂。 本标准中所制备的标准溶液的浓度均指20c 时的浓度。在标定和使用时,如温度有差异,应只能附录A(补充件)补正。 “标定”或“比较”标准溶液浓度时,平行试验不得少于8次,两人各作4平行,每人4平行测定结果的极差与平均值之比不得大于0.1%。两人测定结果的差值与平均值之比不得大于0.1%,最终取两人测定结果的平均值。浓度值取四位有效数字。 本标准中凡规定用“标定”和“比较”两种方法测定浓度时,不得略去其中的任何一种,且两种方法测得的浓度值之差值与平均值之比不得大于0.2%,最终以标定结果为准。

制备的标准溶液与规定浓度之差不得超出规定浓度的+—5%。。 配制浓度等于或低于0.02mol/L 标准溶液时乙二胺四乙酸二钠标准滴定溶液除外,应于临用前将浓度高的标准溶液用煮沸并冷却的水稀释,必要时重新标定。 碘量法反应时,溶液的温度不能过高,一般在15~20c之间进行滴定。 滴定分析(容量分析)用标准溶液在常温(15~25)下,保存时间一般不得超过两个月。 3标准溶液的制备和标定 4.1 氢氧化钠标准溶液(使用期:2个月) c(NaOH) = 1 mol/L c(NaOH) =0.5 mol/L c(NaOH) =0.1 mol/L 4.1.1 配制 称取110g氢氧化钠,溶于100ml无二氧化碳的水中,摇匀,注入聚乙烯容器中,密闭放置至溶液清亮。用塑料管吸下述规定体积的上层清夜,用无二氧化碳的水稀释至1000ml,摇匀。 c(NaOH) ,mol/L 氢氧化钠饱和溶

标准溶液的配制方法及基准物质

标准溶液的配制方法及基准物质 标准溶液是指已知准确浓度的溶液,它是滴定分析中进行定量计算的依据之一。不论采用何种滴定方法,都离不开标准溶液。因此,正确地配制标准溶液,确定其准确浓度,妥善地贮存标准溶液,都关系到滴定分析结果的准确性。配制标准溶液的方法一般有以下两种: 直接配制法 用分析天平准确地称取一定量的物质,溶于适量水后定量转入容量瓶中,稀释至标线,定容并摇匀。根据溶质的质量和容量瓶的体积计算该溶液的准确浓度。 能用于直接配制标准溶液的物质,称为基准物质或基准试剂,它也是用来确定某一溶液准确浓度的标准物质。作为基准物质必须符合下列要求: (1)试剂必须具有足够高的纯度,一般要求其纯度在%以上,所含的杂质应不影响滴定反应的准确度。 (2)物质的实际组成与它的化学式完全相符,若含有结晶水(如硼砂Na 2B 4 O 7 ?10H2O),其结晶水的数目也应与化学式完全相符。 (3)试剂应该稳定。例如,不易吸收空气中的水分和二氧化碳,不易被空气氧化,加热干燥时不易分解等。 (4)试剂最好有较大的摩尔质量,这样可以减少称量误差。常用的基准物质 有纯金属和某些纯化合物,如Cu, Zn, Al, Fe和K 2Cr 2 O 7 ,Na 2 CO 3 , MgO , K BrO 3 等,它们的含量一般在%以上,甚至可达% 。 应注意,有些高纯试剂和光谱纯试剂虽然纯度很高,但只能说明其中杂质含量很低。由于可能含有组成不定的水分和气体杂质,使其组成与化学式不一定准确相符,致使主要成分的含量可能达不到%,这时就不能用作基准物质。一些常用的基准物质及其应用范围列于表中。

表常用基准物质的干燥条件和应用

纳米二氧化钛简介

纳米二氧化钛 一、简介 纳米二氧化钛是金红石型白色疏松粉末,屏蔽紫外线作用强,有良好的分散性和耐候性。可用于化妆品、功能纤维、塑料、涂料、油漆等领域,作为紫外线屏蔽剂,防止紫外 线的侵害。也可用于高档汽车面漆,具有随角异色效应。 纳米级二氧化钛,亦称钛白粉。物理性质为细小微粒,直径在100纳米以下,产品外 观为白色疏松粉末。具有抗线、抗菌、自洁净、抗老化性能,可用于化妆品、功能纤维、 塑料、油墨、涂料、油漆、精细陶瓷等领域。 纳米二氧化钛主要有两种结晶形态:锐钛型(Anatase)和金红石型(Rutile)。金 红石型二氧化钛比锐钛型二氧化钛稳定而致密,有较高的硬度、密度、介电常数及折射率,其遮盖力和着色力也较高。而锐钛型二氧化钛在可见光短波部分的反射率比金红石型二氧 化钛高,带蓝色色调,并且对紫外线的吸收能力比金红石型低,光催化活性比金红石型高。在一定条件下,锐钛型二氧化钛可转化为金红石型二氧化钛。 二、分类 1.按照晶型可分为:金红石型纳米钛白粉和锐钛型纳米钛白粉。 2.按照其表面特性可分为:亲水性纳米钛白粉和亲油性纳米钛白粉。 3.按照外观来分:有粉体和液体之分,粉体一般都是白色,液体有白色和半透明状。 三、功能 纳米TiO2具有十分宝贵的光学性质,在汽车工业及诸多领域都显示出美好的发展前景。纳米TiO2还具有很高的化学稳定性、热稳定性、无毒性、超亲水性、非迁移性,且完全可以与食品接触,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中、锂电池中。 1.、杀菌功能 在光线中紫外线的作用下长久杀菌。实验证明,以0.1mg/cm3浓度的锐钛型纳米TiO2可彻底地杀死恶性海拉细胞,而且随着超氧化物歧化酶(SOD)添加量的增多,TiO2光催

ph计标准溶液配制

中国PH计校正溶液配置的标准方法 一、引言:根据目前市场的应用情况看来,中国即我国国内使用的PH计校正的缓冲溶液有三种,即标称pH4 ,pH7 和pH9的三种缓冲溶液,分别学名为如下,笔者根据多项资料整理可得,为的是您能方便快速弄明白这些问题,详情: 1)pH4:0.05M 邻苯二甲酸氢钾溶液; 2)pH7:0.025M 磷酸二氢钾和磷酸氢二钠混合盐溶液; 3)pH9:0.01M 硼砂溶液; 接下来介绍以上3种溶液的主要配置简单方法。 二、PH计校正溶液配置的标准方法 1)pH4,邻苯二甲酸氢钾标准缓冲液: 精密称取在115±5℃干燥2~3小时的邻苯二甲酸氢钾[KHC8H4O4]10.12g,加水使溶解并稀释至1000ml。 2)pH7,磷酸盐标准缓冲液(pH7.4): 精密称取在115±5℃干燥2~3小时的无水磷酸氢二钠4.303g与磷酸二氢钾1.179g,加水使溶解并稀释至1000ml。 另补充:磷酸盐标准缓冲液(pH6.8) 精密称取在115±5℃干燥2~3小时的无水磷酸氢二钠3.533g与磷酸二氢钾3.387g,加水使溶解并稀释至1000ml。 3)pH9,硼砂标准缓冲液:

精密称取硼砂[Na2B4O7·10H2O]3.80g(注意:避免风化),加水使溶解并稀释至1000ml,置聚乙烯塑料瓶中,密塞,避免与空气中二氧化碳接触。 总结:从现在使用PH计来看,中国境内即国产的PH计或者是酸度计,它的校正缓冲液拥有的情况有两种: 1)即标准溶液是可以在市场上买到的,一般是在聚乙烯瓶中密闭保存的。在室温条件下标准溶液一般以保存1~2个月为宜,当发现有浑浊、发霉或沉淀现象时,不能继续使用。在4℃冰箱内存放,且用过的标准溶液不允许再倒回。 2)还可以自己买缓冲剂回去配置得。但一般厂家发货时,由于国家规定发货时有的不准有液体或药物存在,所以只能是带有的是干燥的PH缓冲剂,客户使用时需要自己配置,只要使其溶解在预先煮沸15~30分钟的去离子水中,适当冲洗试剂袋中残留的试剂。再倒入250ml容量瓶中,稀释至刻度,充分摇匀即可。 https://www.360docs.net/doc/4912040175.html,安徽诚缘科技开发有限公司专业生产PH计等相关产品

标准缓冲液的配制及常用数据.

标准缓冲液的配制及常用数据一、标准缓冲液pH值与温度对照表 二、常用缓冲溶液的配制方法 1.甘氨酸–盐酸缓冲液(0.05mol/L) 2.邻苯二甲酸–盐酸缓冲液(0.05 mol/L) X 邻苯二甲酸氢钾分子量= 204.23,0.2 mol/L邻苯二甲酸氢溶液含40.85克/升 Na2HPO4分子量= 14.98,0.2 mol/L溶液为28.40克/升。 Na2HPO4-2H2O分子量= 178.05,0.2 mol/L溶液含35.01克/升。 C4H2O7·H2O分子量= 210.14,0.1 mol/L溶液为21.01克/升。

4 ① 使用时可以每升中加入1克克酚,若最后pH 值有变化,再用少量50% 氢氧化钠溶液或浓盐酸调节,冰箱保存。 5 柠檬酸C 6H 8O 7·H 2O :分子量210.14,0.1 mol/L 溶液为21.01克/升。 柠檬酸钠Na 3 C 6 H 5O 7·2H 2O :分子量294.12,0.1 mol/L 溶液为29.41克/毫升。 6.乙酸–乙酸钠缓冲液(0.2 mol/L ) Na 2Ac·3H 2O 分子量 = 136.09,0.2 mol/L 溶液为27.22克/升。 7.磷酸盐缓冲液 (1 Na 2HPO 4·2H 2O 分子量 = 178.05,0.2 mol/L 溶液为85.61克/升。 Na 2HPO 4·2H 2O 分子量 = 358.22,0.2 mol/L 溶液为71.64克/升。 Na 2HPO 4·2H 2O 分子量 = 156.03,0.2 mol/L 溶液为31.21克/升。

242KH 2PO 4分子量 = 136.09,1/15M 溶液为9.078克/升。 8.磷酸二氢钾–氢氧化钠缓冲液(0.05M ) 9 巴比妥钠盐分子量=206.18;0.04M 溶液为8.25克/升 10.Tris –盐酸缓冲液(0.05M ,25℃) 50毫升0.1M 三羟甲基氨基甲烷(Tris )溶液与X 毫升0.1N 盐酸混匀后,加水稀释至100毫升。 三羟甲基氨基甲烷(Tris )HOCH2 CH2OH C HOCH2 NH2 分子量=121.14; 1M 溶液为12.114克/升。Tris 溶液可从空气中吸收二氧化碳,使用时注意将瓶盖严。

标准溶液配制和标定

1、氢氧化钠标准滴定溶液 1.1配制 称取110 g氢氧化钠,溶于100 ml无二氧化碳的水中,摇匀,注人聚乙烯容器中,密闭放置至溶液清亮。按表1的规定,用塑料管量取上层清液,用无二氧化碳的水稀释至1 000MI,摇匀。 表1 1.2 标定 按表 2 的规定称取于 105℃--110℃电烘箱中干燥至恒重的工作基准试剂邻苯二甲酸氢钾,加无二氧化碳的水溶解,加2滴酚酞指示液(10 g/L),用配制好的氢氧化钠溶液滴定至溶液呈粉红色,并保持30 s。同时做空白试验。 表2 氢氧化钠标准滴定溶液的浓度〔c(NaOH)],数值以摩尔每升(mol/ L)表示,按式(1)计算: m×1000 c(NaOH)= ------------- ( V1-V2)M 式中 : m—邻苯二甲酸氢钾的质量的准确数值,单位为克(9); V1 —氢氧化钠溶液的体积的数值,单位为毫升(mL);

V2 一空白试验氢氧化钠溶液的体积的数值,单位为毫升(mL); M一邻苯二甲酸氢钾的摩尔质量的数值,单位为克每摩尔(g/mol)【M(KHC8H4O4)= 204.22 】 2、硫酸标准滴定溶液 2.1配制 按表3的规定量取硫酸,缓缓注人1 000 mL水中,冷却,摇匀。 表3 2.2标定 按表4的规定称取于270℃—300℃高温炉中灼烧至恒重的工作基准试剂无水碳酸钠,溶于50m l.水中,加5甲基红—亚甲基蓝指示剂(或滴澳甲酚绿一甲基红指示液),用配制好的硫酸溶液滴定至溶液由绿色变为紫色(绿色变为暗红色),煮沸2 min,冷却后继续滴定至溶液再呈紫色(暗红色)。同时做空白试验。 表4 硫酸标准滴定溶液的浓度[c(1/2H2SO4)],数值以摩尔每升(mol/L)表示 m×1000 c(1/2H2SO4)= ------------- ( V1-V2)M 式中: m—无水碳酸钠的质量的准确数值,单位为克(g); V1—硫酸溶液的体积的数值,单位为毫升(mL) ;

纳米二氧化钛材料

《功能材料》期末考核题目:纳米二氧化钛材料的制备-结构-功能 姓名: 学号: 专业: 2013-2014年第二学期

1. 纳米二氧化钛的功能及特性 纳米材料指颗粒尺寸为纳米级的超细颗粒,其尺寸大于原子簇但小于微米级,一般介于1nm~100nm之间。纳米粒子因其尺寸小,比表面积大,表面原子数多,表面能和表面张力随离径的下降急剧增大而具有量子尺寸效应,小尺寸效应,表面效应和宏观量子隧道效应等不同于常规固体的光,热,电,磁等新特性。 纳米TiO2是一种新型的无机材料,粒径在10nm~50nm,相当于普通钛白粉的十分之一,与常规材料相比,纳米二氧化钛具有独特功能: (1)比表面积大, (2)磁性强,具有极强的吸收紫外线的能力。 (3)表面活性大, (4)热导性好, (5)分散性好,制得的悬浮液稳定, (6)奇特的颜色效应, (7)较好的热稳定性, (8)化学稳定性和优良的光学,电学,力学等方面的特性。 其中的锐钛矿具有较高的催化效率;金红石型结构比较稳定,具有较强的覆盖力,着色力和紫外线吸收能力。因此在催化剂载体,紫外线吸收剂,高效光敏剂,防晒护肤化妆品,塑料薄膜制品,水处理,精细陶瓷,器皿传感元件等领域具有广泛的用途。 纳米TiO2光催化杀菌是目前环境净化的研究热点。纳米TiO2光催化技术始于1972年Fujishima和Hondar做的关于光辐照二氧化钦可持续发生氧化还原反应的研究。1985年,Matasunaga等使用Ti/Pt 催化剂在近紫外光照射下6 0 —120 min内杀灭了水中的微生物。自此二氧化钛光催化杀菌的研究日益受到重视,研究对象也逐渐扩展至水体及空气中的病毒、细菌、真菌等。 纳米TiO 光催化氧化杀菌具有显著的优点: 2 (1)无需昂贵的氧化试剂,空气中的氧就可作为氧化剂; (2)二氧化钦催化剂价格低廉,无毒,化学及光化学性质稳定; (3)自然光中的紫外光就可作为光源激发催化剂,因此无需能源,系统维护费用低;

标准溶液的配制方法及基准物质

你标准溶液的配制方法及基准物质 2.2.1标准溶液的配制方法及基准物质 标准溶液是指已知准确浓度的溶液,它是滴定分析中进行定量计算的依据之一。不论采用何种滴定方法,都离不开标准溶液。因此,正确地配制标准溶液,确定其准确浓度,妥善地贮存标准溶液,都关系到滴定分析结果的准确性。配制标准溶液的方法一般有以下两种: 2.2.1.1直接配制法 用分析天平准确地称取一定量的物质,溶于适量水后定量转入容量瓶中,稀释至标线,定容并摇匀。根据溶质的质量和容量瓶的体积计算该溶液的准确浓度。 能用于直接配制标准溶液的物质,称为基准物质或基准试剂,它也是用来确定某一溶液准确浓度的标准物质。作为基准物质必须符合下列要求: (1)试剂必须具有足够高的纯度,一般要求其纯度在99.9%以上,所含的杂质应不影响滴定反应的准确度。

(2)物质的实际组成与它的化学式完全相符,若含有结晶水(如硼砂Na2B4O7?10H2O),其结晶水的数目也应与化学式完全相符。 (3)试剂应该稳定。例如,不易吸收空气中的水分和二氧化碳,不易被空气氧化,加热干燥时不易分解等。 (4)试剂最好有较大的摩尔质量,这样可以减少称量误差。常用的基准物质有纯金属和某些纯化合物,如Cu, Zn, Al, Fe 和K2Cr2O7,Na2CO3 , MgO , KBrO3等,它们的含量一般在99.9%以上,甚至可达99.99% 。 应注意,有些高纯试剂和光谱纯试剂虽然纯度很高,但只能说明其中杂质含量很低。由于可能含有组成不定的水分和气体杂质,使其组成与化学式不一定准确相符,致使主要成分的含量可能达不到99.9%,这时就不能用作基准物质。一些常用的基准物质及其应用范围列于表2.1中。 表2.1 常用基准物质的干燥条件和应用

常用标准溶液配制方法

中华人民共和国国家标准 UDC 543.06:54 —41 GB 601—2002 化学试剂 滴定分析(容量分析)用标准溶液的制备 Chemical reagent Preparations of standard volumetrie solutions 1主题容与适用围 本标准规定了滴定分析(容量分析)用标准溶液的配制和标定方法。 本标准适用于制备准确浓度之溶液,应用于滴定法测定化学试剂的主体含量及杂质含量,也可供其他的化学产品标准选用。 2引用标准 GB 603 化学试剂试验方法中所用制剂及制品的制备 GB 6682 实验室用水规格 GB 9725 化学试剂电位滴定法通则 3一般规定 本标准中所用的水,在没有注明其他要求时,应符合GB6682中三级水的标准。 本标准中所用试剂的纯度应在分析纯以上。 工作中所用的分析天平的砝码、滴定管、容量瓶及移液管均需定期校正。

本标准中标定时所用的基准试剂为容量分析工作基准试剂;制备标准溶液是所用的试剂为分析纯以上试剂。 本标准中所制备的标准溶液的浓度均指20c时的浓度。在标定和使用时,如温度有差异,应只能附录A(补充件)补正。 “标定”或“比较”标准溶液浓度时,平行试验不得少于8次,两人各作4平行,每人4平行测定结果的极差与平均值之比不得大于0.1%。两人测定结果的差值与平均值之比不得大于0.1%,最终取两人测定结果的平均值。浓度值取四位有效数字。 本标准中凡规定用“标定”和“比较”两种方法测定浓度时,不得略去其中的任何一种,且两种方法测得的浓度值之差值与平均值之比不得大于0.2%,最终以标定结果为准。 制备的标准溶液与规定浓度之差不得超出规定浓度的+—5%。。 配制浓度等于或低于0.02mol/L 标准溶液时乙二胺四乙酸二钠标准滴定溶液除外,应于临用前将浓度高的标准溶液用煮沸并冷却的水稀释,必要时重新标定。 碘量法反应时,溶液的温度不能过高,一般在15~20c之间进行滴定。 滴定分析(容量分析)用标准溶液在常温(15~25)下,保存时间一般不得超过两个月。 4标准溶液的制备和标定 4.1 氢氧化钠标准溶液(使用期:2个月) c(NaOH) = 1 mol/L c(NaOH) =0.5 mol/L c(NaOH) =0.1 mol/L 4.1.1 配制

标准缓冲液的配制方法样本

标准缓冲液的配制及常见数据 一、标准缓冲液pH值与温度对照表 二、常见缓冲溶液的配制方法 1.甘氨酸–盐酸缓冲液( 0.05mol/L) X毫升0.2 mol/L甘氨酸+Y毫升0.2 mol/L HCI, 再加水稀释至200毫升 甘氨酸分子量 = 75.07, 0.2 mol/L甘氨酸溶液含15.01克/升。 2.邻苯二甲酸–盐酸缓冲液( 0.05 mol/L) X毫升0.2 mol/L邻苯二甲酸氢钾 + 0.2 mol/L HCl, 再加水稀释到20毫升 邻苯二甲酸氢钾分子量 = 204.23, 0.2 mol/L邻苯二甲酸氢溶液含40.85克/升3.磷酸氢二钠–柠檬酸缓冲液

Na 2HPO 4分子量 = 14.98, 0.2 mol/L 溶液为28.40克/升。 Na 2HPO 4-2H 2O 分子量 = 178.05, 0.2 mol/L 溶液含35.01克/升。 C 4H 2O 7·H 2O 分子量 = 210.14, 0.1 mol/L 溶液为21.01克/升。 4.柠檬酸–氢氧化钠-盐酸缓冲液 ① 使用时能够每升中加入1克克酚, 若最后pH 值有变化, 再用少量50% 氢氧化钠溶 液或浓盐酸调节, 冰箱保存。 5.柠檬酸–柠檬酸钠缓冲液( 0.1 mol/L) 柠檬酸C 6H 8O 7·H 2O: 分子量210.14, 0.1 mol/L 溶液为21.01克/升。 柠檬酸钠Na 3 C 6H 5O 7·2H 2O: 分子量294.12, 0.1 mol/L 溶液为29.41克/毫升。 6.乙酸–乙酸钠缓冲液( 0.2 mol/L) Na 2Ac·3H 2O 分子量 = 136.09, 0.2 mol/L 溶液为27.22克/升。 7.磷酸盐缓冲液 ( 1) 磷酸氢二钠–磷酸二氢钠缓冲液( 0.2)

相关文档
最新文档