10.6函数的解析式

10.6函数的解析式
10.6函数的解析式

10月6日函数的解析式

1.已知()???>-≤+=0

,20,12x x x x x f ,若()10=x f ,则x 的值为( )

A.3

B.3-

C.3±

D.5,3-±

2.已知函数()()()?

??>≤++=0,20,2x x c bx x x f ,若()()()22,04-=-=-f f f ,则关于x 的方程()x x f =的解的个数为( )

A.1

B.2

C.3

D.4

3. 有一块边长为a 的正方形铁皮,将其四个角各截取一个边长为x 的小正方形,然后折成一个无盖的盒子,则体积V 以x 为自变量的函数式是 ,这个函数的定义域为

4. 已知*∈N x ,()()()()

???<+≥-=6,26,5x x f x x x f ,则()=3f 5.已知()x f 是一次函数,且()[]{}6+=x x f f f ,则()x f 的解析式为

6.已知函数()1

21+-=x a x f 是R 上的奇函数,则()x f 的解析式为 7.已知函数()x f 是奇函数,当0x 时,

()=x f

8.已知()x f 是二次函数,且满足()()()x x f x f f 21,10=-+=,则()x f 的解析式 为

9.已知()x f 是定义在R 上的偶函数,当0≥x 时,()x x x f -=2.画出函数()x f 的图像,并求函数()x f 的解析式.

10.如图,已知底角为 45的等腰梯形ABCD ,底边BC 长为cm 7,腰长为cm 22,当一条垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令x BF =,试写出左边部分的面积y 与x 的函数解析式。

11.已知二次函数()bx ax x f +=2(b a ,是常数且0≠a )满足条件:()02=f 且方程()x x f =有等根.

(1)求()x f 的解析式

(2)是否存在实数()n m n m <,,使()x f 的定义域和值域分别为[]n m ,和[]n m 2,2?若存在,求出n m ,的值;若不存在,请说明理由. D C

E F l A B

函数解析式的表示形式及五种确定方式

函数解析式的表示形式及五种确定方式 函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。 一、解析式的表达形式 解析式的表达形式有一般式、分段式、复合式等。 1、一般式是大部分函数的表达形式,例 一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式 若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数 叫做分段函数。 例1、设函数(]()???+∞ ∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。 解:当(]1,∞-∈x 时,由4 12= -x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由41log 81=x 得,3=x 。 ∴ 3=x 3、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例2、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g 二、解析式的求法 根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方 程法等。 1待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求 出系数。 例3、已知二次函数)(x f y =满足),2()2(--=-x f x f 且图象在y 轴上的截距为1,被x 轴截得的线段长为22,求函数)(x f y =的解析式。

求函数解析式的几种常用方法

求函数解析式的几种常 用方法 -CAL-FENGHAI.-(YICAI)-Company One1

求函数解析式的几种常用方法 一、高考要求: 求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力. 重难点归纳: 求解函数解析式的几种常用方法主要有: 1.待定系数法,如果已知函数解析式的构造时,用待定系数法; 2.换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法; 3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x ); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法. 二、题例讲解: 例1.(1)已知函数f (x )满足f (log a x )= )1 (1 2x x a a --.(其中a >0,a ≠1,x >0),求f (x )的表达式. (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x )的表达式. 命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力. 知识依托:利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域. 错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错. 技巧与方法:(1)用换元法;(2)用待定系数法. 解:(1)令t=log a x (a >1,t >0;01,x >0;0

确定函数表达式

《确定二次函数的表达式(第1课时)》 教学设计说明 江西省东乡区黎圩中学李智武 一、学生知识状况分析 学生已经学习了二次函数的一般式和顶点式表达式,二次函数的图像和性质,尤其对特殊类型的二次函数图像已有充分的认识.以前学生已经学习了用待定系数法确定一次函数和反比例函数的关系式,因此本节课学生用类比的方法学习待定系数法确定二次函数的表达式应该并不陌生和困难,因此,课堂教学时应鼓励学生敢于探究与实践,通过小组合作交流等形式,充分调动学生自主学习积极性和培养学生主动发展的习惯和能力.在学生自主学习时,要注意引导学生灵活应用二次函数的三种形式:一般式,顶点式,交点式,以便在用待定系数法求解二次函数表达式时减少未知数的个数,简化运算过程. 二、教学任务分析 本节内容是义务教育课程标准实验教科书数学(北师大版)九年级下册第二章第3节《确定二次函数的表达式》的第1课时. 本节课是在学习二次函数的表达式和图像性质的基础上展现,目的为二次函数的的实际应用奠基,是本章学习的关键点.本节课既要承接上一节课的数形结合的数学思想,又要能够根据实际问题抽象数学模型,用待定系数法求解二次函数表达式,学生能够根据条件灵活应用二次函数的三种形式:一般式,顶点式,交点式,以便在用待定系数法求解二次函数表达式时减少未知数的个数,简化运算过程. 本节课的教学目标 知识与技能: 能够根据二次函数的图像和性质建立合适的直角坐标系,确定函数关系式,并会根据条件利用待定系数法求二次函数的表达式. 过程与方法:

经历确定适当的直角坐标系以及根据点的坐标确定二次函数表达式的思维过程,类比求一次函数的表达式的方法,体会求二次函数表达式的思想方法. 情感、态度与价值观: 能把实际问题抽象为数学问题,也能把所学知识运用于实践,培养学生积极参与的意识,加深学生在生活中学数学,将数学知识服务于生活的学习理念,养成学生善于主动学习、乐于合作交流、学会总结提升的学习习惯,激发和调动学生学习的积极性和主动性,培养数学的应用意识. 学习重点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式. 学习难点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式. 三、教学过程设计 本节课设计了六个教学环节: 第一环节 复习引入 1.二次函数表达式的一般形式是什么? y=ax 2+bx+c (a,b,c 为常数,a ≠0) 2.二次函数表达式的顶点式是什么? k h x a y +-=2)( (a ≠0). 3.若二次函数y=ax 2+bx+c(a ≠0)与x 轴两交点为(1x ,0),( 2x ,0)则其函数表达式可以表示成什么形式? )x -x (x -x 21)(a y = (a ≠0). 复习引入 初步探究 深入探究 反馈练习 与知识拓展 课时小结 作业布置

一次函数解析式专题练习(全面)

1 / 3 一次函数解析式的确定练习题 第1题?如图所示,直线I 是一次函数y 二kx ? b 的图象,看图填空: 则y 与x 之间的函数关系式是 第5题.已知直线y = _5x ? a 与直y = 5x ? b 的交点坐标为 (m,8), 贝H a b 的值是 _________________ . 1 第6题.若直线y x ? n 与直线y = mx -1相交于(1, - 2),则( ) 2 第7题.已知下表是y 与x 的一次函数,请写出函数表达式, x -2 -1 0 2 3 y 4 第8题.如图所示,直线I 是一次函数y 二kx ?b 的图象. (1 )图象经过(0, _ )和( _ -)点; (2)贝廿 k 二 ___ - b 二 _________ 第9题.某一次函数的图象经过点 (-1,2)-且函数y 的值随自变量2 出一个符合上述条件的函数关系式是 _____________________ 1 第10题.已知y-m 与3x+6成正比例关系(m 为常数当帚 -1 -2 第11题.已知一次函数y 二kx ? b 的图象经过点 A (2,5)和点E ,点E 是一次函数y = 2x -1 的图象与y 轴的交点,则这个一次函数的表达式是 ___________________ . 1 第12题.直线y =kx ? b 过点(-2,5)且与y 轴交于点P ,直线y x 3与y 轴交于Q - (1) b = k 二 ; (2 )当 x = 6 时, y = ; (3 )当 y =6时, X 二 . 第 2题. 一次函数 y =bx 2的图象经过点A (_1,1) ,I 则 b Y 第3题.正比例函数的图象经过点 A (-2,-3),求正比例函数的关系式. 第4题.y ?3与x 1成正比例,且当x = 1时,y =1 -T O k y / I /的增大而减小,请你写 I | 4 时,a yp4,当 x = 3 时, y =7,那么y 与x 之间的函数关系式是 1 2 3 2

高三数学第二轮专题讲座复习:求解函数解析式的几种常用方法

1 / 4 张喜林制 [选取日期] 高三数学第二轮专题讲座复习:求解函数解析式的几种常用方法 高考要求 求解函数解析式是高考重点考查内容之一,需引起重视 本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力 重难点归纳 求解函数解析式的几种常用方法主要有 1 待定系数法,如果已知函数解析式的构造时,用待定系数法; 2 换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法; 3 消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x ); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法 典型题例示范讲解 例1 (1)已知函数f (x )满足f (log a x )=)1(1 2x x a a -- (其中a >0,a ≠1,x >0),求f (x )的表达式 (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x ) 命题意图 本题主要考查函数概念中的三要素 定义域、值域和对应法则,以及计算能力和综合运用知识的能力 知识依托 利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域 错解分析 本题对思维能力要求较高,对定义域的考查、等价转化易出错 技巧与方法 (1)用换元法;(2)用待定系数法 解 (1)令t=log a x (a >1,t >0;01,x >0;0

确定一次函数解析式

19.2一次函数(2) 班级学号姓名 【学习目标】 1.能根据已知条件确定一次函数关系式. 2.能利用一次函数关系式求相应的自变量的值以及函数值. 【重、难点】 重点:运用待定系数法求一次函数关系式. 难点:求一次函数关系式中的自变量的取值范围. 【新知预习】 1.已知函数y=2x-3,当x=-2时,y=____;当y=1时, x=___ .2.某跨江大桥的收费站对过往车辆都要收费,规定大车收费60元,小车收费50元,若某天过往车辆为3000辆,求所收费用y与小车x(辆)之间的函数关系,及x的取值范围. 【导学过程】 活动1: 一盘蚊香长105cm,点燃时每小时缩短10cm. (1)写出蚊香点燃后的长度y(cm)与点燃时间t(h)之间的函数关系式; (2)5h后蚊香还剩多长? (3)该盘蚊香可以使用多长时间? (4)求t的取值范围. 活动2: 在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(克)的一次函数,当所挂物体的质量为10克时,弹簧长11厘米;当所挂物体的质量为30克时,弹簧长15厘米. (1)写出y与x之间的函数关系式; (2)求所挂物体的质量为4克时的弹簧的长度; (3)当弹簧长为29厘米时,所挂物体的质量为多少克? 小结:求一次函数表达式的一般步骤: 例1.已知:y是x的正比例函数,x=2时,y=6,求y与x的关系式. 例2.已知y与x-3成正比例,当x=4时,y=3,求y与x的函数关系式.

变式1 已知y-1与x成正比例,当x=2时,y=-4,求y与x的函数关系式. 变式2 已知y=y1+y2,其中y1与x成正比例,y2与x-2成正比例,当x=-1时,y=2; 当x=2时,y=5,求y与x的函数关系式. 例3.长方形的周长为20cm. (1)写出长y与宽x之间的函数关系式; (2)当长为5 cm时,宽为多少? (3)求长的取值范围. 【反馈练习】 1.完成课本P145练习. 2.已知函数y=4x+5,当x=-3时,y= ;y=5时,x= . 3.已知y与4x-1成正比例,当x=3时,y=6,求出y与x的函数关系式. 4.已知一次函数y=kx+b,当x=-4时,y=9; 当x=2时,y=-3. (1)求这个函数的函数关系式; (2)y=5时,求x的值. 5.已知:y-3与x+2成正比例,且x=2时,y=7. (1)写出y与x之间的函数关系式; (2)计算x=4时,y的值; (3)计算y=4时,x的值. 6.将长为38cm,宽为5cm的长方形白纸,按如图所示方法粘合在一起,粘合部分白纸为2cm. (1)求10张白纸粘合后的长度; (2)设x张白纸粘合后的总长为ycm,写出y与x的函数关系式; (3)求x的取值范围.

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

二次函数解析式的确定(10种)

二次函数解析式的确定2 〈一〉三点式。 1,已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C (0,-3)三点, 求抛物线的解析式。 2,已知抛物线y=a(x-1)2+4 , 经过点A (2,3),求抛物线的解析式。 〈二〉顶点式。 1,已知抛物线y=x 2-2ax+a 2+b 顶点为A (2,1),求抛物线的解析式。 2,已知抛物线 y=4(x+a)2-2a 的顶点为(3,1),求抛物线的解析式。 〈三〉交点式。 1,已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。 2,已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=21 a(x-2a)(x-b)的解析式。 〈四〉定点式。 1,在直角坐标系中,不论a 取何值,抛物线2225212-+-+-=a x a x y 经过x 轴上一定点Q , 直线2)2(+-=x a y 经过点Q,求抛物线的解析式。 2,抛物线y= x 2 +(2m-1)x-2m 与x 轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。 3,抛物线y=ax 2+ax-2过直线y=mx-2m+2上的定点A ,求抛物线的解析式。

〈五〉平移式。 1,把抛物线y= -2x 2 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h)2 +k,求此抛物线解析式。 2,抛物线32-+-=x x y 向上平移,使抛物线经过点C(0,2),求抛物线的解析式. 〈六〉距离式。 1,抛物线y=ax 2+4ax+1(a ﹥0)与x 轴的两个交点间的距离为2,求抛物线的解析式。 2,已知抛物线y=m x 2+3mx-4m(m ﹥0)与 x 轴交于A 、B 两点,与 轴交于C 点,且AB=BC,求此抛物 线的解析式。 〈七〉对称轴式。 1、抛物线y=x 2-2x+(m 2-4m+4)与x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的2 倍,求抛物线的解析式。 2、已知抛物线y=-x 2+ax+4, 交x 轴于A,B (点A 在点B 左边)两点,交 y 轴于点C,且OB-OA=4 3OC ,求此抛物线的解析式。 〈八〉对称式。 1,平行四边形ABCD 对角线AC 在x 轴上,且A (-10,0),AC=16,D (2,6)。AD 交y 轴于E ,将 三角形ABC 沿x 轴折叠,点B 到B 1的位置,求经过A,B,E 三点的抛物线的解析式。 2,求与抛物线y=x 2+4x+3关于y 轴(或x 轴)对称的抛物线的解析式。

一次函数解析式的确定及应用

一次函数解析式的确定及应用 学习目标 1.经历用待定系数法确定一次函数解析式的过程,掌握用待定系数法求一次函数解析式的方法,提高数学运算能力. 2.能够用一次函数的相关知识解决实际问题,感受一次函数在解决实际问题中的作用,提高利用数学建模解决实际问题的能力. 教学过程 活动一:待定系数法 1.已知一次函数的图象经过点(2,5)和(-1,-1),求这个一次函数的解析式. 设这个一次函数的解析式为 ,将点(2,5)和(-1,-1)代入,得方程组 ,解方租 ,所以这个一次函数的解析式为 . 2.一次函数)0(≠+=k b kx y 中有 个待定系数,因此需要根据 个条件才能列出关于 的二元一次方程组求解. 探究归纳: 1.待定系数法 先设出 ,再根据条件确定解析式中 ,从而得出函数解析式的方法,叫做待定系数法. 2.求一次函数解析式的步骤 (1)设出 (2)根据条件列出解析式中关于未知系数的方程(组); (3)解方程(组),确定 (4)根据求出的未知系数确定 活动二:知识点即时反馈练习 1.一次函数3+=kx y 中,当3=x 时,6=y ,则k 的值为( ) A.-1 B.1 C.5 D.-5

2.如果一次函数的图象经过点(0,1)和(-1,3),那么这个函数的解析式为( ) A.1 - y 2- =x =x 2+ - y B.1 C.1 =x 2+ 2- y y D.1 =x 3.如图,直线l为一次函数b =2的图象,则= x y+ b 活动三:典型习题 例1.(1)已知一次函数的图象过A(-3,-5),B(1,3)两点,求这个一次函数的解析式为.(2)已知直线b =,求这个一 y2 - y+ kx =经过点A(0,6),且平行于直线x 次函数的解析式. 变式练习1 一次函数的图象与直线1 y平行,且经过点 A(1,-7),求这个一次函数的解 =x 3- - 析式. 变式练习2 已知一次函数的图象经过(-4,15),(6,-5)两点,求一次函数的解析式. 例2.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(单位∶元)与每月用水量x(单位∶m3)之间的 关系如图所示. (1)求y关于x的函数解析式 (2)若某用户二、三月份共用水 40 m2(二月份用水

求函数解析式常用的方法

求函数解析式常用的方法 求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。 以下主要从这几个方面来分析。 (一)待定系数法 待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。 解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0 由(1)()1f x f x x +=++ 得 22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得22(2)()1ax a b x a b c ax b c x c +++++=++++ 得 212211120011()22 a a b b a b c c b c c f x x x ?=?+=+????++=+?=????=?=??? ∴=+ 小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k x (k≠0);f(x)为

二次函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a≠0) ②顶点式:f(x)=a(x-h)2+k(a≠0) ③双根式:f(x)=a(x-x1)(x-x2)(a≠0) (二)换元法 换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例2 :已知1)1,f x =+求()f x 的解析式。 解析: 1视为t ,那左边就是一个关于t 的函数()f t , 1t =中,用t 表示x ,将右边化为t 的表达式,问题即可解决。 1t = 2220 1 ()(1)2(1)1()(1)x t f t t t t f x x x ≥∴≥∴=-+-+=∴=≥ 小结:①已知f[g(x)]是关于x 的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t ,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x 替换t ,便得f(x)的解析式。 注意:换元后要确定新元t 的取值范围。 ②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。 (三)配凑法 已知复合函数[()]f g x 的表达式,要求()f x 的解析式时,若[()]f g x 表达式右边易配成()g x 的运算形式,则可用配凑法,使用

如何确定函数的解析式

二次函数内容很丰富,它可以和方程、坐标、几何综合起来,涉及的知识也很多。尤其是确定二次函数解析式是相当重要的一个内容。我们如何利用二次函数所具备的三个条件来待定解析式y ax bx c =++2中三个参数a b c 、、的值,是我们掌握的必备知识和方法。 下面我们仅举以下例题:学习如何确定函数的解析式;使同学悟出其中的道理及思想。 重点、难点: 重点:函数有关概念的应用。 难点:函数的概念的灵活运用,解决有关问题。 1. 求满足下列条件的二次函数解析式: 例1. 已知:二次函数y ax bx c a =++≠20(),当x = 32时,有最小值-34 ,又方程ax bx c 20++=两根为x x 12,且满足x x 13239+=。 分析:已知x =32函数有最小值-34,说明抛物线顶点坐标为()3234 ,-,所以设二次函数解析式为顶点式比较方便。又知x x 13239+=,显然要用韦达定理待定系数。 解:设二次函数解析式为y a x ax ax a =--=-+-()()323439434 22 则x x x x a 1212394341+=?=-???? ?() 由x x x x x x x x 132312122 1239+=++-?=()[()] 将()1式代入计算求得a =3 ∴二次函数解析式为y x x =-+3962 例2. 抛物线的顶点坐标为()-23,,且与x 轴交于()()x x 1200,,且||x x 126-=。 分析:本题的条件与例1基本相同,方法也大致类似,同学们可以自己完成。 解:设y a x ax ax a =++=+++()2344322 ||()x x x x x x x x x x a 1212212121246 443-=+-=+=-?=+???? ? 代入后,解得a =- 13

4.4确定一次函数表达式的六种类型1

4.4确定一次函数表达式的六种类型 【学前准备】: 1.正比例函数的表达式是 ;一次函数的表达式是 . 2.正比例函数图象一定经过坐标 ,正比例函数图象和一次函数图象都是 。 3.直线x y 2-=与直线52+-=x y 的位置关系是 ;直线13--=x y 与 直线5+=x y 的位置关系是 4.一次函数2-=kx y 中,若y 随x 的增大而减小,则k 0; 5.一次函数3+=kx y 中,当x=-2时,y=1,则k= 。 6.函数b x y +-=的图象经过点(-5,2),则b= . 想一想: (1) 确定正比例函数的表达式需要____个条件, (2) 确定一次函数的表达式需要_____个条件。 一、根据规律: 1.某山区的气温t (℃)和高度h (米)之间的关系如下表 由上表得t 与h 之间的关系式是 . 二、根据图象: 直线l 是一次函数 y = kx + b 的图象, (1) b = ,k = ; (2) 当x =30时,y = ; (3) 当y =30时,x = 。 三、根据平行: 1.一次函数y=kx+b 的图象平行于正比例函数y=0.5x 的图像,且过点(4,7),求一次函数的解析式以及与坐标轴的交点坐标. 2.已知正比例函数y=kx 经过点P(1,2),如图所示. (1)求这个正比例函数的解析式; (2)将这个正比例函数的图像向右平移4个单位,写出在这个平移下,点P 、 原点O 的像P '、O '的坐标,并求出平移后的直线的解析式. O' P'P (1, 2 )O x y

四、根据面积: 直线y=2x+b与两坐标轴围成的三角形面积是4,求表达式。 五、根据定义: 1.y与x成正比例,其图象经过)1,3 (P;求y与x的关系式。 2、已知y-1与x+1成正比例,且x=2时,y=7,求表达式。 3、若函数y=kx+b的图象经过点(-3,-2)和(1,6)求k,b及表达式。 六、根据交点: 已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数y= 1 2x的图象相交于点(2, a),求 (1)a的值 (2)k,b的值 (3)这两个函数图象与x轴所围成的三角形的面积。

求解函数解析式的几种常用方法

求解函数解析式的几种常用方法 高考要求 求解函数解析式是高考重点考查内容之一,需引起重视 本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力 重难点归纳 求解函数解析式的几种常用方法主要有 1、换元法:已知))((x g f 的表达式,欲求)(x f ,我们常设)(x g t =,从而求得)(1t g x -=,然后代入))((x g f 的表达式,从而得到)(t f 的表达式,即为)(x f 的表达式。 2、凑配法 若已知))((x g f 的表达式,欲求)(x f 的表达式,用换元法有困难时,(如)(x g 不存在反函数)可把)(x g 看成一个整体,把右边变为由)(x g 组成的 3、待定系数法 若已知)(x f 的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得)(x f 的表达式。 式子,再换元求出)(x f 的式子。 4、赋值法 在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法 5、消元法 若已知以函数为元的方程形式,若能设法构造另一个方程,组成

方程组,再解这个方程组,求出函数元,称这个方法为消元法。 典型题例示范讲解 例1 如果45)1(2+-=+x x x f ,那么f(x)=______________________. 例2 设二次函数f(x)满足f(x-2)=f(-x-2),且图像在y 轴上的截距为1,被x 轴截得的线段长为22,求f(x)的解析式。 例 3 设y=f(x)是实数函数,且x x f x f =-)1(2)(,求证:23 2|)(|≥x f 。 例4 已知bx x f x af n n =-+)()(,其中n a ,12≠奇数,试求)(x f 。 例5 已知)12()()(+++=+b a a b f b a f ,且,1)0(=f 求)(x f 的表达式。 解:令0=b ,由已知得:.1)1()0()(2a a a a f a f ++=++= 1)(2++=∴x x x f 例6 (1)已知函数f (x )满足f (log a x )=)1(1 2x x a a -- (其中a >0,a ≠1,x >0),求f (x )的表达式 (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求 f (x ) 的表达式 命题意图 本题主要考查函数概念中的三要素 定义域、值域和对应法则,以及计算能力和综合运用知识的能力 知识依托 利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域 错解分析 本题对思维能力要求较高,对定义域的考查、等价转化易出错 技巧与方法 (1)用换元法;(2)用待定系数法 解 (1)令t=log a x (a >1,t >0;0

八年级数学上册 五种类型一次函数解析式的确定(人教版)

五种类型一次函数解析式的确定 确定一次函数的解析式,是一次函数学习的重要内容。下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。 一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式 例1、若函数y=3x+b经过点(2,-6),求函数的解析式。 分析:因为,函数y=3x+b经过点(2,-6), 所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。函数的解析式就确定出来了。 解: 因为,函数y=3x+b经过点(2,-6), 所以,把x=2,y=-6代入解析式中, 得:-6=3×2+b, 解得:b=-12, 所以,函数的解析式是:y=3x-12. 二、根据直线经过两个点的坐标,确定函数的解析式 例2、直线y=kx+b的图像经过A(3,4)和点B(2,7), 求函数的表达式。 分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b, 因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。 解: 因为,直线y=kx+b的图像经过A(3,4)和点B(2,7), 所以,4=3k+b,7=2k+b, 所以,b=4-3k,b=7-2k, 所以,4-3k=7-2k, 解得:k=-3, 所以,函数变为:y=-3x+b, 把x=3,y=4代入上式中,得:4=-3×3+b, 解得:b=13, 所以,一次函数的解析式为:y=-3x+13。 三、根据函数的图像,确定函数的解析式 例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.

求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。 分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。 解: 因为,函数的图像是直线, 所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数, 设:一次函数的表达式为:y=kx+b, 因为,图像经过点A(0,40),B(8,0), 所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中, 得:40=k×0+b,0=8k+b 解得:k=-5,b=40, 所以,一次函数的表达式为:y=-5x+40。 当汽车没有行驶时,油箱里的油是40升,此时,行驶的时间是0小时; 当汽车油箱里的油是0升,此时,行驶的时间是8小时, 所以,自变量x的范围是:0≤x≤8. 四、根据平移规律,确定函数的解析式 例4、如图2,将直线OA向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是.(08年上海市)

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 此法较适合简单题目。 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知2 2 1)1(x x x x f + =+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2 -+ =+ x x x x f , 21≥+ x x 2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+= x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(2 2 -=-+-=t t t t f 1)(2 -=∴x x f )1(≥x x x x x f 21)1()1(2 2 +=-+=+∴ )0(≥x

(2)设 .)(,,,1 11 1111 11-= ∴-= - = = =x x f t t t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(12121 0224 2222 --=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1 (2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得: x x f x f 1 )(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(-- = 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例5 已知:1)0(=f ,对于任意实数x 、y ,等式

人教版初中求函数解析式的基本方法

中考中求函数解析式的基本方法 求函数解析式是中学数学的重要内容,是高考的重要考点之一。本文给出求函数解析式的基本方法,供广大师生参考。 一、定义法 根据函数的定义求其解析式的方法。 例1. 已知,求。 解:因为 二、换元法 已知看成一个整体t,进行换元,从而求出的方法。 例2. 同例1。 解:令, 所以, 所以。 评注:利用换元法求函数解析式必须考虑“元”的取值范围,即的定义域。 三、方程组法 根据题意,通过建立方程组求函数解析式的方法。 例3. 已知定义在R上的函数满足,求的解析式。

解:,① ② 得, 所以。 评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程。 四、特殊化法 通过对某变量取特殊值求函数解析式的方法。 例4. 已知函数的定义域为R,并对一切实数x,y都有 ,求的解析式。 解:令, 令, 所以, 所以 五、待定系数法 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。 例5. 已知二次函数的二次项系数为a,且不等式的解集为(1,3),方程有两个相等的实根,求的解析式。

解:因为解集为(1,3), 设, 所以 ① 由方程 得② 因为方程②有两个相等的实根, 所以, 即 解得 又, 将①得 。 六、函数性质法 利用函数的性质如奇偶性、单调性、周期性等求函数解析式的方法。

例6. 已知函数是R上的奇函数,当的解析式。解析:因为是R上的奇函数, 所以, 当, 所以 七、反函数法 利用反函数的定义求反函数的解析式的方法。 例7. 已知函数,求它的反函数。 解:因为, 反函数为 八、“即时定义”法 给出一个“即时定义”函数,根据这个定义求函数解析式的方法。 例8. 对定义域分别是的函数,规定:函数

求函数解析式,的四种常用方法

求函数解析式的四种常用方法 1.待定系数法:若已知f (x )的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可. 2.换元法:设t =g(x ),解出x ,代入f (g(x )),求f (t)的解析式即可. 3.配凑法:对f (g(x ))的解析式进行配凑变形,使它能用g(x )表示出来,再用x 代替两边所有的“g(x )”即可. 4.方程组法:当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解. [再练一题] 3.已知函数f (x )是二次函数,且f (0)=1,f (x +1)-f (x )=2x ,则f (x )=________. 【解析】 设f (x )=ax 2+bx +c ,由f (0)=1得c =1. 又f (x +1)=a (x +1)2+b (x +1)+1, ∴f (x +1)-f (x )=2ax +a +b . 由2ax +a +b =2x ,得????? 2a =2a +b =0, 即a =1,b =-1, ∴f (x )=x 2-x +1. 【答案】 x 2-x +1 1.下列表示函数y =f (x ),则f (11)=( ) A .2

C .4 D .5 【解析】 由表可知f (11)=4. 【答案】 C 2.已知f (x -1)=x 2+4x -5,则f (x )的表达式是( ) A .f (x )=x 2+6x B .f (x )=x 2+8x +7 C .f (x )=x 2+2x -3 D .f (x )=x 2+6x -10 【解析】 法一 设t =x -1,则x =t +1. ∵f (x -1)=x 2+4x -5, ∴f (t )=(t +1)2+4(t +1)-5=t 2+6t , 即f (x )的表达式是f (x )=x 2+6x . 法二 ∵f (x -1)=x 2+4x -5=(x -1)2+6(x -1),∴f (x )=x 2+6x . ∴f (x )的表达式是f (x )=x 2+6x , 故选A . 【答案】 A 3.f (x )=|x -1|的图象是( ) 【解析】 ∵f (x )=|x -1|=????? x -1,x ≥1,1-x ,x <1, 当x =1时,f (1)=0,可排除A ,C.又x =-1时,f (-1)=2,排除D. 【答案】 B 4.若一个长方体的高为80 cm ,长比宽多10 cm ,则这个长方体的体积y (cm 3)与长方体的宽x (cm )之间的表达式是________.

相关文档
最新文档