Protel坐标导出说明

Protel坐标导出说明
Protel坐标导出说明

用PCB文件导出坐标文件的方法

1.Protel打开PCB文件,删除直插元件,只剩下贴片元件和右下角用于定原点的元件

2.用定原点功能:

3.在线路板右下角定原点

4.选择菜单“File”-“CAM Manager…”

5.在向导窗口中点击下一步“Next”,

6.在此窗口中选择“Pick Place….”,点击下一步“Next”

8.选择“Spreadsheet”,点击下一步:

9.选择“Metric”,点击下一步:

11.在显示的窗口中点右键,选择菜单中的“Generate Cam Files”

12.关闭当前PCB文件,在PCB文件夹中会生成一个“CAM for …”的文件夹,打开这个

文件夹:

13.在打开的文件夹中将Pick Place 开头PIK的文件导出:

14.打开SSA文件转换软件:

15.点击“导入PIK文件”,选择导入刚才从Protel 导出的PIK文件

16.点击“导出SSA文件”,将导出的SSA文件用软盘复制到贴片机的电脑上并导入即可:

空间坐标转换说明

空间坐标转换说明 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

坐标转换说明 GPS 接收机接收到GPS (大地坐标:经度、纬度和高度值)信号后,并不利于显示,需要将大地坐标进行转换,现选用东北天坐标系(也叫站心坐标系)作为显示的依据。 GPS 接收机接收到的第一个信号L (经度)、B (纬度)和H (高度),作为东北天坐标系的原点。当接收到第二个信号时L 1、B 1和H 1,应用坐标转换公式,转换到东北天坐标系下进行显示。依次类推,凡是接收到的GPS 信号都转换到东北天坐标系下进行显示,在东北天坐标系下预测出来的坐标值通过坐标转换公式在显示屏上显示大地坐标(经度、纬度和高度)。 1.大地坐标与直角坐标的相互转化 对空间某一点,大地坐标系(L ,B ,H )到直角坐标系(X ,Y ,Z )的转换关系如下: ?? ? ?? +-=+=+=B H e N Z L B H N Y L B H N X sin ])1([sin cos )(cos cos )(2(1) 由直角坐标系(X ,Y ,Z )转化到大地坐标系(L ,B ,H )的公式如下: ??? ? ??? --=+-++==)1(sin /]})1((/[)(arctan{) /arctan(2222e N B Z H H e N Y X H N Z B X Y L (2) 式中:B e a N 22sin 1/-=,N 为该点的卯酉圈曲率半径;2222/)(a b a e -=,a 、 b 、e 分别为该大地坐标系对应参考椭球的长半轴、短半轴和第一偏心率。长半轴 a =6378137±2m ,短半轴 b =6356.7523142km ,90130066943799.02=e 。 从公式(2)看出,经度比较容易求得,纬度和高度必须通过迭代计算获直接计算得到。迭代计算的次序为:N H B →→,通常迭代四次可以达到H 优于0.001m ,B 优于0.00001''的计算精度;教科书中给出的直接法计算公式比较繁琐,有的计算公式的应用条件受到一定限制,例如要求大地高度小于10000m 时,才能使B 、H 达到上述计算精度,有的直接计算公式精度较低。 根据[张华海]提供的方法,本文建议采用该方法将直角坐标(X ,Y ,Z )转变成大地坐标(L ,B ,H )。该方法的公式形式比较简便,B 、H 的计算精度高;用计算出

坐标转换三参数计算器使用说明

坐标转换三参数计算器使用说明 4.0升级及使用说明: 1、增加了批量处理数据功能。 2、经纬度数据与直角坐标数据可混合输入(经纬度格式:DDD.MMSS,109度04分08.94343秒表示为109.040894343,直角坐标格式单位为米,如X为1234567.89,Y为123456.78,Y坐标无带号)。 3、批量处理数据文件为文本文件,格式为严格每行4个数据,以逗号或空格分开。 点号1,X坐标(或为纬度),Y坐标(或为经度),高程 4、输出文件为文本文件,格式为: 点号1,转换前的X坐标(或为纬度),Y坐标(或为经度),高程 > 转换后的X坐标(或为纬度),Y坐标(或为经度),高程 5、未注册软件无批量处理功能,部分参数隐形显示,但内部坐标转换仍可正常进行。 工作界面:

=========================================== 3.0使用说明 本软件分成上下二部分,上半部为在两个不同椭球体间求坐标转换的三参数,下半部为在两个不同椭球体间的坐标转换。在两个不同椭球体间进行坐标转换首先必需知道坐标转换参数,通常有三参数和七参数转换二种方式,本程序提供三参数转换方式。 例1:我要求手持GPS的北京54(或西安80)坐标转换参数。 向有关部门收集所在工作区内已知点(只要一个控制点)的WGS84坐标系中的经度、纬度、高程,以及同点的北京54(或西安80)坐标系中的直角坐标,即可进行本软件操作了。如某一个控制点的WGS84经度、纬度、高程为: 109度34分28.94343秒, 31度02分25.65526秒, 104.967米该控制点北京54坐标为:

空间直角坐标系坐标转换方法

坐标转换方法 空间直角坐标系如果其原点不动,绕着某一个轴旋转而构成的新的坐标系,这个过程就叫做坐标旋转。在旧坐标系中的坐标与在旋转后新坐标系中的坐标有一定的转换关系,这种转换关系可以用转换矩阵来表示。 如图5.7,直角坐标系XYZ,P点的坐标为(x, y, z),其相应的在XY 平面,XZ平面,YZ平面分别为M(x, y,0),Q(x,0, z)和N(0, y, z)。 图5.7直角坐标系XYZ 设?表示第j 轴的旋转角度,R j (?) 表示绕第j 轴的旋转,其正方向是沿坐标轴向原点看去的逆时针方向。很明显当j 轴为旋转轴时,它对应的坐标中的j 分量是不变的。由于直角坐标系是对称的,下面我们以绕Z轴旋转为例推导其旋转变换矩阵,其它两个轴推导和它是一样的。 设图5.7的坐标绕Z轴逆时针旋转θ角度,新坐标为X 'Y'Z',如图5.8所示: 图5.8 坐标绕Z 轴逆时针旋转θ角度 由于坐标中的z 分量不变,我们可以简化地在XY 平面进行分分析,如图

5.9所示: 图5.9坐标绕Z 轴逆时针旋转θ 角度的XY 平面示意图 点 M X 和点M X ' 分别是M 点在X 轴和X '轴的投影。如图5.9 cos cos() sin sin() X X X X x OM OM MOM OM y MM OM MOM OM ?θ?θ==∠=-??==∠=-? (5-1) cos cos sin sin X X X X x OM OM MOM OM y MM OM MOM OM ? ?'''''==∠=??'==∠=? (5-2) 把(5-1)式按照三角函数展开得: cos cos sin sin sin cos cos sin x OM OM y OM OM ?θ?θ ?θ?θ=+??=+? (5-3) 把(5-2)式代入(5-3)式得: cos sin sin cos x x y y x y θθ θθ''=+??''=-+? (5-4) 坐标中的z 分量不变,即z = z'这样整个三维坐标变换就可以写成(用新坐标表 示旧坐标) cos sin sin cos x x y y x y z z θθ θθ''=+? ?''=-+??' =? (5-5) 把式(5-5)用一个坐标旋转变换矩阵R Z (θ) 表示可以写成:

坐标转换工具说明书-1208

§10.2坐标转换工具 HGO 数据处理软件包提供了坐标转换程序,可以进行地方坐标与WGS-84坐标的相互转换,同时具备参数求解功能。 下面对这个工具进行介绍: 10.2.1概述 首先,介绍一下常见的三种坐标表示方法:经纬度和椭球高(BLH),空间直角坐标(XYZ),平面坐标和水准高程(xyh/NEU)。注意:椭球高是一个几何量,而水准高是一个物理量。 我们通常说的WGS-84坐标是经纬度和椭球这一种,北京54坐标是平面坐标和水准高程这一种,实质是有平面基准和高程基准组成的。 此外,再注意一下坐标转换的严密性问题,在同一个椭球里的纯几何转换都是严密的(BLH<->XYZ),而在不同的基准之间的转换是不严密的。举个例子,在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,因为前者是一个地心坐标系,后者是一个参心坐标系。高程转换是由几何高向物理高转换。因此在每个地方必须用椭球进行局部拟合,通常用7参数模型来拟合。 那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法(或称布尔莎模型),即X平移,Y平移,Z平移,X旋转,Y旋转,Z旋转,尺度变化K。要求得七参数就需要在一个地区需要3个以上的已知点(7个参数至少7个方程可解,所以需要三个点列出9个方程),如果区域范围不大、最远点间的距离不大于30Km(经验值)的情况可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化K视为0,所以三参数只是七参数的一种特例。 七参数模型的实质是用一个局部椭球去拟合地方坐标系的形态;所以转换后获得的地方椭球高就是水准高。当然我们也可以把平面和高程两个方向分别进行拟合。例如平面用四参数模型拟合,高程方向则用二次曲面等模型来拟合。这样分开处理的模式相对七参数模型自由度更高。但是由于四参数模型参数较少,表达能力较弱,通常只用于小区域坐标转换。 综上所述,从实用的角度出发,坐标转换程序提供了两种转换策略供给客户选择使用: 1.七参数模型,一步得到地方平面和水准数据。 2.四参数加高程拟合模型,分两步得到地方平面和水准数据。 由于各厂家的模型和流程定义可能是不一样的,这里就我们公司的转换流程描述如下:七参数的转换过程是这样的:

坐标转换COORD4.2使用手册

坐标转换问题的详细了解对于测量很重要,那么请和我一起来讨论这个问题。 首先,我们要弄清楚几种坐标表示方法。大致有三种坐标表示方法:经纬度和高程,空间直角坐标,平面坐标和高程。 我们通常说的WGS-84坐标是经纬度和高程这一种,北京54坐标是平面坐标和高程着一种。 现在,再搞清楚转换的严密性问题,在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换这时不严密的。举个例子,在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。 那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法,即X平移,Y平移,Z平移,X旋转,Y旋转,Z旋转,尺度变化K。要求得七参数就需要在一个地区需要3个以上的已知点,如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化K视为0,所以三参数只是七参数的一种特例。在本软件中提供了计算三参数、七参数的功能。 在一个椭球的不同坐标系中转换需要用到四参数转换,举个例子,在深圳既有北京54坐标又有深圳坐标,在这两种坐标之间转换就用到四参数,计算四参数需要两个已知点。本软件提供计算四参数的功能。 现在举个例子说明:在珠江有一个测区,需要完成WGS-84坐标到珠江坐标系(54椭球)的坐标转换,整个转换过程是 这样的:

本软件使用说明: 本软件采用文件化管理,用户可以将一种转换作为一个文件保存下来,下次使用时从文件菜单中选择打开这个文件来调用所有已有的转换参数。 实例一: 转换要求: 用户在一个佛山测区内使用RTK GPS接收机接受了一些点的WGS-84的坐标,现在希望将其转换为北京54和佛山坐标系下的坐标。用户有佛山测区的一些控制点,这些控制点有WGS-84坐标,也有北京-54坐标也有佛山坐标。 分析: WGS-84坐标和北京54坐标是不同两个椭球的坐标转换,所以要求得三参数或七参数,而北京54和佛山坐标都是同一个椭球,所以他们之间的转换是地方坐标转换,需要求得地方转化四参数,因为要求得到的北京54是平面坐标所以需要设置投影参数。: 步骤: 1.1.新建坐标转换文件,便于下次使用转换是不用重新输入,直接打开即可。 2.2.设置投影参数。 3.3.用一个已知点(WGS84坐标和北京54坐标),计算不同椭球转换的三参数(或七参数)。

批量cad图形坐标系转换说明书

批量C A D图形坐标系 严密转换系统V1.1 操作说明 省中纬测绘规划信息工程 2008-10

目录 1 软件概述 (1) 1.1关于批量A UTO C AD图形坐标系严密转换程序 (1) 1.2运行环境 (1) 1.3主要功能 (1) 2 软件安装 (1) 3软件注册和软件的试用期 (4) 4程序开始菜单组 (5) 4.1程序开始菜单组的名称 (5) 4.2程序组菜单项功能 (6) 5平面相似转换参数 (6) 5.1平面相似转换理论依据 (6) 5.2求解平面相似转换参数 (7) 5.3编辑、修改坐标 (10) 5.4输入平面相似转换参数 (11) 5.5编辑管理转换参数 (13) 6 DSNP+严密转换参数 (16) 6.1DSNP转换理论依据 (16) 6.2求解DSNP+转换参数 (18) 6.3输入DSNP+参数 (22) 7 图形坐标系转换 (23) 7.1准备工作 (23) 7.2打开源图形 (24) 7.3保存路径 (25) 7.4转换图形 (25)

批量AutoCad图形坐标系严密转换程序 正式版使用说明 1 软件概述 1.1关于批量AutoCad图形坐标系严密转换程序 批量AutoCad图形坐标系严密转换程序隶属图能达测绘软件系列,它是在Windows系统下用Microsoft Visual Studio .NET 2005 开发的线划图坐标处理软件,采用了Windows风格的参数输入技术,以及CAD互连技术,界面友好,功能强大,操作简便,是数字测图中图形坐标系转换处理的理想工具。 1.2运行环境 运行本软件需安装AUTOCAD2004/2006和微软.Net FrameWork2.0平台开发框架,操作系统为Windows Xp2。 1.3主要功能 (1)支持平面相似转换(四参数)求解,严密DSNP+(七参数)求解; (2)基于数据库的参数添加、修改、删除等管理功能; (3)支持任意两空间坐标系及平面坐标系转换; (4)支持高程点含Z坐标(如:南方CASS图),以及不含Z坐标(如:清华山维EPS图)的转换; (5)支持无人干预的批量全自动转换。 2 软件安装 (1)打开安装文件夹运行“CAD图形转换(永久).EXE”,出现安装界面;

大地坐标与直角空间坐标转换计算公式

坐标与直角空间坐标转换计算公式 一、参心坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 纬度B :以过地面点的椭球法线与椭球赤道面的夹角为纬度B ; c) 经度L :以过地面点的椭球子午面与起始子午面之间的夹角为经度L ; d) 高H :地面点沿椭球法线至椭球面的距离为高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心坐标转换为参心空间直角坐标: ?? ? ?? +-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半径,f 椭球扁率,W 为第一辅助系数 a b a e 2 2-= 或 f f e 1*2-= W a N B W e = -=22 sin *1( 80椭球参数: 长半轴a=6378140±5(m )

短半轴b=6356755.2882m 扁 率α=1/298.257 3 参心空间直角坐标转换参心坐标 [ ] N B Y X H H e N Y X H N Z B X Y L -+= +-++==cos ))1(**)() (*arctan() arctan(2 22 2 2 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 52224253 2236 425442232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++ =) 3、高斯投影反算公式:

坐标转换器使用说明

大地坐标(BLH) 平面直角坐标(XYZ) 四参数:X 平移、Y 平移、旋转角和比例 七参数:X平移,Y平移,Z 平移,X 轴旋转,Y 轴旋转,Z 轴旋转,缩放比例(尺度比) GPS控制网是由相对定位所求的的基线向量而构成的空间基线基线向量网,在GPS控制网的平差中,是以基线向量及协方差为基本观测量。 图3-1表示为HDS2003数据处理软件进行网平差的基本步骤,从图中可以看到,网平差实际上可以分为三个过程: l、前期的准备工作,这部分是用户进行的。即在网平差之前,需要进行坐标系的设置、并输入已知点的经纬度、平面坐标、高程等。 2、网平差的实际进行,这部分是软件自动完成的; 3、对处理结果的质量分析与控制,这部分也是需要用户分析处理的过程。 图3-1 平差过程 坐标系选择 针对不同的平差,要相应选择不同的坐标系,是否输入相应信息。在笔者接触过的项目中,平差时先通过三维无约束平差后,再进行二维约束平差。由于先进行的时三维无约束平差,是在WGS84坐标系统下进行的。 首先更改项目的坐标系统。在菜单“项目”->“坐标系统”或在工具栏“坐标系统”,则弹出“坐标

系统”对话框,选择WGS-84坐标。 图3-2 坐标系统 这里注意的是,在“投影”下见图,中央子午线是114°。很多情况下这里需要进行修改。 图3-3 WGS84投影 软件中自带的“中国-WGS 84”是允许修改的,我们换种方法:就是新建一个坐标文件,其他参数都和“中国-WGS84”一致,仅仅将中央子午线修改下。 在上图中,点击“新建”,得到“COORD GM”对话框,在“文件”->“新建”,如图

图3-4 新建坐标系统 然后在“设置”->“地图投影”,直接修改中央子午线,这里以81°为例,点击确定后,返回“COORD GM”对话框。 图3-5 投影设置 将输入源坐标和输入目标坐标的椭球,均改为WGS84。在“文件”->“保存”,输入名称和国家(中国),退出操作。

坐标转换参数求取及坐标转换程序设计

. . . . . 毕业设计 设计题目坐标转换参数求取及坐标转换程序设计 学生姓名张威 指导教师杜继亮 专业测绘工程 班级测绘12-2班 填写日期2016/4/6 矿业工程学院

. . . . .

. . . . . 摘要 坐标系统是测量工作中定位的基础,坐标系统有多种形式和基准,由于各测量工作目的不同,所选用的坐标基准也会不同,根据不同的工作要求需要将不同的坐标系下的坐标进行相互转换。在这些坐标转换的过程中会用到很多坐标转换模型,但是坐标系转换模型过于复杂手算非常困难。本设计为了方便施工时遇到的坐标转换问题,设计利用Visual Basic 6.0编程语言编写程序,用来实现坐标系统之间的转换以及转换参数的求解,例如:大地坐标与空间直角坐标的相互转换、高斯投影正反算、二维坐标转换与四参数计算、三维坐标转换与七参数转换、同参考基准下的坐标换带计算,以及坐标数据的批量处理。 关键字:坐标系统,转换模型,坐标转换,程序设计

. . . . . Abstract The base of coordinate system in surveying work. there are many forms and benchmarks in the coordinate system. However, in general engineering, the control point and coordinate. System are the same. So It is necessary to transform the control point. coordinate during the construction process. Due to different purposes of each measurement and the selected. different coordinate references, there will be many different coordinate systems. Coordinate systems used in the measurement work are as follows: WGS-84 World Geodetic System, China Geodetic Coordinate System 2000, National Geodetic Coordinate System 1980, Beijing coordinate system 1954 and Local Coordinate System. There are space rectangular coordinate, geodetic coordinate and plane coordinate in the way of the reference in the same coordinate. According to the requirements of different tasks, we need to convert coordinates under the different coordinate systems. On condition that the coordinates of the reference standard can be obtained. the normal construction work can be done. A lot of coordinate transformation models are used in the process of the coordinate transformation. But the coordinate transformation model is very complex and difficult. Nowadays the conversion formula is suitable for the computerization whose language is easy to learn. So in the design I make use of Visual Basic 6 programming language to realize the transformation between the coordinate system and transformation parameters. Key words : coordinate systems transformation model coordinate transform programming

CORS坐标转换软件使用说明

坐标转换软件使用说明  1、功能介绍  在南京进行测量的同行一直受到坐标系统和已知控制点的困扰, 所以往往许多测量成果因坐标系统问题得不到承认,浪费了大量的人 力物力。基于此:本公司集全部精干技术力量,研发本款坐标转换软 件,可以说:它是全体测量工作者的福音。  南京CORS因为其免费,应用十分广泛,但是使用南京CORS在 很多情况下,因为已知控制点原因无法实地取得平面坐标而限制了 CORS优势的发挥。本软件可以实现基于南京CORS测量的WGS84 坐标与92南京地方坐标双向自由转换,转换精度与权威部门转换成 果比较(在南京市6800平方公里范围内,包括高淳、溧水、六合、 浦口):平面残差中误差优于±5mm、高程残差中误差均优于±1cm。精度完全具有保障,免去到处寻找控制点带来的人力、财力和时间浪费。按照最新城市规范规定,这种模式可以实现城市E级GPS控制 点的平面测量。  本软件是一款后处理软件,即:内业处理软件,它不能在实地计 算坐标,通过事后(采集)或事前(放样)数据处理,同样可以让你 在野外无忧无障碍开展工作。  适用平台:Windows 32位所有系统平台。  2、外业采集数据转换操作介绍  外业测量数据从RTK手簿中以WGS84坐标格式导出,导出以后 将文件复制到计算机,假设文件名为0513.dat。在电脑中启动软件,

界面如下:  图一:程序启动界面  首先选择转换方向下拉列表框,此时选择“WGS84—>NJ92”,表示将WGS84坐标转向92南京地方坐标,此时软件会出现一个按钮 键读入数据并转换,点击该按钮,在弹出的文件对话框中选择从手簿 导出的外业坐标文件。如:0513.dat,点击打开按钮即可完成转换。如图二:  图二:选择原始数据文件  记得一定要选择你的原始数据文件格式在点击打开按钮。转换完 成以后又会在对话框中再出现一个按钮导出转换成果,点击它即可将

坐标转换参数求取及坐标转换程序设计

坐标转换参数求取及坐标转换程序设计 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

毕业设计 设计题目坐标转换参数求取及坐标转换程序设计学生姓名张威 指导教师杜继亮 专业测绘工程 班级测绘12-2班 填写日期 2016/4/6 矿业工程学院

摘要 坐标系统是测量工作中定位的基础,坐标系统有多种形式和基 准,由于各测量工作目的不同,所选用的坐标基准也会不同,根据不 同的工作要求需要将不同的坐标系下的坐标进行相互转换。在这些坐 标转换的过程中会用到很多坐标转换模型,但是坐标系转换模型过于 复杂手算非常困难。本设计为了方便施工时遇到的坐标转换问题,设 计利用Visual Basic 编程语言编写程序,用来实现坐标系统之间的 转换以及转换参数的求解,例如:大地坐标与空间直角坐标的相互转 换、高斯投影正反算、二维坐标转换与四参数计算、三维坐标转换与 七参数转换、同参考基准下的坐标换带计算,以及坐标数据的批量处理。 关键字:坐标系统,转换模型,坐标转换,程序设计 Abstract The base of coordinate system in surveying work. there are many forms and benchmarks in the coordinate system. However, in general engineering, the control point and coordinate. System are the same. So It is necessary to transform the control point. coordinate during the construction process. Due to different purposes of each measurement and the selected. different coordinate references, there will be many different coordinate systems. Coordinate systems used in the measurement work are as follows: WGS-84 World Geodetic System, China Geodetic Coordinate System 2000, National Geodetic Coordinate System 1980, Beijing coordinate system 1954 and Local Coordinate System. There are space rectangular coordinate, geodetic coordinate and plane coordinate in the way of the reference in the same coordinate. According to the requirements of

大地坐标与空间坐标的互相转换··

大地坐标向空间坐标转换和空间坐标向大地坐标转换的c程 序 #include #include void main() { float a=6378137.000,b=6356752.3142,E=0.006694379990,pi=3.14159265; float B,L,N,H,X,Y,Z; float K,t0,t1,t2,P; int i; float B1,B2,B3,L1,L2,L3; printf("如果向进行大地坐标向空间坐标转换请输入1,进行空间坐标向大地坐标转换请输入0"); scanf("%d",&i); if(i) { printf("请输入经度:B1,B2,B3"); scanf("%f%f%f",&B1,&B2,&B3); B=(B1+B2/60+B3/3600)*pi/180; printf("请输入纬度:L1,L2,L3"); scanf("%f%f%f",&L1,&L2,&L3); L=(L1+L2/60+L3/3600)*pi/180; printf("请输入大地高:H"); scanf("%f",&H); N=a/sqrt(1-E*sin(B)*sin(B)); X=(N+H)*cos(B)*cos(L); Y=(N+H)*cos(B)*sin(L); Z=(N*(1-E)+H)*sin(B); printf("X=%f\n",X); printf("Y=%f\n",Y); printf("Z=%f\n",Z); } else {printf("请输入空间坐标:X,Y,Z"); scanf("%f%f%f",&X,&Y,&Z);

MAPGIS“北京54 坐标系”转“西安80坐标系”详细教程

MAPGIS“北京54 坐标系”转“西安80坐标系”详细教程 北京54坐标系和西安80坐标系其实是一种椭球参数的转换,作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为他们是两个不同的椭球基准。那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。若求得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),如果区域范围不大,最远点间的距离不大于30km(经验值),这可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化面DM视为0。 方法: 第一步:向地方测绘局(或其他地方)找本区域三个公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z); 第二步:讲三个点的坐标对全部转换以弧度为单位。(菜单:投影转换——输入单点投影转换,计算出这三个点的弧度值并记录下来); 第三步:求公共点操作系数(菜单:投影转换——坐标系转换)。如果求出转换系数后,记录下来; 第四步:编辑坐标转换系数(菜单:投影转换——编辑坐标转换系数),最后进行投影变换,“当前投影”输入80坐标系参数,“目的投影”输入54坐标系参数。进行转换时系统会自动调用曾编辑过的坐标转换系数。 详细步骤如下: 首先将MAPGIS平台的工作路径设置为“…..\北京54转西安80”文件夹下。 下面我们来讲解“北京54 坐标系”转“西安80坐标系”的转换方法和步骤。 一、数据说明 北京54 坐标系和西安80 坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,Y 平移,Z 平移,X 旋转(WX),Y 旋转(WY),Z 旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供3 个以上的公共点坐标对(即北京54 坐标下x、y、z 和西安80 坐标系下x、y、z),可以向地方测绘局获取。 二、“北京54 坐标系”转“西安80 坐标系”的操作步骤 启动“投影变换模块”,单击“文件”菜单下“打开文件”命令,将演示数据“演示数据_北京54.WT”、“演示数据_北京54.WL”、“演示数据_北京54.WP”打开,如图1 所示:

空间坐标转换说明

坐标转换说明 GPS 接收机接收到GPS (大地坐标:经度、纬度和高度值)信号后,并不利于显示,需要将大地坐标进行转换,现选用东北天坐标系(也叫站心坐标系)作为显示的依据。 GPS 接收机接收到的第一个信号L (经度)、B (纬度)和H (高度),作为东北天坐标系的原点。当接收到第二个信号时L 1、B 1和H 1,应用坐标转换公式,转换到东北天坐标系下进行显示。依次类推,凡是接收到的GPS 信号都转换到东北天坐标系下进行显示,在东北天坐标系下预测出来的坐标值通过坐标转换公式在显示屏上显示大地坐标(经度、纬度和高度)。 1.大地坐标与直角坐标的相互转化 对空间某一点,大地坐标系(L ,B ,H )到直角坐标系(X ,Y ,Z )的转换关系如下: ?? ???+-=+=+=B H e N Z L B H N Y L B H N X sin ])1([sin cos )(cos cos )(2 (1) 由直角坐标系(X ,Y ,Z )转化到大地坐标系(L ,B ,H )的公式如下: ??? ????--=+-++==)1(sin /]})1((/[)(arctan{)/arctan(2222e N B Z H H e N Y X H N Z B X Y L (2) 式中:B e a N 22sin 1/-=,N 为该点的卯酉圈曲率半径;2222/)(a b a e -=,a 、b 、e 分别为该大地坐标系对应参考椭球的长半轴、短半轴和第一偏心率。长半 轴a =6378137±2m ,短半轴b =6356.7523142km ,90130066943799 .02=e 。 从公式(2)看出,经度比较容易求得,纬度和高度必须通过迭代计算获直接计算得到。迭代计算的次序为:N H B →→,通常迭代四次可以达到H 优于0.001m ,B 优于0.00001''的计算精度;教科书中给出的直接法计算公式比较繁琐,有的计算公式的应用条件受到一定限制,例如要求大地高度小于10000m 时,才能使B 、H 达到上述计算精度,有的直接计算公式精度较低。 根据[张华海]提供的方法,本文建议采用该方法将直角坐标(X ,Y ,Z )转变成大地坐标(L ,B ,H )。该方法的公式形式比较简便,B 、H 的计算精度高;用计算出的具有一定精度的0B ,直接求出H ,一次性计算出满足精度要求的H ;再将H 值代入公式(2)中,求出B 值。 令))/(arctan(22b Y X Za u ?+=,a 、b 分别为长半轴和短半轴。将u 代入下

坐标转换三参数计算器使用说明

坐标转换三参数计算器使用说明 一、软件功能 该软件可实现在北京54坐标系、西安80坐标系、WGS84坐标系(GPS通常采用WGS84坐标系)之间进行三参数条件下的高精度相互转换,求取手持GPS 的北京54(或西安80)DA、DF、DX、DY、DZ坐标转换的参数。 二、使用说明 软件分成上下二部分,上半部为在两个不同椭球体间求坐标转换的三参数DX、DY、DZ,下半部为在两个不同椭球体间的坐标转换(如下图)。 在两个不同椭球体间进行坐标转换首要条件是必需知道坐标转换参数,通常有三参数和七参数转换二种方式,本程序提供三参数转换方式。 实例1:我要求手持GPS的北京54(或西安80)坐标转换参数。 向有关部门收集所在工作区内已知点(只要一个控制点)的WGS84坐标系经纬度坐标,以及同点的北京54(或西安80)坐标系中的直角坐标,即可进行本软件操作了。如某一个控制点的WGS84经度、纬度、高程为: 109度34分28.94343秒, 31度02分25.65526秒, 104.967米,该控制点北京54坐标为:x=3436391.566m,y=37363926.964m(37为带号),h=108.717m ,将上述数据输入在软件上半部相应栏中,注意勾选前后坐标系正确(坐标系A,坐标系B),

输入中央经线(37带,输111),点击参数计算,计算结果为 DA=-108,DF=0.00000048,dx=32.284979,dy=-90.792978,dz=-57.993043, 此参数即为手持GPS北京54坐标参数。此三参数为不同椭球体间进行坐标转换奠定了基础。以上计算是精确算法,不存在漏洞。 如果收集控制点确实很困难,在不严谨的情况下,用手持GPS在工作区内某点上设置在WGS84状态下长时间观察读数,取平均值,获取WGS84经度、纬度、高程。北京54(或西安80)坐标你再想办法得到(因为你那已经有测量成果了就好说,如果还没开展测量的话,你就得在大比例尺图上读坐标,越精确越好),也能解决问题,但这个办法不推荐使用,你把求得的参数在其它地貌特征点上检验一下是否提高了定点精度,没提高的话,请重复几次,直到符合定点精度要求。 以上方法求得的坐标转换参数为北京54坐标系、西安80坐标系、WGS84坐标系之间相互转换提供了基础,请注意不同地区参数是不一样的。 实例2:如何将WGS84坐标转换为北京54坐标 已知某点WGS84坐标经纬度、高程(GPS通常采用WGS84坐标系)为: 113度12分34.5678秒, 34度56分12.3456秒, 123.888米,已知WGS84坐标转换为北京54坐标三参数为dx=32.284979,dy=-90.792978,dz=-57.993043。输入软件下半部相应栏中,中央经线111输入右上角相应栏中,点击单点转换,北京54坐标结果为X=3869865.711m, Y=19701880.461m(19带),H=127.052m

大地坐标与空间直角坐标的转换程序代码

#include "stdio.h" #include "math.h" #include "stdlib.h" #include "iostream" #define PI 3.1415926535897323 double a,b,c,e2,ep2; int main() { int m,n,t; double RAD(double d,double f,double m); void RBD(double hd); void BLH_XYZ(); void XYZ_BLH(); void B_ZS(); void B_FS(); void GUS_ZS(); void GUS_FS(); printf(" 大地测量学\n"); sp1:printf("请选择功能:\n"); printf("1.大地坐标系到大地空间直角坐标的转换\n"); printf("2.大地空间直角坐标到大地坐标系的转换\n"); printf("3.贝塞尔大地问题正算\n"); printf("4.贝塞尔大地问题反算\n"); printf("5.高斯投影正算\n"); printf("6.高斯投影反算\n"); printf("0.退出程序\n"); scanf("%d",&m); if(m==0)exit(0); sp2:printf("请选择椭球参数(输入椭球序号):\n"); printf("1.克拉索夫斯基椭球参数\n"); printf("2.IUGG_1975椭球参数\n"); printf("3.CGCS_2000椭球参数\n"); printf("0.其他椭球参数(自行输入)\n"); scanf("%d",&n); switch(n) { case 1:a=6378245.0;b=6356863.0188;c=6399698.9018;e2=0.00669342162297;ep2=0.0067385254146 8;break;

空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类 正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。 在测量中常用的坐标系有以下几种: 一、空间直角坐标系 空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。空间直角坐标系可用图2-3来表示: 图2-3 空间直角坐标系 二、空间坐标系 空间坐标系是采用经、纬度和高来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;高是空间点沿参考椭球的法线方向到参考椭球面的距离。空间坐标系可用图2-4来表示:

图2-4空间坐标系 三、平面直角坐标系 平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。在我用的是高斯-克吕格投影也称为高斯投影。UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。 高斯投影是一种横轴、椭圆柱面、等角投影。从几何意义上讲,是一种横轴椭圆柱正切投影。如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。 高斯投影满足以下两个条件: 1、 它是正形投影; 2、 中央子午线投影后应为x 轴,且长度保持不变。 将中央子午线东西各一定经差(一般为6度或3度)围的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下图2-5右侧所示。 图2-5 高斯投影 x 方向指北,y 方向指东。 可见,高斯投影存在长度变形,为使其在测图和用图时影响很小,应相隔一定的地区,另立中央子午线,采取分带投影的办法。我国国家测量规定采用六度带和三度带两种分带方法。六度带和三度带与中央子午线存在如下关系: 366 N L =中; n L 33=中 其中,N 、n 分别为6度带和3度带的带号。

HNCORS在线三维坐标转换使用说明

HNCORS在线三维坐标转换使用说明HNCORS测量直接得到的结果为CGCS2000坐标系下的坐标,但是在实际工程中,通常使用1954年北京坐标和1980西安坐标,鉴于此,HNCORS控制中心拟部署湖南省范围内CGCS2000坐标到1954年北京坐标、1980西安坐标的转换服务。并同时提供基于湖南省似大地水准面的大地高到1985年国家高程基准的转换服务。 注册用户测量完成后将测量得到的CGCS2000数据整理成特定格式,通过HNCORS在线数据处理系统的客户端连接至HNCORS数据处理服务器进行处理,即可自动实时获取用户需要的数据。 此外,HNCORS控制中心可为已完成“数字城市”的市县,利用已有的测绘成果提供更高精度的区域坐标转换服务。 三维坐标转换使用步骤 1、下载三维坐标转换客户端软件 首先加入“湖南CORS业务”群(1542551),在群共享中下载“坐标转换软件客户端.rar”和“坐标转换文件格式.rar”。 2、申请测试帐号、密码

将你的单位和手机号发邮件到 772195650@https://www.360docs.net/doc/4913643796.html,,系统管理员将根椐你提供的信息确定你的帐号、密码,并回复到你的邮箱。 3、进行连接和计算 1) 打开客户端软件 2) IP地址不变端口号改为8008 点连接,右侧出现SOCKET已连接,则正常,否则,检查端口号和客户端计算机能否接入因特网(Internet)。 3)点HnGeo客户端菜单,用户登录

根椐提示输入已注册的用户名和密码 出现如下提示后,说明你己正确接入了服务器,就可以进行在线坐标计算了。

其它的就不说了,大家都懂的 特别说明: 2000坐标的B、L格式为“度.分秒”,如25o12′35.2435" 应表示 为:25.12352435。目前每个测试用户暂定1000个点,在测试期内如数量不够,可通过邮件与YHH联系,感谢大家的参与。

相关文档
最新文档