MEMS微流体传感器

MEMS微流体传感器
MEMS微流体传感器

MEMS技术和基于MEMS的微流体装置

李宗安309010173

(南京210094)

摘要:本文简要阐述了MEMS技术概念及其加工方式、特点,重点结合了MEMS和微流控芯片技术,介绍了MEMS技术在微流体领域的应用状况,选取了一种具有代表性的微隔膜泵,详细表述了此种微泵的加工工艺和过程。

关键字:MEMS微流体器件硅加工

1引言

微电子机械系统即MEMS,是Micro Electro Mechanical Systems的缩写,也可简称为微机电系统。MEMS技术的起源可追溯到20世纪60年代,1989年后MEMS一词就渐渐成为一个世界性的学术用语,MEMS技术的研究与开发也日益成为国际研究的热点。与MEMS一词同时流行的还有Micro Machine(微机械,日本)和Micro System(微系统,欧洲)。当前,常常不加区分的与MEMS通用。

微电子机械系统(Micro-Electro-Mechanical System),是以微电子、微机械及材料科学为基础,研究、设计、制造具有特定功能的微型装置,包括微结构器件、微传感器、微执行器、微机械光学器件以及微系统等。MEMS发展的目标在于通过微型化、集成化来探索新原理、新功能的元件和系统,开辟一个新技术领域和产业。

MEMS器件具有较低的能耗与较高的效率、精度、可靠性以及灵敏性,非常适于制造微型化系统。MEMS技术是多种学科交叉融合具有战略意义的前沿高技术,是未来的主导产业之一,将对21世纪人类的科学技术、生产方式和生活方式产生深远的影响。

2MEMS加工技术

MEMS加工工艺是在传统的微电子加工工艺(也称集成电路IC工艺)基础上发展起来的,后又发展了一些适合制作微机械的独特技术,这些独特技术和常规集成电路工艺相结合实现了MEMS。这些技术统称为微机械加工技术。按照技术发展的来源分,MEMS加工技术分为三种:

一、以美国为代表的以集成电路加工技术为基础的硅基微加工技术;

二、以德国为代表发展起来的利用X射线深度光刻、微电铸、微铸塑的LIGA(Lithograph

galvanfomung und abformug)技术;

三、以日本为代表发展的精密加工技术,如微细电火花EDM、超声波加工、激光加工等。

按照加工的基底材料分,微机械加工工艺分为硅基加工和非硅基加工。

硅基加工技术比较成熟,硅的力学性能较好,适合做微型机械。硅基工艺包括表面光刻技术、体加工技术、表面加工技术、LIGA技术、晶片键合技术和非传统硅MEMS加工技术。这些微机械加工工艺相互补充,各有所长。形成了一套比较完善的加工体系,为微电子机械系统的研究与开发奠定了坚实的物质基础。

3MEMS与微流控芯片技术

近来人们对于MEMS的研究很大的注意力转移到了微流控芯片上。微流控芯片是把化学和生物等领域中所涉及的样品制备、反应、分离、检测及细胞培养、分选、裂解等基本操作单元集成或基本集成到一块几平方厘米(甚至更小)的芯片上,由微通道形成网络,以控制微流体贯穿整个系统,用以取代常规化学或生物实验室的各种功能的一种技术平台。微流控芯片的基本特征和最大优势是多种单元技术在整体可控的微小平台上灵活组合、规模集成。[1]微流控芯片包含了一系列的子系统,如图1所示。总的来说通过一个微流体网络通道,把输入的流体或其他物质转化为所需要的输出物,当然,这其中可能会涉及到样品的分离、反应室或者是对于过程的测试设备。然而,虽然针对特定的应用会需要这些子系统的不同的组合,但是他们都会包括微流体输送、转换和驱动装置。精确并符合要求的控制、检测和引

导流体对于在生物和化学领域应用微流控芯片是十分重要的。应用于微流体的MEMS器件种类繁多,应用范围也比较广,主要有MEMS微泵、MEMS微混合器、MEMS微阀、MEMS微通道、MEMS 微反应器等等[2]。

图1典型的微流控芯片系统示意图

图2流体传输系统结构示意图

4MEMS往复式微泵

由于泵仍然是微流控芯片中流体传送的最基本的方式,微泵基本上是微流控芯片中最广阔的研究课题。由于基因组学、蛋白组学和新病毒的发现等应用对于微流体的需要,微泵被主要用于产生一定量的流体以实现精确可控的流体传输。现已经存在了许多各种各样的微泵以实现流体在微小尺度上的传输。

微泵的驱动方式一般包括液压气动、静电驱动、电磁驱动、压电驱动、热气动、双金属驱动、利用形状记忆性质驱动。

在微或者亚微尺度内,隔膜泵是应用最广泛的泵。一般隔膜泵结构如图3所示,关键的元件包括一个作动器(Actuator)、柔性泵膜(diaphragm)、泵腔(pump chamber)和两个止回阀。通过泵腔内的压力变化来实现流体传输,只有泵腔内外的压力差达到克服阀的压力承受能力时泵才会工作[3]。

图3微隔膜泵组成元件示意图

蠕动泵工作状态基于泵腔的设置好的顺序变化状态,这些动作把流体从一点挤向另外一点。尽管蠕动泵在结构上比具有止回阀的隔膜泵要简单,反向泄露是它的一个大问题。平面的设计结构使这种泵容易加工和装配,但是这种泵需要多重电子作动器。现研制出的微泵如

图4、5所示[4]。

图4一种蠕动式微泵示意图

图5一种蠕动式微泵示意图及实物图

此外还有无阀泵、旋转式泵、动力泵(包括超声波泵和离心泵)和非机械泵等。

对于微粒和多相流体机械泵是一个理想的操作手段,在微泵的领域内,它已被广泛并深入地研究。但是可以传送大量流体的隔膜泵因其复杂的结构,比较难加工。作动器使其中的一个限制因素,由于微泵的微流量限制了微作动器动作幅度,所以需要在外面安装作动器。下面介绍隔膜式微泵的元件和其加工过程。

4.1微阀和微阀加工过程

现有的微阀种类有圆圈台面阀(Ring Mesa)、悬臂结构阀(Cantilever)、膜结构阀(Membrance)、V型阀(V-Shape)、多晶硅圆盘阀(Poly-Si disc)和硅有机树脂悬浮阀(Silicone Float),其示意图依次见图6[5]。

图6多种阀结构及工作原理示意图

为了减少前端的流体阻力,选择了一种具有特殊几何形状的弹性材料(聚对二甲苯)微阀。由于聚对二甲苯杨氏模量很低,同时固定形状是S型的,使得微阀具有两个方向的自由度,并具有动作快、阻力小等优点。但是由于此种阀只能实现一个方向的流体控制,为了满

足微泵的流体进出需要,制作出了另外一种双面式的集成微阀系统,如图7、8所示。

图7聚对二甲苯止回阀工作原理图

图8两种双面的聚对二甲苯止回阀实物图

制作过程从一个覆有热镀1.5微米厚二氧化硅的硅晶片,它起到蚀刻掩罩作用。第一步用氢氧化钾腐蚀形成盲孔,剩下的20微米厚硅片膜在后续步骤中起到结构支撑作用。然后经过氟化溴气体腐蚀使表面粗糙,这样不仅可以减少聚对二甲苯对基板的静摩擦力,而且可以加固聚对二甲苯与基板连接部分的牢固程度。接下来在涂附着力促进剂和2微米厚的聚对二甲苯,并在氧等离子体里面定型,形成微阀顶部的圆形支撑圈。然后涂5微米厚的牺牲光刻胶并对之定型,以分开微阀的盖和基座。为了避免尖角处的机械疲劳破损,对光刻胶进行硬性烘烤处理形成圆角。接下来在表面沉积第二层3微米厚的聚对二甲苯,并热镀一层铝掩护膜,但是由于热镀铝掩护摸时会对光刻胶和聚对二甲苯层有伤害,要先在它们表面涂10微米厚的光刻胶。经过氟化溴气体腐蚀,除去20微米厚的硅膜和牺牲层光刻胶,最终形成通孔。对牺牲层光刻胶和铝光刻胶混合层进行加工,形成最终的阀【6】。具体过程示意图如图9所示,最终加工成品如图10所示。

图9双面止回阀加工过程示意图

图10加工完成的止回阀扫描电镜图

4.2硅橡胶泵膜

大的挠度和良好的密封性是泵膜必须要具备的特性。同时,为了达到大的压缩比,需要一种能够按照要求形成规定的泵腔的材料。硅橡胶由于杨氏模量和硬度比较低,而且延展率比较好,是一种理想的材料。

首先用氢氧化钾在二氧化硅和硅基板上腐蚀出硅薄膜和固定支撑柱(Pillar),然后在表面涂一层硅橡胶,然后经过压膜、腐蚀去除形成最终的硅橡胶泵膜[7],加工过程示意图如图11,加工成品如图12所示。

图11带固定柱的硅有机树脂膜加工过程示意图

图12带固定柱的硅有机树脂膜实物图

4.3硅橡胶垫圈

硅橡胶垫圈是用来把止回阀安装在泵的基座上的,该垫圈能够实现自调整、圆柱定位,以固定在树脂玻璃上。首先在硅片上涂一层10微米厚的光刻胶,以形成固定用圆柱。然后经过氧等离子体和高炉清洗去除浮渣,用深反应离子蚀刻法蚀刻出300微米深的盲孔。接下来重复涂光刻胶、清洗浮渣步骤,以确定垫圈形状,然后经过蚀刻,形成了1带有400微米高的100微米厚的垫圈模具,如图所示,聚对二甲苯或者是沉积有聚四氟乙烯的等离子体可以用来填入模具制作垫圈[],加工成的垫圈和垫圈与基座的装配结构如图13、14所示

图13硅橡胶垫圈加工过程示意图

图14硅橡胶垫圈成品及其在泵基座上装配实物图

4.4微隔膜泵组装结构

最终装配成的微泵及其CAD结构如图15所示,微泵是通过螺钉夹紧和胶粘的方式装配的。用胶把隔膜片粘在有机玻璃基座上,然后被压紧,聚乙烯管连接在入口和出口处,作动器采

用螺线型作动器,安装固定在隔膜下方的合适位置[9]。

图15最终装配成的微泵及其CAD结构示意图

5结论

MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、

微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、

汽车、生物医学、环境监控、军事以及其他人们所接触到的几乎所有领域中都有十分广阔的

应用前景。随着MEMS技术、微电子技术和纳米技术的飞速发展,硅微机械流体传感器、MEMS

微流控芯片将会成为微流体的主要发展趋势。

参考文献

1林秉承,秦建华.图解微流控芯片实验室[M].科学出版社.2008.

2王沫然,李志信.基于MEMS的微流体机械研究进展[J].Fluid Mchinery.2002,30(4):23-28. 3Folta et.al.Design,Fabrication and Testing of a Miniature Peristaltic Membrane Pump[J].Solid State Sensor and Actuator Workshop.1992:186-189.

4van de Pol,et.al.A Thermopneumatic Micropump Based on Micro-engineering Techniques[J].Sensors and Actuators A.1990,21:198-202.

5Wang,X.-Q.Integrated Parylene Micro Electro Mechanical Systems(MEMS),Ph.D. Thesis in Electrical Engineering.2000,California Institute of Technology:Pasadena, CA.

6Wang,X.-Q.,X.Yang,K.Walsh,and Y.-C.Tai,Gas-Phase Silicon Etching with Bromine Trifluoride,in1997Solid State Sensor and Actuator Workshop.1997:1505-1508.

7Grosjean,C.Silicone MEMS for Fluidics,Ph.D.Thesis in Electrical Engineering. 2001,California Institute of Technology:Pasadena,CA.

8Yang,X.,C.Grosjean,and Y.-C.Tai,A Low Power MEMS Silicone/Parylene Valve, in1998Solid-State Sensor and Actuator Workshop.1998:Hilton Head Island,South Carolina.p.316-319.

9Ellis Meng.MEMS TECHNOLOGY AND DEVICES FOR A MICRO FLUID DOSING SYSTEM,Ph.D.Thesis in Philosophy in Electrical Engineering.2003,California Institute of Technology.

基于MEMS加速度传感器的双轴倾角计及其应用

基于MEMS加速度传感器的双轴倾角计及其应用 引言 MAV由于体积和负载能力极为有限,因此,减小和减轻飞控导航系统的体积及重量,就显得尤为重要。本文基于MEMS加速度传感器,设计一种双轴倾角计,该装置精度高、重量轻,可满足MAV的姿态角测量要求,也可用于其他需要体积小、重量轻的倾角测量设备上。 MEMS加速度传感器 ADXL202 是最新的、低重力加速度双轴表面微机械加工的加速度计,以模拟量和脉宽调制数字量2种方式输出,并具有极低的功耗和噪音。表面微机械加工使加速度传感器、信号处理电路高度集成于一个硅片上。和所有加速度计一样,传感器单元是差动电容器,其输出与加速度成比例。加速度计的性能依赖于传感器的结构设计。差动电容是由悬臂梁构成,而悬臂梁是由很多相间分布的指状电容电极副构成,一副指状电容电极可简化为图1所示的结构。每个指状电极的电容正比例于固定电极和移动电极之间的重叠面积以及移动电极的位移。显然,这些都是很小的电容器,并且,为了降低噪声和提高分辨力,实际上需要尽可能大的差动电容。 悬臂梁的运动是由支撑它的多晶硅弹簧控制。这些弹簧和悬臂梁的质量遵守牛顿第二定律:质量为m 的物体,因受力F而产生加速度a,则F =m a。而弹簧的形变与所受力的大小成比例,即F = kx,所以 x = (m / k)a , 式中x为位移, m; m 为质量, kg; a为加速度, m / s2 ; k为弹簧刚度系数, N /m。 因此,仅有支撑弹簧的刚度和悬臂梁的质量2个参数是可控的。减小弹簧系数似乎是提高悬臂梁灵敏度的一种容易方法,但悬臂梁的共振频率正比例于弹簧系数,所以, 减小弹簧系数导致悬臂梁共振频率降低,而加速度计必须工作在共振频率之下。此外,增大弹簧系数使悬臂梁更坚固。所以,如果保持尽可能高的弹簧系数, 只有悬臂梁的质量参数是可变化的。通常,增大质量意味着增大传感器的面积,从而使悬臂梁增大。在ADXL202中,设计出一个新颖的悬臂梁结构。构成X轴和Y轴可变电容的指状电极沿着一个正方形四周的悬臂梁集成,从而使整个传感器的面积减小,而且,共用的大质量的悬臂梁提高了ADXL202的分辨力。位于悬臂梁四角的弹簧悬挂系统用以使X 轴和Y轴的灵敏度耦合减小到最小。 倾角测量原理 ADXL202 用于倾角测量是最典型的应用之一,它以重力作为输入矢量来决定物体在空间的方向。当重力与其敏感轴垂直时,它对倾斜最敏感,在该方位上其对倾角的灵敏度最高。当敏感轴与重力平行时,每倾斜1 °所引起输出加速度的变化被忽略。当加速度计敏感轴与重力垂直时,每倾斜1 °所引起输出加速度的变化约为17. 5mgn ,但在45°时,每倾斜1 °所引起输出加速度的变化仅为12. 5mgn ,而且,分辨力降低。表1为X, Y轴在铅垂面内倾斜±90 °时,X, Y 轴的输出。 当该加速度计的X, Y轴都与重力方向垂直时,可作为具有滚转角和俯仰角的双轴倾角传感器。一旦加速度计的输出信号被转化为一个加速度, 该加速度将位于- 1 gn 和+ 1 gn 之间。则倾斜角以度表示可按下式计算 θ= arcsin (AX / gn ) γ= arcsin (AY / gn ),

MEMS压力传感器

MEMS压力传感器 姓名:唐军杰 学号:09511027 班级: _09511__

目录 引言 (1) 一、压力传感器的发展历程 (2) 二、MEMS微压力传感器原理 (3) 1.硅压阻式压力传感器 (3) 2.硅电容式压力传感器 (4) 三、MEMS微压力传感器的种类与应用范围 (5) 四、MEMS微压力传感器的发展前景 (7) 参考文献 (8)

内容提要 在整个传感器家族中,压力传感器是应用最广泛的产品之一, 每年世界性的压力传感器的专利就有上百项。微压力传感器作为微 型传感器中的一种,在近几年得到了快速广泛的应用。本文详细介 绍了MEMS压力传感器的原理与应用。 [关键词]:MEMS压力传感器微型传感器微电子机械系统 引言 MEMS(Micro Electromechanical System,即微电子机械系统) 是指集微型传感器、执行器以及信号处理和控制电路、接口电路、 通信和电源于一体的微型机电系统。它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器在航空、航天、汽车、生物医学、环境 监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的 应用前景。 MEMS微压力传感器可以用类似集成电路的设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过 程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使 压力控制变得简单、易用和智能化。传统的机械量压力传感器是基 于金属弹性体受力变形,由机械量弹性变形到电量转换输出,因此 它不可能如MEMS微压力传感器那样,像集成电路那么微小,而且 成本也远远高于MEMS微压力传感器。相对于传统的机械量传感器,MEMS微压力传感器的尺寸更小,最大的不超过一个厘米,相对于 传统“机械”制造技术,其性价比大幅度提高。

MEMS传感器现状及应用_王淑华

MEMS传感器现状及应用 王淑华 (中国电子科技集团公司第十三研究所,石家庄 050051) 摘要:M EM S传感器种类繁多,发展迅猛,应用广泛。首先,简单介绍了M EMS传感器的分类和典型应用。其次,对M EMS压力传感器、加速度计和陀螺仪三种最典型的M EM S传感器进行了详细阐述,包括类别、技术现状和性能指标、最新研究进展、产品,及应用情况。介绍MEM S压力传感器时,给出了国内外采用新型材料制作用于极端环境下压力传感器的研究情况。最后,从新材料、加工和组装技术方面对MEM S传感器的发展趋势进行了展望。 关键词:微电子机械系统(M EMS);传感器;加速度计;陀螺仪;压力传感器 中图分类号:TH703 文献标识码:A 文章编号:1671-4776(2011)08-0516-07 Current Status and Applications of MEMS Sensors Wang Shuhua (The13th Research I nstitute,CET C,S hi jiazhuang050051,China) A bstract:MEMS senso rs feature g reat varieties,rapid development and w ide applications.Firstly, the catego ries and ty pical applicatio ns of M EMS senso rs are introduced briefly.Then three typi-cal M EMS sensors,i.e.the pressure sensor,acceleromete r and gy ro sco pe are illustrated in de-tail,including the subdivision,current technical capability and perfo rmance index,latest research pro gress,products and their applications.Besides that,the research status of the M EM S pres-sure senso r using new m aterials for the extreme enviro nment at ho me and abro ad is presented. Finally,developm ent trends of M EMS sensors are predicted in te rm s o f new materials,pro ces-sing and assembling technolog y. Key words:microelectromechanical sy stem(M EMS);sensor;accelerome ter;gy roscope;pres-sure senso r D OI:10.3969/j.issn.1671-4776.2011.08.008 EEACC:2575 0 引 言 MEM S传感器是采用微机械加工技术制造的新型传感器,是M EMS器件的一个重要分支。1962年,第一个硅微型压力传感器的问世开创了MEM S技术的先河,M EMS技术的进步和发展促进了传感器性能的提升。作为M EMS最重要的组成部分,M EMS传感器发展最快,一直受到各发达国家的广泛重视。美、日、英、俄等世界大国将M EMS传感器技术作为战略性的研究领域之一,纷纷制定发展计划并投入巨资进行专项研究。 随着微电子技术、集成电路技术和加工工艺的发展,MEM S传感器凭借体积小、重量轻、功耗低、可靠性高、灵敏度高、易于集成以及耐恶劣工 收稿日期:2011-04-06 E-mail:1117sh uhua@https://www.360docs.net/doc/4114106138.html,

MEMS压力传感器及其应用_颜重光_图文.

MEMS(微机电系统是指集微型 传感器、执行器以及信号处理和控制电路、接口电路、通信和电源于一体的微型机电系统。 M E M S 压力传感器可以用类似集成电路(IC设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使压力控制变得简单易用和智能化。传统的机械量压力传感器是基于金属弹性体受力变形,由机械量弹性变形到电量转换输出,因此它不可能如MEMS压力传感器那样 做得像IC那么微小,成本也远远高于MEMS压力传感器。相对于传统的机械量传感器,MEMS压力传感器的尺寸更小,最大的不超过1cm,使性价比相对于传统“机械”制造技术大幅度提高。 MEMS压力传感器原理 目前的MEMS压力传感器有硅压阻式压力传感器和硅电容式压力传感器,两者都是在硅片上生成的微机电传感器。 硅压阻式压力传感器是采用高精密 半导体电阻应变片组 成惠斯顿电桥作为力电变换测量电路的,具有较高的测量精度、较低的功耗,极低的成本。惠斯顿电桥的压阻式传感器,如无压力变化,其输出为零,几乎不耗电。其电原理如图1所示。硅压阻式压力传感器其应变片电桥的光刻版本如图2。 M E M S 硅压阻式压力传感器采用周边固定的圆形的应力杯硅薄膜内壁,采用M E M S 技术直接将四个高精密半导体应变片刻制在其表面应力 最大处,组成惠斯顿测量电桥,作为力电变换测量电路,将压力这个物理量直接变换成电量,其测量精度能达0.01%~0.03%FS。硅压阻式压力传感器结构如图3

所示,上下二层是玻璃体,中间是硅片,硅片中部做成一应力杯,其应力硅薄膜上部有一真空腔,使之成为一个典型的绝压压力传感器。应力硅薄膜与真空腔接触这一面经光刻生成如图2的电阻应变片电 MEMS压力传感器及其应用 MEMS Pressure Sensor Principle and Application 颜重光华润矽威科技(上海有限公司(上海201103 本文于2009年3月22日收到。颜重光:高工,上海市传感技术学会理事,从事IC应用方案的设计策划和客户应用技术支持。 摘要:简述M E M S 压力传感器的结构与工作原理,并探讨了其应用、压力传感器Die的设计及生产成本分析,覆盖了从系统应用到销售链。 关键词:M E M S 压力传感器;惠斯顿电桥;硅薄膜应力杯;硅压阻式压力传感器;硅电容式压力传感器 D O I : 10. 3969/j. i s s n. 1005-5517.2009.06.015 图1 惠斯顿电桥电原理 图2 应变片电桥的光刻版本 图3 硅压阻式压力传感器结构 图4 硅压阻式压力传感器实物责任编辑:王莹 技术长廊|智能传感器 58 https://www.360docs.net/doc/4114106138.html,

MEMS传感器现状及应用

毕业设计指导

山西大学本科论文MEMS传感器现状及应用 MEMS传感器现状及应用 摘要: MEMS传感器种类繁多,发展迅猛,应用广泛。首先,简单介绍了MEMS传感器的分类和典型应用。其次,对MEMS压力传感器、加速度计和陀螺仪三种最典型的MEMS传感器进行了详细阐述,包括类别、技术现状和性能指标、最新研究进展、产品,及应用情况。介绍MEMS压力传感器时,给出了国内外采用新型材料制作用于极端环境下压力传感器的研究情况。最后,从新材料、加工和组装技术方面对MEMS传感器的发展趋势进行了展望。 关键词: 微电子机械系统(MEMS);传感器;加速度计;陀螺仪;压力传感器 Current Status and Applications of MEMS Sensors Abstract: MEMS sensors feature great varieties, rapid development and wide applications. Firstly,the categories and typical applications of MEMS sensors are introduced briefly. Then three typi-cal MEMS sensors, i. e. the pressure sensor, accelerometer and gyroscope are illustrated in de-tail,including the subdivision, current technical capability and performance index, latest researchprogress, products and their applications. Besides that, the research status of the MEMS pres-sure sensor using new materials for the extreme environment at home and abroad is presented.Finally, development trends of MEMS sensors are predicted in terms of new materials, proces-sing and assembling technology. Key words: microelectromechanical system(MEMS); sensor; accelerometer; gyroscope; pres-sure sensor

MEMS压力传感器及其应用

MEMS压力传感器及其应用 MEMS压力传感器可以用类似集成电路(IC)设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使压力控制变得简单易用和智能化。传统的机械量压力传感器是基于金属弹性体受力变形,由机械量弹性变形到电量转换输出,因此它不可能如MEMS压力传感器那样做得像IC那么微小,成本也远远高于MEMS压力传感器。相对于传统的机械量传感器,MEMS压力传感器的尺寸更小,最大的不超过1cm,使性价比相对于传统“机械”制造技术大幅度提高。 一、压力传感器的发展历程 现代压力传感器以半导体传感器的发明为标志,而半导体传感器的发展可以分为四个阶段: (1)发明阶段(1945 - 1960 年):这个阶段主要是以1947 年双极性晶体管的发明为标志。此后,半导体材料的这一特性得到较广泛应用。史密斯(C.S. Smith)与1945 发现了硅与锗的压阻效应,即当有外力作用于半导体材料时,其电阻将明显发生变化。依据此原理制成的压力传感器是把应变电阻片粘在金属薄膜上,即将力信号转化为电信号进行测量。此阶段最小尺寸大约为1cm。 (2)技术发展阶段(1960 - 1970 年):随着硅扩散技术的发展,技术人员在硅的(001)或(110)晶面选择合适的晶向直接把应变电阻扩散在晶面上,然后在背面加工成凹形,形成较薄的硅弹性膜片,称为硅杯。这种形式的硅杯传感器具有体积小、重量轻、灵敏度高、稳定性好、成本低、便于集成化的优点,实现了金属- 硅共晶体,为商业化发展提供了可能。 (3)商业化集成加工阶段(1970 - 1980 年):在硅杯扩散理论的基础上应用了硅的各向异性的腐蚀技术,扩散硅传感器其加工工艺以硅的各项异性腐蚀技术为主,

MEMS技术的最新发展和MEMS传感器

作业2:叙述MEMS技术的最新发展并介绍几种MEMS传感器 MEMS(Micro-Electro-Mechanical Systems)是微机电系统的缩写。MEMS是美国的叫法,在日本被称为微机械,在欧洲被称为微系统,MEMS就是在一个硅基板上集成了机械和电子元器件的微小机构。在代工厂中,通过对电子部分使用半导体工艺和对机械部分使用微机械工艺将其或者直接蚀刻到一片晶圆中,或者增加新的结构层来制作MEMS产品。作为纳米科技的一个分支,MEMS被称为电子产品设计中的“明星”。目前MEMS加工技术又被广泛应用于微流控芯片与合成生物学等领域,从而进行生物化学等实验室技术流程的芯片集成化。 MEMS主要包括微型机构、微型传感器、微型执行器和相应的处理电路等几部分,它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。 MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的应用前景。MEMS技术正发展成为一个巨大的产业,就象近20年来微电子产业和计算机产业给人类带来的巨大变化一样,MEMS也正在孕育一场深刻的技术变革并对人类社会产生新一轮的影响。目前MEMS市场的主导产品为压力传感器、加速度计、微陀螺仪、墨水喷咀和硬盘驱动头等。大多数工业观察家预测,未来5年MEMS器件的销售额将呈迅速增长之势,年平均增加率约为18%,因此对对机械电子工程、精密机械及仪器、半导体物理等学科的发展提供了极好的机遇和严峻的挑战。 MEMS第一轮商业化浪潮始于20世纪70年代末80年代初,当时用大型蚀刻硅片结构和背蚀刻膜片制作压力传感器。由于薄硅片振动膜在压力下变形,会影响其表面的压敏电阻走线,这种变化可以把压力转换成电信号。后来的电路则包括电容感应移动质量加速计,用于触发汽车安全气囊和定位陀螺仪。 第二轮商业化出现于20世纪90年代,主要围绕着PC和信息技术的兴起。TI公司根据静电驱动斜微镜阵列推出了投影仪,而热式喷墨打印头现在仍然大行其道。 第三轮商业化可以说出现于世纪之交,微光学器件通过全光开关及相关器件而成为光纤通讯的补充。尽管该市场现在萧条,但微光学器件从长期看来将是MEMS一个增长强劲的领域。 目前MEMS产业呈现的新趋势是产品应用的扩展,其开始向工业、医疗、测试仪器等新领域扩张。推动第四轮商业化的其它应用包括一些面向射频无源元件、在硅片上制作的音频、生物和神经元探针,以及所谓的'片上实验室'生化药品开发系统和微型药品输送系统的静态和移动器件。 MEMS传感器已经存在几十年了,并成功的渗透到一些大规模应用的市场,如医疗压力传感器和安全汽囊加速度计等。尽管取得了这些成功,但MEMS传感器很大程度上还是局限于这些零散的应用。受到汽车电子和消费类电子市场的驱动,这种状况在下一个十年中有望得到改变。 MEMS传感器正在当今的两大热门产品中起到不可或缺的作用。使用测量物理运动从而提供运动感知能力的MEMS加速度计,任天堂公司的Wii无线游戏机允许使用者通过运动和点击互相沟通和在屏幕上处理一些需求,其原理是将运动(例如挥舞胳膊模仿网球球拍的运动)转化为屏幕上的游戏行为。在2006年5

MEMS传感器在汽车安全系统中的应用

为了监测车辆翻滚的这种状态,把陀螺仪输出的传感器信号与低g值加速度传感器的输出信号结合起来是至关重要的。通过处理两个传感器给出的信号,系统的算法确定车的Z轴以及垂直线之间的夹角,以及每一时刻车辆的角速度ωx。因此,车辆翻滚感测算法及时确定准确的时间点和位置,从而爆开特定的气囊或主动收紧绑在乘员身上的安全带,起到保护作用。 此外,电子稳定程序系统也是MEMS传感器的一个重要应用领域,它能够在所有的驾驶情况下提高车辆的行驶稳定性。通过传感器测量车辆的偏航率,并把它与其它参数类似转向角和速度一一进行比较,可以检测过度转向或转向不够这样的行驶状况。如果行驶过程中需要ESP发挥作用,那么,该系统会自动地分别制动车轮。因此,传感器提供的信号是ESP算法执行的根本基础,是提高行车稳定性的关键。 MEMS偏航传感器一般由容性硅振荡器构成,其周围是若干悬浮的网状材料。当受到垂直于振动轴的外部旋转运动的作用时,作用力使振动面出现偏离,从而导致电容的变化让驾驶员做出准确的操作。 目前,汽车安全系统应用中的偏航传感器的发展趋势是具有高偏移量稳定性、振动鲁棒性以及全数字信号处理功能。这使之比模拟传感器更为耐用。永久性的主动内部故障检测功能,使故障识别以及主动自测功能成为可能,因此,有助于增强可靠性。此外,根据整车系统设计的需要,传感器串由于采用了灵活的结构,能够在不同的车辆方向上监测偏航率以及加速度,因此,适合于高度动态以及高度精密的系统,如电子稳定程序、翻滚减轻系统以及电子主动操纵系统等等。偏航传感器与加速度传感器的结合构成一体化的传感器平台也是汽车传感器一大发展趋势。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/4114106138.html,/

剖析MEMS传感器的三大应用领域

剖析MEMS传感器的三大应用领域 来源:互联网 [导读] MEMS传感器是采用微电子和微机械加工技术制造出来的新型传感器。与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。同时,在微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。 关键词:可穿戴设备MEMS汽车电子 随着可穿戴智能设备的发展,特别是医疗可穿戴智能设备,主要依靠MEMS传感器,从而检测到穿戴者的身体各项信息。那么什么是MEMS传感器呢? MEMS即微机电系统(Microelectro Mechanical Systems),是MEMS传感器在微电子技术基础上发展起来的多学科交叉的前沿研究领域。经过四十多年的发展,已成为世界瞩目的重大科技领域之一。它涉及电子、机械、材料、物理学、化学、生物学、医学等多种学科与技术,具有广阔的应用前景。 截止到2010年,全世界有大约600余家单位从事MEMS的研制和生产工作,已研制出包括微型压力传感器、加速度传感器、微喷墨打印头、数字微镜显示器在内的几百种产品,其中MEMS传感器占相当大的比例。 MEMS传感器是采用微电子和微机械加工技术制造出来的新型传感器。与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。同时,在微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。 它的主要应用有一下三个方面: 1.应用于医疗 MEMS传感器应用于无创胎心检测,检测胎儿心率是一项技术性很强的工作,由于胎儿心率很快,在每分钟l20~160次之间,用传统的听诊器甚至只有放大作用的超声多普勒仪,用人工计数很难测量准确。而具有数字显示功能的超声多普勒胎心监护仪,价格昂贵,仅为少数大医院使用,在中、小型医院及广大的农村地区无法普及。此外,超声振动波作用于胎儿,会对胎儿产生很大的不利作用尽管检测剂量很低,也属于有损探测范畴,不适于经常性、重复性的检查及家庭使用。 基于VTI公司的MEMS加速度传感器,提出一种无创胎心检测方法,研制出一种简单易学、直观准确的介于胎心听诊器和多普勒胎儿监护仪之间的临床诊断和孕妇自检的医疗辅助仪器。 通过加速度传感器将胎儿心率转换成模拟电压信号,经前置放大用的仪器放大器实现差值放大。然后进行滤波等一系列中间信号处理,用A/D转换器将模拟电压信号转换成数字信号。通过光隔离器件输入到单片机进行分析处理,最后输出处理结果。

MEMS传感器的发展说课讲解

MEM传感器的现状及应用0引言 MEMS (微电子机械系统)传感器是利用集成电路技术工艺和微机械加工方法将基于各种物理效应的机电敏感元器件和处理电路集成在一个芯片上的传感器。20世纪60年代霍尼韦尔研究中心和贝尔实验室研制出首个硅隔膜压力传感器和应变计开创了MEMS技术的先河。此后,MEMS技术的快速发展使得MEMS 传感器受到各发达国家的广泛关注,与此同时,美国、俄国、日本等世界大国将MEMS传感器技术作为战略性的研究领域之一,纷纷制定相关的计划并投入巨资进行专项研究。 MEMS传感器具有体积小、质量轻、功耗低、灵敏度咼、可靠性咼、易于集成以及耐恶劣工作环境等优势,从而促进了传感器向微型化、智能化、多功能化和网络化的方向发展。步入21世纪以后,MEMS传感器正逐步占据传感器市场,并逐步取代传统机械传感器的主导地位,在消费电子产品、汽车工业、航空航天、机械、化工及医药等各领域备受青睐。 1 MEMS专感器的分类及原理 MEMS传感器种类繁多,按照测量性质可以分为物理MEMS传感器、化学MEMS传感器、生物MEMS传感器。按照被测的量又可分为加速度、角速度、压力、位移、流量、电量、磁场、红外、温度、气体成分、湿度、pH值、离子浓度、生物浓度及触觉等类型的传感器。目前,MEMS压力传感器、MEMS加 速度计、MEMS陀螺仪等已在太空卫星、运载火箭,航空航天设备、飞机、各种车辆、生物医学及消费电子产品等领域中得到了广泛的应用。 MEMS传感器主要由微型机光电敏感器和微型信号处理器组成。前者功能与传统传感器相同,主要区别在于用MEMS工艺实现传统传感器的机光电元器

件的同时对敏感元件输出的数据进行各种处理,以补偿和校正敏感元件特性不理想和影响量引入的失真,进而恢复真实的被测量。 待测量 / : 基片/ :——------- -------------- 图1.1 MEMS传感器原理图 MEMS传感器主要用于控制系统。利用MEMS技术工艺将MEMS传感器、MEMS执行器和MEMS控制处理器都集中在一个芯片上,则所构成的系统称为MEMS芯片控制系统。微控制处理器的主要功能包括A/D和D/A转换,数据处理和执行控制算法;微执行器将电信号转换成非电量,使被控对象产生平动、转动、 声、光、热等动作。 2 MEMS专感器的典型应用 2.1 MEMS压力传感器 MEMS压力传感器一般采用压阻力敏原理,即被测压力作用于敏感元件引起电阻变化,利用恒流源或惠斯顿电桥将电阻变化转化成电压,是目前应用最为 广泛的传感器之一,其性能由测量范围、测量精度、非线性和工作温度决定。这种传感器以单晶硅作材料,并采用MEMS技术在材料中间制成力敏膜片,然后在膜片上扩散杂质形成四只应变电阻,再以惠斯顿电桥的方式将应变电阻连接成电路,来获得高灵敏度。从信号检测方式来划分,MEMS压力传感器可分为压 阻式、电容式和谐振式等; 2.1.1 MEMS压力传感器在汽车上的应用 MEMS传感器是在汽车上应用最多的微机电传感器。汽车上MEMS压力传感器可用于测量气囊贮气压力、燃油压力、发动机机油压力、进气管道压力、空气过

MEMS传感器及其应用

MEMS传感器及其应用 科目:先进制造技术教师:周忆(教授)姓名:张雷学号: 专业:机械设计及理论类别:学术 上课时间:2011年11月至2011 年1月 考生成绩: 阅卷评语: 阅卷教师(签名)

MEMS传感器及其应用 张雷 (机械传动实验室) 摘要:和传统的传感器相比,微型传感器具有许多新特性,它们能够弥补传统传感器的不足,具有广泛的应用前景,越来越受到重视。文中简单介绍了一些微型传感器件的结构和原理及其应用情况。 关键词: MEM压力传感器;MEM加速度传感器;应用

1 引言 微机电系统(Microelectro Mechanical Systems,MEMS)是在微电子技术基础上发展起来的多学科交叉的前沿研究领域。经过几十年的发展,已成为世界瞩目的重大科技领域之一。它涉及电子、机械、材料、物理学、化学、生物学、医学等多种学科与技术,具有广阔的应用前景。目前,全世界有大约600余家单位从事MEMS的研制和生产工作,已研制出包括微型压力传感器、加速度传感器、微喷墨打印头、数字微镜显示器在内的几百种产品,其中微传感器占相当大的比例。微传感器是采用微电子和微机械加工技术制造出来的新型传感器。与传统的传感器相比,它具有体积小、重量轻、成本低、功耗低、可靠性高、适于批量化生产、易于集成和实现智能化的特点。同时,在微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。本文概述国内外目前已实现的微机械传感器特别是微机械谐振式传感器的类型、工作原理、性能和发展方向。 2 MEMS传感器的特点及分类 2.1MEMS传感器特点 MEMS传感器是利用集成电路技术工艺和微机械加工方法将基于各种物理效应的 机电敏感元器件和处理电路集成在一个芯片上的传感器。MEMS是微电子机械系统的缩写,一般简称微机电。如图1所示,主要由微型机光电敏感器和微型信号处理器组成。前者功能与传统传感器相同,区别是用MEMS工艺实现传统传感器的机光电元器件。后者功能是对敏感元件输出的数据进行各种处理,以补偿和校正敏感元件特性不理想和影量引入的失真,进而恢复真实的被测量。 图1 MEMS传感器原理图

相关文档
最新文档