含参不等式的解法(教师版)

含参不等式的解法(教师版)
含参不等式的解法(教师版)

不等式(3)----含参不等式的解法

当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。解参数不等式一直是高考所考查的重点内容。

(一)几类常见的含参数不等式

一、含参数的一元二次不等式的解法:

例1:解关于的x 不等式2(1)410()m x x m R +-+≤∈

分析:当m+1=0时,它是一个关于x 的一元一次不等式;当m+1≠1时,还需对m+1>0及m+1<0来分类讨论,并结合判别式及图象的开口方向进行分类讨论:⑴当m<-1时,⊿=4(3-m )>0,图象开口向下,与x 轴有两个不同交点,不等式的解集取两边。⑵当-10, 图象开口向上,与x 轴有两个不同交点,不等式的解集取中间。⑶当m=3时,⊿=4(3-m )=0,图象开口向上,与x 轴只有一个公共点,不等式的解为方程24410x x -+=的根。⑷当m>3时,⊿=4(3-m )<0,图象开口向上全部在x 轴的上方,不等式的解集为?。 解:11,|;4m x x ?

?=-≥????

当时原不等式的解集为 ????

??+-+≤≤+--<<-?

?????+-+≤+--≥-

34014)1(12m m x m m x m m m x m m x x m m x x m m 原不等式的解集为时当或时,原不等式的解集为则当-(=的判别式时,当 当m=3时,原不等式的解集为??????=

21|x x ; 当m>3时, 原不等式的解集为?。

小结:⑴解含参数的一元二次不等式可先分解因式再讨论求解,若不易分解,也可对判别式分类讨论。⑵利用函数图象必须明确:①图象开口方向,②判别式确定解的存在范围,③两根大小。⑶二次项的取值(如取0、取正值、取负值)对不等式实际解的影响。

牛刀小试:解关于x 的不等式)0(,04)1(22>>++-a x a ax

思路点拨:先将左边分解因式,找出两根,然后就两根的大小关系写出解集。具体解答请同学们自己完成。

二、含参数的分式不等式的解法:

例2:解关于x 的不等式02

12>---x x ax 分析:解此分式不等式先要等价转化为整式不等式,再对ax -1中的a 进行分类讨论求解,还需用到序轴标根法。

解:原不等式等价于0)1)(2)(1(>+--x x ax

当a =0时,原不等式等价于0)1)(2(<+-x x

解得21<<-x ,此时原不等式得解集为{x|21<<-x };

当a >0时, 原不等式等价于0)1)(2)(1(>+--x x a

x , 则:当,2

1时=a 原不等式的解集为{}21|≠->x x x 且; 当0<,21时

?????<<->211|x a x x 或; 当,21时>a 原不等式的解集为?

?????><<-211|x a x x 或; 当a <0时, 原不等式等价于0)1)(2)(1(<+--x x a

x , 则当1-=a 时, 原不等式的解集为{}12|-≠

当01<<-a 时, 原不等式的解集为?

?????<<-<211|x a x x 或; 当1-

?????<<-<211|x a x x 或; 小结:⑴本题在分类讨论中容易忽略a =0的情况以及对a

1,-1和2的大小进行比较再结合系轴标根法写出各种情况下的解集。⑵解含参数不等式时,一要考虑参数总的取值范围,二要用同一标准对参数进行划分,做到不重不漏,三要使划分后的不等式的解集的表达式是确定的。⑶对任何分式不等式都是通过移项、通分等一系列手段,把不等号一边化为0,再转化为乘积不等式来解决。

牛刀小试:解关于x 的不等式)1(,12

)1(≠>--a x x a 思路点拨:将此不等式转化为整式不等式后需对参数a 分两级讨论:先按a >1和a <1分为两类,再在a <1的情况下,又要按两根1

2--a a 与2的大小关系分为100,0<<=

三、含参数的绝对值不等式的解法:

例3:解关于x 的不等式)0,0(,|2|>>≥-b a bx ax

分析:解绝对值不等式的思路是去掉绝对值符号,本题要用到同解变形)()()()()(|)(|x g x f x g x f x g x f ≥-≤?≥或,首先将原不等式化为不含绝对值符号的不等式,然后就a 、b 两个参数间的大小关系分类讨论求解。

解:2)(2)(22|2|≥-≤+?≥--≤-?≥-x b a x b a bx ax bx ax bx ax 或或

当0>>b a 时,2)(2)(≥-≤+x b a x b a 或b

a x

b a x -≥+≤

?22或 此时原不等式的解集为??????-≥+≤b a x b a x x 22|或; 当0>=b a 时,由无解而得2)(,22)(≥-+≤≤+x b a b

a x x

b a , 此时原不等式的解集为????

??+≤b a x x 2|;

当b a <<0时,2)(2)(≥-≤+x b a x b a 或b

a x

b a x b a x +≤?-≤+≤

?222或 此时此时原不等式的解集为??????+≤b a x x 2|; 综上所述,当0>>b a 时,原不等式的解集为????

??-≥+≤b a x b a x x 22|或;当0>≥a b 时,原不等式的解集为????

??+≤b a x x 2|。 小结:去掉绝对值符号的方法有①定义法:)

0()0({||≥<-=a a a a a ②平方法:?≤|)(||)(|x g x f )()(22x g x f ≤③利用同解变形:);0(,||);0(,||>>-><<-?

);()()()(|)(|x g x f x g x g x f ≤≤-?≤)()()()()(|)(|x g x f x g x f x g x f ≥-≤?≥或;

(二)解含参数不等式的常用方法

一、通过讨论解带参数不等式

例1:2(1)0x x a a --->

例2:关于x 的不等式01)1(2<-+-+a x a ax 对于R x ∈恒成立,求a 的取值范围。

二、已知解集的参数不等式

例3:已知集合{}2540A x x x =-+|≤,

{}2|220B x x ax a =-++≤,若B A ?,求实数a 的取值范围.

三、使用变量分离方法解带参数不等式 例4:若不等式210x ax ≥++对于一切1

(0,)2

x ∈成立,则a 的取值范围. 例5:设()()()??

???

?+-+++=n a n n x f x x x 121lg ,其中a 是实数,n 是任意给定的自然数且n ≥2,若()x f 当(]1,∞-∈x 时有意义, 求a 的取值范围。 例6: 已知定义在R 上函数f(x)为奇函数,且在[)+∞,0上是增函数,对于任意R x ∈求实

数m 范围,使()()0cos 2432cos >-+-θθm m f f 恒成立。

思考:对于(0,3)上的一切实数x,不等式()122-<-x m x 恒成立,求实数m 的取值范

围。如何求解?

分离参数法适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。

四、主参换位法解带参数不等式

某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使能容易分离出参数与变量,但函数的最值却难以求出时,可考虑变换思维角度。即把变元与参数换个位置,再结合其它知识,往往会取得出奇制胜的效果。

一般情况下,如果给出参数的范围,则可以把参数看作主变量,进行研究。

例7:若对于任意a (]1,1-∈,函数()()a x a x x f 2442

-+-+=的值恒大于0,求x 的

取值范围。

分析:此题若把它看成x 的二次函数,由于a, x 都要变,则函数的最小值很难求出,思路

受阻。若视a 为主元,则给解题带来转机。 例8:已知19≤≤-a ,关于x 的不等式: 0452<+-x ax 恒成立,求x 的范围。

例9: 若对一切2≤p ,不等式()p x x p x +>++222

2log 21log log 恒成立,求实数x 的取值范围。 例 10: 对于(0,3)上的一切实数x,不等式()122-<-x m x 恒成立,求实数m 的取值范围。

分析: 一般的思路是求x 的表达式,利用条件求m 的取值范围。但求x 的表达式时,两边必须除以有

关m 的式子,涉及对m 讨论,显得麻烦。

五、数形结合法

例11:若不等式0log 32<-x x a 在??

? ??∈31,0x 内恒成立,求实数a 的取值范围。

六、构建函数、猜想、归纳、证明等其他方法

含参不等式(有解、无解问题)(人教版)含答案

含参不等式(有解、无解问题)(人教版)一、单选题(共10道,每道10分) 1.若不等式组的解集为,则m的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组) 2.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:含参不等式(组) 3.若不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 4.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:含参不等式(组) 5.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:含参不等式(组)

6.关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 7.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:含参不等式(组) 8.已知关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组)

9.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 10.若关于x的不等式组无解,则m的取值范围是( ) A. B. C. D. 答案:B 解题思路:

含参不等式

含参不等式知识互联网 题型一:不等式(组)的基本解法

x ( x ( b ( 无解(大大小小无解了) 典题精练 【例1】 ⑴解不等式 31 423 x x x +--+≤. ⑵解不等式组12(1)532122 x x x --?? ?-<+??≤,并在数轴上表示出解集 ⑶求不等式组2(2)43 251x x x x --??--? ≤<的整数解 ⑷解不等式组32215x x -<-<

⑸解不等式组253473 x x -?? (2012年朝阳一模) 题型二:含参数的不等式(组) 思路导航 对于含参不等式,未知数的系数含有字母需要分类讨论:如不等式ax b <, 例题精讲 【引例】⑴关于x 的一次不等式组x a x b >???? ⑵13kx +> ⑶132kx x +>- ⑷36mx nx +<--

⑸() 212m x +< ⑹()25n x --< 【例3】 ⑴不等式 ()1 23 x m m ->-的解集与2x >的解集相同,则m 的值是 . ⑵关于x 的不等式2x a -≤-1的解集如图所示,则a 的值为 . ⑶ 关于x 的不等式5ax >的解集为5 2 x <-,则参数a 的值 . ⑷ ①若不等式组3 x x a >??>? 的解集是x a >,则a 的取值范围是 . ②若不等式组3 x x a >??? ≥的解集是x a ≥,则a 的取值范围是 . A .3a ≤ B .3a = C .3a > D .3a ≥ (北京二中期中考试) ⑸已知关于x 的不等式组2 32x a x a +??-?≥≤无解,则a 的取值范围是 . ⑹已知关于x 的不等式组>0 53x a x -??-? ≥无解,则a 的取值范围是 . 【例4】 ⑴ 已知关于x 的不等式组0 521≥x a x -??->? 只有四个整数解,则实数a 的取值范围是 . ⑵ 如果关于x 的不等式50x m -≤的正整数解只有4个,那么m 的取值范围是( ) A .2025m <≤ B .2025m <≤ C .25m < D .20m ≥ (北京五中期中考试)

含参数的一元一次不等式组的解集

《含参数的一元一次不等式组的解集》教学设计 万福中心学校余达恒 教材分析:本章内容是苏科版八年级数学(下)第七章,是在学习了《一元一次方程》和《一次函数》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》,《二元一次不等式》打下基础。上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用数轴直观的得到一元一次不等式组的解集,它是解决本节课内容《含参数的一元一次不等式组的解集》的基础和关键,通过本节课知识的学习,学生能对初中数学中的分类讨论、数形结合的思想方法有进一步的认识,养成独立思考的习惯,也能加强与同学的合作交流意识与创新意识,为今后生活和学习中更好运用数学作准备。 教学目标: (1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。 (2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。 (3)德育目标:加强同学之间的合作交流与探讨,体验数学发现带来的乐趣。 学习重点: (1)加深对一元一次不等式组的概念与解集的理解。 (2)通过含参数不等式的分析与讨论,让学生理解掌握分类讨论和数形结合的数学思想。学习难点: (1)一元一次不等式组中字母参数的讨论。 (2)运用数轴分析不等式组中参数的范围。 教学难教学难点突破办法: (1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。(2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。

含参不等式的专题练习教学设计 .doc

例2 解不等式135 x <-< 课后练习: 一.选择题(共2小题) 1.(2015春?石城县月考)已知m为整数,则解集可以为﹣1<x<1的不等式组是() A .B . C . D . 2.(2002?徐州)已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p 的取值范围是() A .p>﹣1 B . p<1 C . p<﹣1 D . p>1 二.填空题(共7小题) 3.(2012?谷城县校级模拟)若不等式组恰有两个整数解.则实数a的取值范围 是. 4.(2010?江津区)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1 <<3,则x+y的值是. 5.若不等式组的解集是﹣1<x<1,则(a+b)2009=. 6.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是. 7.不等式组的解是0<x<2,那么a+b的值等于. 8.已知不等式组的解集1≤x<2,则a=. 9.若关于x的不等式的解集为x<2,则k的取值范围是. 三.解答题(共4小题)

10.(1)解方程组: (2)求不等式组的整数解. 11.(2013?乐山)已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值. 12.(2011?铜仁地区)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元. (1)篮球和排球的单价分别是多少元? (2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案? 13.(2011?邵阳)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人. 规则二:合唱队的队员中,九年级学生占合唱团总人数的,八年级学生占合唱团总人数的,余下的为七年 级学生. 请求出该合唱团中七年级学生的人数.

含参不等式解法举例

含参不等式专题(淮阳中学) 编写:孙宜俊 当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。解参数不等式一直是高考所考查的重点内容,也是同学们在学习中经常遇到但又难以顺利解决的问题。下面举例说明,以供同学们学习。 解含参的一元二次方程的解法,在具体问题里面,按分类的需要有讨论如下四种情况: (1) 二次项的系数;(2)判别式;(3)不等号方向(4)根的大小。 一、含参数的一元二次不等式的解法: 1.二次项系数为常数(能分解因式先分解因式,不能得先考虑0≥?) 例1、解关于x 的不等式0)1(2>++-a x a x 。 解:0)1)((2>--x a x 1,0)1)((==?=--x a x x a x 令 为方程的两个根 (因为a 与1的大小关系不知,所以要分类讨论) (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 综上所述: (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 变题1、解不等式0)1(2>++-a x a x ; 2、解不等式0)(322>++-a x a a x 。

含参不等式的解法

含参数的一元二次不等式的解法 含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。 一. 二次项系数为常数 例1、解关于x 的不等式:0)1(2 >--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?) (1)当1<-m 即m<-1时,解得:x<1或x>-m (2)当1=-m 即m=-1时,不等式化为:0122 >+-x x ∴x ≠1 (3)当1>-m 即m>-1时,解得:x<-m 或x>1 综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11 (){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当 例2:解关于x 的不等式:.0)2(2 >+-+a x a x (不能因式分解) 解:()a a 422 --=? (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212 +<<-<--=? ()()3 2432404222 +=-==--=? a a a a 或时当

(i )13324-≠ -=x a 时,解得:当 (ii )13-324-≠+=x a 时,解得: 当 ()()时 或即当32432404232 +>-<>--=? a a a a 两根为()2 42)2(2 1 a a a x --+ -= ,()2 42)2(2 2 a a a x --- -= . ()()2 42)2(2 42)2(2 2 a a a x a a a x --+ -> --- -< 或此时解得: 综上,不等式的解集为: (1)当3 2 4324+<<-a 时,解 R ; (2)当324-=a 时,解集为(13,-∞-)?( +∞ -,13); (3)当324+=a 时,解集为(13,--∞-)?(+∞ -- ,13); (4)当3 24-a 时, 解集为(2 48)2(, 2 +---∞-a a a )?( +∞ +-+ -,2 4 8)2(2 a a a ); 二.二次项系数含参数 例3、解关于x 的不等式:.01)1(2 <++-x a ax 解:若0 =a ,原不等式.101>?<+-?x x 若0--?或.1>x 若0 >a ,原不等式.0)1)(1(<-- ? x a x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ ; (2)当1>a 时,式)(*11<

(完整版)含参数一元一次不等式

含参数一元一次不等式(组)的解法 1、若关于x 的不等式2)1(≥-x a ,可化为a x -≤12,则a 的取值范围是多少? 2 、关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是? 3、关于x 的方程x+2m-3=3x+7的解为不大于2的非负数,则m 的整数值是多少? 4、关于x 的不等式2x -a ≤-1的解集如图所示,则a 的取值是多少? 5、己知不等式 )2(211)5(21+≥--ax x 的解集是2 1≥x ,试求a 的值?

6、关于x 的不等式2x -a ≤0的正整数解恰好是1、2、3、4,则m 的取值是多少? 7、已知关于x ,y 的方程组?? ?-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围. 8、已知a 是自然数,关于x 的不等式组?? ?>-≥-02,43x a x 的解集是x >2,求a 的值. 对应练习1、不等式组???+>+<+1 ,159m x x x 的解集是x >2,则m 的取值范围是 . 对应练习2、若不等式组? ??>≤-≥-1 23,0x a x 的整数解共有5个,求a 的取值范围.

对应练习:若关于x 的不等式组???????+<+->+a x x x x 3 22,3215只有4个整数解,求a 的取值范围. 10、k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10? 二、 应用题 1.爆破施工时,导火索燃烧的速度是0.8cm/s ,人跑开的速度是5m/s ,为了使点火的战士在施工时能跑到100m 以外的安全地区,导火索至少需要多长? 2、某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?

教案高中含参不等式的恒成立问题整理版.doc

高中数学不等式的恒成立问题 一、用一元二次方程根的判别式 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。 基本结论总结 例1 对于x ∈R ,不等式恒成立,求实数m 的取值范围。 例2:已知不等式04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,则只须满足: (1)???<-+-<-0)2(16)2(4022 a a a 或 (2)?? ? ??<-=-=-0 40)2(20 2a a 解(1)得?? ?<<-<2 22 a a ,解(2)a =2 ∴参数a 的取值范围是-2<a ≤2. 练习 1. 已知函数])1(lg[2 2 a x a x y +-+=的定义域为R ,求实数a 的取值范围。 2.若对于x ∈R ,不等式恒成立,求实数m 的取值范围。 3.若不等式的解集是R ,求m 的范围。 4.x 取一切实数时,使3 47 2+++kx kx kx 恒有意义,求实数k 的取值范围.

例3.设22)(2 +-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。 关键点拨:为了使 在 恒成立,构造一个新函数 是解题的关键,再利用二次 函数的图象性质进行分类讨论,使问题得到圆满解决。若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。 解:m mx x x F -+-=22)(2 ,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=?m m m 即时,0)(>x F 显然成立; 当0≥?时,如图,0)(≥x F 恒成立的充要条件为: ??? ? ??? -≤--≥-≥?1 220)1(0m F 解得23-≤≤-m 。综上可得实数m 的取值范围为)1,3[-。 例4 。已知1ax x )x (f 2+-=,求使不等式0)x (f <对任意]2,1[x ∈恒成立的a 的取值范围。 解法1:数形结合 结合函数)x (f 的草图可知]2,1[x ,0)x (f ∈<时恒成立? 25a 0 a 25)2(f 0a 2)1(f >?? ?<-=<-=得。所以a 的取值范围是),25 (+∞。 解法2:转化为最值研究 4a 1)2a x ()x (f 22- +-= 1. 若]2,1[)x (f ,3a 232a 在时即≤≤上的最大值,25a ,0a 25)2(f )x (f max ><-==得3a 25 ≤<所以。 2. 若0a 2)1(f )x (f ]2,1[)x (f ,3a 2 3 2a max <-==>>上的最大值在时即,得2a >,所以3a >。 综上:a 的取值范围是),2 5 (+∞。 注:1. 此处是对参a 进行分类讨论,每一类中求得的a 的范围均合题意,故对每一类中所求得的a 的范围求并集。 2. I x ,m )x (f ∈<恒成立)m (m )x (f max 为常数?∈> 解法3:分离参数 ]2,1[x ,x 1x a ]2,1[x ,01ax x 2∈+ >?∈<+-。设x 1 x )x (g +=, 注:1. 运用此法最终仍归结为求函数)x (g 的最值,但由于将参数a 与变量x 分离,因此在求最值时避免了分类讨论,使问题相对简化。 2. 本题若将“]2,1[x ∈”改为“)2,1(x ∈”可类似上述三种方法完成。 仿解法1:?∈<)2,1(x ,0)x (f 25a 0 )2(f 0)1(f ≥?? ?≤≤得即),25 [:a +∞的范围是 读者可仿解法2,解法3类似完成,但应注意等号问题,即此处2 5 a = 也合题。 O x y x -1

不等式解法举例

不等式解法举例 ?教学重点:不等式求解. ?教学难点:将已知不等式等价转化成合理变形式子. ?教学方法:创造教学法 为使问题得到解决,关键在于合理地将已知不等式变形,变形的过程也是一个创造的过程,只有这一过程完成好,本节课的难点也就突破. ?教学过程: 一、课题导入 1、由一元一次不等式、一元二次不等式、和简单的绝对值不等式式子,导出其不等式 解法. 2、一元二次不等式的解法. 3、数形结合思想运用. 二、新课讲授 例1:解不等式|x2-5x+5|<1 分析:不等式|x|0)的解集是{x|-a-1 解这个不等式组,其解集就是原不等式的解集. 解:原不等式可化为 -1< x2-5x+5<1 即 x2-5x+5< 1 ①

x 2-5x +5>-1 ② 解不等式①由 x 2-5x +5< 1 得 (x -1)(x -4)< 0 解集为{x |1- 1 得 (x -2)(x -3)> 0 解集为{x |x < 2或x >3}. 原不等式的解集是不等式①和不等式②的解集的交集,即 {x|13}={x|10 x2-2x-3<0 或 x2-3x+2<0 x2-2x-3>0 因此,原不等式的解集就是上面两个不等式组的解集的并集. 解:这个不等式的解集是下面个不等组(Ⅰ)、(Ⅱ)的解集的并集: x 2-3x +2>0 ① x 2-2x -3<0 ② x 2-3x +2<0 ③ x 2-2x -3>0 ④ 先解不等式(Ⅰ). 解不等式① x 2-3x +2>0, 得解集 {x |x <1,或x >2} 解不等式② x 2-2x -3<0, 得解集 {x |x <1,或x >2} 因此,不等式组(Ⅰ)的解集是 {x |x <1,或x >2}∩{x |x <1,或x >2}. 不等式解集在数轴上表示如下: 再解不等式(Ⅱ). x 2-3x +2 x 2-2x -3 (Ⅰ) (Ⅱ)

含参不等式练习题及解法

众所周知,不等式解法是不等式这一板块的高考备考重点,其中,含有参数的不等式的问题,是主考命题的热点,又是复习提高的难点。(1)解不等式,寻求新不等式的解集; (2)已知不等式的解集(或这一不等式的解集与相关不等式解集之间的联系),寻求新含参数的值或取值范围。 (3)注意到上述题型(2)的难度与复杂性,本专题对这一类含参不等式问题的解题策略作以探索与总结。 一、立足于“直面求解” 解不等式的过程是一系列等价转化的过程,对于有关不等式的“解”的问题,直面不等式求解,有时是问题解决的需要,有时是解决问题的基础或手段。所给问题需要在获得不等式的解集或最简形成后,方可延伸或突破时,则要果断地从求 解不等式切入。例1.设关于x的不等式 (1)解此不等式;(2)若不等式解集为(3,+∞),求m的取值范围; (3)若x=3属于不等式的解集,求m的取值范围 分析:着眼于不等式的等价变形,注意到这里m2>0,m2同乘以不等式两边,则不等式转化为ax>b型,于是可以x的系数a的取值为主线进行讨论。 解:(1)由题设,原不等式m(x+2)>m2+(x-3)(m R,m≠0) (m-1)x>m2-2m-3(1)∴当m>1时,由(1)解得 当m=1时,由(1)得x R;当m<1且m≠0时,由(1)解得 ∴当m>1时,原不等式的解集为当m=1时,原不等式的解集为R 当m<1且m≠0时,原不等式的解集为 (2)若不等式的解集为(3,+∞),则由(1)知应得 ∴此时m的取值范围为{5} (3)注意到x=3 为不等式的解,将x=3代入(1)得:3(m-1)>m2-2m-3m2-5m<0 00以及,m的取值或取值范围由此而产生。 例2.已知关于x的不等式组的整数解的集合为{-2},求实数R的取值范围。 分析:由题设知,这一不等式组的解集只含有一个整数-2,那么当x= -2属于这一成员不等式时,该不等式的解集是何种情形,这需要解出不等式后方可作出结论,故考虑以求解这一成员不等式切入并延伸。 解:不等式x2-x-2>0 (x+1)(x-2)>0x<-1或x>2 ∴不等式x2-x-2>0的解集A=(-∞,-1)∪(2,+ ∞),显然-2∈A 不等式2x2+(2R+5)x+5R<0 (x+R)(2x+5)<0① 设这一不等式的解集为B,则由-2B,得:(-2+R)(-4+5)<0R<2② 注意到(x+R)(2x+5)=0的根为x1= -R,, ∴(1)当时, 由①得,即此时-2 B (2)当时,由①得

第40讲 含参数不等式的解法

第40讲 含参数的不等式 【考点解读】 解含参数的不等式的基本途径——分类讨论思想的应用;(应注意寻找讨论点,以讨论点划分区间进行讨论求解.能避免讨论的应设法避免讨论)。 【知识扫描】 含有参数的不等式可渗透到各类不等式中去,在解不等式时随时可见含参数的不等式.而这类含参数的不等式是我们教学和高考中的一个重点和难点.解含参数的不等式往往需要分类讨论求解,寻找讨论点(常见的如零点,等值点等),正确划分区间,是分类讨论解决这类问题的关键.在分类讨论过程中要做到不重,不漏. 【考计点拔】 牛刀小试: 1.设0(2a )a ③(2 a )a >a a ④a a >2a a 其中不成立的有( ) A.0个 B.1个 C.2个 D.3个 【答案】B 2.已知方程mx 2-2(m+2)x+(m+5)=0有两个不同的正根,则m 的取值范围是( ) A.m<4 B.021} C.{x |x>2} D.{x |x<2} 【答案】A 4.若ax 2+bx+c>0的解集为{x |x<-2或x>4},那么对于函数f(x)=ax 2+bx+c 会有( ) A.f(5)???-f(-a),则实数a 的取值范围是 (A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞) (C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1) 【答案】C

含参不等式的解法复习课教案

含参不等式的解法复习课教案 授课内容:含参不等式的解法复习课 教学目标 1.通过复习使学生进一步掌握一些简单的含有参不等式的基本解法;并让学生了解使用分类讨论方法的起因. 2.培养学生分析、概括能力及运算能力. 3.提高学生思维的严谨性和深刻性. 教学重点与难点 教学重点:含有字母系数不等式的求解基本模式的形成. 教学难点:分类讨论方法的正确使用. 教学设想:先通过一组基础题的讨论练习,使学生从中体会含参不等式的解法,树立分类讨论的意识,然后再通过典型例题的分析讲解,使学生进一步掌握解含参不等式的基本解法,明确分类讨论的依据和标准,最后再通过练习加以强化。 教学过程: 一、基础题组练习 解下列关于x的不等式 1. 2.

3. 4. 设置本组练习旨在唤醒学生的解题意识及方法,使其对解含有参数的不等式有一个初步的体会和认识。 学生分组解答、交流结果,之后教师订正。 二、 典型例题分析 例1 解关于x 的不等式: 分析:本题为含有参数的绝对值不等式,移项后得: , 此时,要脱去绝对值符号,就必须要对 的值进行讨论。 分析清楚后由学生合作完成。 例2 已知函数 b ax x x f +=2)((a ,b 为常数)且方程f(x)-x+12=0有两个实根为x 2=3, x 2=4.(1)求函数f(x)的解析式; (2)设k>1,解关于x 的不等式;x k x k x f --+<2)1()(. 分析:本题第二问为含参的分式不等式,需要对参数进行讨论,要根据条件正确划分分类标准,确保穷尽所有可能情形。 分析完后学生先做,之后教师进行订正,并强调注意事项。 例3 解关于x 的不等式: 分析:该不等式的基本类型为含参的分式不等式,可通过移项通分调整系数数轴标根几步完成,但在调整系数及标根时,涉及到对

含参不等式

《不等式(组)的字母取值范围的确定方法》教学设计 教材分析:本章内容是北师大新版八年级数学(下)第二章,是在学习了《一元一次方程》和《一次函数》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》,《二元一次不等式》打下基础。上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用口诀或数轴直观的得到一元一次不等式组的解集。 学情分析:在学习了一元一次不等式组的解法之后,学生就会经常遇到求一元一次不等式组中字母系数的值或求其取值范围的问题. 不少学生对解决这样的问题感到十分困难. 事实上,只要能灵活运用不等式组解集的知识即可顺利求解. 教学目标: (1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。 (2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。 学习重点: (1)加深对一元一次不等式组的概念与解集的理解。 (2)通过含参数不等式的分析与讨论,让学生理解掌握逆向思维和数形结合的数学思想。 学习难点: (1)一元一次不等式组中字母参数的讨论。 (2)运用数轴分析不等式组中参数的范围。 教学难点突破办法: (1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。 (2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。 教学准备 1、复习上节课的知识,考察学生对一元一次不等式组的解集的四种情况的熟悉程度, 能直接根据下面口诀求出不等式组的解集:大大取大;小小取小;大小小大中间找;大大小小找不到. 2、根据不等式组的解集,结合数轴,能找出满足条件的解(如整数解),并能注意“a x <”与“a x ≤”的区别,为本节课的拓展应用打下基础。 1、⑴不等式组???-≥>1 2x x 的解集是 . ⑵不等式组???-<-<12x x 的解集是 . ⑶不等式组?? ?≥≤14x x 的解集是 . ⑷不等式组???-≤>45x x 的解集是 . 一、已知不等式的解集确定字母系数的问题 1. 逆向运用“大大取大”求解参数 分析:逆向运用大大取大归结为:若不等式组???>>b x a x 的解集为b x >,则b a ≤ 例1.(2014恩施市) 如果一元一次不等式组???>>a x x 3的解集为a x >,则a 的取值范围是:( ) A. a >3 B. a ≥3 C. a ≤3 D. a <3 变式练习1:若不等式组? ??<->+m x x x 544的解集是3

含参数不等式的解法(含答案)

含参数不等式的解法 典题探究 例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。 例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。 例3:在?ABC 中,已知2|)(|,2cos )2 4 ( sin sin 4)(2 <-++ =m B f B B B B f 且π 恒成立,求实数m 的范围。 例4:(1)求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。 如果把上题稍微改一点,那么答案又如何呢?请看下题: (2)求使不等式)2 ,0(4,cos sin π π ∈-->x x x a 恒成立的实数a 的范围。 演练方阵 A 档(巩固专练) 1.设函数f (x )=???? ??? ≥-<<-+-≤+)1(11 )11(22)1()1(2x x x x x x ,已知f (a )>1,则a 的取值范围是( ) A.(-∞,-2)∪(-21 ,+∞) B.(-21,2 1) C.(-∞,-2)∪(-2 1 ,1) D.(-2,-2 1 )∪(1,+∞) 2.已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2 ,b ),g (x )>0的解集是(22a ,2 b ),则f (x )·g (x ) >0的解集是__________. 3.已知关于x 的方程sin 2x +2cos x +a =0有解,则a 的取值范围是__________. 4. 解不等式)0( 01)1 (2 ≠<++ -a x a a x 5. 解不等式0652 2>+-a ax x ,0≠a

高二数学课件-《不等式的解法举例》

高二数学课件:《不等式的解法举例》 过去的一切会离你越来越远,直到淡出人们的视野,而空白却会越放越大,直至铺成一段苍白的人生。下面为您推荐高二数学课件:《不等式的解法举例》。 (1)能熟练运用不等式的基本性质来解不等式; (2)在巩固一元一次不等式和一元一次不等式组、一元二次不等式的解法基础上,掌握分式不等式、高次不等式的解法; (3)能将较复杂的绝对值不等式转化为简单的绝对值不等式、一元二次不等式(组)来解; (4)通过解不等式,要向学生渗透转化、数形结合、换元、分类讨论等数学思想; (5)通过解各种类型的不等式,培养学生的观察、比较及概括能力,培养学生的勇于探索、敢于创新的精神,培养学生的学习兴趣.【教学建议】一、知识结构 本节内容是在高一研究了一元一次不等式,一元二次不等式,简单的绝对值不等式及分式不等式的解法基础上,进一步深入研究较为复杂的绝对值不等式及分式不等式的解法.求解的基本思路是运用不等式的性质和有关定理、法则,将这些不等式等价转化为一次不等式(组)或二次不等式的求解,具体地说就是含有绝对值符号的不等式去掉绝对值符号,无理不等式有理化,分式不等式整式化,高次不等式一次化.其基本模式为: ; ; ;

二、重点、难点分析 本节的重点和一个难点是不等式的等价转化.解不等式与解方程有类似之处,但其二者的区别更要加以重视.解方程所产生的增根是可以通过检验加以排除的,由于不等式的解集一般都是无限集,如果产生了增根却是无法检验加以排除的,所以解不等式的过程一定要保证同解,所涉及的变换一定是等价变换.在学生学习过程中另一个难点是不等式的求解.这个不等式其实是一个不等式组的简化形式,当为一元一次式时,可直接解这个不等式组,但当为一元二次式时,就必须将其改写成两个一元二次不等式的形式,分别求解在求交集. 三、教学建议 (1)在学习新课之前一定要复习旧知识,包括一元二次不等式的解法,简单的绝对值不等式的解法,简单的分式不等式的解法,不等式的性质,实数运算的符号法则等.特别是对于基础比较差的学生,这一环节不可忽视. (2)在研究不等式的解法之前,应先复习解不等式组的基本思路以及不等式的解法,然后提出如何求不等式的解集,启发学生运用换元思想将替换成,从而转化一元二次不等式组的求解. (3)在教学中一定让学生充分讨论,明确不等式组中的两个不等式的解集间的交并关系,两个不等式的解集间的交并关系. (4)建议表述解不等式的过程中运用符号 . (5)建议在研究分式不等式的解法之前,先研究简单高次不等式(一端为0,另一端是若干个一次因式乘积形式的整式)的解法.可由学生讨论不同解法,师生共同比较诸法的优劣,最后落实到区间法. (6)分式不等式与高次不等式的等价原因,可以认为是不等式两端同乘

含参数不等式的解法

关于含参数(单参)的一元二次不等式的解法探究 高二数学组 盛耀建 含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是学生不清楚该如何对参数进行讨论,笔者认为这层“纸”捅破了,问题自然得到了很好的解决,在教学的过程中本人发现参数的讨论实际上就是参数的分类,而参数该如何进行分类有一个非常好的方法,下面我们通过三个例子找出其中的奥妙! 一.二次项系数为常数 例1解关于x 的不等式:.0)2(2>+-+a x a x 解:0)2(2>+-+a x a x )(* ()3243240422 +≥-≤?≥--=?a a a a 或, 此时两根为()2 42)2(2 1a a a x --+ -= ,()2 42)2(2 2a a a x --- -= . (1)当324-?, )(*解集为(2 48)2(,2 +-- -∞-a a a )?( +∞+-+-,2 48)2(2 a a a ); (2)当324-=a 时,0=?,)(*解集为(13,-∞-)?(+∞-,13); (3)当324324+<<-a 时,0a 时,0>?, )(*解集为(2 48)2(,2 +-- -∞-a a a )?( +∞+-+-,2 48)2(2 a a a ). 二.二次项系数含参数 例2解关于x 的不等式:.01)1(2 <++-x a ax 解:若0=a ,原不等式.101>?<+-?x x 若0--?或.1>x 若0>a ,原不等式.0)1)(1(<-- ?x a x )(*

含参数不等式解法练习题

高二数学(含参数不等式解法) 一、选择题 1、如果不等式x 2 – log m x < 0在 x ∈( 0, 12 )上恒成立,则实数m 的取值范围是 A 、116≤m < 1 B 、0 < m ≤116 C 、0 < m < 14 D 、m ≥116 2、已知a > 0,b > 0,不等式 – a < 1x < b 的解集是 A 、( - 1a ,0)∪(0,1b ) B 、( - 1b ,1a ) C 、( - 1b ,0)∪(0,1a ) D 、( - ∞,1a )∪(1b ,+ ∞) 3、设集合M = {x | > a 且a 2 – 12a + 20 < 0},N = {x | x < 10},则M ∩N 是 A 、{x | a < x < 10} B 、{x | x > a} C 、{x | 2 < x < 10} D 、N 4、若函数 f(x) = 228x x --的定义域为M ,g(x) = 11|| x a --的定义域为N , 则使M ∩N = ?的实数a 的取值范围是 A 、( - 1,3) B 、(- 3,1) C 、[- 1,3] D 、[- 3,1] 5、若关于x 的方程x 2 + ( a – 3)x + a = 0的两根均为正数,则实数a 的取值范围是 A 、0 < a ≤3 B 、a ≥9 C 、a ≥9或a ≤ 1 D 、0 < a ≤ 1 6、已知函数f(x) = ax 3 + bx 2 + cx + d 的图象如右图,则 A 、b ∈( - ∞,0) B 、b ∈( 0,1) C 、b ∈( 1,2) D 、b ∈(2,+ ∞) 7、不等式ax 2 + bx + 2 > 0的解集是( - 11,23) ,则a – b 等于 A 、- 4 B 、14 C 、- 10 D 、10 8、命题甲:ax 2 + 2ax + 1 > 0的解集是R ,命题乙:0 < a < 1,则命题甲是乙成立的 A 、充分非必要条件 B 、必要非充分条件 C 、充要条件 D 、既非充分又非必要条件 9、若|x – a| < h ,| y – a| < h ,则下列不等式一定成立的是 A 、| x – y| < h B 、| x – y | < 2h C 、| x – y| > h D 、| x – y | > 2h 10、命题p : 若a 、b ∈R ,则| a | + | b | >1是 | a + b| > 1的充分而不必要条件。

含参数不等式的解法

含参数不等式总结 一、通过讨论解带参数不等式 例1:2(1)0x x a a ---> 例2:关于x 的不等式01)1(2<-+-+a x a ax 对于R x ∈恒成立,求a 的取值范围。 二、已知解集的参数不等式 例3:已知集合 {}2540A x x x =-+|≤,{}2|220B x x ax a =-++≤,若B A ?,求实数a 的取值范围. 三、使用变量分离方法解带参数不等式 例4:若不等式210x ax ≥++对于一切1 (0,)2 x ∈成立,则a 的取值范围. 例5:设()()()?? ????+-+++=n a n n x f x x x 121lg ,其中a 是实数,n 是任意给定的自然数 且n ≥2,若()x f 当(]1,∞-∈x 时有意义, 求a 的取值范围。 例6: 已知定义在R 上函数f(x)为奇函数,且在[)+∞,0上是增函数,对于任意R x ∈求实 数m 范围,使()()0cos 2432cos >-+-θθm m f f 恒成立。 思考:对于(0,3)上的一切实数x,不等式()122-<-x m x 恒成立,求实数m 的取值范 围。如何求解? 分离参数法适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。 四、主参换位法解带参数不等式 某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使能容易分离出参数与变量,但函数的最值却难以求出时,可考虑变换思维角度。即把变元与参数换个位置,再结合其它知识,往往会取得出奇制胜的效果。 一般情况下,如果给出参数的范围,则可以把参数看作主变量,进行研究。 例7:若对于任意a (]1,1-∈,函数()()a x a x x f 2442 -+-+=的值恒大于0,求x 的 取值范围。 分析:此题若把它看成x 的二次函数,由于a, x 都要变,则函数的最小值很难求出,思路 受阻。若视a 为主元,则给解题带来转机。 例8:已知19≤≤-a ,关于x 的不等式: 0452 <+-x ax 恒成立,求x 的范围。

专题--含参一元一次不等式组 (1)教学设计 .doc

第15讲 一元一次不等式组培优专题 一、含参不等式(组)有关的问题 1.探讨不等式组的解集(写出,a b 满足的关系式) (1)关于x 的不等式组x a x b >????≤11x m x 无解,则m 的取值范围是 (2)若不等式组121 x m x m <+??>-?无解,则m 的取值范围是

(3)若不等式组???>≤????+-<-3212b x a x 11<<-x )3)(3(+-b a

(2)如果关于x 的不等式组7060 x m x n -≥??-的每一个解都是21122 x -<的解,求a 的取值范围

变式:如果关于x的不等式组 22 4 x a x a >- ? ? <- ? 有解,并且所有解都是不等式组-6<x≤5的解,求a 的取值范围. 4.若关于x的不等式组 21 1 3 x x x k - ? >- ? ? ?-< ? 的解集为2 x<,求k的取值范围 5.不等式组 12 35 a x a x -<<+ ? ? << ? 的解集是3x <<2 a+,求a的取值范围

相关文档
最新文档