TFT-LCD Approval Specification N134B6-L02 ver 2.0

TFT-LCD Approval Specification N134B6-L02 ver 2.0
TFT-LCD Approval Specification N134B6-L02 ver 2.0

TFT LCD Approval Specification MODEL NO.: N134B6 - L02

O

2009-02-26 09:56:12 CST PMMD III

Director

annie_hsu(?Z q

/56522 / 54873)

Director Accept

- CONTENTS -

REVISION HISTORY ------------------------------------------------------- 3

1. GENERAL DESCRIPTION ------------------------------------------------------- 4 1.1 OVERVIEW

1.2 FEATURES

1.3 APPLICATION

1.4 GENERAL SPECIFICATIONS

1.5 MECHANICAL SPECIFICATIONS

2. ABSOLUTE MAXIMUM RATINGS ------------------------------------------------------- 5 2.1 ABSOLUTE RATINGS OF ENVIRONMENT

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

2.2.2 BACKLIGHT UNIT

3. ELECTRICAL CHARACTERISTICS ------------------------------------------------------- 7

3.1 TFT LCD MODULE

3.2 BACKLIGHT UNIT

4. BLOCK DIAGRAM ------------------------------------------------------- 10

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT ------------------------------------------------------- 11 5.1 TFT LCD MODULE

5.2 TIMING DIAGRAM OF LVDS INPUT SIGNAL

5.3 COLOR DATA INPUT ASSIGNMENT

5.4 EDID DATA STRUCTURE

5.5 EDID SIGNAL SPECIFICATION

6. CONVERTER SPECIFICATION

6.1 ABSOLUTE MAXIMUM RATINGS

6.2 RECOMMENDED OPERATING RATINGS

7. INTERFACE TIMING ------------------------------------------------------- 17

7.1 INPUT SIGNAL TIMING SPECIFICATIONS

7.2 POWER ON/OFF SEQUENCE

8. OPTICAL CHARACTERISTICS ------------------------------------------------------- 20 8.1 TEST CONDITIONS

8.2 OPTICAL SPECIFICATIONS

9. PRECAUTIONS ------------------------------------------------------- 23

9.1 HANDLING PRECAUTIONS

9.2 STORAGE PRECAUTIONS

9.3 OPERATION PRECAUTIONS

10. PACKING ------------------------------------------------------- 24

10.1 CARTON

10.2 PALLET

11. DEFINITION OF LABELS ------------------------------------------------------- 24

11.1 CMO MODULE LABEL

11.2 CARTON LABEL

REVISION HISTORY

Version Date Page

(New)

Section Description

Ver 2.0 Feb. 16,’09 All All Approval specification first issued.

1.1 OVERVIEW

N134B6-L02 is a 13.4” TFT Liquid Crystal Display module with LED Backlight unit and 40 pins LVDS

interface. This module supports 1366 x 768 Wide-XGA mode and can display 262,144 colors. The optimum

viewing angle is at 6 o’clock direction.

1.2 FEATURES

- Aspect ratio 16:9

- WXGA (1366 x 768 pixels) resolution

- 3.3V LVDS (Low Voltage Differential Signaling) interface with 1 pixel/clock

- Meet RoHS requirement

- LED Backlight

1.3 APPLICATION

- TFT LCD Notebook

1.4 GENERAL SPECIFICATI0NS

Note

Unit Item Specification

Active Area 296.422 (H) x 166.656 (V) (13.4” diagonal) mm

(1)

Bezel Opening Area 300.27 (H) x 170.36 (V) mm

Driver Element a-si TFT active matrix - -

Pixel Number 1366 x R.G.B. x 768 pixel -

Pixel Pitch 0.217 (H) x 0.217 (V) mm -

Pixel Arrangement RGB vertical stripe - -

Display Colors 262,144 color -

Transmissive Mode Normally white - -

Surface Treatment Hard coating (3H), glare type - -

1.5 MECHANICAL SPECIFICATIONS

Unit

Max.

Note Item Min.

Typ.

Horizontal(H) 309.6 310.1 310.6 mm

(1)

Module Size

Vertical(V) 184.5 185 185.5

mm

Depth(D) - 4.9 5.2

g

330

315

Weight -

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2.1 ABSOLUTE RATINGS OF ENVIRONMENT Value Item Symbol

Min. Max. Unit Note Storage Temperature

T ST -20 +60 oC (1) Operating Ambient Temperature

T OP 0 +50 oC (1), (2) Shock (Non-Operating)

S NOP - 220/2 G/ms (3),

(5) Vibration (Non-Operating)

V NOP - 1.5 G (4),

(5) Note (1) (a) 90 %RH Max. (Ta

40 oC). (b) Wet-bulb temperature should be 39 oC Max. (Ta > 40 oC).

(c) No condensation.

Note (2) The temperature of panel display surface area should be 0 oC Min. and 60 oC Max.

Note (3) 1 time for ± X, ± Y , ± Z. for Condition (220G / 2ms) is half Sine Wave,.

Note (4) 10 ~ 500 Hz, 30 min/cycle,1cycles for each X, Y, Z axis.

Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid

enough so that the module would not be twisted or bent by the fixture.

The fixing condition is shown as below:

2.2.1 TFT LCD MODULE

Value

Unit Note Item Symbol

Min. Max.

Power Supply Voltage Vcc -0.3 +4.0 V

(1)

Logic Input Voltage V IN -0.3 Vcc+0.3 V

2.2.2 BACKLIGHT UNIT

Value

Unit Note Item Symbol

Min. Max.

LED Light Bar Power Supply Voltage V L -50 35 V

(1), (2)

LED Light Bar Power Supply Current I L 0 100 mA

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for LED (Refer to Section 3.2 for further information).

3.1 TFT LCD MODULE

Value Parameter Symbol Min. Typ. Max.

Unit Note Power Supply Voltage Vcc 3.0 3.3 3.6 V -

Ripple Voltage V RP - 50 mV -

Rush Current I RUSH - 1.5 A (2) Initial Stage Current I IS 1.0 A (2)

White - 190 205 mA (3)a Power Supply Current Black lcc - 260 280 mA (3)b

LVDS Differential Input High Threshold V TH(LVDS) +100 mV (5), V CM =1.2V

LVDS Differential Input Low Threshold V TL(LVDS)-100 mV (5) V CM =1.2V

LVDS Common Mode Voltage V CM 1.125 1.375 V (5)

LVDS Differential Input Voltage |V ID | 100 600 mV (5)

Terminating Resistor R T - 100 - Ohm - Power per EBL WG P EBL - 1.46 W (4) Note (1) The ambient temperature is Ta = 25 ± 2 oC.

Note (2) I RUSH : the maximum current when VCC is rising

I IS : the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black.

+3.3V

Note (3) The specified power supply current is under the conditions at Vcc = 3.3 V, Ta = 25 ± 2 oC, f v = 60

Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The specified power are the sum of LCD panel electronics input power and the converter input

power. Test conditions are as follows.

(a) Vcc = 3.3 V, Ta = 25 ± 2 oC, f v = 60 Hz,

(b) The pattern used is a black and white 32 x 36 checkerboard, slide #100 from the VESA file

“Flat Panel Display Monitor Setup Patterns”, FPDMSU.ppt.

(c) Luminance: 60 nits.

Note (5) The parameters of LVDS signals are defined as the following figures.

Active Area a. White Pattern Active Area b. Black Pattern 0V V CM | Single Ended 0V | V TH(LVDS) V TL(LVDS)

Differential

Ta =25±2oC

Value Parameter Symbol Min. Typ. Max.

Unit Note LED light bar Power Supply Voltage V L 28 32 35 V dc

LED light bar Power Supply Current

I L 76 80 84 mA (1) Duty 100% LED Life Time L BL 15,000- - Hrs (4)

Power Consumption P L 2.128 2.56 2.94 W (3)

I L =80mA,

Duty=100%

Note (1) LED light bar configuration is shown as below:

Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with

current balancing function to drive LED light-bar.

Note (3) P L = I L V L

Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at

Ta = 25 2 o C and I L = 20 mA(Per EA) until the brightness becomes 50% of its original value.

V I Channels

4.1 TFT LCD MODULE

CLK EDID

Data & Clock V EDID

Data EDID

Vcc GND Converter

Input Signals

5.1 TFT LCD MODULE

Pin Symbol Description Polarity Remark

1 NC

No

Connection

2 VCCS Power Supply ( 3.

3 V typ)

3 VCCS Power Supply ( 3.3 V typ)

4 EE_VDD DDC ( 3.3 V typ)

5 NC

No

Connection

6 EE_SC

DDC

Clock

7 EE_SD

DDC

Data

8 Rx0- LVDS Differential Data Input Negative

9 Rx0+ LVDS Differential Data Input Positive R0~R5,G0-

10 VSS

Ground

11 Rx1- LVDS Differential Data Input Negative

12 Rx1+ LVDS Differential Data Input Positive G1~G5,B0,B1

13 VSS

Ground

14 Rx2- LVDS Differential Data Input Negative

15 Rx2+ LVDS Differential Data Input Positive

-

B2~B5,Hsync,Vsync,DE

16 VSS

Ground

17 RXC- LVDS Clock Data Input Negative

18 RXC+ LVDS Clock Data Input Positive LVDS Level Clock

19 VSS

Ground -

20 NC

No

Connection -

21 NC

No

Connection

22 VSS

Ground

23 NC

No

Connection

24 NC

No

Connection

25 VSS

Ground

26 NC

No

Connection

27 NC

No

Connection

28 VSS

Ground

29 NC

No

Connection

30 NC

No

Connection

31 VSS

Ground

32 VSS

Ground

33 VSS

Ground

34 NC

No

Connection

35 LED_PWM PWM brightness control

36 LED_EN

LED

Enable

37 NC

No

Connection

38 LED_VCCS

LED

Power

39 LED_VCCS

LED

Power

40 LED_VCCS

LED

Power

Note (1) Connector Part No.: I-PEX 20455-040E-12 or equivalent

Note (2) User’s connector Part No.: I-PEX 20453-040T-11 or equivalent

Note (3) The first pixel is odd as shown in the following figure.

5.2 TIMING DIAGRAM OF LVDS INPUT SIGNAL

Rxin0 Rxin1 Rxin2 CLK+

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for

the color. The higher the binary input the brighter the color. The table below provides the assignment of

color versus data input.

Data Signal

Red Green Blue Color

R5R4 R3 R2R1R0G5G4G3G2G1G0B5 B4 B3 B2B1B0

Basic Colors Black

Red

Green

Blue

Cyan

Magenta

Yellow

White

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Gray Scale Of Red Red(0)/Dark

Red(1)

Red(2)

:

:

Red(61)

Red(62)

Red(63)

:

:

1

1

1

:

:

1

1

1

:

:

1

1

1

:

:

1

1

1

1

:

:

1

1

1

:

:

1

1

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

Gray Scale Of Green Green(0)/Dark

Green(1)

Green(2)

:

:

Green(61)

Green(62)

Green(63)

:

:

:

:

:

:

:

:

:

:

:

:

:

:

1

1

1

:

:

1

1

1

:

:

1

1

1

:

:

1

1

1

1

:

:

1

1

1

:

:

1

1

:

:

:

:

:

:

:

:

:

:

:

:

Gray Scale Of Blue Blue(0)/Dark

Blue(1)

Blue(2)

:

:

Blue(61)

Blue(62)

Blue(63)

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

1

1

1

:

:

1

1

1

:

:

1

1

1

:

:

1

1

1

1

:

:

1

1

1

:

:

1

1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

The EDID (Extended Display Identification Data) data formats are to support displays as defined in the VESA Plug & Display and FPDI standards.

Byte # (decimal) Byte #

(hex)

Field Name and Comments

Value

(hex)

Value

(binary)

0 0 Header 00 00000000

1 1 Header FF 11111111

2 2 Header FF 11111111

3 3 Header FF 11111111

4 4 Header FF 11111111

5 5 Header FF 11111111

6 6 Header FF 11111111

7 7 Header 00 00000000

8 8 EISA ID manufacturer name (“CMO”) 0D 00001101

9 9 EISA ID manufacturer name (Compressed ASCII) AF 10101111

10 0A ID product code (N134B6-L02) 18 00011000

11 0B ID product code (hex LSB first; N134B6-L02) 13 00010011

12 0C ID S/N (fixed “0”) 00 00000000

13 0D ID S/N (fixed “0”) 00 00000000

14 0E ID S/N (fixed “0”) 00 00000000

15 0F ID S/N (fixed “0”) 00 00000000

16 10 Week of manufacture (fixed week code) 08 00001000

17 11 Year of manufacture (fixed year code) 13 00010011

18 12 EDID structure version # (“1”) 01 00000001

19 13 EDID revision # (“3”) 03 00000011

20 14 Video I/P definition (“digital”) 80 10000000

21 15 Active area horizontal 29.64cm 1D 00011101

22 16 Active area vertical 16.66cm 10 00010000

23 17 Display Gamma (Gamma = ”2.2”) 78 01111000

24 18 Feature support (“Active off, RGB Color”) 0A 00001010

25 19 Red/Green (Rx1, Rx0, Ry1, Ry0, Gx1, Gx0, Gy1, Gy0) A9 10101001

26 1A Blue/White (Bx1, Bx0, By1, By0, Wx1, Wx0, Wy1, Wy0) E5 11100101

27 1B Red-x (Rx = “0.584”) 95 10010101

28 1C Red-y (Ry = “0.350”) 59 01011001

29 1D Green-x (Gx = ”0.338”) 56 01010110

30 1E Green-y (Gy = ”0.563”) 90 10010000

31 1F Blue-x (Bx = ”0.155”) 27 00100111

32 20 Blue-y (By = ”0.131”) 21 00100001

33 21 White-x (Wx = ”0.313”) 50 01010000

34 22 White-y (Wy = ”0.329”) 54 01010100

35 23 Established timings 1 00 00000000

36 24 Established timings 2 00 00000000

37 25 Manufacturer’s reserved timings 00 00000000

38 26 Standard timing ID # 1 01 00000001

39 27 Standard timing ID # 1 01 00000001

40 28 Standard timing ID # 2 01 00000001

41 29 Standard timing ID # 2 01 00000001

6.1 ABSOLUTE MAXIMUM RATINGS

Symbol

Ratings LED_VCCS

-0.3V ~ 28.0V LED_PWM, LED_EN

-0.3V ~ 5.5V

6.2 RECOMMENDED OPERATING RATINGS Value Parameter Symbol

Min. Typ. Max.

Unit Note Converter Input power supply voltage LED_Vccs 6.0 12.0 20.0 V

Backlight On 2.0 --- 5.0 V EN Control Level Backlight Off 0 --- 0.8 V

PWM High Level 2.0 --- 5.0 V

PWM Control Level PWM Low Level 0 --- 0.15 V

PWM Control Duty Ratio 20 100 %

PWM Control Permissive Ripple Voltage V PWM_pp 100 mV

PWM Control Frequency f PWM 190 210 230 Hz

LED_VCCS=Min 417 502 576 mA (1)

LED_VCCS=Typ 209 251 288 (1)

Converter Input Current LED_VCCS=Max I BL 125 151 173 mA (1) Note (1) The specified LED power supply current is under the conditions at “LED_VCCS = Min, Typ, Max”,

Ta = 25 ± 2 oC, f PWM = 200 Hz, Duty=100%.

6.3 LED BACKLIGHT CONTROLL POWER SEQUENCE

T A 0ms

T B 0ms

T C 10ms

T D

0ms Note (1) Please follow the LED backlight power sequence as above. If the customer could not follow, it might cause

backlight flash issue during display ON/OFF or damage the LED backlight controller

LED_VCCS

LED_PWM LED_EN

7.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram . Signal Item Symbol Min. Typ. Max. Unit Note

DCLK Frequency 1/Tc 50 69.3380 MHz

Vertical Total Time TV 771 784 980 TH

Vertical Active Display Period TVD 768 768 768 TH

Vertical Active Blanking Period TVB TV-TVD 16 TV-TVD TH Horizontal Total Time TH 144814741842 Tc

Horizontal Active Display Period THD 136613661366 Tc

DE Horizontal Active Blanking Period THB

TH-THD 108 TH-THD Tc Note (1) Because this module is operated by DE only mode, Hsync and Vsync are ignored

INPUT SIGNAL TIMING DIAGRAM

DCLK DE DE DATA

Timing Specifications:

0.5 t1 10 ms

0 t2 50 ms

0 t3

50 ms t4 ?

500 ms t5 ?

200 ms t6 ? 200 ms Note (1) Please follow the power on/off sequence described above. Otherwise, the LCD module might be

damaged. Note (2) Please avoid floating state of interface signal at invalid period. When the interface signal is invalid, be

sure to pull down the power supply of LCD Vcc to 0 V. Note (3) The Backlight converter power must be turned on after the power supply for the logic and the

interface signal is valid. The Backlight converter power must be turned off before the power supply

for the logic and the interface signal is invalid.

Note (4) Sometimes some slight noise shows when LCD is turned off (even backlight is already off). To

avoid this phenomenon, we suggest that the Vcc falling time is better to follow 50us ?

t7 ?

10 ms

0V 0V - Power Supply for LCD, Vcc - LVDS Interface - Power for Light Bar Restart Power On Power Off

8.1 TEST CONDITIONS Item Symbol Value Unit

Ambient Temperature Ta 25±2 o C

Ambient Humidity Ha 50±10 %RH Supply Voltage V CC 3.3 V Input Signal According to typical value in "3. ELECTRICAL CHARACTERISTICS"

LED Light Bar Input Current I L 100 mA

The measurement methods of optical characteristics are shown in Section 8.2. The following items should be measured under the test conditions described in Section 8.1 and stable environment shown in Note (5).

8.2 OPTICAL SPECIFICATIONS Item

Symbol Condition Min. Typ. Max. Unit Note Contrast Ratio

CR 300 500 - - (2), (5)T R - 2 7 ms Response Time

T F - 6 11 ms (3) Luminance of White (5P)

L AVE 190 220 - cd/m 2(4), (5)White Variation

δW - - 1.25 - (5), (6)Rx (0.584) - Red

Ry (0.350) - Gx (0.338) - Green Gy (0.563) - Bx (0.155) - Blue

By (0.131) - Wx (0.313) - Color

Chromaticity White

Wy θx =0°, θY =0° Viewing Normal Angle Typ.-0.03(0.329) Typ.+ 0.03 - (1), (5)θx + 40 45 - Horizontal

θx - 40 45 - θY + 15 20 - Viewing Angle

Vertical

θY - CR ≥10 40 45 -

Deg.(1), (5)

信号与系统实验总结1

实验总结 班级:10电子班学号:1039035 姓名:田金龙这学期的实验都有:信号的时域分析、线性时不变系统的时域分析、连续时间信号系统的频域分析、连续时间在连续时间信号的频域LTI系统的复频域分析、连续时间LTI系统的频域分析。在这学期的学习中学习了解到很多关于信号方面的处理方法加上硬件动手的实践能力,让我对课堂上所学到的知识有了更深层次的理解也加深了所学知识的印象。下面则是对每次实验的分析和总结: 实验一:信号的时域分析 在第一次试验中进行信号的时域分析还有的就是学会使用MATLAB软件来利用它实现一些相关的运算并且绘制出相关的信号图。在时域分析中掌握连续时间信号和离散时间信号的描述方法,并能够实现各种信号的时域变化和运算。了解单位阶跃信号和单位冲激信号的拓展函数,以便于熟悉这两种函数在之后的程序中的应用。在能够对简单信号的描述的前提下,通过一些简单的程序,实现信号的分析,时域反相,时域尺度变换和周期信号的描述。 clear, close all dt=0.01; t=-2:dt:2; x=u(t); plot(t,x) title('u signal u(t)') grid on 连续时间信号的时域分析后,则是离散时间信号的仿真。通过对连续时间信号的描述和对离散时间信号的描述,发现它们的不同之处在于对时间的定义和对函数的图形描述。在离散时间信号的图形窗口描述时,使用的是stem(n,x)函数。 在硬件实验中,使用一些信号运算单元,加法器,减法器,倍乘器,反相器,积分器和微分器。输入相应的简单信号,观察通过不同运算单元输出的信号。 实验二:线性时不变系统的时域分析 在线性时不变系统的时域分析中主要研究的就是信号的卷积运算,学会进行信号的卷积

液晶屏驱动板原理维修代换方法

液晶屏驱动板的原理与维修代换方法 1、液晶屏驱动板的原理介绍 液晶屏驱动板常被称为A/D<模拟/数字)板,这从某种意义上反应出驱动板实现的主要功能所在。液晶屏要显示图像需要数字化过的视频信号,液晶屏驱动板正是完成从模拟信号到数字信号<或者从一种数字信号到另外一种数字信号)转换的功能模块,并同时在图像控制单元的控制下去驱动液晶屏显示图像。液晶显示器的驱动板如图1、图2所示。 图1 品牌液晶显示器采用的驱动板 图2部分液晶显示器采用的是通用驱动板 如图3所示,液晶屏驱动板上通常包含主控芯片、MCU微控制器、ROM存储器、电源模块、电源接口、VGA视频信号输入接口、OSD按键板接口、高压板接口、LVDS/TTL驱屏信号接口等部分。 液晶屏驱动板的原理框图如图4所示,从计算机主机显示卡送来的视频信

号,通过驱动板上的VGA视频信号输入接口送入驱动板的主控芯片,主控芯片根据MCU微控制器中有关液晶屏的资料控制液晶屏呈现图像。同时,MCU微控制器实现对整机的电源控制、功能操作等。因此,液晶屏驱动板又被称为液晶显示器的主板。 图3 驱动板上的芯片和接口 液晶屏驱动板损坏,可能造成无法开机、开机黑屏、白屏、花屏、纹波干扰、按键失效等故障现象,在液晶显示器故障中占有较大的比例。 液晶屏驱动板广泛采用了大规模的集成电路和贴片器件,电路元器件布局

紧凑,给查找具体元器件或跑线都造成了很大的困难。在非工厂条件下,它的可修性较小,若驱动板因为供电部分、VGA视频输入接口电路部分损坏等造成的故障,只要有电路知识我们可以轻松解决,对于那些因为MCU微控制器内部的数据损坏造成无法正常工作的驱动板,在拥有数据文件<驱动程序)的前提下,我们可以用液晶显示器编程器对MCU微控制器进行数据烧写,以修复固件损坏引起的故障。早期的驱动板,需要把MCU微控制器拆卸下来进行操作,有一定的难度。目前的驱动板已经普遍开始采用支持ISP<在线编程)的MCU微控制器,这样我们就可以通过ISP工具在线对MCU微控制器内部的数据进行烧写。比如我们使用的EP1112最新液晶显示器编程器就可以完成这样的工作。 图4 驱动板原理框图 在液晶显示器的维修工作中,当驱动板出现故障时,若液晶显示器原本就使用的是通用驱动板,就可以直接找到相应主板代换处理,当然,仍需要在其MCU中写入与液晶屏对应的驱动程序;若驱动板是品牌机主板,我们一般采用市场上常见的“通用驱动板”进行代换方法进行维修; “通用驱动板”也称“万能驱动板”。目前,市场上常见的“通用驱动板”有乐华、鼎科、凯旋、悦康等品牌,如图5所示,尽管这种“通用驱动板”所用元器件与“原装驱动板”不一致,但只要用液晶显示器编程器向“通用驱动板”写入液晶屏对应的驱动程序<购买编程器时会随机送液晶屏驱动程序光盘),再通过简单地改接线路,即可驱动不同的液晶屏,通用性很强,而且维修成本也不高,用户容易接受。

杭电《过程控制系统》实验报告

实验时间:5月25号 序号: 杭州电子科技大学 自动化学院实验报告 课程名称:自动化仪表与过程控制 实验名称:一阶单容上水箱对象特性测试实验 实验名称:上水箱液位PID整定实验 实验名称:上水箱下水箱液位串级控制实验 指导教师:尚群立 学生姓名:俞超栋 学生学号:09061821

实验一、一阶单容上水箱对象特性测试实验一.实验目的 (1)熟悉单容水箱的数学模型及其阶跃响应曲线。 (2)根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。二.实验设备 AE2000型过程控制实验装置,PC机,DCS控制系统与监控软件。 三、系统结构框图 单容水箱如图1-1所示: Q2 图1-1、单容水箱系统结构图 四、实验原理 阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。 图解法是确定模型参数的一种实用方法。不同的模型结构,有不同的图解方法。单容水箱对象模型用一阶加时滞环节来近似描述时,常可用两点法直接求取对象参数。 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀

h1( t ) h1(∞ ) 0.63h1(∞) 0 T V 2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得: 式中,T 为水箱的时间常数(注意:阀V 2的开度大小会影响到水箱的时间常数),T=R 2*C ,K=R 2为单容对象的放大倍数,R 1、R 2分别为V 1、V 2阀的液阻,C 为水箱的容量系数。令输入流量Q 1 的阶跃变化量为R 0,其拉氏变换式为Q 1(S )=R O /S ,R O 为常量,则输出液位高度的拉氏变换式为: 当t=T 时,则有: h(T)=KR 0(1-e -1)=0.632KR 0=0.632h(∞) 即 h(t)=KR 0(1-e -t/T ) 当t —>∞时,h (∞)=KR 0,因而有 K=h (∞)/R0=输出稳态值/阶跃输入 式(1-2)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图1-2所示。当由实验求得图1-2所示的 阶跃响应曲线后,该曲线上升到稳态值的63%所对应时间,就是水箱的时间常数T ,该时间常数T 也可以通过坐标原点对响应曲线 图 1-2、 阶跃响应曲线

TFT LCD液晶显示器的驱动原理

TFT LCD液晶显示器的驱动原理 我们针对feed through电压,以及二阶驱动的原理来做介绍.简单来说Feed through电压主要是由于面板上的寄生电容而产生的,而所谓三阶驱动的原理就是为了解决此一问题而发展出来的解决方式,不过我们这次只介绍二阶驱动,至于三阶驱动甚至是四阶驱动则留到下一次再介绍.在介绍feed through电压之前,我们先解释驱动系统中gate driver所送出波形的timing图. SVGA分辨率的二阶驱动波形 我们常见的1024*768分辨率的屏幕,就是我们通常称之为SVGA分辨率的屏幕.它的组成顾名思义就是以1024*768=786432个pixel来组成一个画面的数据.以液晶显示器来说,共需要1024*768*3个点(乘3是因为一个pixel需要蓝色,绿色,红色三个点来组成.)来显示一个画面.通常在面板的规划,把一个平面分成X-Y轴来说,在X轴上会有1024*3=3072列.这3072列就由8颗384输出channel的source driver 来负责推动.而在Y轴上,会有768行.这768行,就由3颗256输出channel的gate driver来负责驱动.图1就是SVGA分辨率的gate driver输出波形的timing图.图中gate 1 ~ 768分别代表着768个gate

driver的输出.以SVGA的分辨率,60Hz的画面更新频率来计算,一个frame的周期约为16.67 ms.对gate 1来说,它的启动时间周期一样为16.67ms.而在这16.67 ms之间,分别需要让gate 1 ~ 768共768条输出线,依序打开再关闭.所以分配到每条线打开的时间仅有16.67ms/768=21.7us而已.所以每一条gate d river打开的时间相对于整个frame是很短的,而在这短短的打开时间之内,source driver再将相对应的显示电极充电到所需的电压. 而所谓的二阶驱动就是指gate driver的输出电压仅有两种数值,一为打开电压,一为关闭电压.而对于common电压不变的驱动方式,不管何时何地,电压都是固定不动的.但是对于common电压变动的驱动方式,在每一个frame开始的第一条gate 1打开之前,就必须把电压改变一次.为什么要将这些输出电压的t iming介绍过一次呢?因为我们接下来要讨论的feed through电压,它的成因主要是因为面板上其它电压的变化,经由寄生电容或是储存电容,影响到显示电极电压的正确性.在LCD面板上主要的电压变化来源有3个,分别是gate driver电压变化,source driver电压变化,以及common电压变化.而这其中影响最大的就是gate driver电压变化(经由Cgd或是Cs),以及common电压变化(经由Clc或是Cs+Clc). Cs on common架构且common电压固定不动的feed through电压 我们刚才提到,造成有feed through电压的主因有两个.而在common电压固定不动的架构下,造成f eed through电压的主因就只有gate driver的电压变化了.在图2中,就是显示电极电压因为feed thro ugh电压影响,而造成电压变化的波形图.在图中,请注意到gate driver打开的时间,相对于每个frame 的时间比例是不正确的.在此我们是为了能仔细解释每个frame的动作,所以将gate driver打开的时间画的比较大.请记住,正确的gate driver打开时间是如同图1所示,需要在一个frame的时间内,依序将7

信号与系统实验实验报告

信号与系统实验实验报 告 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

实验五连续系统分析一、实验目的 深刻理解连续时间系统的系统函数在分析连续系统的时域特性、频域特性及稳定性中的重要作用及意义,掌握根据系统函数的零极点设计简单的滤波器的方法。掌握利用MATLAB分析连续系统的时域响应、频响特性和零极点的基本方法。 二、实验原理 MATLAB提供了许多可用于分析线性时不变连续系统的函数,主要包含有系统函数、系统时域响应、系统频域响应等分析函数。 三、实验内容 1.已知描述连续系统的微分方程为,输入,初始状态 ,计算该系统的响应,并与理论结果比较,列出系统响应分析的步骤。 实验代码: a=[1 10]; b=[2]; [A B C D]=tf2ss(b,a); sys=ss(A,B,C,D); t=0: :5; xt=t>0; sta=[1]; y=lsim(sys,xt,t,sta); subplot(3,1,1); plot(t,y); xlabel('t'); title('系统完全响应 y(t)'); subplot(3,1,2); plot(t,y,'-b'); hold on yt=4/5*exp(-10*t)+1/5; plot(t,yt,' : r'); legend('数值计算','理论计算'); hold off xlabel('t'); subplot(3, 1 ,3); k=y'-yt; plot(t,k); k(1) title('误差');

实验结果: 结果分析: 理论值 y(t)=0. 8*exp(-10t)*u(t)+ 程序运行出的结果与理论预期结果相差较大误差随时间增大而变小,初始值相差最大,而后两曲线基本吻合,表明该算法的系统响应在终值附近有很高的契合度,而在初值附近有较大的误差。 2.已知连续时间系统的系统函数为,求输入分别为,, 时,系统地输出,并与理论结果比较。 a=[1,3,2,0]; b=[4,1]; sys=tf(b,a); t=0: :5; x1=t>0; x2=(sin(t)).*(t>0); x3=(exp(-t)).*(t>0); y1=lsim(sys,x1,t); y2=lsim(sys,x2,t); y3=lsim(sys,x3,t); subplot(3,1,1); plot(t,y1); xlabel('t'); title('X(t)=u(t)'); subplot(3,1,2); plot(t,y2); xlabel('t'); title('X(t)=sint*u(t)'); subplot(3, 1 ,3); plot(t,y3); xlabel('t'); title('X(t)=exp(-t)u(t)'); 实验结果: 结果分析: a=[1,3,2,0]; b=[4,1]; sys=tf(b,a); t=0: :5; x1=t>0; x2=(sin(t)).*(t>0); x3=(exp(-t)).*(t>0); y1=lsim(sys,x1,t); y2=lsim(sys,x2,t); y3=lsim(sys,x3,t); subplot(3,1,1); plot(t,y1,'-b');

办公室用多少瓦灯

办公室用多少瓦灯 篇一:每平方米需要多少w 照度 每平方米需要多少w 照度,照度公式 计算公式:是以单位容量法来计算的,n=Pn/Pn,la 其中n 表示所需灯的数量(支),Pn表示达到某一照度值时全部灯的标称功率之和(W),Pn,la表示达到100 Lx照度是全部灯的标称功率(W)。单位容量法计算的基础是: 为达到平均照度100 Lx时,室内地面面积每平方米需要用白炽灯约22w或荧光灯 5.5w. 对于白炽灯的计算:Pn,100=22w/m2*A(E=100 Lx,nB=0.3,n=15 Lm/w) 对于荧光灯的计算:Pn,100=5.5w/m2*A(E=100 Lx,nB=0.3,n=15 Lm/w) A表示地面面积(m2)即:比如10m2地面,选用照度为100 lx时考虑安装40w的荧光灯,要安装多少支? Pn,100=5.5w/m2*1m2=55w n=55w/40w=1.375≈2支 如果你取室内的照度为300 lx,那么所需的灯数为Pn,300=(E/100 lx)*Pn,100=(300/100)*55=165w

n=165/40=4.125≈5支 你按照这样的算法不就可以得出每平方米需要多少w 了吗? 工厂照度要求为250-300 Lx “宴会场所”照度要求为300-700 Lx, “餐厅” 照度要求为150-300 Lx “餐厅”,照度要求为200 Lx,高5米,45瓦的节能灯,1000平方米要80个。2600平方米,大概要210个吧。2.家里面积平方适合用多少瓦的节能灯(灯泡) 一般的标准是:15—18平方米照明用灯光在60—80瓦;30—40平方米在100—150瓦;40—50平方米在220—280瓦;60—70平方米在300—350瓦;75—80平方米在400~450瓦。通常卫生间的照明每平方米2瓦就可以了; 餐厅和厨房每平方米4瓦足够了,而书房和客厅要大些,每平方米需8瓦;在写字台和床头柜上的台灯可用15至60瓦的灯泡,最好不要超过60瓦。 您的房间是卧室,如需要读书写字的话。若15平方米,建议选择的节能型吸顶灯瓦数为65W左右。 3.基本公式为(主要是用在快速计算,准确度较差但对一般的空间平均照度计算已足够) Lux = ((Total Lumen) x LLF x CU)/ M 照度= ((总流明数) x 减光系数x 利用系数) / 面积

杭电通信系统课程设计报告实验报告

通信系统课程设计实验报告 XX:田昕煜 学号:13081405 班级:通信四班 班级号:13083414 基于FSK调制的PC机通信电路设计

一、目的、容与要求 目的: 掌握用FSK调制和解调实现数据通信的方法,掌握FSK调制和解调电路中相关模块的设计方法。初步体验从事通信产品研发的过程. 课程设计任务:设计并制作能实现全双工FSK调制解调器电路,掌握用Orcad Pspice、Protel99se进行系统设计及电路仿真。 要求:合理设计各个电路,尽量使仿真时的频率响应和其他参数达到设计要求。尽量选择符合标称值的元器件构成电路,正确完成电路调试。 二、总体方案设计 信号调制过程如下: 调制数据由信号发生器产生(电平为TTL,波特率不超过9600Baud),送入电平/幅度调整电路完成电平的变换,再经过锁相环(CD4046),产生两个频率信号分别为30kHz和40kHz(发“1”时产生30kHz方波,发“0”时产生40kHz方波),再经过低通滤波器2,变成平滑的正弦波,最后通过线圈实现单端到差分信号的转换。

信号的解调过程如下: 首先经过带通滤波器1,滤除带外噪声,实现信号的提取。在本设计中FSK 信号的解调方式是过零检测法。所以还要经过比较器使正弦信号变成方波,再经过微分、整流电路和低通滤波器1实现信号的解调,最后经过比较器使解调信号成为TTL电平。在示波器上会看到接收数据和发送数据是一致的。 各主要电路模块作用: 电平/幅度调整电路:完成TTL电平到VCO控制电压的调整; VCO电路:在控制电压作用下,产生30KHz和40KHz方波; 低通2:把30KHz、40KHz方波滤成正弦波; 线圈:完成单端信号和差分信号的相互转换; 带通1:对带外信号抑制,完成带信号的提取; 限放电路:正弦波整形成方波,同时保留了过零点的信息; 微分、整流、脉冲形成电路:完成信号过零点的提取; 低通1:提取基带信号,实现初步解调; 比较器:把初步解调后的信号转换成TTL电平 三、单元电路设计原理与仿真分析 (1)带通1(4阶带通)-- 接收滤波器(对带外信号抑制,完成带信号的提取) 要求通带:26KHz—46KHz,通带波动3dB; 阻带截止频率:fc=75KHz时,要求衰减大于10dB。经分析,二级四阶巴特沃斯带通滤波器来提取信号。 具体数值和电路见图1仿真结果见图2。

led液晶显示器的驱动原理

led液晶显示器的驱动原理 LED液晶显示器的驱动原理 艾布纳科技有限公司 前两次跟大家介绍有关液晶显示器操作的基本原理, 那是针对液晶本身的特性,与 TFT LCD 本身结构上的操作原理来做介绍. 这次我们针对 TFT LCD 的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于 Cs(storage capacitor)储存 电容架构不同, 所形成不同驱动系统架构的原理. Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在 CMOS 的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.

图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT 的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 , 便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate的方式的原因.

照度计算公式

照度计算公式 E=(Φ×n×N×MF×UF)/A 式中,E=工作面的维护平均照度(lx); Φ=灯初始光通量(lm) n= 每个灯具所含光源的数量 N=灯具数量 MF=设备维护系数 UF=设备利用系数 A=工作面的面积 一个灯具在给室内的利用系数UF是照射到工作面上所有光通量与设备中所有灯发出的光通量之比。这一系数包括反射光、相互反射光及来自灯具的直接光。它的值取决于房间的形状、高度、墙壁的反射率及灯具的光强分布。 MF=设备维护系数一般取之间。 UF=设备利用系数(由于范围更宽)一般取之间。 一般室内取,体育取 维护系数:一般取~ 实例:一个100平方米的办公室,层高3米,工程方要求的照度是

500lx,要用我公司的3*36W T8灯盘,请问要用多少套用上面的公司计算,取MF(设备维护系数)为,UF(设备利用系数)为,假设要用3*36W T8灯盘X套, 公式E=(Φ×n×N×MF×UF)/A 即:500=(3300×3×X××)/100 X= 约9套 照度计算方法 利用系数法计算平均照度 平均照度 (Eav) = 光源总光通量(N*Ф)*利用系数(CU)*维护系数(MF) / 区域面积(m2) (适用于室内或体育场的照明计算) 利用系数: 一般室内取,体育取 维护系数:一般取~ 举例 1:室内照明: 4×5米房间,使用3×36W隔栅灯9套 平均照度=光源总光通量×CU×MF/面积 =(2500×3×9)××÷4÷5 =1080 Lux 结论:平均照度1000Lux以上 举例 2: 体育馆照明:20×40米场地, 使用POWRSPOT 1000W金卤灯60套 平均照度=光源总光通量×CU×MF/面积

07杭电信号与系统期末试题

2007信号卷 一.填空题(每小题3分,10小题,共30分) 1.信号)3 π cos()4πsin()(t t t f +=的基本周期是 。 2.信号)()(n u n x =的功率是 。 3.=+?∞ -ττδd )1(t 。 4.信号)()(t u t f =的傅里叶变换为 。 5.信号)()(n u n x =的算子表示为 。 6.{}{}=-*--2012 112 。 7.已知LTI 系统方程)()()(2)(d d t u t t r t r t +=+δ且1)0(=-r ,则=+)0(r 。 8.无失真传输系统)1(2)(-=t e t r ,其冲激响应为=)(t h 。 9.信号)()1()(t u t t f +=的拉氏变换为 。 10.已知)21(232 3)(22<<+-+=z z z z z X ,则=)(n x 。 解答:1.24;2.0.5 ;3.)1(+t u ;4.ωωδj 1)(π+;5.)(1 n E E δ-; 6.{}21304--;7.2;8.)1(2-t δ;9. )0(12>+σs s ; 10.())1(27)(5)(----n u n u n n δ 二.画图题(每小题5分,4小题,共20分) 1.信号)(t f 的波形如题图2-1,画出)42(+t f 的波形。 题图2-1 解: 2.已知周期函数)(t f 半个周期的波形如题图2-2,根据下列条件画出)(t f 在一个周期()10T t <≤ 的波 形。(1))(t f 是偶函数; (2))(t f 是奇函数。

题图2-2 解:(1)()t f 是偶函数,则()()t f t f =-,波形对称于纵轴。 题图2-12 ① 对褶得()t f 1 ②将()t f 1向右平移1T 得()t f 2 ③取10T -的波形得到()t f 在一 个周期()10T t <≤ 的波形。如图(1)所示。 图(1) (2))(t f 是奇函数,波形对称于原点。过程与(1)相似,如图(2)。 图(2) 3.已知系统的传输算子233 )(2+++=p p p p H ,画出并联结构的信号流图。 解:p p p p p p p p p p H 2 11 1122112233)(2+- ++=+-++=+++= 4.系统方程为)1()2(3)1(2)(-=-+-+n x n y n y n y ,画出信号流图。 解:23211)(E E E E H ++=

工具间照度计算书

照度计算书 工程名: 计算者: 计算时间: 参考标准:《建筑照明设计标准》/ GB50034-2004 参考手册:《照明设计手册》第二版: 计算方法:利用系数平均照度法 1.房间参数 房间类别:普通办公室, 照度要求值:300.00LX, 功率密度不超过11.00W/m2 房间名称:工具间 房间长度L: 2.46 m, 房间宽度B: 1.86 m, 计算高度H: 3.00 m 顶棚反射比(%):80, 墙反射比(%):60, 地面反射比(%):20 室形系数RI: 0.35 2.灯具参数: 型号: 飞利浦TLD18W/827 , 单灯具光源数:2个 灯具光通量: 1350lm, 灯具光源功率:32.00W 镇流器类型:TLD标准型, 镇流器功率:5.00 3.其它参数: 利用系数: 0.79, 维护系数: 0.80, 照度要求: 300.00LX, 功率密度要求: 11.00W/m2 4.计算结果: E = NΦUK / A N = EA / (ΦUK) 其中: Φ-- 光通量lm, N -- 光源数量, U -- 利用系数, A -- 工作面面积m2, K -- 灯具维护系数 计算结果: 建议灯具数: 1, 计算照度: 372.58LX 实际安装功率 = 灯具数× (总光源功率 + 镇流器功率) = 37.00W 实际功率密度: 8.08W/m2, 折算功率密度: 6.50W/m2 5.校验结果: 要求平均照度:300.00LX, 实际计算平均照度:372.58LX 符合规范照度要求! 要求功率密度:11.00W/m2, 实际功率密度:8.08W/m2 符合规范节能要求!

杭电通信系统课程设计实验报告

通信系统课程设计实验报告 姓名:田昕煜 学号: 13081405 班级:通信四班 班级号: 13083414

基于FSK调制的PC机通信电路设计 一、目的、内容与要求 目的: 掌握用FSK调制和解调实现数据通信的方法,掌握FSK调制和解调电路中相关模块的设计方法。初步体验从事通信产品研发的过程. 课程设计任务:设计并制作能实现全双工FSK调制解调器电路,掌握用Orcad Pspice、Protel99se进行系统设计及电路仿真。 要求:合理设计各个电路,尽量使仿真时的频率响应和其他参数达到设计要求。尽量选择符合标称值的元器件构成电路,正确完成电路调试。 二、总体方案设计 信号调制过程如下: 调制数据由信号发生器产生(电平为TTL,波特率不超过9600Baud),送入电平/幅度调整电路完成电平的变换,再经过锁相环(CD4046),产生两个频率信号分别为30kHz和40kHz(发“1”时产生30kHz方波,发“0”时产生40kHz方波),再经过低通滤波器2,变成平滑的正弦波,最后通过线圈实现单端到差分信号的转换。 信号的解调过程如下: 首先经过带通滤波器1,滤除带外噪声,实现信号的提取。在本设计中FSK 信号的解调方式是过零检测法。所以还要经过比较器使正弦信号变成方波,再经过微分、整流电路和低通滤波器1实现信号的解调,最后经过比较器使解调信号成为TTL电平。在示波器上会看到接收数据和发送数据是一致的。 各主要电路模块作用: 电平/幅度调整电路:完成TTL电平到VCO控制电压的调整; VCO电路:在控制电压作用下,产生30KHz和40KHz方波; 低通2:把30KHz、40KHz方波滤成正弦波; 线圈:完成单端信号和差分信号的相互转换;

杭电信号与系统实验离散时间系统的时域分析

《信号、系统与信号处理实验I》 实验报告 实验名称:离散时间系统的时域分析 姓名: 学号: 专业:通信工程 实验时间 杭州电子科技大学 通信工程学院

一、实验目的 1.通过matlab 仿真一些简单的离散时间系统,并研究它们的时域特性。 2.掌握利用matlab 工具箱求解LTI 系统的单位冲激响应。 二、实验内容 1、离散时间系统的时域分析 1.1 线性与非线性系统 假定系统为y[n]-0.4y[n-1]=2.24x[n]+2.49x[n-1](2.9) 输入三个不同的输入序列x1[n]、x2[n]和,计算并求出相应的三个输出,并判断是否线性。x[n]=a x1[n]+b x2[n] clear all; n=0:40; a=2;b=-3; x1=cos(2*pi*0.1*n); x2=sin(2*pi*0.4*n); x=a*x1+b*x2; num=[2.24 2.49]; den=[1 -0.4]; y1=filter(num.den,x1); y2=filter(num.den,x2); y=filter(num.den,x); yt=a*y1+b*y2; d=y-yt;%计算差值输出d[n] subplot(3,1,1) stem(n,y); ylabel(‘振幅’); subplot(3,1,2) stem(n,yt); ylabel(‘振幅’); subplot(3,1,3) stem(n,d); ylabel(‘振幅’); title(‘差信号’) (1)假定另一个系统为y[n]=x[n]+3.2x[n-2],修改以上程序,通过绘出的图形判断该系统是否线性系统。 1.2 时变与时不变系统 根据(2.9)的系统,产生两个不同的输入序列x[n]和x[n-D],根据输出判断是否时不变系统。 clear all; n=0:40; a=2;b=-3; D=10; x=cos(2*pi*0.1*n); xd=[zeros(1,D) x]; num=[2.24 2.49]; den=[1 -0.4]; y=filter(num.den,x); yd=filter(num.den,xd); d=y-yd(1+D:41+D);%计算差值输d[n] subp lot(3,1,1) stem(n,y); ylabel(‘振幅’); title(‘输出y[n]’);grid; subplot(3,1,2)

LED液晶显示器的驱动原理

LED液晶显示器的驱动原理 艾布纳科技有限公司 前两次跟大家介绍有关液晶显示器操作的基本原理, 那是针对液晶本身的特性,与TFT LCD 本身结构上的操作原理来做介绍. 这次我们针对TFT LCD 的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理. Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之 中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs. For personal use only in study and research; not for commercial use

图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因 素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方 式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT 的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显 示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时, 便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate的方式的原因. For personal use only in study and research; not for commercial use

照度计算

照度计算方法利用系数法计算平均照度 平均照度(Eav) = 光源总光通量(N*Ф)*利用系数(CU)*维护系数(MF) / 区域面积(m2) (适用于室内或体育场的照明计算) 利用系数:一般室内取0.4,体育取0.3 维护系数:一般取0.7~0.8 举例1:室内照明:4×5米房间,使用3×36W隔栅灯9套 平均照度=光源总光通量×CU×MF/面积 =(2500×3×9)×0.4×0.8÷4÷5 =1080 Lux 结论:平均照度1000Lux以上 举例2:体育馆照明:20×40米场地,使用POWRSPOT 1000W金卤灯60套 平均照度=光源总光通量×CU×MF/面积 =(105000×60)×0.3×0.8÷20÷40 =1890 Lux 结论:平均水平照度1500Lux以上 某办公室平均照度设计案例: 设计条件:办公室长18.2米,宽10.8米,顶棚高2.8米,桌面高0.85米,利用系数0.7,维护系数0.8,灯具数量33套,求办公室内平均照度是多少? 灯具解决方案:灯具采用DiNiT 2X55W 防眩日光灯具,光通量3000Lm,色温3000K,显色性Ra90以上。 根据公式可求得: Eav = (33套X 6000Lm X 0.7 X 0.8) ÷ (18.2米X 10.8米) = 110880.00 ÷ 196.56 m2 = 564.10Lux 备注: 照明设计必须必须要求准确的利用系数,否则会有很大的偏差,影响利用系数的大小,主要有以下几个因素: *灯具的配光曲线 *灯具的光输出比例 *室内的反射率,如天花板、墙壁、工作桌面等 *室内指数大小 照度计算方法有利用系数法和逐点计算法(包括平方反比法、等照度曲线法、方位系数法等) 两大类,利用系数法用于计算平均照度与配灯数,逐点计算法用于计算某点的直射照度。现将这两种计算方法的特点及使用范围对比如下: 利用系数法利用系数计算此法考虑了直射光及反射光两部分所产生的照度计算结果为水平面上的平均照度计算室内水平面上的平均照度,特别适用于反射条件好的房间.查概算曲线一般生产及生活用房的灯数概略计算 逐点计算法平方反比法此法只考虑直射光产生的照度,可以计算任意面上某一点的直射照度采用直射照明器的场所,可直接求出水平面照度等照度曲线法方位系数法,使用线光源的场所,求算任意面上一点的照度 以上这两种计算方法,各文章都介绍的较多了,这里不再复述。从实际使用效果来看,以上两种方法都存在计算繁琐,建筑专业条件众多,适用范围较小等不足之处,主要体现在:

信号与系统实验指导全部实验答案

00.51 1.52 2.53-2-1.5-1-0.50 0.5 1 1.52正弦信号 -20-15-10-505101520 -0.4 -0.200.20.40.60.81抽样信 号 -0.500.51 1.52 2.53 00.5 11.5 2矩形脉冲信 号 -1 012345 -0.5 0.5 1 1.5 单位跃阶信号 实验一 连续时间信号的MATLAB 表示 实验目的 1.掌握MATLAB 语言的基本操作,学习基本的编程功能; 2.掌握MATLAB 产生常用连续时间信号的编程方法; 3.观察并熟悉常用连续时间信号的波形和特性。 实验原理: 1. 连续信号MA TLAB 实现原理 从严格意义上讲,MATLAB 数值计算的方法并不能处理连续时间信号。然而,可用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能够被MATLAB 处理,并且能较好地近似表示连续信号。 MATLAB 提供了大量生成基本信号的函数。比如常用的指数信号、正余弦信号等都是MATLAB 的内部函数。为了表示连续时间信号,需定义某一时间或自变量的范围和取样时间间隔,然后调用该函数计算这些点的函数值,最后画出其波形图。 实验内容:

0123-2-1 1 2实 部012 3 -1 12 虚 部0123012取 模0123 -50 5 相角00.2 0.40.6 0.81 -1-0.50 0.51 方波信号 实验编程: (1)t=0:0.01:3; K=2;a=-1.5;w=10; ft=K*exp((a+i*w)*t); A=real(ft); B=imag(ft); C=abs(ft); D=angle(ft); subplot(2,2,1),plot(t,A),grid on;title('实部'); subplot(2,2,2),plot(t,B),grid on;title('虚部'); subplot(2,2,3),plot(t,C),grid on;title('取模'); subplot(2,2,4),plot(t,D),grid on;title('相角'); (2) t=0:0.001:3; y=square(2*pi*10*t,30); plot(t,y); axis([0,1,-1,1]); title('方波信号');

液晶显示驱动原理1

TFT LCD液晶显示器的驱动原理(一) 谢崇凯 前两次跟大家介绍有关液晶显示器操作的基本原理, 那是针对液晶本身的特性,与TFT LCD本身结构上的操作原理来做介绍. 这次我们针对TFT LCD的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于CS(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理. CS(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是cs on gate与cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容CS. 图1就是这两种储存电容架构, 从图中我们可以很明显的知道, cs on gate由于不必像cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因

素. 所以现今面板的设计大多使用cs on gate的方式. 但是由于cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的cs on gate 与cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 ,便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate 走线关闭, 回复到原先的电压, 则cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用cs on gate的方式的原因. 至于common走线, 我们在这边也需要顺便介绍一下. 从图2中我们可以发现, 不管您采用怎样的储存电容架构, Clc的两端都是分别接到显示电极与common. 既然液晶是充满在上下两片玻璃之间, 而显示电极与TFT都是位在同一片玻璃上, 则common电极很明显的就是位在另一片玻璃之上. 如此一来, 由液晶所形成的平行板电容Clc, 便是由上下两片玻璃的显示电极与common电极所形成. 而位于cs储存电容上的common电极, 则是另外利用位于与显示电极同 一片玻璃上的走线, 这跟Clc上的common电极是不一样的, 只不过它们最后都是接到相同的电压就是了.

照度计算书

照度计算 本计算书仅包括配电室、网络机房、值班室、办公室主要房间的照度计算。其它房间的照度计算参见此计算书。 一、计算依据 根据《照明设计手册》第P149页公式5-39。利用系数根据《照明设计手册》、《建筑灯具与装饰照明手册》以及《民用建筑电气设计手册》中的提供的相关资料查找。 二、配电室照度计算 1)、房间条件: 面积A= 21.42平方米 顶棚反射系数70 %,墙面反射系数70 % 工作面高度0.80 米,室空间比RCR=4.46 2)、灯具条件: 灯具Ⅰ名称:直管型双管荧光灯;灯具型号:甲方定。 光源类型:荧光灯;光源容量:~220V 2X36W;利用系数0.40; 光通量6600 LM;灯具安装高度2.8 米。 3)、照度要求: 照度要求Eav= 200 LX,灯具维护系数K= 0.8 4)、计算过程: 由Eav = NφUK / A 得N = (Eav A) / (φU K) = (200×21.42) / (6600×0.40×0.8) = 2 套

采用灯具Ⅰ2套. 实际照度E = (N φU K) / A = (2×6600×0.40×0.8)/ 21.42= 197.2LX 计算功率密度:W=灯具数量x(单个灯的光源容量+镇流器)/面积 W= (2x 80) /21.42 W= 7.47W/m2 6)、计算结果: 按配电室照度标准值为200LX,经计算结果为197.2lX,符合计算照度偏差±10%的规定,满足要求,计算功率密度为7.47W/m2,接近目标值 三、网络机房照度计算 1)、房间条件: 面积A=20.71 平方米 顶棚反射系数70 %,墙面反射系数70 % 工作面高度0.80 米,室空间比RCR= 4.42 2)、灯具条件: 灯具名称:直管型双管荧光灯;灯具型号:甲方定。 光源类型:荧光灯;光源容量:~220V 2x36W;利用系数0.40; 光通量6600 LM;灯具安装高度2.8 米。 3)、照度要求: 照度要求Eav= 200 LX,灯具维护系数K= 0.8 4)、计算过程: 由Eav = NφUK / A 得N = (Eav A) / (φU K) = (200×20.71) / (6600×0.40×0.8) = 2套

相关文档
最新文档