联合Allegro和SIwave建模和提取S参数

联合Allegro和SIwave建模和提取S参数
联合Allegro和SIwave建模和提取S参数

联合Allegro和SIwave建模和提取S参数

Pegasus Yu

SIwave是Ansoft公司的一个全波有限元分析工具,用于Ansoft的PCB系统解决方案。

SIwave利用有限元FEM法解析传输线特性:

信号线及拐角的全波特性

线间耦合:自动搜索耦合信号线

过孔效应:焊盘,反焊盘及过孔耦合

SIwave进行电源完整性分析:谐振分析,平面阻抗,S参数,Y参数,Z参数

SIwave支持从Allegro的PCB设计转换输入,并可以提取S参数。采用Allegro和SIwave 配合建模,是一种比较HFSS更为快速的方式。通过研究找到了实现这种方式的具体步骤。

以建立一对差分过孔为例(backdrill过孔,带连接的短线),说明这种建模方式。

1.建立一个圆形SMD焊盘

在Allegro提供的工具里,有一个用于建立pad的工具PAD DESIGNER。

建立一个表面焊盘

然后在File-Save As,将焊盘取个名字保存在Allegro项目的physical目录里。

2.建立一个有两个焊盘(pin)的封装

在Allegro里,点击File-New,选择制作封装

根据差分线间距设置焊盘间距e

选择刚才保存的焊盘

3.导入PCB封装

在ALLEGRO的Logic-Part Logic里,导入刚才所完成的封装。设置好器件的位号(如U1)。

然后在Place-Manually选择刚才导入的U1

4. 设置original model信息

选择Setup-Outlines-Board Line添加板框,

选择Logic-Net Logic并添加网络P+,P-和GND

从U1的一个pin1上route出一段线,并赋上P+的网络

从U1的pin2上route出一段线,赋上P-的网络。

这里不介绍差分走线的方式。

然后打开Edit-Net Propeties,设置允许的PTH stub长度。这里设置为1mil,可以设置为0

然后关闭Constraint Manager。

在Setup-Cross section里设置叠层信息。

将刚才在TOP层走的两段线,添加过孔route到SIG层。

这样产生的过孔就是backdrill的过孔。

打过孔前要在Setup-Vias选择单板打的过孔,这个过孔需要在PAD DESIGNER里设计,选通孔,Internal layers选Options,反焊盘和热焊盘孔径一样(相当于无反焊盘)。

最后是对GND层的铺铜和用Shape-Manual V oid画出上面两个过孔在GND层的反焊盘。

选择菜单Ansoft导出anf文件

5从SIwave里导入anf文件

Backdrill 3D 过孔建立成功。上面黄色圈是GND1层的反焊盘,下面粉红色是GND2,灰色是信号层,蓝色也是信号层

6. SIwave仿真处理

选中U1两个焊盘,然后将之删除。(两个焊盘删除后,存储一下,关掉SIwave,再重新打开SIwave,调入保存的文件。就可以看到不止是焊盘,器件的其它边框也消失了。Very good)

然后在差分线间加上Port,

就可以执行仿真计算出S参数。

另外,在SIwave里还可以进行叠层,材料参数调整以及过孔参数调整

之所以在Allegro阶段需要有一个U1封装带两个焊盘(pin),是因为在Allegro里,如果走线不从pin出来,就无法获得一个网络名。所以在Allegro里需要将连过孔的走线连接到pin上,到了SIwave里,再将Pin去掉,就得到了需要的过孔和短的差分连接线头。

SIwave和HFSS都是Ansoft公司的全波电磁场工具,HFSS是做系统级电磁场辐射分析,SIwave是做板级的SI分析。都有S参数提取的功能。两种工具对同一个模型的S参数分析,差别有多大,还需要从不同方面进行比较。

注:通过ansoftlink软件,可以将anf文件转换成HFSS的模型文件。下图是Allegro 建的过孔在HFSS里的效果图。

电容大小识别大全

电容大小识别 上图举出了一些例子。其中,电解电容有正负之分,其他都没有。 电容的容量单位为:法(F)、微法(uf),皮法(pf)。一般我们不用法做单位,因为它太大了。各单位之间的换算关系为: 1F =1000mF=1000×1000uF 1uF=1000nF =1000×1000pF 电容在电路中一般用“C”加数字表示(如C13表示编号为13的电容)。电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件。电容的特性主要是隔直流通交流。 电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。 容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量) 电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。 电容的使用,都应该在指定的耐压下工作。现在的好多质量不高的产品,就因为使用了耐压不足的电容而引起故障(常见电容爆裂)。 电容的容量标识的几种方法: 一、直接标识:如上图的电解电容,容量47uf,电容耐压25v。 二、使用单位nF: 如上图的涤纶电容,标称4n7=4.7nF=4700pF。 还有的例如:10n=0.01uF;33n=0.033uF。后面的63是指电容耐压63v. 三、数学计数法: 如上图瓷介电容,标值104,容量就是:10X10000pF=0.1uF. 如果标值473,即为47X1000pF=0.047uF。(后面的4、3,都表示10的多少次方)。 又如:332=33X100pF=3300pF 102=10×102pF=1000pF 224=22×104pF=0.22 uF 四、电容容量误差表: 符号 F G J K L M

Simulink仿真参数设定

simulink中的solver各选项表示的意思ZZ 2007-05-11 21:12 | (分类:默认分类) 构建好一个系统的模型之后,接下来的事情就是运行模型,得出仿真结果。运行一个仿真的完整过程分成三个步骤:设置仿真参数,启动仿真和仿真结果分析。 一、设置仿真参数和选择解法器 设置仿真参数和选择解法器,选择Simulation菜单下的Parameters命令,就会弹出一个仿真参数对话框,它主要用三个页面来管理仿真的参数。 Solver页,它允许用户设置仿真的开始和结束时间,选择解法器,说明解法器参数及选择一些输出选项。 Workspace I/O页,作用是管理模型从MATLAB工作空间的输入和对它的输出。 Diagnostics页,允许用户选择Simulink在仿真中显示的警告信息的等级。 1、Solver页 此页可以进行的设置有:选择仿真开始和结束的时间;选择解法器,并设定它的参数;选择输出项。 仿真时间:注意这里的时间概念与真实的时间并不一样,只是计算机仿真中对时间的一种表示,比如10秒的仿真时间,如果采样步长定为0.1,则需要执行100步,若把步长减小,则采样点数增加,那么实际的执行时间就会增加。一般仿真开始时间设为0,而结束时间视不同的因素而选择。总的说来,执行一次仿真要耗费的时间依赖于很多因素,包括模型的复杂程度、解法器及其步长的选择、计算机时钟的速度等等。 仿真步长模式:用户在Type后面的第一个下拉选项框中指定仿真的步长选取方式,可供选择的有Variable-step(变步长)和Fixed-step(固定步长)方式。变步长模式可以在仿真的过程中改变步长,提供误差控制和过零检测。固定步长模式在仿真过程中提供固定的步长,不提供误差控制和过零检测。用户还可以在第二个下拉选项框中选择对应模式下仿真所采用的算法。 变步长模式解法器有:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb和discrete。ode45:缺省值,四/五阶龙格-库塔法,适用于大多数连续或离散系统,但不适用于刚性(stiff)系统。它是单步解法器,也就是,在计算y(tn)时,它仅需要最近处理时刻的结果y(tn-1)。一般来说,面对一个仿真问题最好是首先试试ode45。 ode23:二/三阶龙格-库塔法,它在误差限要求不高和求解的问题不太难的情况下,可能会比ode45更有效。也是一个单步解法器。 ode113:是一种阶数可变的解法器,它在误差容许要求严格的情况下通常比ode45有效。ode113是一种多步解法器,也就是在计算当前时刻输出时,它需要以前多个时刻的解。 ode15s:是一种基于数字微分公式的解法器(NDFs)。也是一种多步解法器。适用于刚性系统,当用户估计要解决的问题是比较困难的,或者不能使用ode45,或者即使使用效果也不好,就可以用ode15s。 ode23s:它是一种单步解法器,专门应用于刚性系统,在弱误差允许下的效果好于ode15s。它能解决某些ode15s所不能有效解决的stiff问题。 ode23t:是梯形规则的一种自由插值实现。这种解法器适用于求解适度stiff的问题而用户又需要一个无数字振荡的解法器的情况。 ode23tb:是TR-BDF2的一种实现, TR-BDF2 是具有两个阶段的隐式龙格-库塔公式。discrtet:当Simulink检查到模型没有连续状态时使用它。 固定步长模式解法器有:ode5,ode4,ode3,ode2,ode1和discrete。 ode5:缺省值,是ode45的固定步长版本,适用于大多数连续或离散系统,不适用于刚性系统。

InP基HBT GP大信号模型直流参数提取的研究

第32卷 第2期 2009年4月 电子器件 Ch in es e Jo u rnal Of Electro n Devi ces Vol.32 No.2Apr.2009 Research of DC Parameter Extraction on InP Based HBT GP Large S ignal Model * H U Ding ,H UA N G Yong qing * ,W U Qiang ,L I Yi qun,H UA N G H ui,R EN X iao min (K ey L aborator y of Op tical Communication and L ig ht wa ve T ech nologies,M inistry of Ed ucation, Beij ing Univ ersity of Posts and T elecommunic ations ,Beij ing 100876,China) Abstract:Co nsidering the special physical theo ry and structure,w e used GP larg e sig nal m odel fo r InP based H BT (GP model w as used for BJT prev iously ).By constructing error functio n,w e ex tracted 13SPICE DC parameter in this model w ith analytic m ethod and designed the Parameter extraction measure m ent dev ices,finally the InP/InGaAs H BT of 2 m 19 m emitter size w as modeled based on the above results.By comparison betw een simulated r esults of the ex tracted model and measured data,the mo del has a go od agreem ent w ith DC character istics of fabricated H BT. Key words:H BT ;GP lar ge sig nal model;parameter extraction;DC characteristics EEACC :2560J InP 基HBT GP 大信号模型直流参数提取的研究* 胡 钉,黄永清* ,吴 强,李轶群,黄 辉,任晓敏 (北京邮电大学光通信与光波技术教育部重点实验室,北京100876) 收稿日期:2008 09 10 基金项目:国家 973!项目资助(2003CB314900);教育部 新世纪人才支持计划!资助项目(NCET 05 0111);高等学校学科创 新引智计划资助(B07005);教育部 长江学者和创新团队发展计划资助(IR T 0609);国家 863!计划项目资助(2006AA 03Z416);国家 863!计划项目资助(2007A A 03Z418)作者简介:胡 钉(1984 ),北京邮电大学通信光电子实验室硕士研究生,主要从事光通信器件方面的研究; 黄永清,女,教授,博士生导师,从事光纤通信和半导体光电子器件方面研究 ?G ummel Poo n,一种应用范围很广的晶体管模型,也是晶体管的工业模型 摘 要:基于HBT 特殊的物理机理及结构,将适用于BJT 的G P 大信号模型用于I nP 基HBT 的研究中。通过构建误差函 数,采取解析法提取了该模型中的13项SPI CE 直流参数,并设计了参数提取实验装置,最后将研究结果用于发射极为2 m 19 m 的InP/InG aA s H BT 建模中。通过对比模型仿真和器件实测的数据可以看出,本文采用的HBT G P 模型准确度高,可以较好地表征实际H BT 器件的直流特性。 关键词:H BT ;G P 大信号模型;参数提取;直流特性中图分类号:TN32 文献标识码:A 文章编号:1005 9490(2009)02 0285 06 异质结双极晶体管(H etero junction Bipolar Transisto r,H BT)作为一种结构独特的晶体管从上世纪七十年代出现以来,由于其所具有的高频特性以及良好的电流注入比等优越性,发展十分迅猛。随着材料生长技术和器件制作工艺水平的不断完善与发展,H BT 的性能也不断地得以提高。在卫星通信、移动通信、光纤通信、国防电子系统等通信领域H BT 器件已经得到了非常广泛的应用[1]。 与传统BJT 相比,异质结所特有的物理和电特性给H BT 器件模型的准确建模带来了相当的困 难,因此H BT 模型的准确建立已经成为学术界和工业界研究的热点。尽管H BT 可归于新的器件类型,但其基本工作原理和一般的BJT 相比并没有本 质区别[2],因此利用传统的BJT 大信号模型(如GP 模型?)来表征H BT 的电学特性,利用解析法对其模型参数进行提取是目前较为实用的一种方案。 本文基于H BT 特殊的物理机理及结构,将适用于BJT 的GP 大信号模型用于InP 基H BT 的研究中。通过构建误差函数,采取解析法提取了该模型中的13项SPICE 直流参数,并设计了参数提取

电容器主要技术参数的标注方法

电容器主要技术参数的标注方法: 1.直标法 指在电容器的表面直接用数字和单位符号或字母标注出标称容量和耐压等。 例某电容器上标CD—1、2200μF、35V,表示这是一个铝电解电容器,标称容量 为2200μF,耐压为35V。 某电容器上标CA1—1、2.2±5%、DC63V,表示这是一个钽电解电容器,标称容量 为2.2μF,允许误差为±5%,直流耐压为63V。 2.数字加字母标注法 指用数字和字母有规律的组合来表示容量,字母既表示小数点,又表示后缀单位。 例 p10表示0.1pF 1p0表示1pF 6P 8表示6.8pF 2μ2表示2.2μF 7p5表示7.5 pF 2n2表示2.2nF 8n2表示8200pF M1表示0.1μF 3m3表示3300μ F G1表示100μF 3.数码标注法 数码标注法多用于非电解电容器的标注,它采用三位数标注和四位数标注: 1)三位数标注法采用三位数标注的电容器,前两位数字表示标称值的有效数 字,第三位表示有效数字后缀零的个数,它们的单位是pF。这种标注法中有一个特殊的, 就是当第三位数字是9时,它表示有效数字乘以10-1。 例102表示标称容量是1000pF,即1nF; 473表示标称容量是47000pF,即47nF。479表示标称容量是 4.7pF。 2) 四位数标注法采用四位数标注的电容器不标注单位。这种标注方法是用1 ~4位数字表示电容量,其容量单位是pF;若用0.0X或0.X时,其单位为μF。

例 47表示标称容量是47 pF ;0.56表示标称容量是0.56μF 。 采用数码标注的,有些后面带的还有字母,它表示允许误差。识别方法: D——±0.5% F——±1% G——±2% J——±5% K——±10% M——±20% 例 223J表示标称容量是22000 pF,误差为±5% 。 4.电容器容量允许误差的标注方法 电容器容量允许误差的标注方法主要有三种: 1)用字母表误差 识别方法: B——±0.1% C——±0.25% D——±0. 5% F——±1% G——±2% J——±5% K——±10% M——±20% N——±30% 例 223J表示标称容量是22000 pF,误差为±5% 。 2)直接标出误差的值 例33 pF±0.2 pF则表示电容器的标称容量是33 pF,允许误差是±0.2 pF。 3)直接用数字表示百分比的误差 例 0.33/5 则表示电容器的标称容量是0.33μF,允许误差是±5%

电容的识别方法详解.

电容的识别方法详解 电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。电容的基本单位用法拉(F)表示, 其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。 其中:1法拉=103 毫法(mF)=10 6 微法(uF)=10 9 纳法(nF)=10 12 皮法(pF) 即:1 u F=103 nF ;1 nF=10 -3 u F ;1 u F=10 6 pF ;1 pF=10 -6 u F 容量大的电容其容量值在电容上直接标明,如10uF/16V。 容量小的电容其容量值在电容上用字母表示或数字表示。 ●字母表示法:1m=1000 uF;1P2=1.2PF;1n=1000PF ●数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍 率。如:102表示10×102 PF=1000PF ;224表示22×10 4 PF=0.22 u F 1. 直标法 容量单位:F(法拉)、μF(微法)、nF(纳法)、pF(皮法或微微法)。 1法拉(F)=106 微法(uF)=10 12 微微法(pF); 1微法(uF)=103 纳法(nF)=10 6 微微法(pF);1纳法(nF)=10 3 微微法(pF) 4n7 表示4.7nF或4700pF ;0.22 表示0.22μF;51 表示51pF 。 有时用大于1的两位以上的数字表示单位为pF的电容,例如101表示100 pF。用小于1的数字表示单位为μF 的电容,例如0.1表示0.1μF。 2. 数码表示法 一般用三位数字来表示容量的大小,单位为pF。前两位为有效数字,后一位表示位率。 即乘以10n ,n为第三位数字。如223J代表22×10 3 pF=22000pF=0.022μF,允许误差 为±5% ,这种表示方法最为常见。 3. 色码表示法 这种表示法与电阻器的色环表示法类似,颜色涂于电容器的一端或从顶端向引线排列。色码一般只有三种颜色,前两环为有效数字,第三环为位率,单位为pF。有时色环较宽,如红红橙,两个红色环涂成一个宽的,表示22000pF。 小型电解电容器的耐压也有用色标法的,位置靠近正极引出线的根部,所表示的意义如下表所示。 色标法就是用不同颜色的色带或色点,按规定的方法在电容器表面上标志出其主要参数码相的标志方法。电容器的标称值、允许偏差及工作电压均可采颜色进行标志,其规定见下表图。 电容器主要参数的色标规定

系统建模与仿真课程简介

系统建模与仿真 开课对象:工业工程开课学期:6 学分:2学分;总学时:48学时;理论课学时:40学时; 实验学时:0 学时;上机学时:8学时 先修课程:概率论与数理统计 教材:系统建模与发展,齐欢,王小平编著,清华大学出版社,2004.7 参考书: 【1】离散事件系统建模与仿真,顾启泰,清华大学出版社 【2】现代系统建模与仿真技术,刘兴堂,西北工业大学出版社 【3】离散事件系统建模与仿真,王维平,国防科技大学出版社 【4】系统仿真导论,肖田元,清华大学出版社 【5】建模与仿真,王卫红,科学出版社 【6】仿真建模与分析(Simulaton Modeling and Analysis)(3rd eds.),Averill M. Law, W.David Kelton,清华大学出版社/McGraw-Hill 一、课程的性质、目的和任务 建模与仿真是当代现代科学技术的主要内容,其技术已渗透到各学科和工程技术领域。本课程以一般系统理论为基础,让学生掌握适用于任何领域的建模与仿真的一般理论框架和基本方法。 本课程的目的和任务是使学生: 1.掌握建模基本理论; 2.掌握仿真的基本方法; 3.掌握一种仿真语言及仿真软件; 4.能够运用建模与仿真方法分析、解决工业工程领域的各种常见问题。 二、课程的基本要求 1.了解建模与仿真的作用和发展,理解组成要素。 2.掌握建模的几种基本方法,及模型简化的技术手段。 3.掌握建模的一般系统理论,认识随机数的产生的原因及统计控制方式。 4.能对离散事件进行仿真,并能分析运行结果。 三、课程的基本内容及学时分配 第一章绪论(3学时) 1.系统、模型、仿真的基本概念

simulink仿真全参数设置

1.变步长(Variable—Step)求解器 可以选择的变步长求解器有:ode45,ode23,ode113,odel5s,ode23s和discret.缺省情况下,具有状态的系统用的是ode45;没有状态的系统用的是discrete. 1)ode45基于显式Runge—Kutta(4,5)公式,Dormand—Prince对.它是—个单步求解器(solver)。也就是说它在计算y(tn)时,仅仅利用前一步的计算结果y(tn-1).对于大多数问题.在第一次仿真时、可用ode45试一下. 2)ode23是基于显式Runge—Kutta(2,3).Bogackt和Shampine对.对于宽误差容限和存在轻微刚性的系统、它比ode45更有效一些.ode23也是单步求解器.3)odell3是变阶Adams-Bashforth—Moulton PECE求解器.在误差容限比较严时,它比ode45更有效.odell3是一个多步求解器,即为了计算当前的结果y(tn),不仅要知道前一步结果y(tn-1),还要知道前几步的结果y(tn-2),y(tn-3),…; 4)odel5s是基于数值微分公式(NDFs)的变阶求解器.它与后向微分公式BDFs(也叫Gear方法)有联系.但比它更有效.ode15s是一个多步求解器,如果认为一个问题是刚性的,或者在用ode45s时仿真失败或不够有效时,可以试试odel5s。odel5s是基于一到五阶的NDF公式的求解器.尽管公式的阶数越高结果越精确,但稳定性会差一些.如果模型是刚性的,并且要求有比较好的稳定性,应将最大的阶数减小到2.选择odel5s求解器时,对话框中会显示这一参数.可以用ode23求解器代替。del5s,ode23是定步长、低阶求解器. 5)ode23s是基于一个2阶改进的Rosenbrock公式.因为它是一个单步求解器,所以对于宽误差容限,它比odel5s更有效.对于一些用odel5s不是很有效的刚性问题,可以用它解决. 6)ode23t是使用“自由”内插式梯形规则来实现的.如果问题是适度刚性,而且需要没有数字阻尼的结果,可采用该求解器. 7)ode23tb是使用TR—BDF2来实现的,即基于隐式Runge—Kutta公式,其第一级是梯形规则步长和第二级是二阶反向微分公式.两级计算使用相同的迭代矩阵.与ode23s相似,对于宽误差容限,它比odtl5s更有效. 8)discrete(变步长)是simulink在检测到模型中没有连续状态时所选择的一种求解器.

根据AMESim的气动系统建模与仿真技术研究

基于AMESim的气动系统 建模与仿真技术研究(版本A)

本文主要内容如下 (1)推导气体的流量、温度和压力方程。 (2)基于AMESim对普通气动回路进行仿真分析。并推导气动系统常用元件的 数学方程,在此基础上对气动元件及系统进行模型仿真分析。 (3)对气动比例位置系统进行建模与仿真研究,在系统仿真模型基础上进行 故障仿真研究。最后探讨基于 AMESim 的气动比例位置系统实时仿真研究。

1.气动系统建模的理论基础 气动系统和元件建模的首要任务就是要充分的明确空气的物理性质和空气的热力学性质,为准确的元件建模和系统仿真奠定基础。气动元件的结构是十分复杂的,但其中的基本规律和数学描述一般还是比较清楚的。经过前人的大量研究发现,气动系统的动态特性从本质上讲可以抽象为由一些基本环节所组成,比如放气环节、惯性环节和气容充气环节等等。而它们之间又是通过压力、力、位移、容积等参数相互关联相互影响的。 1.1 流量方程 流量特性表示元件的空气流通能力,将直接影响气动系统的动态特性。 所有的压力降取决于下面两个基本参数: a)声速流导 C(Sonic Conductance)——[null] b)临界压力比b(Critical Pressure Ratio)[S*m4/kg] ISO6358标准孔口——

标准体积流量 设绝对温度T ,绝对压力p的工况下的体积流量为Q,基准状态和标准状态下的体积流量可表示为: 空气压缩机的输出流量通常用换算到吸入口的大气状态下的体积流量来表示。以上公式同样适用于从吸入口的大气状态到基准或标准状态的换算。 气动孔口流量 在气动系统中,一般需要计算通过节流口的气体压力、流量、温度等参数,但是由于气体的可压缩性,气体在通过节流口时是个很复杂的过程,节流口前后的流道突然收缩或扩张,气体在孔口前后均会形成涡流,产生强烈的摩擦,因而机械能变成热能具有不可逆过程。同时,由于流体运动的极不规则,同一界面上的各点参数极不均匀。为了研究气体的流量特性,基本上可将阀中的节流口理想地等价为一个小孔或收缩喷嘴,并用小孔或者收缩喷嘴的流量特性来表示其流量特性。

电解电容主要技术参数

电解电容主要技术参数 1.等效串联 ESR的高低,与的容量、电压、频率及温度…都有关,ESR要求越低越好。当额定电压固定时,容量愈大ESR愈低。当容量固定时,选用高额定电压的品种可以降低ESR。低频时ESR高,高频时ESR低,高温也会使ESR上升。等效串联ESR 很多品牌可以从规格说明书上查到。 2. 漏电流 一看就明白,就是漏电!铝都存在漏电的情况,这是物理结构所决定的。不用说,漏电流当然是越小越好。器容量愈高,漏电流就愈大;降低工作电压可降低漏电流。反过来选用更高耐压的品种也会有助于减小漏电流。结合上面的两个参数,相同条件下优先选取高耐压品种的确是一个简便可行的好方法;降低内阻、降低漏电流、降低损失角、增加寿命。真是好处多多,唯价格上会高一些。有个说法,既电解工作在远低于额定工作电压时,由于不能得到有效的足以维持电极跟电解液之间的退极化作用,会导致的极化而降低涟波电流,增大ESR,从而提早老化。但是这个说法的前提是“远低于额定工作电压”,综合一些长期的实践经验来看,选取额定工作电压标称值的2/3左右为正常工作电压,是比较合理可*的。业余情况下可以对电解电容的漏电流大体上估计一下。把相同容量的电解电容按照额定承受电压进

行充电,放置一段时间后再检测两端的电压下降程度。下降电压越少的漏电流就越小。 3.标称参数 就是电容器上所列出的数值。 *静电容量,用UF表示。就不多说了。 *工作电压(working voltage)简称WV,应为标称安全值,也就是说应用电路中,不得超过此标称电压。 *温度常见的大多为85度、105度。高温条件下(例如纯甲类)要优选105度标称的。一般情况下优选高温度系数的对于改善其他参数性能也有积极的帮助。 4.散逸因数dissipation factor(DF) 有时DF值也用损失角tan表示。DF值是高还是低,与温度、容量、电压、频率……都有关系;当容量相同时,耐压愈高的DF值就愈低。频率愈高DF值愈高,温度愈高DF值也愈高。DF 值一般不标注在电容器上或规格介绍上面。在DIY选取电容时,可优先考虑选取更高耐压的,比如工作电压为45V时,选用50V的就不很合理。尽管使用50V的从承受电压正常工作方面并无不妥,但从DF 值方面考虑就欠缺一些。使用63V或71V耐压的会有更好的表现的。当然再高了性价比上就不合算了。 5. 涟波电流Irac 涟波电流对于石机的滤波电路来说,是一个很重要的参数。涟波电流Irac 是愈高愈好。他的高低与工作频率相关,频率越高Irac越

实验7~8:MOSFET模型参数提取

MOSFET模型参数的提取 计算机辅助电路分析(CAA)在LSI和VLSI设计中已成为必不可少的手段。为了优化电路,提高性能,希望CAA的结果尽量与实际电路相接近。因此,程序采用的模型要精确。SPICE-II是目前国内外最为流行的电路分析程序,它的MOSFET模型虽然尚不完善,但已有分级的MOS 1到3三种具一定精度且较实用的模型。确定模型后,提取模型参数十分重要,它和器件工艺及尺寸密切相关。尽管多数模型是以器件物理为依据的,但按其物理意义给出的模型参数往往不能精确的反映器件的电学性能。因此,必须从实验数据中提取模型参数。提取过程也就是理论模型与实际器件特性之间用参数来加以拟合的过程。可见,实测与优化程序结合使用应该是提取模型参数最为有效的方法。 MOS FET模型参数提取也是综合性较强的实验,其目的和要求是: 1、熟悉SPICE-II程序中MOS模型及其模型参数; 2、掌握实验提取MOS模型参数的方法; 3、学习使用优化程序提取模型参数的方法。 一、实验原理 1、SPICE-II程序MOS FET模型及其参数提取 程序含三种MOS模型,总共模型参数42个(表1)。由标记LEVEL指明选用级别。一级模型即常用的平方律特性描述的Shichman-Hodges模型,考虑了衬垫调制效率和沟道长度调制效应。二级模型考虑了短沟、窄沟对阈电压的影响,迁移率随表面电场的变化,载流子极限速度引起的电流饱和和调制以及弱反型电流等二级效应,给出了完整的漏电流表达式。三级模型是半经验模型,采用一些经验参数来描述类似于MOS2的二级效应。 MOS管沟道长度较短时,需用二级模型。理论上,小于8um时,应有短沟等效应。实际上5um以下才需要二级模型。当短至2um以下,二级效应复杂到难以解析表达时,启用三级模型。MOS模型参数的提取一般需要计算机辅助才能进行。有两种实用方法,一是利用管子各工作区的特点,分段线性拟合提取;二是直接拟合输出特性的优化提取。其中,直流参数的优化提取尚有不足之处:优化所获仅是拟合所需的特定参数,物理意义不确,难以反馈指导工艺和结构的设计;只适合当前模型,模型稍做改动,要重新提

电容的主要性能指标

电容的主要性能指标 标称容量和允许误差:电容器储存电荷的能力,常用的单位是F、uF、pF。电容器上标有的电容数是电容器的标称容量。电容器的标称容量和它的实际容量会有误差。常用固定电容允许误差的等级见表2。常用固定电容的标称容量系列见表3。一般,电容器上都直接写出其容量,也有用数字来标志容量的,通常在容量 小于10000pF的时候,用pF做单位,大于10000pF的时候,用uF做单位。为了简便起见,大于100pF而小于1uF的电容常常不注单位。没有小数点的,它的单位是pF,有小数点的,它的单位是uF。如有的电容上标有“332”(3300pF)三位有效数字,左起两位给出电容量的第一、二位数字,而第三位数字则表示在后加0的个数,单位是pF。 额定工作电压:在规定的工作温度范围内,电容长期可靠地工作,它能承受的最大直流电压,就是电容的耐压,也叫做电容的直流工作电压。如果在交流电路中,要注意所加的交流电压最大值不能超过电容的直流工作电压值。常用的固定电容工作电压有 6.3V、10V、16V、25V、50V、63V、100V、2500V、400V、500V、630V、1000V。 表2常用固定电容允许误差的等 允许误差±2%±5%±10%±20%(+20%-30%) (+50%-20%) (+100%-10%) 级别02 ⅠⅡⅢⅣⅤⅥ 表3常用固定电容的标称容量系列 电容类别允许误差容量范围标称容量系列 纸介电容、金属化纸介 电容、纸膜复合介质电容、低频(有极性)有机薄膜介质电容5% ±10% ±20% 100pF-1uF 1.01.52.23.34.76.8 1uF-100uF 1246810152030 506080100

电容器的主要参数有哪些

电容器的主要参数有哪些? 电容器的主要参数有标称容量(简称容量)、允许偏差、额定电压、漏电流、绝缘电阻、损耗因数、温度系数、频率特性等。 (一)标称容量 标称容量是指标注在电容器上的电容量。 电容量的基本单位是法拉(简称法),用字母“F”表示。比法拉小的单位还在毫法(mF)、微法(μF)、纳法(nF)、皮法(pF),它们之间的换算关系是: 1F=1000mF 1mF=1000μF 1μF=1000nF 1nF=1000pF 其中,微法(μF)和皮法(pF)两单位最常用。 在实际应用时,电容量在1万皮法以上电容量,通常用微法作单位,例如:0.047μF、0.1μF、2.2μF、47μF、330μF、4700μF等等。 电容量在1万皮法以下的电容器,通常用皮法作单位,例如:2pF、68 pF、100 pF、680 pF、5600 pF等等。 标称容量的标注方法有直标法、文字符号标注法和色标法等,具体的识别方法将在以后的内容中作详细介绍。 (二)允许偏差 允许偏差是指电容器的标称容量与实际容量之间的允许最大偏差范围。 电容器的容量偏差与电容器介质材料及容量大小有关。电解电容器的容量较大,误差范围大于±10%;而云母电容器、玻璃釉电容器、瓷介电容器及各种无极性高频在机薄膜介质电容器(如涤纶电容器、聚苯乙烯电容器、聚丙烯电容器

等)的容量相对较小,误差范围小于±20%。 (三)额定电压 额定电压也称电容器的耐压值,是指电容器在规定的温度范围内,能够连续正常工作时所能承受的最高电压。 该额定电压值通常标注在电容器上。在实际应用时,电容器的工作电压应低于电容器上标注的额定电压值,否则会造成电容器因过压而击穿损坏。 (四)漏电流 电容器的介质材料不是绝艰绝缘体,宁在一定的工作温度及电压条件下,也会有电流通过,此电流即为漏电流。 一般电解电容器的漏电流略大一些,而其它类型电容器的漏电流较小。 (五)绝缘电阻 绝缘电阻也称漏电阻,它与电容器的漏电流成反比。漏电流越大,绝缘电阻越小。绝缘电阻越大,表明电容器的漏电流越小,质量也越好。 (六)损耗因数 损耗因数也称电容器的损耗角正切值,用来表示电容器能量损耗的大小。该值越小,说明电容器的质量越好。 (七)温度系数 温度系数是指在一定温度范围内,温度每变化1℃时,电容器容量的相对变化值。温度系数值越小,电容器的性能越好。 (八)频率特性 频率特性是指电容器对各种不同高低的频率所表现出的性能(即电容量等电参数随着电路工作频率的变化而变化的特性)。不同介质材料的电容器,其最高工作频率也不同,例如,容量较大的电容器(如电解电容器)只能在低频电路中正常工作,高频电路中只能使用容量较小的高频瓷介电容器或云母电容器等。 信息来源:慧聪电子 【我来说两句】【推荐给朋友】【关闭窗口】

第一章 系统建模与仿真概述

第一章系统建模与仿真概述 系统:系统是由两个以上相互区别或相互作用的单元有机的结合在起来,完成某一功能的综合体。 系统的特征:1.系统的整体性 2.系统的层次性 3.系统的相关系 4.系统的目的性 5.系统对环境的适应性系统: 模型:模型是对系统的特征要素,有关信息和变化规律的一种抽象表述、它反映 了系统某些本质属性,描述了系统各要素间的相互关系,系统与环境之间的相互 作用。 模型的意义:1.客观实体系统很难做试验,或者根本不能做实验。 2.对象问题虽然可以做试验,但是利用模型更便于理解。 3.模型易于操作,利用模型的参数变化来了解现实问题的本质和规 律更加经济方便。 系统模型的种类:抽象模型和形象模型 抽象模型:数学模型图形模型计算机模型概念模型 形象模型:模拟模型实体模型 建立模型的步骤: 1.弄清问题,掌握实际情况 2.搜集资料 3.确定因素之间的关系 4.构造建模 5.求解模型 6.检验模型的正确性 系统建模预防针的一般方法和步骤(P17) 仿真的发展趋势:建模方法面对对象仿真分布交互仿真人工智能与 计算机仿真虚拟现实仿真 Internet网上仿真 第二章商贸物流系统建模与仿真 商贸流通在社会经济中的地位与作用:1,商贸流通是连接生产和消费的纽带; 2,商贸流通对生产具有反作用; 3,商贸流通是国民经济现代化的支柱。 商贸活动的内容: 1,商流,对象物所有权转移的活动称为商流。 2,物流,是指事物从供给方向需求方的转移。

3,资金流,主要是指资金流的转移过程,包括付款,转账等过程,是 整个商贸活动的目的。 4,信息流,指商品信息的提供,商品促销信息,技术支持,售后服务 等内容,也包括诸如询单价,报单价,付款通知单,转账通知单等商业贸易单证以及交易 方的支付能力和支付信誉。 预测:所谓预测就是人们对某一不确定的或未知事件的表述。 预测的作用:从变化的事物中找出使事物发生变化的变化的固有规律,寻找和研究各种变化现象的背景及其演变的逻辑关系,从而去揭示事物未来的面貌。 判断预测方法:一,部门负责人评判预测法;二,销售人员估计法;三,德尔菲法;四, 历时类比法。 德尔菲法:依靠技术专家小组背靠背景来判断,来代替面对面的会议,是不同专家将分歧的幅度和理由都能够表达出来,经过客观分析以求达到客观规律的一致意见。 时间序列预测技术:一,移动平均预测法(计算题p30例2); 二,指数平均预测法。 DRP:是分销需求计划的简称,它是MRP原理和技术在流通领域中的应用。该技术主要解决分销物资的应用和调度问题,其基本目标是合理进行分销物资和资源配置,以达到既有效 地满足市场需求优势的配置费用最省的目的。 *DRP的基本概念 1.库存:指仓库或物流中心实际存在的物资数量。 2.安全库存:为便于生产经营活动正常进行,防止因需求货供应的波动 引起缺货或停工待料,经常在仓库各项目保持一定数量的计划库存量, 成为安全库存。 3.期初和期末库存:指在论述的时间段开始和结束时本单位的实际库存。 4.进货提前期:指从发出订货到所定货物运回并入库所需要的时间长度。 5.送货提前期:指从接收订单到货物送到用户手中并接收入库的时间长度。 6.在途物资:指供应商已经接受订单备货,但尚未来到本单位入库的物资。 7.订货批量:指一次订货所订的物资数量。 8.时间周期:就是根据实际需要划分的时间段信息,如一日,周,月划分。 9.计划期:是指DRP尽心运算的整个时间段,可能是一个月,一个季度 或一年,他可划分为几个计划周期。 10.物流中心:从事物流活动的具有完善的信息网络的场所或组织。 BOD简介:B OD是MRP中物料清单BOM的概念和结构在分销领域的运用,它同BOM在产品结构树中连接各零件和成品一样,在供应方和各个需求方之间架起了一座沟通的桥梁。 DRP在分销网络中的运作原理(p43DRP原理图)

电容参数详解

在我们选择无极性电容式,不知道大家是否有注意到电容的X5R,X7R,Y5V,COG等等看上去很奇怪的参数,有些摸不着头脑,本人特意为此查阅了相关的文献,现在翻译出来奉献给大家。 这类参数描述了电容采用的电介质材料类别,温度特性以及误差等参数,不同的值也对应着一定的电容容量的范围。具体来说,就是: X7R常用于容量为3300pF~0.33uF的电容,这类电容适用于滤波,耦合等场合,电介质常数比较大,当温度从0°C变化为70°C时,电容容量的变化为±15%; Y5P与Y5V常用于容量为150pF~2nF的电容,温度范围比较宽,随着温度变化,电容容量变化范围为±10%或者+22%/-82%。 对于其他的编码与温度特性的关系,大家可以参考表4-1。例如,X5R的意思就是该电容的正常工作温度为-55°C~+85°C,对应的电容容量变化为±15%。 表4-1 电容的温度与容量误差编码 下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是A VX公司的命名方法,其他公司的产品请参照该公司的产品手册。NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。 一:NPO电容器 NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。它的填充介质是由铷、钐和一些其它稀有氧化物组成的。NPO电容器是电容量和介质损耗最稳定的电容器之一。在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。NPO电容的漂移或滞后小于±0.05% ,相对大于±2%的薄膜电容来说是可以忽略不计的。其典型的容量相对使用寿命的变化小于±0.1%。NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好。下表给出了NPO电容器可选取的容量范围。NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容。 二:X7R电容器 X7R电容器被称为温度稳定型的陶瓷电容器。当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。

第三讲-器件模型参数的优化提取详解

元器件模型参数的优化提取微电子学院贾新章 (2013. 11 )

PSpice中的模型和模型参数库 一、概述:为元器件建立模型参数的步骤 二、采用Model Editor分组提取模型参数 三、基于器件物理原理计算部分模型参数 四、建立适用于高级分析的元器件模型参数描述 五、元器件模型参数的综合优化提取。 六、为元器件模型描述建立元器件符号 七、将新建模型设置为PSpice仿真可以调用的库文件

一、概述:为元器件建立模型参数的步骤 第一步:优化提取模型参数 1、采用Model Editor分组提取模型参数; 2、基于器件物理原理,计算部分模型参数; 3、为元器件建立适用于高级分析的模型参数描述; 4、采用PSpice/Optimizer进行一次综合优化提取。 (采用前面结果作为优化提取模型参数的最佳初值)第二步:建立供Capture绘制电路图调用的元器件符号 第三步:将新建模型设置为PSpice仿真可以调用的库文件。下面将分别介绍每一部分的操作方法。

PSpice中的模型和模型参数库 一、概述:为元器件建立模型参数的步骤 二、采用Model Editor分组提取模型参数 三、基于器件物理原理计算部分模型参数 四、建立适用于高级分析的元器件模型参数描述 五、元器件模型参数的综合优化提取。 六、为元器件模型描述建立元器件符号 七、将新建模型设置为PSpice仿真可以调用的库文件

二、采用Model Editor分组提取模型参数 Model Editor模块可以对其支持的几种元器件,依据元器件的各种端特性数据,分组优化提取相应当模型参数数据。 (1) 调用MODEL EDITOR模块; (2) 选择执行Model/New命令,从对话框中设置模型类型。

电容的分类、作用与识别方法

一、电容的分类和作用 电容(Electric capacity),由两个金属极,中间夹有绝缘材料(介质)构成。由于绝缘材料的不同,所构成的电容器的种类也有所不同: 按结构可分为:固定电容,可变电容,微调电容。 按介质材料可分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容电解电容。 按极性分为:有极性电容和无极性电容。我们最常见到的就是电解电容。 电容在电路中具有隔断直流电,通过交流电的作用,因此常用于级间耦合、滤波、去耦、旁路及信号调谐 二、电容的符号 电容的符号同样分为国内标表示法和国际电子符号表示法,但电容符号在国内和国际表示都差不多,唯一的区别就是在有极性电容上,国内的是一个空筐下面一根横线,而国际的就是普通电容加一个"+"符号代表正极。 三、电容的单位 电阻的基本单位是:F (法),此外还有μF(微法)、pF(皮法),另外还有一个用的比较少的单位,那就是:nF(),由于电容 F 的容量非常大,所以我们看到的一般都是μF、nF、pF的单位,而不是F的单位。 他们之间的具体换算如下: 1F=1000000μF 1μF=1000nF=1000000pF 四、电容的耐压单位:V(伏特) 每一个电容都有它的耐压值,这是电容的重要参数之一。普通无极性电容的标称耐压值有:63V、100V、160V、250V、400V、600V、1000V等,有极性电容的耐压值相对要比无极性电容的耐压要低,一般的标称耐压值有:4V、6.3V、10V、16V、25V、35V、50V、63V、80V、100V、220V、400V等。 五、电容的种类

电容的种类有很多,可以从原理上分为:无极性可变电容、无极性固定电容、有极性电容等,从材料上可以分为:CBB电容(聚乙烯),涤纶电容、瓷片电容、云母电容、独石电容、电解电容、钽电容等。下面是各种电容的优缺点: 无感CBB电容 2层聚丙乙烯塑料和2层金属箔交替夹杂然后捆绑而成。 无感,高频特性好,体积较小 不适合做大容量,价格比较高,耐热性能较差。 CBB电容 2层聚乙烯塑料和2层金属箔交替夹杂然后捆绑而成。 有感,其他同上。 瓷片电容 薄瓷片两面渡金属膜银而成。 体积小,耐压高,价格低,频率高(有一种是高频电容) 易碎!容量低 云母电容 云母片上镀两层金属薄膜 容易生产,技术含量低。 体积大,容量小,(几乎没有用了) 独石电容 体积比CBB更小,其他同CBB,有感 电解电容 两片铝带和两层绝缘膜相互层叠,转捆后浸泡在电解液(含酸性的合成溶液)中。 容量大。 高频特性不好。 钽电容 用金属钽作为正极,在电解质外喷上金属作为负极。 稳定性好,容量大,高频特性好。 造价高。(一般用于关键地方) 六、电容的标称及识别方法 1. 由于电容体积要比电阻大,所以一般都使用直接标称法。如果数字是0.001,那它代表的是0.001uF=1nF,如果是10n,那么就是10nF,同样100p就是100pF。

电阻,电感,电容的主要参数

电阻,电感,电容的主要参数 电阻主要特性参数 1、标称阻值:电阻器上面所标示的阻值。 2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。 允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级 3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。 线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500 非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、100 4、额定电压:由阻值和额定功率换算出的电压。 5、最高工作电压:允许的最大连续工作电压。在低气压工作时,最高工作电压较低。 6、温度系数:温度每变化1℃所引起的电阻值的相对变化。温度系数越小,电阻的稳定性越好。阻值随温度升高而增大的为正温度系数,反之为负温度系数。 7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。 8、电压系数:在规定的电压范围内,电压每变化1伏,电阻器的相对变化量。 9、噪声:产生于电阻器中的一种不规则的电压起伏,包括热噪声和电流噪声两部分,热噪声是由于导体内部不规则的电子自由运动,使导体任意两点的电压不规则变化。 电感器的主要参数 电感器的主要参数有电感量、允许偏差、品质因数、分布电容及额定电流等。

相关文档
最新文档