轴心受压构件承载力计算(教案15)

轴心受压构件承载力计算(教案15)
轴心受压构件承载力计算(教案15)

教案

2010~2011学年第一学期

主讲教师刘金慧

课程名称结构设计原理

课程类别专业必修课

学时及学分80学时 4.5学分

授课班级土木081、2、3、4

使用教材结构设计原理叶见曙主编系(院、部) 土木工程系

教研室(实验室) 桥梁教研室

课时授课计划

课次序号:15 一、课题:§6.1 普通箍筋轴心受压构件的强度计算

§6.2 螺旋箍筋轴心受压构件的强度计算

二、课型:课堂讲授

三、目的要求:掌握普通箍筋柱与螺旋箍筋柱的概念,普通箍筋柱的构造要求、破坏

特征、计算公式及计算步骤。理解螺旋箍筋柱的受力特点及计算方法。

四、重点、难点:重点是普通箍筋柱与螺旋箍筋柱的概念,普通箍筋柱的构造要求、

破坏特征、计算公式及计算步骤。难点是螺旋箍筋柱的受力特点。

五、教学方法及手段:讲授

六、参考资料:《公路钢筋混凝土及预应力混凝土桥涵设计规范》

《公路桥涵设计通用规范》

七、作业: 1. 普通箍筋柱与螺旋箍筋柱的概念

2. 普通箍筋柱破坏特征、计算公式及计算步骤

3. 习题6.5

八、授课记录:

九、授课效果分析:

十、教学进程(教学内容、教学环节及时间分配等)

第6章 轴心受压构件的强度计算

当构件受到位于截面形心的轴向压力作用时,为轴心受压构件。钢筋混凝土轴心受压构件按照箍筋的功能和配置方式的不同可分为两种:配有纵向钢筋和普通箍筋的轴心受压构件(普通箍筋柱),如图1所示;配有纵向钢筋和螺旋箍筋的轴心受压构件(螺旋箍筋柱)。如图所示2。

图1 普通箍筋柱

图2 螺旋箍筋柱(阴影部分代表核心面积)

a)螺旋箍筋柱;b)焊接环筋柱

第1节普通箍筋柱

一、构造要求

1.截面形式:普通箍筋柱的截面形状多为正方形、矩形和圆形等。

2.混凝土标号:轴心受压构件的混凝土一般多采用C20 ~C30号混凝土。

3.截面尺寸:轴心受压构件截面尺寸不宜过小,因长细比越大, 值越小,承载力降低很多,不能充分利用材料强度。构件截面尺寸不宜小于250mm。

4.纵向钢筋

纵向钢筋为对称布置,设置纵向钢筋的目的是:(1) 协助混凝土承受压力,可减少构件截面尺寸;(2) 承受可能存在的不大的弯矩;(3) 防止构件的突然脆性破坏。

纵向受力钢筋的直径应不小于12mm。在构件截面上,纵向受力钢筋至少应有4根并且在截面每一角隅处必须布置一根。纵向受力钢筋的净距不应小于50mm,也不大于350mm。纵向钢筋与混凝土截面边缘的净距c≥25mm。

对于纵向受力钢筋的配筋率要求,一般是从轴心受压构件中不可避免存在混凝上徐变、可能存在的较小偏心弯矩等非计算因素而提出的。全部钢筋的纵向配筋率应不小于0.5%,当混凝土强度等级为C50及以上时,不应小于0.6%,同时每侧纵向受力钢筋的配筋率不宜小于0.2%。

一般纵向钢筋的配筋率约为0.5%~2%。

5.箍筋

普通箍筋柱沿构件高度设置有等间距的箍筋。普通箍筋的作用是,防止纵向钢筋局部压屈,并与纵向钢筋形成钢筋骨架,便于施工。

普通箍筋柱中的箍筋必须做成封闭式的箍筋,箍筋直径应不小于8mm。间距应不大于纵向受力钢筋直径的15倍,或构件截面的较小尺寸,并不大于400mm。在纵向钢筋接头处,箍筋的间距应不大于纵向钢筋直径的10倍,且不大于200mm。当纵向钢筋截面积超过混凝土计算截面的3%时,箍筋间距应不大于纵向钢筋直径的10倍,且不大于200mm。被同一箍筋所箍的纵向钢筋根数,在构件的角边上不宜多于3根。若多于3根,则应设置附加箍筋。

二、破坏形态

按照构件的长细比不同,轴心受压构件可分为短柱和长柱两种,它们的受力变形和破坏形态各不相同。 1.短柱

当压力P 逐渐增加时,柱也随之缩短,用仪表测量,证明混凝土全截面和纵向钢筋均发生压缩变形。当轴向压力N 达到破坏荷载的90%左右时,柱四周混凝土表面出现纵向裂缝等压坏的迹象,混凝土保护层剥落,最后由于箍筋间的纵向钢筋发生屈曲,向外凸出,混凝土被压碎而整个试验柱破坏。破坏时,测得的混凝土压应变大于1.8×l0-3,而柱中部的横向挠度很小。钢筋混凝土短柱的破坏是一种材料破坏,即混凝土压碎破坏。 2.长柱

试件长柱在压力P 不大时,全截面也是受压,但随着压力增大,长柱不仅发生压缩变形,同时产生较大的横向挠度f ,凹侧压应力较大,凸侧较小。在长柱破坏前,横向挠度增加得很快,使长柱的破坏来得比较突然,导致失稳破坏。破坏时,凹侧的混凝土首先被压碎,有纵向裂缝,纵向钢筋被压弯而向外鼓出,混凝土保护层脱落;凸侧则由受压突然转变为受拉,出现水平裂缝)。

三、纵向弯曲系数?

如前所述,对于钢筋混凝土轴心受压构件,把长柱失稳破坏时的临界压力与短柱压坏时的轴心压力的比值,称为纵向弯曲系数?。当柱的材料及纵筋含筋一定时,随着长细比λ的增加,纵向弯曲系数?就减小,则柱破坏时临界压力P c 也愈小。纵向弯曲系数?主要与构件的长细比有关,混凝土强度等级及配筋率μ'对其影响较小。

四、正截面强度计算

配有纵向受力钢筋和普通箍筋的轴心受压构件正截面承载能力计算公式

()s d s cd du d A f A f N N ''9.00+=≤?γ

当纵向钢筋配筋率A

A s '=

ρ>3%时,A 应改为s n A A A '-=,mm 2。

五、实用计算方法及示例

普通箍筋柱的正截面强度计算,分为截面设计和强度复核两种情况。

1.截面设计

已知:截面尺寸,计算长度

l,混凝土抗压设计强度,钢筋抗压设计强度,轴向压力。

求:纵向钢筋

A'。

s

首先计算长细比,查表得相应的纵向弯曲系数?,直接用基本公式求得。

若截面尺寸未知,可先在适宜的配筋率范围内(ρ=0.5%--1.5%)假定一个ρ值,并假设?=1,代入公式确定截面尺寸,再按尺寸已知的情况,求

A'。

s

2.强度复核

已知:截面尺寸,纵向钢筋,计算长度

l,混凝土和钢筋的抗压设计强度。

求:截面承载能力。

首先应检查纵向钢筋及箍筋布置构造是否符合要求。由已知截面尺寸和计算长度

l计算长细

比,查表得相应的纵向弯曲系数?。由公式计算轴心压杆正截面承载能力。

第2节螺旋箍筋柱

一、构造要求

1.截面形式:螺旋箍筋柱的截面形状通常做成圆形或八角形或正多边形

2.纵向钢筋:设置纵向钢筋的目的同普通箍筋柱。

纵向钢筋应沿圆周均匀分布,其截面积应不小于核心截面积的0.5%,构件核心截面积应不小于构件整个面积A的2/3,ρ也不宜大于3%,常用的配筋率ρ在0.8%~1.2%之间。

3.箍筋:螺旋箍筋柱的配筋特点是除了配置纵向受力钢筋以外,纵向钢筋外围还设有连续环绕的间距较密的螺旋箍筋(或间距较密的焊环)。螺旋箍筋的作用是使截面中间部分(核心)混凝土成为约束混凝土,从而提高构件的强度和延性。

螺旋箍筋的直径不宜过大,应不小于纵向受力钢筋直径的1/4,也不小于8mm。

为了保证螺旋箍筋对核心混凝土横向变形的限制的作用,螺旋箍筋的间距S 应满足:(1).S 应不大于核心直径的1/5;(2).S 应不大于80mm 。一般情况下,S 应不小于40mm ,以便施工。

二、受力特点与破坏特性

对于配有纵向钢筋和螺旋箍筋的轴心受压短柱,沿柱高连续缠绕的、间距很密的螺旋箍筋犹如一个套筒,将核心部分的混凝土包住,有效地限制了核心混凝土的横向变形,从而提高了柱的承载能力。螺旋箍筋的作用是间接的提高核心混凝土的抗压强度,从而提高柱的承载能力,故螺旋箍筋柱又成为间接箍筋柱。螺旋箍筋柱的正截面破坏是其核心混凝土压碎、纵向钢筋已经屈服,而在破坏之前,柱的混凝土保护层早已剥落。

三、正截面强度计算基本公式

配有纵向受力钢筋和螺旋箍筋的轴心受压构件正截面承载能力计算公式

()so sd s d s cor cd du d A kf A f A f N N ++=≤''9.00γ

四、基本公式的适用条件

《公路桥规》(JTGD62)有如下规定条件:

1.为了保证在使用荷载作用下,螺旋箍筋混凝土保护层不致过早剥落,螺旋箍筋柱的承载力计算值,不应比按普通箍筋柱算得的承载力大50%,即

()so

sd s d s cor cd A kf A f A f ++''9.0≤1.5?

()s d s cd A f A f ''9.0+?

2.当遇到下列任意一种情况时,不考虑螺旋箍筋的作用,

(1)当长细比480≥=i l λ(相当于120≥=d l λ,d 为圆形截面直径)时,由于纵向弯曲的影响,螺旋箍筋不能发挥其作用;

(2)当按螺旋箍筋柱计算承载力小于按普通箍筋柱计算的承载力时,因为按螺旋箍筋柱计算只考虑了混凝土核心面积,当柱截面外围混凝土较厚时,核心面积相对较小,会出现这种情况,这时就应按普通箍筋柱进行柱的承载力计算。

(3)当0s A <0.25s A '时,螺旋箍筋配置得太少,不能起显著作用。

五、实用设计计算方法及示例

螺旋箍筋柱的设计也分为截面设计和强度复核,计算方法比较灵活。

基本计算轴心受力构件的强度和刚度计算

轴心受力构件的强度和刚度计算 1.轴心受力构件的强度计算 轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。轴心受力构件的强度计算公式为 f A N n ≤= σ (4-1) 式中: N ——构件的轴心拉力或压力设计值; n A ——构件的净截面面积; f ——钢材的抗拉强度设计值。 对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已由孔前接触面传递。因此,验算最外列螺栓处危险截面的强度时,应按下式计算: f A N n ≤= ' σ (4-2) 'N =)5 .01(1 n n N - (4-3) 式中: n ——连接一侧的高强度螺栓总数; 1n ——计算截面(最外列螺栓处)上的高强度螺栓数; ——孔前传力系数。 采用高强度螺栓摩擦型连接的拉杆,除按式(4-2)验算净截面强度外,还应按下式验算毛截面强度 f A N ≤= σ (4-4) 式中: A ——构件的毛截面面积。 2.轴心受力构件的刚度计算 为满足结构的正常使用要求,轴心受力构件应具有一定的刚度,以保证构件不会在运输和安装过程中产生弯曲或过大的变形,以及使用期间因自重产生明显下挠,还有在动力荷载作用下发生较大的振动。 轴心受力构件的刚度是以限制其长细比来保证的,即

][λλ≤ (4-5) 式中: λ——构件的最大长细比; [λ]——构件的容许长细比。 3. 轴心受压构件的整体稳定计算 《规范》对轴心受压构件的整体稳定计算采用下列形式: f A N ≤? (4-25) 式中:?——轴心受压构件的整体稳定系数,y cr f σ?= 。 整体稳定系数?值应根据构件的截面分类和构件的长细比查表得到。 构件长细比λ应按照下列规定确定: (1)截面为双轴对称或极对称的构件 ? ?? ==y y y x x x i l i l //00λλ (4-26) 式中:x l 0,y l 0——构件对主轴x 和y 的计算长度; x i ,y i ——构件截面对主轴x 和y 的回转半径。 双轴对称十字形截面构件,x λ或y λ取值不得小于t (其中b/t 为悬伸板件宽厚比)。 (2)截面为单轴对称的构件 以上讨论柱的整定稳定临界力时,假定构件失稳时只发生弯曲而没有扭转,即所谓弯曲屈曲。对于单轴对称截面,绕对称轴失稳时,在弯曲的同时总伴随着扭转,即形成弯扭屈曲。在相同情况下,弯扭失稳比弯曲失稳的临界应力要低。因此,对双板T 形和槽形等单轴对称截面进行弯扭分析后,认为绕对称轴(设为y 轴)的稳定应取计及扭转效应的下列换算长细比代替y λ [] 2 /122202022222)/1(4)()(2 1 z y z y z y yz i e λ λλλλλλ--+++= )/7.25//(2 202ωωλl I I A i t z +=

轴心受压构件长细比详细计算公式及扩展

关于受压杆件长细比的计算 1.对于轴压构件的长细比计算公式如下: i l 0=λ l l ?=μ0 A I i =(根据I 的定义,理解i ) 其中对各个系数进行详解: A —构件的横截面积。矩形面积为A=bh 。对于圆形截面为:42 D A π=,圆管截面22 )1(4απ-=D A 。 I —构件的截面惯性矩。对于矩形的截面惯性矩为123 bh I =,对于圆形截面来说为644 D I π=,对于圆管截面的惯性矩为 )1(6444 απ-=D I 其中D d /=α,d 为圆管内径,D 为圆管外径。 矩形:24/3232022 222bh y b dy b y dA y I h h h =?=?=?= ??- 圆形: 64/)22sin (2164)2cos 1(2164sin sin 320420 42022032202202D D d D d dr r rd r dr dA y I D D πθθθθθθθθππππ=-?=-?==?= ?=??????(θθ2sin 212cos -=) l 为构件的几何长度,其具体长度又根据混凝土,钢结构,砌体等不同的结构形式而有所不同。

μ为长度因数,其值由竿端约束情况决定。例如,两端铰支的细长压杆,μ=1;一段固定、一段自由的细长压杆,μ=2;两端固定的细长压杆,μ=0.5;一段固定一段铰支的细长压杆,μ=0.7。 拓展: 根据i 的计算公式,很明显,我们可以就算出矩形和圆形的回转半径i : 矩形:12 h i =;圆形(实):4D i =,圆环:4)1(4α-=D i (不用记) 钢结构受压杆件的容许长细比

4.2 轴心受压构件承载力计算

轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍筋 柱;一种是配置纵向钢筋和螺旋筋(图)或 焊接环筋(图4.2.1c)的柱,称为螺旋箍筋柱或 间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近

破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=,相应的纵向钢筋应力值=E s=2×105×mm2=400N/mm2。因此,当纵向钢筋为高强度钢筋时,构件破坏时纵向钢筋可能达不到屈服强度。设计中对于屈服强度超过400N/mm2的钢筋,其抗压强度设计值只能取400N/mm2。显然,在受压构件内配置高强度的钢筋不能充分发挥其作用,这是不经济的。 2.轴心受压长柱的破坏特征 对于长细比较大的长柱,由于各种偶然因素造成的初始偏心距的影响是不可忽略的,在轴心压力N作用下,由初始偏心距将产生附加弯矩,而这个附加弯矩产生的水平挠度又加大了原来的初始偏心距,这样相互影响的结果,促使了构件截面材料破坏较早到来,导致承截能力的降低。破坏时首先在凹边出现纵向裂缝,接着混凝土被压碎,纵向钢筋被压弯向外凸出,侧向挠度急速发展,最终柱子失去平衡并将凸边混凝土拉裂而破坏(图4.2.3)。试验表明,柱的长细比愈大,其承截力愈低,对于长细比很大的长柱,还有可能发生“失稳破坏”。 由上述试验可知,在同等条件下,即截面相同,配筋相同,材料相同的条件下,长柱承载力低于短柱承载力。在确定轴心受压构件承截力计算公式时,规范采用构件

轴心受力构件习题及问题详解

轴心受力构件习题及答案 一、选择题 的构件,在拉力N作用下的强度计算公1. 一根截面面积为A,净截面面积为A n 式为______。 2. 轴心受拉构件按强度极限状态是______。 净截面的平均应力达到钢材的抗拉强度 毛截面的平均应力达到钢材的抗拉强度 净截面的平均应力达到钢材的屈服强度 毛截面的平均应力达到钢材的屈服强度 3. 实腹式轴心受拉构件计算的容有______。 强度强度和整体稳定性强度、局部稳定和整体 稳定强度、刚度(长细比) 4. 轴心受力构件的强度计算,一般采用轴力除以净截面面积,这种计算方法对下列哪种连接方式是偏于保守的? 摩擦型高强度螺栓连接承压型高强度螺栓连 接普通螺栓连接铆钉连接 5. 工字型组合截面轴压杆局部稳定验算时,翼缘与腹板宽厚比限值是根据 ______导出的。 6. 图示单轴对称的理想轴心压杆,弹性失稳形式可能为______。

X轴弯曲及扭转失稳Y轴弯曲及扭转失稳 扭转失稳绕Y轴弯曲失稳 7. 用Q235号钢和16锰钢分别建造一轴心受压柱,其长细比相同,在弹性围屈曲时,前者的临界力______后者的临界力。 大于小于等于或接近无法 比较 8. 轴心受压格构式构件在验算其绕虚轴的整体稳定时采用换算长细比,是因为______。 格构构件的整体稳定承载力高于同截面的实腹构件 考虑强度降低的影响 考虑剪切变形的影响 考虑单支失稳对构件承载力的影响 9. 为防止钢构件中的板件失稳采取加劲措施,这一做法是为了______。 改变板件的宽厚比增大截面面积改变截面上 的应力分布状态增加截面的惯性矩 10. 轴心压杆构件采用冷弯薄壁型钢或普通型钢,其稳定性计算______。 完全相同 仅稳定系数取值不同 仅面积取值不同 完全不同 11. 工字型截面受压构件的腹板高度与厚度之比不能满足按全腹板进行计算的要求时,______。

砖混结构中承重构造柱的设计与计算

砖混结构中承重构造柱的设计与计算 (广东梅州陈赞) 摘要:在砌体结构设计过程中,应根据具体情况区分一般构造柱和承重构造柱。承重构造柱的设计与计算与框架柱基本相同,但有其特点。承重构造柱受力明确,传力路线简捷,其基础的处理要根据构造柱的荷载特点进行设计。 关键词:砖混结构构造柱 1引言 根据《建筑抗震设计规范》(GBJ50011-2001),在抗震设防地区砖混结构的建筑设计中应设置构造柱。设置构造柱可以加强对砌体结构墙体的约束作用,提高墙体的抗剪能力和结构的极限变形能力,改善砌体结构的整体性,从而提高房屋的抗震性能。在设计过程中,一般不考虑构造柱单独承受荷载,而视其承载能力等同于砌体材料。构造柱的截面尺寸和配筋一般也是按照构造要求进行设计。但是在需要设置大空间房间的工程中,构造柱支承着横梁,这时构造柱就起着承重和抗震的双重作用,如图1。这种构造柱的设计及基础处理与一般的构造柱有一定的区别。 图1大开间房间的承重构造柱 2承重构造柱的受力分析 支承横梁的构造柱,如果荷载较小,按砌体强度考虑就能够满足强度要求时,可以视为一般构造柱。其截面及配筋可以按照《建筑抗震设计规范》的有关规定设置即可。但是当支承横梁的构造柱承受的荷载较大,按砌体强度考虑不能够满足强度要求时,此时的构造柱应按照承重构造柱进行设计。 由于构造柱与墙体连接处留有马牙槎,考虑到构造柱与墙体的拉结作用,横梁上的荷载有一部分要扩散到墙体,由墙体来承担。但在实际设计时,由于墙体所承受的这部分荷载较小,为了计算方便,假设横梁上的荷载全部由构造柱来承担,同时假设横(纵)向水平地震力全部由横(纵)墙承受,这样构造柱的传力路线就简单明确了。 3承重构造柱的计算与设计 在砖混结构中,大空间内横梁与构造柱形成的结构与框架相似但与框架又有区别。如果在大空间房间中加上几榀框架,则在结构中显得比较生硬,而且框架部分与砌体结构部分共同工作的协调性较差,不利于结构整体抗震。而横梁与构造柱相结合的结构形式在荷载传递和抗震性能方面与之相比则优越得多。 承重构造柱的计算与框架柱基本相同,但又有不同之处: (1)为了减少顶层的弯矩值,从而减少柱的配筋,顶层梁、柱节点设计为“铰接”,计算简图见图2。

钢结构试题及答案

1.体现钢材塑性性能的指标是( ) A .屈服点 B. 强屈比 C. 延伸率 D. 抗拉强度 2.在结构设计中,失效概率p f 与可靠指标β的关系为 ( )。 A .p f 越大,β越大,结构可靠性越差 B .p f 越大,β越小,结构可靠性越差 C .p f 越大,β越小,结构越可靠 D .p f 越大,β越大,结构越可靠 3.对于受弯构件的正常使用极限状态是通过控制 ( )来保证的。 A .稳定承载力 B .挠跨比 C .静力强度 D .动力强度 4. 钢框架柱的计算长度与下列哪个因素无关( ) A.框架在荷载作用下侧移的大小 B.框架柱与基础的连接情况 C.荷载的大小 D. 框架梁柱线刚度比的大小 5. 格构式轴压构件绕虚轴的稳定计算采用了大于x λ的换算长细比ox λ是考虑( ) A 格构构件的整体稳定承载力高于同截面的实腹构件 B 考虑强度降低的影响 C 考虑单肢失稳对构件承载力的影响 D 考虑剪切变形的影响 6. 摩擦型高强度螺栓连接与承压型高强度螺栓连接( ) A 没有本质差别 B 施工方法不同 C 承载力计算方法不同 D 材料不同 7.为保证格构式构件单肢的稳定承载力,应( )。 A 控制肢间距 B 控制截面换算长细比 C 控制单肢长细比 D 控制构件计算长度 8.梁的纵向加劲肋应布置在( )。 A 靠近上翼缘 B 靠近下翼缘 C 靠近受压翼缘 D 靠近受拉翼缘 9.同类钢种的钢板,厚度越大( ) A. 强度越低 B. 塑性越好 C. 韧性越好 D. 内部构造缺陷越少 10. 在低温工作的钢结构选择钢材除强度、塑性、冷弯性能指标外,还需( )指标。 A. 低温屈服强度 B. 低温抗拉强度 C. 低温冲击韧性 D . 疲劳强度 11. 钢材脆性破坏同构件( )无关。 A 应力集中 B 低温影响 C 残余应力 D 弹性模量 12.焊接残余应力不影响构件的( ) A .整体稳定 B .静力强度 C .刚度 D .局部稳定 13.摩擦型连接的高强度螺栓在杆轴方向受拉时,承载力( ) A .与摩擦面的处理方法有关 B .与摩擦面的数量有关 C .与螺栓直径有关 D .与螺栓的性能等级无关 14.直角角焊缝的焊脚尺寸应满足1min 5.1t h f ≥及2max 2.1t h f ?≤,则1t 、2t 分别为( )的 厚度。 A .1t 为厚焊件,2t 为薄焊件 B .1t 为薄焊件,2t 为厚焊件 C .1t 、2t 皆为厚焊件 D .1t 、2t 皆为薄焊件 15.理想轴心受压构件失稳时,只发生弯曲变形,杆件的截面只绕一个主轴旋转,杆的纵轴由直 线变为曲线,这时发生的是( )。 A .扭转屈曲 B .弯扭屈曲 C .侧扭屈曲 D .弯曲屈曲

钢结构轴力构件-附答案

钢结构练习四 轴心受力构件 一、选择题(××不做要求) 1.工字形轴心受压构件,翼缘的局部稳定条件为()y f t b 2351.0101λ+≤,其中λ的含义为( A )。 A )构件最大长细比,且不小于30、不大于100 B )构件最小长细比 C )最大长细比与最小长细比的平均值 D )30或100 2.轴心压杆整体稳定公式f A N ≤?的意义为( D )。 A )截面平均应力不超过材料的强度设计值 B )截面最大应力不超过材料的强度设计值 C )截面平均应力不超过构件的欧拉临界应力值 D )构件轴心压力设计值不超过构件稳定极限承载力设计值 3.用Q235钢和Q345钢分别制造一轴心受压柱,其截面和长细比相同,在弹性范围内屈曲时,前者的临界力( C )后者的临界力。 A )大于 B )小于 C )等于或接近 D )无法比较 4.为防止钢构件中的板件失稳采取加劲措施,这一做法是为了( A )。 A )改变板件的宽厚比 B )增大截面面积 C )改变截面上的应力分布状态 D )增加截面的惯性矩 5.为提高轴心压杆的整体稳定,在杆件截面面积不变的情况下,杆件截面的形式应使其面积分布( B )。 A )尽可能集中于截面的形心处 B )尽可能远离形心 C )任意分布,无影响 D )尽可能集中于截面的剪切中心 ××6.轴心压杆采用冷弯薄壁型钢或普通型钢,其稳定性计算( B )。 A )完全相同 B )仅稳定系数取值不同 C )仅面积取值不同 D )完全不同 7.实腹式轴压杆绕x ,y 轴的长细比分别为λx ,λy ,对应的稳定系数分别为φx , φy ,若λx =λy ,则( D )。 A )φx >φy B )φx =φy C )φx <φy D )需要根据稳定性分类判别 8.轴心受压杆的强度与稳定,应分别满足( B )。 A )f A N n ≤=σ,f A N n ?≤=?σ B )f A N n ≤=σ,f A N ?≤=?σ C )f A N ≤= σ,f A N n ?≤=?σ

(整理)自考《钢结构》分章节历年真题4

4、轴心受力构件 4、1轴心受力构件的特点和截面形式 090712.对于轴心受压构件或偏心受压构件,如何保证其满足正常使用极限状态?() A.要求构件的跨中挠度不得低于设计规范规定的容许挠度 B.要求构件的跨中挠度不得超过设计规范规定的容许挠度 C.要求构件的长细比不得低于设计规范规定的容许长细比 D.要求构件的长细比不得超过设计规范规定的容许长细比 110725.轴心受压构件的正常使用极限状态通过限制_______保证。 4、2轴心受拉构件 4、3实腹式轴心受压构件 100410.某截面无削弱的热轧型钢实腹式轴心受压柱,设计时应计算( ) A.整体稳定、局部稳定 B.强度、整体稳定、长细比 C.整体稳定、长细比 D.强度、局部稳定、长细比

100713.在轴心受力构件计算中,验算长细比是为了保证构件满足下列哪项要求?( ) A.强度 B.整体稳定 C.拉、压变形 D.刚度100725.轴心受压构件的整体失稳形式可分为弯曲屈曲、扭转屈曲和_______三种。 110410.某轴压柱绕两主轴属于不同截面分类,等稳定条件为() A.λx=λy B.?x=?y C.Ix=Iy D.ix=iy 130409. 100413.初始弯曲和荷载的初始偏心对轴心受压构件整体稳定承载力的影响为( ) A.初弯曲和初偏心均会降低稳定承载力 B.初弯曲和初偏心均不会影响稳定承载力 C.初弯曲将会降低稳定承载力,而初偏心将不会影响稳定承载力 D.初弯曲将不会影响稳定承载力,而初偏心将会降低稳定承载力 090725.对于轴心受压构件而言,杆件的初弯曲越大,稳定承载力越______。

轴心受压构件纵向受压钢筋计算

结构构件计算书 轴心受压构件纵向受压钢筋计算 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、构件编号: ZH-1 二、依据规范: 《混凝土结构设计规范》 (GB 50010-2010) 三、计算参数 1.几何参数: 截面形状: 矩形 截面宽度: b=400mm 截面高度: h=400mm 构件的计算长度: lo=5000mm 2.材料信息: 混凝土强度等级: C30 fc =14.3N/mm2 钢筋类型: HRB335 fy'=300N/mm2 3.设计参数: 结构重要性系数: γo=1.0 纵筋最小配筋率: ρmin=0.600% 4.荷载信息: 轴向力设计值: N=2000.000kN 四、计算过程 1.确定稳定系数Φ: lo/b=5000/400=12.500 查《混凝土结构设计规范》(GB 50010-2010)表6.2.15 得, Φ= 0.943 2.计算纵筋面积A's: 截面面积A=bh=400*400=160000mm2 A's= (γo*N/0.9Φ-fc*A)/fy' = (1.0*2000.000*1000/(0.9*0.943)-14.3*160000)/300=228mm2 纵筋配筋率ρ=A's/A=(228/160000)%=0.143%≤3%,结果符合标准。 3.验算纵筋配筋率: ρ=A's/A=(228/160000)%=0.143% ρmin=0.600% ρ<ρmin 纵筋配筋率不满足要求 所以满足最小配筋面积A's=A*ρmin=160000*0.600=960mm2 第1页,共1页

钢结构试题及答案复习课程

钢结构试题及答案

1.体现钢材塑性性能的指标是( ) A .屈服点 B. 强屈比 C. 延伸率 D. 抗拉强度 2.在结构设计中,失效概率p f 与可靠指标β的关系为 ( )。 A .p f 越大,β越大,结构可靠性越差 B .p f 越大,β越小,结构可靠性越差 C .p f 越大,β越小,结构越可靠 D .p f 越大,β越大,结构越可靠 3.对于受弯构件的正常使用极限状态是通过控制 ( )来保证的。 A .稳定承载力 B .挠跨比 C .静力强度 D .动力强度 4. 钢框架柱的计算长度与下列哪个因素无关( ) A.框架在荷载作用下侧移的大小 B.框架柱与基础的连接情况 C.荷载的大小 D. 框架梁柱线刚度比的大小 5. 格构式轴压构件绕虚轴的稳定计算采用了大于x λ的换算长细比ox λ是考虑( ) A 格构构件的整体稳定承载力高于同截面的实腹构件 B 考虑强度降低的影响 C 考虑单肢失稳对构件承载力的影响 D 考虑剪切变形的影响 6. 摩擦型高强度螺栓连接与承压型高强度螺栓连接( ) A 没有本质差别 B 施工方法不同 C 承载力计算方法不同 D 材料不同 7.为保证格构式构件单肢的稳定承载力,应( )。 A 控制肢间距 B 控制截面换算长细比 C 控制单肢长细比 D 控制构件计算长度 8.梁的纵向加劲肋应布置在( )。 A 靠近上翼缘 B 靠近下翼缘 C 靠近受压翼缘 D 靠近受拉翼缘 9.同类钢种的钢板,厚度越大( ) A. 强度越低 B. 塑性越好 C. 韧性越好 D. 内部构造缺陷越少 10. 在低温工作的钢结构选择钢材除强度、塑性、冷弯性能指标外,还需( )指 标。 A. 低温屈服强度 B. 低温抗拉强度 C. 低温冲击韧性 D . 疲劳强度 11. 钢材脆性破坏同构件( )无关。 A 应力集中 B 低温影响 C 残余应力 D 弹性模量 12.焊接残余应力不影响构件的( ) A .整体稳定 B .静力强度 C .刚度 D .局部稳定 13.摩擦型连接的高强度螺栓在杆轴方向受拉时,承载力( ) A .与摩擦面的处理方法有关 B .与摩擦面的数量有关 C .与螺栓直径有关 D .与螺栓的性能等级无关 14.直角角焊缝的焊脚尺寸应满足1min 5.1t h f ≥及2max 2.1t h f ?≤,则1t 、2t 分别为 ( )的厚度。 A .1t 为厚焊件,2t 为薄焊件 B .1t 为薄焊件,2t 为厚焊件 C .1t 、2t 皆为厚焊件 D .1t 、2t 皆为薄焊件 15.理想轴心受压构件失稳时,只发生弯曲变形,杆件的截面只绕一个主轴旋转, 杆的纵轴由直线变为曲线,这时发生的是( )。

砌体结构承重纵墙的承载力验算

【砌体结构承重纵墙的承载力验算】 某三层试验楼,采用装配式钢筋混凝土梁板结构,大梁截面尺寸为200mm×500mm,梁端伸入墙内240mm,大梁间距。底层墙厚370mm,二、三层墙厚240mm,均双面抹灰,采用MU10砖和混合砂浆砌筑。基本风压为m2。试验算承重纵墙的承载力。 【解】1.确定静力计算方案 根据表4—2规定(P43页的规定),由于试验楼为装配式钢筋混凝土楼盖,而横墙间距S=<24m,故为刚性方案房屋。 2.墙体的高厚比验算(对照P45页相关规定自己验算一下) 3.荷载分析 (1)屋面荷载 油毡防水层(六层作法)m2 20mm厚水泥砂浆找平层×20=m2 50mm厚泡沫混凝土保温层×5=m2 120mm厚空心板(包括灌缝)m2 20mm厚板底抹灰×17=m2 屋面恒载标准值m2 屋面活载标准值m2 (2)楼面荷载 30mm厚细石混凝土面层m2 120mm厚空心板(包括灌缝)m2 20mm厚板底抹灰m2 楼面恒载标准值m2 楼面活载标准值m2 (3) 进深梁自重(包括粉刷) 标准值:××25+ 墙体自重及木窗自重 双面粉刷的240mm厚砖墙自重(按墙面计)标准值m2 双面粉刷的370mm厚砖墙自重(按墙面计)标准值m2木窗自重(按窗框面积计)标准

值m2 4.纵墙承载力验算 由于房屋的总高小于28m,层高又小于4m,根据相关规定可不考虑风荷载作用。(1)计算单元 取一个开间宽度的外纵墙为计算单元,其受荷面积为×=,如图中斜线部分所示。纵墙的承载力由外纵墙控制,内纵墙不起控制作用,可不必计算。 (2)控制截面 每层纵墙取两个控制截面。墙上部取梁底下的砌体截面;墙下部取梁底稍上砌体截面。其计算截面均取窗间墙截面。本例不必计算三层墙体。 第二层墙的计算截面面积A2=×=m2 第一层墙的计算截面面积A1=×=m2 (3) 荷载计算 按一个计算单元,作用于纵墙上的集中荷载计算如下: 屋面传来的集中荷载(包括外挑的屋檐和屋面梁) 标准值Nkl3=kN 设计值Nl3=kN 由MU10砖和砂浆砌筑的砌体,其抗压强度设计值f=mm2。 已知梁高500mm,则梁的有效支承长度为a0=190mm<240mm,取a0= 屋面荷载作用于墙顶的偏心距e3=m 楼盖传来的集中荷载(包括楼面梁) 设计值 Nl2=Nl1= 三层楼面荷载作用于墙顶的偏心距 e2= 二层楼面荷载作用于墙顶的偏心距 e1=m 第三层Ⅰ-Ⅰ截面以上240mm厚墙体自重 设计值ΔNw3=kN 第三层Ⅰ-Ⅰ截面至Ⅱ-Ⅱ截面之间240mm厚墙体自重 设计值Nw3=

钢结构受压构件知识总结

轴心受力构件的强度、刚度、稳定性及设计方法讨论

一、前言 对于土木工程设计来说,钢结构有着非常重要的作用,近十余年来,我国国内的钢结构的产量,品种,规格都大幅度提高。在传统工业厂房,高层,超高层以及大跨度结构中有着不可替代的优势,它有着强度高,塑性、韧性好,质量轻,施工快,密闭性好等优点。 铁在地壳中的含量仅次于氧、硅、铝,高达4.75%,排第四。其现实意义是非凡的,现今随着对钢结构的相关理论和学科的完善,铁已然成为应用最广,用量最大的金属元素。 在不久的将来,对于我们目前正在就读的土木工程的学生来说,掌握钢结构的基本知识,在将来的就业工作中起着非常重要的作用。目前由于人们对建筑的不断追求,结构的复杂程度不断升高,同时对建筑结构设计的人员要求也越来越高,这就要求我们不断丰富对钢结构的认识和研究,以适应社会进步的要求。 二、简述 为丰富我们的理论学习广度和加强学习深度,我们对目前钢结构设计的认识和研究进行了部分系统的归纳,此文将着重对钢结构中的轴心受力构件的强度、刚度、稳定性及其设计方法进行讨论。 钢结构的内在特性是由原材料和其经受的一系列加工决定的。建筑工程中使用的都是塑性较好的材料,在拉力作用下会有明显的屈服阶段,然后进入强化阶段。传统的设计以屈服极限作为钢材的强度极限,但实际上钢材的塑性性能在一定程度上市可以利用的,如简支梁可以允许塑性在弯矩最大的截面发展等。同时钢结构具有较好的韧性,但受温受力状态等影响比较大。 我们要讨论的是轴心受力构件,按截面形式分为实腹式和格构式,两种截面形式各有不同。但对其设计验算方式方式一样。主要涉及到强度计算,刚度计算,稳定性计算,稳定性可分为整体稳定性和局部稳定性计算。同时我们还会讨论轴心受压柱的设计问题。 关键词:钢结构轴心受压构件特性强度刚度稳定设计 三、详细阐述 以下我们将轴心受压构件的计算方法进行系统阐述 (一)钢结构强度问题 轴心受力构件的强度承载力是以截面的平均应力达到钢材的屈服应力极限

基本计算轴心受力构件的强度和刚度计算

轴心受力构件的强度和刚度计算 1.轴心受力构件的强度计算 轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。轴心受力构件的强度计算公式为 N、 <7 =——< f(4-1) 4 式中:N一构件的轴心拉力或压力设计值; A,_——构件的净截面面积; f——钢材的抗拉强度设计值。 对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已山孔前接触面传递。因此,验算最外列螺栓处危险截面的强度时,应按下式计算: N' b =——

轴心受力构件的刚度是以限制其长细比来保证的,即

2 <[A] 式中:A——构件的最大长细比; [2]——构件的容许长细比。 3.轴心受压构件的整体稳定计算 《规范》对轴心受压构件的整体稳定计算采用下列形式: (4-25) 式中:(P—轴心受压构件的整体稳定系数,0 = 2工。 J y 整体稳定系数0值应根据构件的截面分类和构件的长细比查表得到。 构件长细比兄应按照下列规定确定: (1)截面为双轴对称或极对称的构件 (4-26) 式中:h,心一构件对主轴x和y的计算长度; 止,.一构件截面对主轴x和〉,的回转半径。 双轴对称十字形截面构件,人或九取值不得小于5.07b/t (其中b/t为悬伸板件宽厚比)。 (2)截面为单轴对称的构件 以上讨论柱的整定稳定临界力时,假定构件失稳时只发生弯曲而没有扭转,即所谓弯曲屈曲。对于单轴对称截面,绕对称轴失稳时,在弯曲的同时总伴随着扭转,即形成弯扭屈曲。在相同情况下,弯扭失稳比弯曲失稳的临界应力要低。因此,对双板T形和槽形等单轴对称截面进行弯扭分析后,认为绕对称轴(设为),轴)的稳定应取计?及扭转效应的下列换算长细比代替心 葢“詔/(人/25.7 + J//:)

轴心受压构件的稳定性计算

轴心受压构件的稳定性计算 7.2.1 除可考虑屈服后强度的实腹式构件外,轴心受压构件的稳定性计算应符合下式要求: 式中:φ——轴心受压构件的稳定系数(取截面两主轴稳定系数中的较小者),根据构件的长细比(或换算长细比)、钢材屈服强度和表7.2.1-1、表7.2.1-2的截面分类,按本标准附录D采用。 表7.2.1-1 轴心受压构件的截面分类(板厚t<40mm)

注:1 a*类含义为Q235钢取b类,Q345、Q390、Q420和Q460钢取a类;b*类含义为Q235钢取c类,Q345、Q390、Q420和Q460钢取b类; 2 无对称轴且剪心和形心不重合的截面,其截面分类可按有对称轴的类似

截面确定,如不等边角钢采用等边角钢的类别;当无类似截面时,可取c类。 表7.2.1-2 轴心受压构件的截面分类(板厚t≥40mm) 7.2.2 实腹式构件的长细比λ应根据其失稳模式,由下列公式确定: 1 截面形心与剪心重合的构件: 1) 当计算弯曲屈曲时,长细比按下列公式计算:

式中:l0x、l0y——分别为构件对截面主轴x和y的计算长度,根据本标准第 7.4节的规定采用(mm); i x、i y——分别为构件截面对主轴x和y的回转半径(mm)。 2) 当计算扭转屈曲时,长细比应按下式计算,双轴对称十字形截面板件宽厚比不超过15εk者,可不计算扭转屈曲。 式中:I0、I t、I w——分别为构件毛截面对剪心的极惯性矩(m m4)、自由扭转常数(m m4)和扇性惯性矩(m m6),对十字形截面可近似取I w=0; I w——扭转屈曲的计算长度,两端铰支且端截面可自由翘曲者,取几何长度l;两端嵌固且端部截面的翘曲完全受到约束者,取0.5l(mm)。 2 截面为单轴对称的构件: 1) 计算绕非对称主轴的弯曲屈曲时,长细比应由式(7.2.2-1)、式(7.2.2-2)计算确定。计算绕对称主轴的弯扭屈曲时,长细比应按下式计算确定: 式中:y s——截面形心至剪心的距离(mm); i0——截面对剪心的极回转半径,单轴对称截面i20=y2s+i2x+i2y(mm);

相关文档
最新文档