物理牛顿第二定理

物理牛顿第二定理
物理牛顿第二定理

第二类永动机不可能制成

热力学第二定律有一种表述就是“第二类永动机不可能制成”。所谓第二类永动机,通俗点讲就是能将一定量热完全转化为功而不产生其他影响的装置,这不违反能量守恒定律,但违反了热力学第二定律。

热力学是热学理论的一个方面。热力学主要是从能量转化的观点来研究物质的热性质,它揭示了能量从一种形式转换为另一种形式时遵从的宏观规律。热力学是总结物质的宏观现象而得到的热学理论,不涉及物质的微观结构和微观粒子的相互作用。因此它是一种唯象的宏观理论,具有高度的可靠性和普遍性。热力学三定律是热力学的基本理论。热力学第一定律反映能量守恒和转换应遵循的关系,他引进了系统的态函数——内能。热力学第二定律指出。一切涉及热现象的宏观过程是不可逆的。热力学第一定律已经被证明是完全正确的。违背热力学第一定律的变化过程是一定不能发生的,第一类永动机是不可能造成的。但不违背热力学第一定律的变化与过程却未必能自动发生,可见,利用热力学第一定律并不能判断一定条件下什么过程不可能进行,什么过程可能进行,进行的最大限度是什么。要解决此类过程方向与限度的判断问题,就必须用到热力学第二定律。

热力学第二定律是热力学的基本定律之一,是指热永远都只能由热处转到冷处(在自然状态下)。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。热力学第二定律是人们在生活实践,生产实践和科学实验的经验总结,它们既不涉及物质的微观结构,也不能用数学加以推导和证明。但它的正确性已被无数次的实验结果所证实。而且从热力学严格地导出的结论都是非常精确和可靠的。

热力学第二定律建立的历史过程

19世纪初,巴本、纽可门等发明的蒸汽机经过许多人特别是瓦特的重大改进,已广泛应用于工厂、矿山、交通运输,但当时人们对蒸汽机的理论研究还是非常缺乏的。热力学第二定律就是在研究如何提高热机效率问题的推动下,逐步被发现的,并用于解决与热现象有关的过程进行方向的问题。

1824年,法国陆军工程师卡诺在他发表的论文“论火的动力”中提出了著名的“卡诺定理”,找到了提高热机效率的根本途径。但卡诺在当时是采用“热质说”的错误观点来研究问题的。从1840年到1847年间,在迈尔、焦耳、亥姆霍兹等人的努力下,热力学第一定律以及更普遍的能量守恒定律建立起来了。“热动说”的正确观点也普遍为人们所接受。1848年,开尔文爵士(威廉·汤姆生)根据卡诺定理,建立了热力学温标(绝对温标)。它完全不依赖于任何特殊物质的物理特性,从理论上解决了各种经验温标不相一致的缺点。这些为热力学第二定律的建立准备了条件。

1850年,克劳修斯从“热动说”出发重新审查了卡诺的工作,考虑到热传导总是自发地将热量从高温物体传给低温物体这一事实,得出了热力学第二定律的初次表述。后来历经多次简练和修改,逐渐演变为现行物理教科书中公认的“克劳修斯表述”。与此同时,开尔文也独立地从卡诺的工作中得出了热力学第二定律的另一种表述,后来演变为更精炼的现行物理教科书中公认的“开尔文表述”。上述对热力学第二定律的两种表述是等价的,由一种表述的正确性完全可以推导

出另一种表述的正确性。他们都是指明了自然界宏观过程的方向性,或不可逆性。克劳修斯的说法是从热传递方向上说的,即热量只能自发地从高温物体传向低温物体,而不可能从低温物体传向高温物体而不引起其他变化。这里“不引起其他变化”是很重要的。利用致冷机就可以把热量从低温物体传向高温物体,但是外界必须做功。开尔文的说法则是从热功转化方面去说的。功完全转化为热,即机械能完全转化为内能可以的,在水平地面上运动的木块由于摩擦生热而最终停不来就是一个例子。但反过来,从单一热源吸取热量完全转化成有用功而不引起其他影响则是不可能的。所谓“单一热源”,是指温度均匀并且保持恒定的热源,如果热源的温度不是均匀的,则可以从温度较高处吸收热量,又向温度较低处放出一部分,这就等于工作在两个热源之间了。所谓“不产生其他影响”,是指除了从单一热源吸热,这些热量全部用来做功以外,其他都没有变化。如果没有“不产生其他影响”这个限制,从单一热源吸热而全部转化为功是可以做到的,例如理想气体在等温膨胀过程中,气体从热源吸热而膨胀做功,由于这过程中理想气体保持温度不变,而理想气体又不考虑分子势能,因此气体的内能保持不变,从热源吸收的热量就全部转化成了功,但是这过程中气体的体积膨胀了,因此不符合“不产生其他影响”的条件。

热力学第二定律的含义

自然界中的各种不可逆过程都是互相关联的。我们可以选取任一个不可逆过程作为表述热力学第二定律的基础。因此,热力学第二定律就可以有多种不同的表达方式。但不论具体的表达方式如何,热力学第二定律的实质在于指出:一切与热现象有关的实际宏观过程都是不可逆的,并指出这些过程自发进行的方向。

热力学第二定律,也可以确定一个新的态函数——熵。可以用熵来对第二定律作定量的表述。

第二定律指出在自然界中任何的过程都不可能自动地复原,要使系统从终态回到初态必需借助外界的作用,由此可见,热力学系统所进行的不可逆过程的初态和终态之间有着重大的差异,这种差异决定了过程的方向,人们就用态函数熵来描述这个差异,从理论上可以进一步证明:

可逆绝热过程Sf=Si,

不可逆绝热过程Sf>Si,

式中Sf和Si分别为系统的最终和最初的熵。

也就是说,在孤立系统内对可逆过程,系统的熵总保持不变;对不可逆过程,系统的熵总是增加的。这个规律叫做熵增加原理。这也是热力学第二定律的又一种表述。熵的增加表示系统从几率小的状态向几率大的状态演变,也就是从比较有规则、有秩序的状态向更无规则,更无秩序的状态演变。熵体现了系统的统计性质。

热力学第二定律的适用范围

(1)热力学第二定律是宏观规律,对少量分子组成的微观系统是不适用的。

(2)热力学第二定律适用于“绝热系统”或“孤立系统”,对于生命体(开放系统)是不适用的。早在1851年开尔文在叙述热力学第二定律时,就曾特别指明动物体并不像一架热机一样工作,热力学第二定律只适用于无生命物质。

(3)热力学第二定律是建筑在有限的空间和时间所观察到的现象上,不能被

外推应用于整个宇宙。19世纪后半期,有些科学家错误地把热力学第二定律应用到无限的、开放的宇宙,提出了所谓“热寂说”。他们声称:将来总有一天,全宇宙都是要达到热平衡,一切变化都将停止,从而宇宙也将死亡。要使宇宙从平衡状态重新活动起来,只有靠外力的推动才行。这就会为“上帝创造世界”等唯心主义提供了所谓“科学依据”。

虽然高中的时候就学习过热力学第二定律,但通过这学期的物理化学课使我对热力学第二定律有了更加具体而深入的认识。无数伟大的科学家例如:克劳修斯、卡诺、能斯特等在定律的建立中起了重要的作用。热力学第二定律,不仅仅是热学中的重要定律,它同时广泛的应用于生活的各个领域,是一项伟大的定律。

热力学第二定律说想要做功就要使热量从高温物体流向低温物体的过程中才能做功,其中必然有一部分热量被低温物体吸收而变为熵(就是不可用能量)。第二类永动机不可能制成。

参考文献:

[1]龚昌德:《热力学与统计物理学》,高等教育出版社,1984年版。

[2]郭奕玲、沈慧君:《物理学史》,清华大学出版社,2000年版。

[3]李椿、章立源、钱尚武:《热学》,人民教育出版社,1982年版。

[4]陆果:《基础物理学教程》,高等教育出版社,1999年第二版。

高中物理 专题、牛顿第二定律(实验定律)

二、牛顿第二定律(实验定律) ◎知识梳理 1. 定律内容 物体的加速度a跟物体所受的合外力成正比,跟物体的质量m成反比。 2. 公式: 理解要点: ①因果性:F 是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消合 失; ②方向性:a与都是矢量,,方向严格相同; ③瞬时性和对应性:a为某时刻物体的加速度,是该时刻作用在该物体上的合外力。 ○4牛顿第二定律适用于宏观, 低速运动的情况。 ◎例题评析 【例2】如图,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度、合外力的变化情况是怎样的? 【分析与解答】因为速度变大或变小取决于加速度和速度方向的关系, 当a与v同向时,v增大;当a与v反向时,v减小;而a由合外力决定,所以 此题要分析v,a的大小变化,必须先分析小球的受力情况。 小球接触弹簧时受两个力的作用:向下的重力和向上的弹力。在接触的头一阶段,重力大于弹力,小球合力向下,且不断变小(因为F合=mg-kx,而x增大),因而加速度减小(因为a=F/m),由于v方向与a同向,因此速度继续变大。 当弹力增大到大小等于重力时,合外力为零,加速度为零,速度达到最大。 之后,小球由于惯性继续向下运动,但弹力大于重力,合力向上,逐渐变大(因为F=kx-mg=ma),因而加速度向上且变大,因此速度逐渐减小至零。小球不会静止在最低点,以后将被弹簧上推向上运动。 综上分析得:小球向下压弹簧过程,F方向先向下后向上,先变小后交大;a方向先向下后向上,大小先变小后变大;v方向向下,大小先变大后变小。 【注意】在分析物体某一运动过程时,要养成一个科学分析习惯,即:这一过程可否划分为两个或两个以上的不同的小过程,中间是否存在转折点,如上题中弹力等于重力这一位置是一个转折点,以这个转折点分为两个阶段分析。 【例3】如图所示,一质量为m的物体系于长度分别为L1L2的两根细线上.,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态,现将L2线剪断,求剪断瞬时物体的加速度。 【分析与解答】

高一物理《牛顿第二定律》知识点讲解

高一物理《牛顿第二定律》知识点讲解 实验:用控制变量法研究:a 与F 的关系,a 与m 的关系 一、牛顿第二定律 1.内容:物体的加速度跟物体所受合外力成正比,跟物体的质量成反比;a 的方向与F 合的方 向总是相同。 2.表达式:F=ma 或 m F a 合 = 用动量表述:t P F ?=合 揭示了:① 力与a 的因果关系.... ,力是产生a 的原因和改变物体运动状态的原因; ② 力与a 的定量关系.... 3、对牛顿第二定律理解: (1)F=ma 中的F 为物体所受到的合外力. (2)F =ma 中的m ,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个 物体组成一个系统)做受力分析时,如果F 是系统受到的合外力,则m 是系统的合质量. (3)F =ma 中的 F 与a 有瞬时对应关系, F 变a 则变,F 大小变,a 则大小变,F 方向变a 也方向变. (4)F =ma 中的 F 与a 有矢量对应关系, a 的方向一定与F 的方向相同。 (5)F =ma 中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度. (6)F =ma 中,F 的单位是牛顿,m 的单位是kg ,a 的单位是米/秒2. (7)F =ma 的适用范围:宏观、低速 4. 理解时应应掌握以下几个特性。 (1) 矢量性 F=ma 是一个矢量方程,公式不但表示了大小关系,还表示了方向关系。 (2) 瞬时性 a 与F 同时产生、同时变化、同时消失。作用力突变,a 的大小方向随着改变,是瞬时的对应关系。 (3) 独立性 (力的独立作用原理) F 合产生a 合;F x 合产生a x 合 ; F y 合产生a y 合 当物体受到几个力作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在

牛顿第二定律的系统表达式及应用一中

牛顿第二定律的系统表达式 一、整体法和隔离法处理加速度相同的连接体问题 1.加速度相同的连接体的动力学方程: F 合 = (m 1 +m 2 +……)a 分量表达式:F x = (m 1 +m 2 +……)a x F y = (m 1 +m 2 +……)a y 2. 应用情境:已知加速度求整体所受外力或者已知整体受力求整体加速度。 例1、如图,在水平面上有一个质量为M的楔形木块A,其斜面倾角为α,一质量为m的木块B放在A的斜面上。现对A施以水平推力F, 恰使B与A不发生相对滑动,忽略一切摩擦,则B对 A的压力大小为( BD ) A 、 mgcosα B、mg/cosα C、FM/(M+m)cosα D、Fm/(M+m)sinα ★题型特点:隔离法与整体法的灵活应用。 ★解法特点:本题最佳方法是先对整体列牛顿第二定律求出整体加速度,再隔离B受力分析得出A、B之间的压力。省去了对木楔受力分析(受力较烦),达到了简化问题的目的。 例2.质量分别为m1、m2、m3、m4的四个物体彼此用轻绳连接,放在光滑的桌面上,拉力F1、F2分别水平地加在m1、m4上,如图所示。求物体系的加速度a和连接m2、m3轻绳的张力F。(F1>F2) 例3、两个物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示,对物体A施以水平的推力F,则物体A对B的作用力等于 ( ) A.F F F F 3、B 解析:首先确定研究对象,先选整体,求出A、B共同的加速度,再单独研究B,B 在A施加的弹力作用下加速运动,根据牛顿第二定律列方程求解. 将m1、m2看做一个整体,其合外力为F,由牛顿第二定律知,F=(m1+m2)a,再以m2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F12=m2a,以上两式联立可得:F12= ,B正确. 例4、在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图1所示,已知m1>m2,三木块均处于静止, 则粗糙地面对于三角形木块( D ) A.有摩擦力作用,摩擦力的方向水平向右。B.有摩擦力作用,摩擦力的方向水平向左。C.有摩擦力作用,组摩擦力的方向不能确定。D.没有摩擦力的作用。 二、对加速度不同的连接体应用牛顿第二定律1.加速度不同的连接体的动力学方程:b c a

人教版高中物理必修一:《牛顿第二定律》练习题

一、选择题 1.关于物体运动状态的改变,下列说法中正确的是 A.物体运动的速率不变,其运动状态就不变 B.物体运动的加速度不变,其运动状态就不变 C.物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D.物体的运动速度不变,我们就说它的运动状态不变 2.关于运动和力,正确的说法是 A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力 C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零 3.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 A.匀减速运动 B.匀加速运动 C.速度逐渐减小的变加速运动 D.速度逐渐增大的变加速运动 4.在牛顿第二定律公式F=km·a中,比例常数k的数值: A.在任何情况下都等于1 B.k值是由质量、加速度和力的大小决定的 C.k值是由质量、加速度和力的单位决定的 D.在国际单位制中,k的数值一定等于1 5.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于小球运动状态的下列几种描述中,正确的是 A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零

B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零 C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处 D.接触后,小球速度最大的地方就是加速度等于零的地方 6.在水平地面上放有一三角形滑块,滑块斜面上有另一小滑块正沿斜面加速下滑,若三角形滑块始终保持静止,如图2所示.则地面对三角形滑块 A.有摩擦力作用,方向向右 B.有摩擦力作用,方向向左 C.没有摩擦力作用 D.条件不足,无法判断 7.设雨滴从很高处竖直下落,所受空气阻力f和其速度v成正比.则雨滴的运动情况是A.先加速后减速,最后静止 B.先加速后匀速 C.先加速后减速直至匀速 D.加速度逐渐减小到零 8.放在光滑水平面上的物体,在水平拉力F的作用下以加速度a运动,现将拉力F改为2F(仍然水平方向),物体运动的加速度大小变为a′.则 A.a′=a B.a<a′<2a C.a′=2a D.a′>2a 9.一物体在几个力的共同作用下处于静止状态.现使其中向东的一个力F的值逐渐减小到零,又马上使其恢复到原值(方向不变),则 A.物体始终向西运动 B.物体先向西运动后向东运动 C.物体的加速度先增大后减小 D.物体的速度先增大后减小 二、填空题 10.如图3所示,质量相同的A、B两球用细线悬挂于天花板上且静止不动.两球间是一

人教版高中物理(必修1) 知识讲解: 牛顿第二定律(基础)(附答案)

牛顿第二定律【学习目标】 1.深刻理解牛顿第二定律,把握 F a m =的含义. 2.清楚力的单位“牛顿”是怎样确定的. 3.灵活运用F=ma解题. 【要点梳理】 要点一、牛顿第二定律 (1)内容:物体的加速度跟作用力成正比,跟物体的质量成反比. (2)公式: F a m ∝或者F ma ∝,写成等式就是F=kma. (3)力的单位——牛顿的含义. ①在国际单位制中,力的单位是牛顿,符号N,它是根据牛顿第二定律定义的:使质量为1kg的物体产生1 m/s2加速度的力,叫做1N.即1N=1kg·m/s2. ②比例系数k的含义. 根据F=kma知k=F/ma,因此k在数值上等于使单位质量的物体产生单位加速度的力的大小,k的大小由F、m、a三者的单位共同决定,三者取不同的单位,k的数值不一样,在国际单位制中,k=1.由此可知,在应用公式F=ma进行计算时,F、m、a的单位必须统一为国际单位制中相应的单位. 要点二、对牛顿第二定律的理解 (1)同一性 【例】质量为m的物体置于光滑水平面上,同时受到水平力F的作用,如图所示,试讨论: ①物体此时受哪些力的作用? ②每一个力是否都产生加速度? ③物体的实际运动情况如何? ④物体为什么会呈现这种运动状态? 【解析】①物体此时受三个力作用,分别是重力、支持力、水平力F. ②由“力是产生加速度的原因”知,每一个力都应产生加速度. ③物体的实际运动是沿力F的方向以a=F/m加速运动. ④因为重力和支持力是一对平衡力,其作用效果相互抵消,此时作用于物体的合力相当于F. 从上面的分析可知,物体只能有一种运动状态,而决定物体运动状态的只能是物体所受的合力,而不能是其中一个力或几个力,我们把物体运动的加速度和该物体所受合力的这种对应关系叫牛顿第二定律的同一性. 因此,牛顿第二定律F=ma中,F为物体受到的合外力,加速度的方向与合外力方向相同. (2)瞬时性 前面问题中再思考这样几个问题: ①物体受到拉力F作用前做什么运动? ②物体受到拉力F作用后做什么运动? ③撤去拉力F后物体做什么运动? 分析:物体在受到拉力F前保持静止. 当物体受到拉力F后,原来的运动状态被改变.并以a=F/m加速运动. 撤去拉力F后,物体所受合力为零,所以保持原来(加速时)的运动状态,并以此时的速度做匀速直线运动.

高中物理牛顿第二定律经典例题

牛顿第二运动定律 【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速 率都是先增大,后减小 D、物体在B点时,所受合力为零 的对应关系,弹簧这种特 【解析】本题主要研究a与F 合 殊模型的变化特点,以及由物体的受力情况判断物体的 运动性质。对物体运动过程及状态分析清楚,同时对物 =0,体正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置mg=kx c,a=0,物体速度达最大。由C→B的过程中,由于mgf m′,(新情况下的最大静摩擦力),可见f m>f m′即是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A、B正确。另一种原因是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D 正确。 综合上述,正确答案应为A、B、D。 【例3】如图3-11所示,一细线的一端固定于倾角为45°度的光滑楔形滑块A 的顶端p处,细线的另一端栓一质量为m的小球,当滑块以2g的加速度向左运动时,线中拉力T等于多少? 【解析】当小球贴着滑块一起向左运动时,小球受到三个力作用:重力mg、线 中拉力T,滑块A的支持力N,如 图3-12所示,小球在这三个力作用 下产生向左的加速度,当滑块向左

(完整word版)质点系牛顿第二定律-分析

质点系牛顿第二定律的讨论 浙江邮电职业技术学院 徐超明 《中学物理》24卷第7期《质点系牛顿第二定律的简单应用》(简称吴文)讨论了质点系部分质点有相对加速度时的求解方法,提出了用质点系牛顿第二定律求解连接体要比隔离法简单。是的,吴文实际上将质点系的质点加速度在正交直角坐标系两个方向上进行分解,并整体列方程进行求解。 质点系牛顿第二定律可叙述为:质点系的合外力等于系统内各质点的质量与 加速度乘积的矢量和。即: F 合=m 1a 1+m 2a 2+m 3a 3+……+m n a n (1) 这里假定质点系中有n 个质点具有对地的相对加速度。 (上见吴文) 将(1)式再变形,可得: F 合-m 1a 1-m 2a 2-m 3a 3-……-m n a n =0 (2) 若令F 1’=-m 1a 1,F 2’=-m 2a 2,F 3’=-m 3a 3,……,F n ’=-m n a n 则 F 合+∑=n i 1F i ’=0 (3) 从(3)式可得:如果将第i 个质点的加速度效应用F i ’来代替,则就可以用 力合成的静力学方法来求解具有加速度的动力学问题,使质点系部分质点具有加速度的求解比吴文更简单。 值得注意的是F i ’为人为假设力,不是真实存在的,它没有施力体,其大小等于该质点质量与质点加速度的乘积,方向与加速度方向相反。 例1 如图1,质量为M 、倾角为α 的斜面静止在粗糙的水平面上,质量为m 的滑块沿M 粗糙的斜面以加速度a 下滑,求地面对M 的支持力和摩擦力。 图1 解:在M 、m 两质点组成的系统中,受到竖直向下的重力(M +m )g ;地

面对质点系的支持力N;F1’是质点m因具有加 速度a而转换成的假设力,其大小为ma,方向 与加速度a相反;f是地面对质点系的摩擦力, 如图2。 这样我们就可马上求得: f=F1’cosα=ma cosα N =(M+m)g-F1’sinα =(M+m)g-ma sinα图2 例2:如图3,静止在水平面上的木箱M 中央有一根竖直的杆,小环m沿杆有摩擦地以 加速度a下滑,求M对地面的压力的大小。 图3 解:在M、m两质点组成的系统中,受到重力 (M+m)g,地面对质点系的支持力N,质点m因 具有a加速度而添加的假设力ma,如图4。 则立即可得到: N =(M+m)g-ma 图4 例3:如图5,质量为M的木板可沿放在 水平面上固定不动、倾角为α的斜面无摩擦地滑 下。欲使木板静止在斜面上,木板上质量为m的 人应以多大的加速度沿斜面向下奔跑? 图5 解:在M、m两质点组成的系统中,受到竖 直向下的重力(M+m)g,斜面对质点系的支持力

下载高一物理牛顿第二定律应用

课题:牛顿第二定律应用(一) 目的:1、掌握应用牛顿定律分析力和运动关系问题的基本方法。 2、培养学生分析解决问题的能力。 重点:受力分析、运动和力关系的分析。 难点:受力分析、运动和力关系的分析。 方法:启发思考总结归纳、讲练结合。 过程:一、知识点析: 1.牛顿第二定律是在实验基础上总结出的定量揭示了物体的加速度与力和质量的关系。数学表达式:ΣF=ma或ΣFx=Ma x ΣF y =ma y 理解该定律在注意: (1)。瞬时对应关系;(2)矢量关系;(3)。 2.力、加速度、速度的关系: (1)加速度与力的关系遵循牛顿第二定律。 (2)加速度一与速度的关系:速度是描述物体运动的一个状态量,它与物体运动的加速度没有直接联系,但速度变化量的大小加速度有关,速度变化量与加速度(力)方向一致。 (3)力与加速度是瞬时对应关系,而力与物体的速度,及速度的变化均无直接关系。Δv=at,v=v +at,速度的变化需要时间的积累,速度的大小还需考虑初始情况。 二、例题分析: 例1。一位工人沿水平方向推一质量为45mg的运料车,所用的推力为90N,此时运料车的加速度是1.8m/s2,当这位工人不再推车时,车的加速度。 【例2】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速率都是先增大,后减小 D、物体在B点时,所受合力为零 【解析】本题主要研究a与F 合 的对应关系,弹簧这种特殊模型的变化特点,以及由物体的受力情况判断物体的运动性质。对物体运动过程及状态分析清楚,同时对物体 正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 =0,由A→C 的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置

牛顿第二定律的应用

牛顿第二定律的应用 Prepared on 22 November 2020

寒假作业4 (考查:牛顿第二定律的应用) 一、选择题(1-12单选,13-22多选) 1.如图,水平面上一个物体向右运动,将弹簧压缩,随后又被弹回直到离开弹簧,则该物体从接触弹簧到离开弹簧的这个过程中,下列说法中正确的是( ) A. 若接触面光滑,则物体加速度的大小是先减小后增大 B. 若接触面光滑,则物体加速度的大小是先增大后减小再增大 C. 若接触面粗糙,则物体加速度的大小是先减小后增大 D. 若接触面粗糙,则物体加速度的大小是先增大后减小再增大 2.静止在光滑的水平面上的物体,在水平推力F的作用下开始运动,推力F 随时间t变化的规律如图所示,则物体在 1 0~t时间内( ) A. 速度一直增大 B. 加速度一直增大 C. 速度先增大后减小 D. 位移先增大后减小 3.质量为M的木块位于粗糙水平桌面上,若用大小为F的水平恒力拉木块时,其加速度为a,当拉力方向不变,大小变为2F时,木块的加速度大小为a′,则 () A. 2a>a′ B. 2a

初中升高中物理教材衔接知识点归纳总结13牛顿第二定律

衔接点13牛顿第二定律 1 【基础知识梳理】 1、牛顿第二定律的内容:物体的加速度跟所受的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同. 2、牛顿第二定律的表达式:F=ma 3、牛顿第二定律的理解 (1)同向性:加速度的方向与力的方向始终一致 (2)瞬时性;加速度与力是瞬间的对应量,即同时产生、同时变化、同时消失 (3)同体性:加速度和合外力(还有质量)是同属一个物体的 (4)独立性:当物体受到几个力的作用时,各力将独立地产生与其对应的加速度,而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果 2、牛顿第二定律解决实际问题 1.确定研究对象. 2.分析物体的受力情况和运动情况,画出研究对象的受力分析图. 3.求出合力.注意用国际单位制统一各个物理量的单位. 4.根据牛顿运动定律和运动学规律建立方程并求解. 3、超重和失重 超重现象:物体对支持物的压力(或对悬挂物的拉力)大于物体受到的重力的现象称为超重现象. 失重现象:当物体对支持物的压力和对悬挂物的拉力小于物体重力的现象称为失重现象. 1.如图所示,质量为2 kg的物体A静止在竖直的轻弹簧上面。质量为3 kg的物体B用轻质细线悬挂,A、B接触但无挤压。某时刻将细线剪断,则细线剪断瞬间,B对A的压力大小为(g=10 m/s2)

A .12 N B .22 N C .25 N D .30N 【答案】A 【解析】剪断细线前,A 、B 间无压力,对A 受力分析,受重力和弹簧的弹力,根据平衡条件有: 21020A F m g ==?=N 剪断细线的瞬间,对整体分析,根据牛顿第二定律有: ()()A B A B m m g F a m m =+-+ 代入数据得整体加速度为:6a =m/s 2 隔离对B 分析,根据牛顿第二定律有:B B m g N m a -= 代入数据解得:12N =N ,故A 正确,BCD 错误。故选A . 2.如图所示,小球从轻弹簧正上方无初速释放,从小球开始接触弹簧到弹簧被压缩到最短的过程中,小球的速度、加速度和所受的合力的变化是 A .合力变大,加速度变小,速度变小 B .合力与加速度逐渐变大,速度逐渐变小 C .合力与加速度先变小后变大,速度先变大后变小 D .合力、加速度和速度都是先变大后变小 【答案】C 【解析】小球与弹簧接触后,受重力和弹力作用,开始重力大于弹力,合力方向向下,则加速度方向向下,向下做加速度减小的加速运动,当重力和弹力相等后,弹力大于重力,合力方向向上,加速度方向向上,与速度方向相反,做加速度逐渐增大的减小运动。所以合力和

高一物理牛顿第二定律练习题

二、牛顿第二定律练习题 一、选择题 1.关于物体运动状态的改变,下列说法中正确的是[ ] A.物体运动的速率不变,其运动状态就不变 B.物体运动的加速度不变,其运动状态就不变 C.物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D.物体的运动速度不变,我们就说它的运动状态不变 2.关于运动和力,正确的说法是[ ] A.物体速度为零时,合外力一定为零 B.物体作曲线运动,合外力一定是变力 C.物体作直线运动,合外力一定是恒力 D.物体作匀速运动,合外力一定为零 3.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作[ ] A.匀减速运动 B.匀加速运动 C.速度逐渐减小的变加速运动 D.速度逐渐增大的变加速运动 4.在牛顿第二定律公式F=km·a中,比例常数k的数值: [ ]

A.在任何情况下都等于1 B.k值是由质量、加速度和力的大小决定的 C.k值是由质量、加速度和力的单位决定的 D.在国际单位制中,k的数值一定等于1 5.如图1所示,一小球自空中自由落下,与正下方的直立轻质弹簧接触,直至速度为零的过程中,关于小球运动状态的下列几种描述中,正确的是[ ] A.接触后,小球作减速运动,加速度的绝对值越来越大,速度越来越小,最后等于零 B.接触后,小球先做加速运动,后做减速运动,其速度先增加后减小直到为零 C.接触后,速度为零的地方就是弹簧被压缩最大之处,加速度为零的地方也是弹簧被压缩最大之处 D.接触后,小球速度最大的地方就是加速度等于零的地方 6.在水平地面上放有一三角形滑块,滑块斜面上有另一小滑块正沿斜面加速下滑,若三角形滑块始终保持静止,如图2所示.则地面对三角形滑块[ ] A.有摩擦力作用,方向向右 B.有摩擦力作用,方向向左 C.没有摩擦力作用

关于系统牛顿第二定律的应用

关于系统牛顿第二定律的应用 眉山中学邓学军 牛顿第二定律是动力学的核心内容,它深刻揭示了物体产生的加速度与其质量、所受到的力之间的定量关系,在科研、 生产、实际生活中有着极其广泛的应用。本文就牛顿第二定律在物理解题中的应用作些分析总结, 以加深学生对该定律的认 识与理解,从而达到熟练应用的效果目的。对于连接体问题,牛顿第二定律应用于系统,主要表现在以下两方面: 其一,系统内各物体的加速度相同。 则表达式为:F =( m i +m 2+…)a ,这种情况往往以整个系统为研究对象,分析 系统的合外力,求岀共同的加速度。 例1 ?质量为m i 、m 2的两个物体用一轻质细绳连接,现对 m i 施加一个外力F ,在如下几种情况下运动,试求绳上的拉 力大小。 m 1 m 2 m i m 2 ⑶m i 、m 2放在光滑斜面上向上作加速直线运动 解析:对整体:F —( m i + m 2) g sin a=( m i + m 2) a 对 m 2: T — m 2g sin a = m 2 a 解得:T = m i m 2 ⑷m i 、m 2放在粗糙斜面上向上作加速直线运动 解析:对整体: F —( m i + m 2) g sin a — g( m i + m 2) g cos a=( m i + m 2) a 对 m 2: T — m 2g sin a — g( m i + m 2) g cos a = m 2 a 其二,系统内各物体的加速度不同。 这种题目较难,牛顿第二定律的基本表达式为: F m i a i mba 2 L ,这是一个矢量表达式,可以分为以下几种情形: 1. 系统中只有一个物体有加速度,其余物体均静止或作匀速运动。 例2?如图示,斜面体 M 始终处于静止状态,当物体 m 沿斜面下滑时,下列说法正确的是: A ?匀速下滑时,M 对地面的压力等于(M +m ) g B. 加速下滑时,M 对地面的压力小于(M + m ) g ⑵m i 、m 2放在粗糙水平面上作加速直线运动: T = m 2 —F 解得:T = m 2 m i m 2 ⑸m i 、m 2放在光滑水平面上在 F 作用下绕0i 02作匀速圆周运动 解析:对整体:F =( m i + m 2) a 对 m 2: T = m 2 a (连接绳子极短) 解得:T = m 2 > F 01 [m2 -| ml m i m 2 ⑴m i 、m 2放在光滑水平面上作加速直线运动: T = m 2

牛顿第二定律应用的典型问题

牛顿第二定律应用的典型问题 ——陈法伟 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。

例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2 2. 力和加速度的瞬时对应关系 (1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。若合外力变为零,加速度也立即变为零(加速度可以突变)。这就是牛顿第二定律的瞬时性。 (2)中学物理中的“绳”和“线”,一般都是理想化模型,具有如下几个特性: ①轻,即绳(或线)的质量和重力均可视为零。由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等。

新课标初中升高中衔接-物理:牛顿第二定律

第二节牛顿第二定律 一、牛顿第二定律

正交分解后,列出方程F x =ma ,F y =0. ①特殊情况下,若物体的受力都在两个互相垂直的方向上,也可将坐标轴建立在力的方向上,正交分解加速 度a .根据牛顿第二定律????? F x =ma x F y =ma y 及F =F 2x +F 2y 求合外力. 例题1.下列对牛顿第二定律的表达式F =ma 及其变形公式的理解,正确的是( ) A .由F =ma 可知,物体所受的合外力与物体的质量成正比,与物体的加速度成反比 B .由m =F a 可知,物体的质量与其所受合外力成正比,与其运动的加速度成反比 C .由a =F m 可知,物体的加速度与其所受合外力成正比,与其质量成反比 D .由m =F a 可知,物体的质量可以通过测量它的加速度和它所受到的合外力求出 【参考答案】CD 【试题解析】a =F m 是加速度的决定式,a 与F 成正比,与m 成反比;F =ma 说明力是产生加速度的原因,但不能说F 与m 成正比,与a 成正比;质量是物体的固有属性,与F 、a 皆无关. 例题2.力F1作用在物体上产生的加速度a 1=3 m/s 2,力F 2作用在该物体上产生的加速度a 2=4 m/s 2,则F 1和F 2同时作用在该物体上,产生的加速度的大小可能为( ) A .7 m/s 2 B .5 m/s 2 C .1 m/s 2 D .8 m/s 2 【参考答案】ABC 【试题解析】加速度a 1、a 2的方向不确定,故合加速度a 的范围为|a 1-a 2|≤a ≤a 1+a 2,即1 m/s 2≤a ≤7 m/s 2,故 A 、 B 、 C 项符合题意 例题3.如图所示,一质量为8 kg 的物体静止在粗糙的水平地面上,物体与地面间的动摩擦因数为0.2,用一水平力F =20 N 拉物体由A 点开始运动,经过8 s 后撤去拉力F ,再经过一段时间物体到达B 点停止. 求:(g =10 m/s 2) (1)在拉力F 作用下物体运动的加速度大小; (2)撤去拉力时物体的速度大小; (3)撤去拉力F 后物体运动的距离. 【参考答案】(1)0.5 m/s 2 (2)4 m/s (3)4 m 【试题解析】(1)对物体受力分析,如图所示竖直方向mg =F N 水平方向,由牛顿第二定律得F -μF N =ma 1

高一物理必修一牛顿第二定律的应用

牛 顿第二定律的应用 一、计算题 1.如图所示,在游乐场里有一种滑沙运动.某人坐在滑板上从斜坡的高处A 点由静止开始滑下,滑到斜坡底端B 点后,沿水平的滑道再滑行一段距离到C 点停下来。若人和滑板的总质量m = 60 kg ,滑板与斜坡滑道和水平滑道间的动摩擦因数均为μ= 0.50,斜坡的倾角θ= 37°(sin37° = 0.6,cos37° = 0.8),斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,重力加速度g 取10 m/s 2.求: (1)人从斜坡上滑下的加速度为多大? (2)若AB 的长度为25m ,求人到B 点时的速度为多少? 2.如图所示,物体的质量m=4 kg ,与水平地面间的动摩擦因数为μ=0.2,在与水平方向夹角为37°、大小为10 N 的恒力F 的作用下,由静止开始加速运动,取g=10m/s 2,已知sin 37°= 0.6,cos 37°= 0.8,试求: (1)物体运动的加速度的大小a ; (2)若1t =10 s 时撤去恒力F ,物体还能继续滑行的时间2t 和距离 x . 3.放于地面上、足够长的木板右端被抬高后成为倾角为0137θ=的斜面,此时物块恰好能沿着木板匀速下滑,重力加速度取10m/s 2,sin370=0.6,cos370=0.8,求 (1)物块与木板间的动摩擦因数;

(2)若将此木板右端被抬高后成为倾斜角为0253θ=的斜面,让物块以一定初速度v 0=10m/s 从底端向上滑, 能上滑离底端的最远距离是多大. 4.如图所示,物体的质量m=4kg ,与水平地面间的动摩擦因数为μ=0.2,在与水平面成37°,F=10N 的恒力作用下,由静止开始加速运动,当t=5s 时撤去F ,(g=10m/s 2,sin37°=0.6,cos37°=0.8)。求: (1)物体做加速运动时的加速度a ; (2)撤去F 后,物体还能滑行多长时间? 5.如图所示,水平地面上有一质量m=2.0kg 的物块,物块与水平地面间的动摩擦因数μ=0.20,在与水平方向成θ=37°角斜向下的推力F 作用下由静止开始向右做匀加速直线运动。已知F=10N ,sin37o=0.60,cos37o=0.80,重力加速度g 取10m/s 2,不计空气阻力。求: (1)物块运动过程中所受滑动摩擦力的大小; (2)物块运动过程中加速度的大小; (3)物块开始运动5.0s 所通过的位移大小。 6.如图所示,粗糙斜面固定在水平地面上,用平行于斜面的力F 拉质量为m 的物块,可使它匀速向上滑动,若改用大小为3F 的力,扔平行斜面向上拉该物体,让物体从底部由静止开始运动,已知斜面长为L ,物块可看作质点,求: (1)在力3F 的作用下,物体到达斜面顶端的速度; (2)要使物体能够到达斜面顶端,3F 力作用的时间至少多少?

怎样在非惯性系中运用牛顿第二定律求解物理问题

怎样在非惯性系中运用牛顿第二定律求解物理问题 新课程物理必修1-1在74页给同学们介绍了惯性系和非惯性系。区分惯性系和非惯性系就在于分清坐标系的加速度是否等于零。如果某个参考系的加速度为零,则该参考系就是惯性系,在惯性系内,对研究对象而言,牛顿定律成立;如果某个参考系的加速度不为零,则该参考系就是非惯性系,在非惯性系内,对研究对象而言,牛顿定律不成立;而如果我们假设研究对象除了受到其它的力以外,还受到一个惯性力()的作用,则在该非惯性系内,对研究对象就可以用牛顿定律进行求解了。下面我们举一个例题进行具体分析。 如图1,一个质量为m 的光滑小球,置于升降机内倾角为θ的斜面上。另一个垂直于斜 面的挡板同小球接触,挡板和斜面对小球的弹力分别为1 N 和2N 。起初,升降机静止,后来,升降机以a 向上加速运 动。试求: 升降机静止和以a 加速运动这两种情况下,挡板和斜 面对小球的弹力分别为多少? 解:方法一:在惯性系中运用牛顿第二定律, 我们首先对小球进行受力分析,如图2,得到: 建立平面直角坐标系,如图2,得到: ma mg N N =-+θθcos sin 21 θθsin cos 21N N = 解,得到: θsin )(1a g m N += θcos )(2a g m N += 方法二: 从另一种角度来说,本题中如果以电梯为参考 系(非惯性参考系),则小球处于静止状态,其受力情况处于 平衡状态。小球的受力情况如图3所示,则(其中,* f 为惯 性力的大小): *21cos sin f mg N N +=+θθ θθsin cos 21N N = ma f =* 解,得到: θsin )(1a g m N +=

(完整版)高一物理牛顿第二定律典型例题答案及讲解

高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ] A.匀减速运动 B.匀加速运动 C.速度逐渐减小的变加速运动 D.速度逐渐增大的变加速运动 【分析】木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动. 【答】 D. 【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少? 【分析】物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度. (1)由于同一平面内、大小相等、互成120°角的三个力的合力等于零,所以木块的加速度a=0. (2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F合=2F=20N,所以其加速度为: 它的方向与反向后的这个力方向相同. 【例3】沿光滑斜面下滑的物体受到的力是 [ ] A.力和斜面支持力 B.重力、下滑力和斜面支持力 C.重力、正压力和斜面支持力

D.重力、正压力、下滑力和斜面支持力 【误解一】选(B)。 【误解二】选(C)。 【正确解答】选(A)。 【错因分析与解题指导】 [误解一]依据物体沿斜面下滑的事实臆断物体受到了下滑力,不理解下滑力是重力的一个分力,犯了重复分析力的错误。[误解二]中的“正压力”本是垂直于物体接触表面的力,要说物体受的,也就是斜面支持力。若理解为对斜面的正压力,则是斜面受到的力。 在用隔离法分析物体受力时,首先要明确研究对象并把研究对象从周围物体中隔离出来,然后按场力和接触力的顺序来分析力。在分析物体受力过程中,既要防止少分析力,又要防止重复分析力,更不能凭空臆想一个实际不存在的力,找不到施力物体的力是不存在的。 【例4】图中滑块与平板间摩擦系数为μ,当放着滑块的平板被慢慢地绕着左端抬起,α角由0°增大到90°的过程中,滑块受到的摩擦力将 [ ] A.不断增大 B.不断减少 C.先增大后减少 D.先增大到一定数值后保持不变 【误解一】选(A)。 【误解二】选(B)。 【误解三】选(D)。 【正确解答】选(C)。 【错因分析与解题指导】要计算摩擦力,应首先弄清属滑动摩擦力还是静摩擦力。 若是滑动摩擦,可用f=μN计算,式中μ为滑动摩擦系数,N是接触面间的正压力。若是静摩擦,一般应根据物体的运动状态,利用物理规律(如∑F=0或∑F = ma)列方程求解。若是最大静摩擦,可用f=μsN计算,式中的μs是静摩擦系数,有时可近似取为滑动摩擦系数,N是接触面间的正压力。

(完整版)牛顿第二定律的综合应用专题

图 1 牛顿第二定律的应用 第一类:由物体的受力情况确定物体的运动情况 1. 如图1所示,一个质量为m=20kg 的物块,在F=60N 的水平拉力作用下,从静止开始沿水平地面向右做匀加速直线运动,物体与地面之间的动摩擦因数为0.10.( g=10m/s 2) (1)画出物块的受力示意图 (2)求物块运动的加速度的大小 (3)物体在t = 2.0s 时速度v 的大小. (4)求物块速度达到s m v /0.6=时移动的距离 2.如图,质量m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜向上的拉力.已知sin37°=0.6,cos37°=0.8,取g=10m/s 2,求 (1)画出物体的受力示意图 (2)物体运动的加速度 (3)物体在拉力作用下5s 内通过的位移大小。 〖方法归纳:〗

〖自主练习:〗 1.一辆总质量是4.0×103kg 的满载汽车,从静止出发,沿路面行驶,汽车的牵引力是6.0×103N ,受到的阻力为车重的0.1倍。求汽车运动的加速度和20秒末的速度各是多大? ( g=10m/s 2) 2.如图所示,一位滑雪者在一段水平雪地上滑雪。已知滑雪者与其全部装备的总质量m = 80kg ,滑雪板与雪地之间的动摩擦因数μ=0.05。从某时刻起滑雪者收起雪杖自由滑行,此时滑雪者的速度v = 5m/s ,之后做匀减速直线运动。 求:( g=10m/s 2) (1)滑雪者做匀减速直线运动的加速度大小; (2)收起雪杖后继续滑行的最大距离。 3.如图,质量m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜下上的推力.已知sin37°=0.6,cos37°=0.8,取g=10m/s 2, 求(1)物体运动的加速度 (2)物体在拉力作用下5s 内通过的位移大小。

高中物理牛顿第二定律——板块模型解题基本思路

高中物理基本模型解题思路 ——板块模型 (一)本模型难点: (1)长板下表面是否存在摩擦力,摩擦力的种类;静摩擦力还是滑动摩擦力,如滑动摩擦力,N F 的计算 (2)物块和长板间是否存在摩擦力,摩擦力的种类:静摩擦力还是滑动摩擦力。 (3)长板上下表面摩擦力的大小。 (二)在题干中寻找注意已知条件: (1)板的上下两表面是否粗糙或光滑 (2)初始时刻板块间是否发生相对运动 (3)板块是否受到外力F ,如受外力F 观察作用在哪个物体上 (4)初始时刻物块放于长板的位置 (5)长板的长度是否存在限定 一、光滑的水平面上,静止放置一质量为M ,长度为L 的长板,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为μ。 首先受力分析: 对于m :由于板块间发生相对运动,所以物块所受长板向左的滑动摩擦力, 即:?????===m N N m a f F f m g F 动 动μ g a m μ= (方向水平向左) 由于物块的初速度向右,加速度水平向左,所以物块将水平向右做匀减速运动。 对于M :由于板块间发生相对运动,所以长板上表面所受物块向右的滑动摩擦力,但下表面由于光滑不受地面作用的摩擦力。 即: 动f N F N F '

?????==+='M N N N Ma f F f F Mg F 动 动μ M mg a M μ= (方向水平向右) 由于长板初速度为零,加速度水平向右,所以物块将水平向右做匀加速运动。 假设当M m v v =时,由于板块间无相对运动或相对运动趋势,所以板块间的滑动摩擦力会突然消失。则物块和长板将保持该速度一起匀速运动。 关于运动图像可以用t v -图像表示运动状态: 公式计算: 设经过时间 t 板块共速,共同速度为共v 。 由 共v v v M m == 可得: m 做匀减速直线运动: t a v v m -=0共 M 做初速度为零的匀加速直线运动:t a v M M = 可计算解得时间: t a t a v M m =-0 物块和长板位移关系: m : 202 1t a t v x m m -= M : 22 1t a x M M = 相对位移: M m x x x -=? v

相关文档
最新文档