Chitosan nanocapsules Effect of chitosan molecular weight and acetylation degree on electrokinetic

Chitosan nanocapsules  Effect of chitosan molecular weight and acetylation degree on electrokinetic
Chitosan nanocapsules  Effect of chitosan molecular weight and acetylation degree on electrokinetic

Colloids and Surfaces B:Biointerfaces 82 (2011) 571–580

Contents lists available at ScienceDirect

Colloids and Surfaces B:

Biointerfaces

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c o l s u r f

b

Chitosan nanocapsules:Effect of chitosan molecular weight and acetylation degree on electrokinetic behaviour and colloidal stability

M.J.Santander-Ortega a ,b ,J.M.Peula-García c ,F.M.Goycoolea b ,J.L.Ortega-Vinuesa d ,?

a

Department of Pharmaceutical and Biological Chemistry,The School of Pharmacy,University of London,London WC1N 1AX,UK

b

Department of Pharmacy and Pharmaceutical Technology,University of Santiago de Compostela,Santiago de Compostela 15706,Spain c

Department of Applied Physics II,University of Malaga,Malaga 29071,Spain d

Department of Applied Physics,University of Granada,Granada 18071,Spain

a r t i c l e i n f o Article history:

Received 2July 2010Received in revised form 21September 2010

Accepted 11October 2010

Available online 15 October 2010Keywords:

Lipid nanocapsules Chitosan shell Colloidal stability Hydration forces

Chitosan hydrophobicity

a b s t r a c t

In recent years,chitosan nanocapsules have shown promising results as carriers for oral drug or peptide delivery.The success in their applicability strongly depends on the stability of these colloidal systems passing through the digestive tract.In gastric ?uids,clear stability comes from the high surface charge density of the chitosan shell,which is completely charged at acidic pH values.However,in the intesti-nal ?uid (where the pH is almost neutral)the effective charge of these nanocapsules approaches zero,and the electrostatic forces cannot provide any stabilization.Despite the lack of surface charge,chi-tosan nanocapsules remain stable in simulated intestinal ?uids.Recently,we have demonstrated that this anomalous stability (at zero charge)is owed to short-range repulsive forces that appear between hydrophilic particles when immersed in saline media.The present work examines the in?uence of the chitosan hydrophobicity,as well as molecular weight,in the stability of different chitosan nanocapsules.A study has been made of the size,polydispersity,electrophoretic mobility,and colloidal stability of eight core–shell nanocapsule systems,in which the chitosan-shell properties have been modi?ed using low-molecular-weight (LMW)and high-molecular-weight (HMW)chitosan chains having different degrees of acetylation (DA).With regard to the stability mediated by repulsive hydration forces,the LMW chitosan provided the best results.In addition,contrary to initial expectations,greater stability (also mediated by hydration forces)was found in the samples formed with chitosan chains of high DA values (i.e.with less hydrophilic chitosan).Finally,a theoretical treatment was also tested to quantify the hydrophilicity of the chitosan shells.

? 2010 Elsevier B.V. All rights reserved.

1.Introduction

During 1950s,some biopharmaceutical and pharmacokinetic studies related to the controlled release of drugs were developed,spurring scienti?c interest in this topic [1].Since then,the devel-opment of nanoparticles as drug delivery systems has considerably improved.The huge number of preparation methods and raw mate-rials employed in developing new drug delivery systems accounts for their enormous relevancy [2].Among these,lipid-colloidal systems based on a core–shell structure formed by an oily core surrounded by a polymeric shell have offered promising results for the vehiculization of several hydrophobic bioactive molecules [3].These reservoir formulations present different advantages,such as high drug encapsulation ef?ciency,low polymer content and reduc-tion of the tissue irritation due to the polymeric shell [4,5].The speci?c properties of the polymer that forms the shell will deter-

?Corresponding author.Tel.:+34958240018;fax:+34958243214.E-mail address:jlortega@ugr.es (J.L.Ortega-Vinuesa).mine the biodistribution,selectivity and the long-term stability of the nanostructure [6].Chitosan has recently been proposed as an ideal component of the polymeric shell of oily nanocapsules due to its advantageous biological properties,such as biodegradability,biocompatibility,mucoadhesivity,and permeability enhancement [6–11].In addition,chitosan-coated nanocapsules formulated by a solvent-displacement technique [12]have demonstrated the ef?-cacy of this polymer in the vehiculization of drugs such as capsaicin [13],calcitonin [14],and docetaxel [15].Unfortunately,despite these advantages,the p K a value of the glucosamine groups of chitosan usually goes from 6to 7,depending on its degree of acety-lation (DA)and molecular weight (MW)[13].Consequently,the super?cial net charge of chitosan nanocapsules would be close to zero in most biological ?uids,including parenteral or intestinal media,which could lead to the aggregation of these systems,and thus render them useless.

Nevertheless,previous studies conducted in our laboratory [16]have demonstrated that chitosan located in the shell of these nanocapsules is able to improve their colloidal stability,even at the isoelectric point of the particles (pH 7),provided that the medium

0927-7765/$–see front matter ? 2010 Elsevier B.V. All rights reserved.doi:10.1016/j.colsurfb.2010.10.019

572M.J.Santander-Ortega et al./Colloids and Surfaces B:Biointerfaces82 (2011) 571–580

in which they are immersed has moderate or high salinity.This anomalous stabilization,explained neither by the classical DLVO theory nor by the steric repulsions among polymer chains,is given by short-range repulsive interactions known as hydration forces [13,16,17].Although the stability of many colloidal systems can be understood by considering the well-known DLVO theory[17],the theory also presents some serious limitations,as even stated by one of its authors[18].Water near any hydrophilic surface cannot be considered a continuous medium.In hydrophilic interfaces,water molecules and hydrated counterions are structured in the proxim-ity of the particle surface.These local ion-solvent structures close to the hydrophilic interface block the collision of two approach-ing colloidal particles,since these ordered“ion-water”layers must be removed to permit intimate contact between the two particle surfaces.However,the removal of these layers from hydrophilic surfaces is energetically unfavourable,and this prompts structural repulsive interactions known as hydration forces.Because of the hydrophilicity of the chitosan shell[19],hydration forces must be taken into account for the proper analysis of the colloidal stability of lipid nanocapsules coated by this polysaccharide.

Most of the properties of any colloidal system depend on the surface characteristics of its particles.Therefore,in nanocapsules coated by chitosan,the effective surface charge,electrokinetic mobility,and colloidal stability will depend exclusively on the physicochemical properties(DA and MW)of the chitosan chains immobilized at the interface.It is known that polymers based on the chitosan chemistry display different conformations.For low DA values(<20%)chitosan presents a hydrophilic polyelec-trolyte behaviour and the intramolecular electrostatic repulsions will favour the formation of an open,stiff structure.At a higher DA,the nature of the backbone becomes partially hydrophobic and,thus,hydrophilic and hydrophobic interactions are counter-balanced.Under these conditions the intramolecular repulsions decrease and the conformation of the polymer becomes more?ex-ible.For DA>50%hydrophobic interactions predominate,creating attractive intramolecular interactions which promote the forma-tion of loop-like assemblies[20].This behaviour is also affected by the MW of the polymer[21].All these phase transitions affect not only the structure of chitosan in solution but also to its confor-mation when it is adsorbed onto an oily core[22].If we take this situation into account,we might be able to modify the arrange-ment of the hydrophilic/phobic moieties of chitosan polymer onto the oily core by selecting the speci?c MW and DA of chitosan and thereby modulate the hydrophilic character of the nanocapsules.

In this scenario,different nanocapsules formulated with chi-tosan of low(11kDa)and high(122kDa)molecular weight (denoted as LMW and HMW,respectively)and four different DA (from1.4%up to56%)were prepared by a solvent-displacement technique[23].Their electrokinetic behaviour and colloidal sta-bility in the presence of different salts,as well as in commercial biological media,were characterized.As will be shown in this paper,the stability of the particles under physiological conditions depended entirely on the characteristics of the chitosan,and we demonstrate that hydration forces played a crucial role in keep-ing these particles stable in solutions for which the DLVO theory predicts aggregation.

2.Materials and methods

2.1.Reagents

A series of chitosan samples were prepared and puri?ed from a parent batch of chitosan obtained from chitin derived from squid pen supplied by Dr.Dominique Gillet of Mahtani Chitosan Pvt. Ltd.(France).For this,puri?ed chitosan was depolymerized under nitrous acid generated from NaNO2[24]in order to obtain two chi-tosan batches,i.e.of a high and low degree of polymerization(MW ~122kDa and11kDa,respectively,as determined by HPLC SEC-MALLS),hereafter referred to as HMW chitosan and LMW chitosan, respectively.Different aliquots of HMW and LMW chitosan sam-ples were further N-acetylated under homogeneous conditions by adding the needed stoichiometric amount of acetic anhydride in 1,2-propanediol[21]so as to afford chitosan with different degrees of acetylation(DA)–determined by1H NMR–varying in the range 1.6–56%for the HMW chitosan,and1.4–51%for the LMW sample. Lecithin(Epikuron145V)was from Degussa(Spain);Miglyol812?(caprylic/capric triglycerides)was supplied by Lemmel(Spain).In order to study the electrophoretic mobility and colloidal stability at different pH values,several buffered solutions with a low ionic strength(I=0.002M)were prepared:pH4.0and5.0were buffered with acetate,pH6.0and7.0with phosphate,and pH8.0and9.0 with borate.

2.2.Nanocapsule preparation

Chitosan-based nanocapsules were prepared following the pro-tocol originally developed in our laboratory[23],slightly modi?ed by avoiding the use of any poloxamer in the aqueous phase. Brie?y,20mg of lecithin were dissolved into250?L of ethanol, then62.5?L of Miglyol812?were added,followed by addition of4.75mL of acetone.Immediately afterwards,this organic phase was poured into10mL of an aqueous solution containing chitosan (0.5mg/mL)in5%stoichiometric excess of acetic acid.Immediately upon addition of the organic phase,the chitosan solution turned milky.Acetone,ethanol and a portion of the volume of water were evaporated in a rotavapor at40?C for~8min,giving a?nal volume corresponding to one-third of the original one.As a reference,an uncoated nanoemulsion(NE)was prepared under an identical pro-tocol as that used for chitosan-coated nanocapsules,but without including chitosan in the aqueous phase.

2.3.Size and storage stability

The average size of the nanocapsules was determined by photon-correlation spectroscopy(PCS)with a commercial light-scattering set-up,4700C,Malvern Instruments(Malvern,UK),with an argon laser of wavelength 0=488nm,working at a?xed angle (90?)at25?C.PCS gives information about the average diffusion coef?cient of the particles,which can be easily related to the mean diameter(?)using the Stokes–Einstein equation for spheres.The average size of our samples–which was measured weekly–was constant for months,this being an indication of high stability,at least when kept in the storage medium(puri?ed water,4?C).

2.4.Electrophoretic mobility

A ZetaPALS instrument(Brookhaven,USA)was used to mea-sure the electrophoretic mobility( e).The study was focused on measuring the e as a function of pH while maintaining a constant low-ionic-strength value(0.002M).Each e mobility datum was the average of45individual measurements.

2.5.Colloidal stability

NaCl,CaCl2,and MgCl2were used as destabilizing agents. According to the classical DLVO theory[17],increased salinity triggers the coagulation of a lyophobic colloidal system.During aggregation,the turbidity of the system increases when the average size of the scattering particles enlarges.Therefore,a simple spec-trophotometer(Bio-rad680,microplate reader)working with a visible wavelength( =570nm)is clearly able to detect and analyse

M.J.Santander-Ortega et al./Colloids and Surfaces B:Biointerfaces82 (2011) 571–580573

Table1

Chitosan degree of acetylation(DA),hydrodynamic mean size of the particles,polydispersity index(PDI), -potential at pH6( ),Stern potential(?),and hydration constant (C h)of our nanocapsules.The last two parameters were estimated by?tting the theoretical interaction energy given by Eq.(3)to the ccc and csc values shown in Fig.4(only for NaCl),as explained in Theoretical appendix.

Chitosan MW(kDa)DA(%)Size(nm)PDI (mV)?(mV)C h×1020(J)

LMW11 1.4150±30.1243.68.6512.1

9.0160±20.1437.48.5013.0

27.0148±10.1032.67.7022.7

51.0159±10.1128.7 6.0031.9

HMW122 1.6183±70.0856.312.20 1.7

11.0185±30.0648.611.25 3.2

27.0177±60.1144.211.10 3.6

56.0183±50.1141.810.007.4

the aggregation https://www.360docs.net/doc/4d17492021.html,rmation on the kinetics-aggregation

constant“k”of dimmer formation can be derived from the initial

slopes of the absorbance vs.time curves(dAbs/dt)by[25–27]:

dAbs dt =

C2/2?C1

N2

l

2.3

k(1)

where C1and C2are the scattering cross-sections of a monomer and a dimmer,respectively,N0is the initial particle concentration, and l is the optical path through the cuvette.Nevertheless,stability is usually evaluated by calculating the Fuchs factor(W),instead of calculating the k values using Eq.(1).The Fuchs factor(also called “stability factor”)is related to the number of collisions that two colliding particles must undergo before they remain de?nitively stuck.Therefore,when W=1the system is completely unstable, while W=∞indicates total stability.It is easy to calculate the Fuchs factor at each salt concentration from the aggregation curves using the following equation:

W=k f

k s

=(dAbs/dt)f

(dAbs/dt)s

(2)

where“k f”refers to the fastest aggregation-kinetics constant,and the subscript“s”refers to slower coagulation rates.Plotting W as a function of the medium salinity in a double-logarithmic scale becomes useful to estimate the critical coagulation concentration (ccc)–the point where W reduces to1–and the critical stabi-lization concentration(csc)–the point where W increases from 1to∞when salt concentration increases even more–which are fundamental parameters in colloidal stability studies.More details concerning the way in which W,ccc and csc values can be derived experimentally can be found in Refs.[16,19].The ccc value is related to destabilization processes and indirectly gives information on the surface-charge density of the particles;thus,a low ccc means low stability.However,the csc value–de?ned as the minimum salt con-centration at which the system begins to re-stabilize when salinity is increased even more–is associated with surface hydrophilicity. It should be noted that csc values increase when the hydrophilic-ity decreases,since the higher the hydrophilicity of the surface the lower the concentration of hydrated ions needed to create a struc-tural barrier,and viceversa(the lower the hydrophilicity,the higher the csc).Therefore,a low csc value means high hydrophilicity.

2.6.Stability in biological media

The colloidal stability of the nanocapsules formulated was investigated in the following cell-culture media:(a)Opti-MEM 1×(added with GlutaMAX-1,GIBCO)at pH7.45;(b)RPMI-1640 medium(PAA Laboratories GmbH)at pH7.34without any supple-ment;(c)RPMI-1640medium supplemented with6%(v/v)fetal bovine serum(PAA Laboratories GmbH),1%(v/v)l-glutamine and 0.2%(v/v)penicillin/streptomycin solution(GPS,Sigma–Aldrich)at pH7.34;(d)simulated gastric(pH1.2),and(e)intestinal(pH6.8)?uids,both prepared according to the United States Pharmacopeia XIX.Finally,the colloidal stability was also analysed in more simple biological media such as a(f)phosphate-buffered saline solution (PBS,Sigma–Aldrich)and a(g)D-PBS solution(Sigma–Aldrich), both at pH7.4.

3.Results and discussion

Size is a critical parameter that controls the potential use of these colloids as successful drug delivery systems.It has been demonstrated that the optimum mean diameter to cross biolog-ical barriers is around or just below of200nm[28–30].In this sense,all the particles used were potentially apt for delivery sys-tems,since their diameters were in the150–185nm range(see Table1).The nanocapsule size was dependent on the molecular weight of the chitosan,although it was not affected by the DA at all.Chitosan,coating the particle,adheres to the lecithin layer by means of attractive electrical forces(in the low DA cases)[31] together with hydrophobic interactions(only in the high DA cases) [32,33].Therefore,the differences observed in size appear to arise from the different thickness of the shell,this being much thicker in the HMW samples.The amount of chitosan immobilized in the nanocapsules was calculated following Muzzarelli[34].It should be noted that the incorporation of chitosan was consistently higher than90%,being almost complete(99%)for the highest DA cases (LMW51%and HMW56%)[13].This clearly indicates that the attractive hydrophobic interactions between the hydrophobic frag-ments of the acetylated chitosan and the lipid core or hydrophobic patches of the lecithin layer favour adsorption,complementing the electrostatic attraction among the charged parts of the lecithin and chitosan.

The electrical state of the particle surface is other physical parameter that needs to be evaluated.This information can be gained by electrophoretic mobility( e)measurements.Fig.1 shows the e data of the LMW samples as a function of pH.Similar results were found with the HMW nanocapsules.The incorpora-tion of chitosan on the surface of the nanocapsules was clearly manifested in these experiments,once the e data of nanocap-sules coated by chitosan were compared with those found with an uncoated nanoemulsion.Differences were much more evident under acidic conditions;at acid pHs the glucosamine groups of chi-tosan located in the shell converted negative particles into positive ones.As can be seen,the acetylation degree affected the mobility data,since the higher the acetylation degree,the lower the num-ber of positive charges on the surface(that coexist with a?xed amount of negative charges supplied by the lecithin layer).In this sense,the isoelectric point(iep)of the particles–i.e.the pH at which e reduces to zero–decreased when the DA was increased. The approximate iep values given by Fig.1were7.8,7.6,7.3,and 7.1,for DA values of1.4%,9%,27%,and51%,respectively.A simi-lar tendency was observed with the HMW systems.The reduction in charged glucosamine groups in the chitosan shell caused by the acetylation process is also re?ected in Fig.2,where the e data are

574M.J.Santander-Ortega et al./Colloids and Surfaces B:Biointerfaces 82 (2011) 571–580

2

4

μe 108 (m 2

/ V s )

pH

Fig.1.Electrophoretic mobility of our LMW samples as a function of

pH.The degree of acetylation of the chitosan shell was:1.4%( ),9%(),27%( ),and 51%().The mobility of a nanoemulsion prepared without including chitosan in its synthesis was also measured ().

60

504030201002,5

3,0

3,5

4,0

4,5

5,0

5,5

μe 108

(m 2

/ V s )

DA (%)

Fig.2.Electrophoretic mobility at pH 4.0vs.the degree of acetylation.LMW ()

and HMW ()samples.

plotted as a function of DA.It should be noted that,in general,the mobility of the HMW samples was higher than that of the LMW ones,indicating (as expected)that the effective surface charge in a thicker chitosan layer (HMW)was higher than in thin chitosan shells (LMW).Finally,an additional study was made to evaluate whether DA alters the average p K a of the particles.The average p K a values of the surface groups were estimated,taking into account the data shown in Fig.1,by ?tting the sigmoidal e curve to an equa-tion given in Ref.[35].The estimated p K a values were coincident in all cases,?nding an average value of 7.0±0.2.

The next set of experiments was performed to evaluate the col-loidal stability of the particles at pH 6.0in presence of different electrolytes (NaCl,CaCl 2,and MgCl 2).These experiments were use-ful not only to estimate the effective surface charge (by means of the ccc values),but also to gain information about the hydrophilic-ity of the outer part of our particles through the csc values.Fig.3a and b shows a typical stability experiment for the HMW samples with NaCl and the LMW samples with CaCl 2,respectively.The ccc and csc values thus calculated were used to generate a stability diagram (see Fig.4).The shady areas are delimited by the ccc and csc values,and they represent salinity conditions at which the par-ticles rapidly aggregate.The csc values delimit the upper part of

W

[NaCl] (mM)

10

1

110

100

W

[CaCl 2] (mM)

Fig.3.(a)Stability factor of our HMW nanocapsules as a function of NaCl concen-tration.1.6%( ),11%(),27%( ),and 56%().The straight solid lines help to guide

the eye toward the ccc values,while the dash lines serves to locate the csc values.(b)Stability factor of our LMW nanocapsules as a function of CaCl 2concentration.1.4%( ),9%(),27%( ),and 51%().The straight solid lines help to guide the eye toward the ccc values,while the dash lines serves to locate the csc values.

these instability regions,while the lower part is de?ned by the ccc data.Once the salinity value exceeds the csc values,the repul-sive hydration forces begin to act,and the stability improves when the salt concentration increases even more.Likewise,below the ccc ,there is a potential barrier that hinders the collision of two approaching particles.According to the DLVO theory,the lower the salt concentration,the higher the height of this barrier,and in turn the stronger the stability of the system.If this is true,any system that is unstable under physiological salinity would become use-less for future applications as drug carriers,since it would rapidly aggregate.

There are some general ?ndings that deserve to be discussed:(1)The trend of the ccc values agrees with the DA values (and with

the electrophoretic mobility behaviour):the higher the acety-lation degree the lower the number of charged glucosamine groups,yielding to less stable particles.This trend appears in both systems (LMW and HMW)regardless of the salt used.(2)Once a given salt is chosen (NaCl,CaCl 2,or MgCl 2),the ccc

values of the HMW samples become higher than those found with the LMW particles.This result also agrees with the surface charge density of the chitosan shell.Chitosan chains are posi-tively charged at pH 6.0,and thus,the thicker the chitosan layer

M.J.Santander-Ortega et al./Colloids and Surfaces B:Biointerfaces82 (2011) 571–580

575

Fig.4.Stability diagrams of our nanocapsules at pH6.0for three different elec-trolytes(NaCl,CaCl2,and MgCl2).The dark areas represent salt concentrations at which instability is complete,as they correspond to regions above the ccc but below the csc.The horizontal black line represents the usual ionic strength value found in most of the biological?uids.If this line crosses the instability region of a given system,this means that such a system would be useless for practical applications, since it would rapidly aggregate.

(HMW cases),the higher the charge density and the higher the stability according to the DLVO theory.

(3)Saline-mediated repulsive hydration forces arise in the eight

systems studied,this being a clear indication of the effective incorporation of chitosan–a hydrophilic polysaccharide–onto the particle surface.However,a striking result was found when the hydrophilicity of the chitosan shell was analysed.The csc values consistently decreased(i.e.the average hydrophilicity of the surface increased)with the DA,when the glucosamine groups were partially changed by hydrophobic acetylated frag-ments.This unexpected result constitutes a general trend found independently with each electrolyte.A plausible explanation for this?nding will be given below.

(4)If hydrophilicity is analysed with regard to the molecular

weight of the chitosan,the LMW nanocapsules show a more hydrophilic character(lower csc values)than the HMW parti-cles.

(5)Finally,taking into account the csc values again,we found the

stability provided by the hydration forces to be much stronger (lower csc values)when divalent cations were present in the medium.It should be noted that the magnitude of these repul-sive structural forces is not only correlated to the hydrophilicity of the surface,but also strongly depends on the concentra-tion and hydration degree of the ions surrounding the surface [32,36–39].For this reason,Ca2+or Mg2+always exert higher restabilization effects–lower salt concentrations are neces-sary to generate repulsions mediated by hydration forces–than sodium,as these divalent cations are much more hydrated than Na+[32].Although hydration repulsions have usually been ascribed to the role played by counterions(Cl?in our experi-ments working at pH6.0),it has been demonstrated that coions also participate in these kinds of repulsive interactions[40].It might be worthy to comment that,although it is well-known that divalent cations speci?cally interacts with the lecithin polar groups[41,42],it is more than likely that such interac-tions do not take place in our systems,since the lecithin charges are hidden(and counterbalanced)by the positive charges of the chitosan layer that coats the particle.This protective shell

avoids direct interaction between calcium or magnesium with the lecithin layer.

It is worth discussing the points3and4above in more detail.The reason why the average hydrophilicity of the outer part of our nanocapsules increases with the chitosan DA must be sought in the hydrophobic interactions that take place between the hydrophobic moieties of the chitosan(with high DA)and the hydrophobic patches of the lecithin layer and/or the oily core. The term hydrophobic interaction refers to the spontaneous dehy-dration and subsequent approximation and contact of non-polar components in an aqueous environment.The dehydration origi-nates from the fact that interactions between water molecules are far more favourable than contacts between non-polar groups or between a non-polar group and water.Hence,non-polar groups tend to be rejected from an aqueous environment rather than being attracted to one another.Hydrophobic interaction is characterized by a large entropy increase(given by the release of structured water molecules that were in contact with non-polar groups)and a relatively small enthalpy effect.Taking this situation into con-sideration,we found that when a chitosan chain has a very low degree of acetylation(i.e.1.4%),the polysaccharide backbone is very hydrophilic.Therefore,hydrophobic interactions cannot take place between this chitosan and the lecithin/oil nanocapsule,and attractive interactions among the glucosamine groups(of the chi-tosan)and the negatively charge groups of lecithin are purely electrostatic[31].This means that,if any hydrophobic patch is pre-sented in the oil/lecithin nanoemulsion,this will be not coated by the electrostatically deposition of chitosan,and subsequently, the?nal nanocapsule formed with low DA chitosan will exhibit the original hydrophobic patches.However,when chitosan with a relatively high DA value is used instead(i.e.DA~50%),the inter-action between this polysaccharide and the lecithin/oil surface is not only electrostatic,but also is driven by hydrophobic forces.The hydrophobic interaction will take place between the hydropho-bic moieties of the chitosan chain and the hydrophobic parts of the lecithin/oil surface,both of them avoiding contact with water and orienting the hydrophilic parts toward the aqueous phase.As a result,the hydrophilicity of the outer surface of our high-DA chi-tosan/lecithin/oil nanocapsules is stronger than that exhibited by low-DA chitosan,since the original hydrophobic patches in the particles are now hidden.This would explain why more hydropho-bic chitosan(high DA)yields to more hydrophilic surfaces in our nanocapsules,that is,lower csc.

To quantify the hydrophilicity of the nanocapsule surface,we carried out a theoretical treatment of our experimental results.This treatment is detailed in Appendix of this paper.By?tting the exper-imental stability data(ccc and csc values)to theoretical equations in which DLVO and hydration forces are considered,we?nd it pos-sible to evaluate the hydrophilic character of a surface.Quantitative information concerning the hydrophilicity is given by the param-eter“hydration constant”(C h),which depends only on the surface nature,but not on the ions dissolved in the medium.A high C h value means high hydrophilicity.Table1shows the C h values found for our systems.Two conclusions can be drawn:(i)the hydrophilic-ity of the nanocapsule surface in fact increases with the chitosan DA,as explained above,and(ii)those particles synthesised with LMW chitosan exhibit a much more hydrophilic surface than do those obtained with HMW chitosan.The reason for this is because short polymeric chains(LMW)can re-accommodate their spatial conformation by hiding their hydrophobic areas from water con-tact much more easily than can a long chain(HMW).However,by increasing its molecular weight,chitosan will form loop-like struc-tures to protect its hydrophobic moieties from the aqueous phase [20,21].These intramolecular interactions make dif?cult the above commented re-structuring of the polymer onto the oily core,and

576M.J.Santander-Ortega et al./Colloids and Surfaces B:Biointerfaces 82 (2011) 571–580

1

1/2

1/3

1/5

1/10

1/15

1/20

1/30

0,000

0,0010,0020,0030,0040,005

0,006

d (A b s )/d t (s -1

)

Dilution with regard to the original medium 1

1/2

1/3

1/5

1/10

1/15

1/20

1/30

0,000

0,001

0,002

0,003

0,004

0,005

0,006

d (A b s )/d t (s -1

)

Dilution with regard to the original medium

1

1/2

1/3

1/5

1/10

1/15

1/20

1/30

0,000

0,0010,0020,0030,0040,005

0,006

d (A b s )/d t (s -1

)

Dilution with regard to the original medium 1

1/2

1/3

1/5

1/10

1/15

1/20

1/30

0,000

0,001

0,002

0,003

0,004

0,005

0,006

d (A b s )/d t (s -1

)

Dilution with regard to the original medium

Fig.5.Aggregation kinetics of (a)LMW with a DA =1.4%,(b)LMW with a DA =51%,(c)HMW with a DA 1.6%,and (d)HMW with a DA =56%,vs.different dilutions of media with biological interest:( )PBS,( )D-PBS,( )Opti-MEM,(?)RPMI,and ( )RPMI supplemented with fetal bovine serum.

hence,the polymer probably is not able to completely protect some hydrophobic patches from exposure to the aqueous medium.

To evaluate the potential applicability of our particles as drug delivery systems in physiological environments,we made a new study of stability in different media of biological interest.For clarity we show only the results of our four limit cases:LMW with DA =1.4%(Fig.5a),LMW with DA =51%(Fig.5b),HMW with DA =1.6%(Fig.5c),and HMW with DA =56%(Fig.5d).In these ?g-ures,stability is correlated with the initial absorbance variation (dAbs/dt )of a solution in which the particles are added.When aggre-gation takes place,the turbidity of the solution increases,dAbs/dt being higher for the most unstable systems.Likewise,a dAbs/dt equal to zero means total stability.It should be noted that the media in which the experiments where conducted (described in Section 2)had moderate salinity,similar to that found in biolog-ical ?uids.Fig.5a–d shows a common feature in all our systems,irrespective the particle or the medium nature:all of these are sta-ble,in the sense that is,dAbs/dt =0in the original medium (point “1”in the x -axis).The origin of this stability may be hardly elec-trostatic,since all our media possess pH values very close to,or even coincident with,the isoelectric points of our nanocapsules.Although the electrical contribution to the stability in our biolog-ical media must not be completely neglected,it actually must be weak under these conditions,and consequently it will be ruled out in this discussion.However,hydration forces would explain the stability patterns observed.In fact,as soon as the salinity of the original medium was reduced by successive dilutions,all our stable systems began to aggregate,supporting the idea that the original stability was caused by the presence of a considerable amount of hydrated ions (i.e.reduced with dilutions).Above,it was explained that the magnitude of the repulsive hydration forces depends not only on the hydrophilicity of the surface,but also on the concentration of hydrated ions surrounding it.The higher the hydrophilicity,the lower the amount of salt needed to re-stabilize the system.Therefore,the results shown in Fig.5a–d also serve to order our systems according to their hydrophilicity.The most hydrophilic systems will be those in which a large dilution of the original salinity is necessary to appreciate aggregation.For exam-ple,samples with a high DA are much hydrophilic than those of low DA,since the former are stable even in media diluted 5-fold (see LMW DA =51%in Fig.5b)while aggregation starts at lower dilutions (2-or 3-fold)in low-DA samples (see LMW DA =1.4%in Fig.5a).A similar trend is found with the HMW samples (Fig.5c and d).Other systems with intermediate DA values (LMW with DA =9%or DA =27%,or HMW with DA =11%or DA =27%)showed a behaviour that was also intermediate between those shown in Fig.5.Conse-quently,these new experiments con?rm our previous conclusions:nanocapsules formed with chitosan with high a DA show a more hydrophilic surface than those synthesised with chitosan of a low DA.

M.J.Santander-Ortega et al./Colloids and Surfaces B:Biointerfaces 82 (2011) 571–580577

1

1/2

1/3

1/5

1/10

1/15

1/20

1/30

0,000

0,0010,0020,0030,0040,005

a

b

c d

d (A b s )/d t (s -1

)

Dilutions with regard to the original medium

1

1/2

1/3

1/5

1/10

1/15

1/20

1/30

0,000

0,001

0,002

0,003

0,004

0,005

d (A b s )/d t (s -1

)

Dilutions with regard to the original medium

1

1/2

1/3

1/5

1/10

1/15

1/20

1/30

0,000

0,0010,0020,0030,0040,005

d (A b s )/d t (s -1

)

Dilutions with regard to the original medium 1

1/2

1/3

1/5

1/10

1/15

1/20

1/30

0,000

0,001

0,002

0,003

0,004

0,005

d (A b s )/d t (s -1

)

Dilutions with regard to the original medium

Fig.6.Aggregation kinetics in of (a)LMW with a DA =1.4%,(b)LMW with a DA =51%,(c)HMW with a DA 1.6%,and (d)HMW with a DA =56%,vs.different dilutions of simulated gastric ?uid (---),and simulated intestinal ?uid (—).

In addition,these experiments also demonstrate that particles with a shell made of low molecular chitosan are more hydrophilic than those with high MW (keeping the DA constant).For exam-ple,the LMW sample of high DA (Fig.5b)is stable even in media where the salinity is 5-fold lower than the original medium,while the HMW system with high DA (Fig.5d)becomes unstable from dilutions where salinity is a third of the original.A similar reason-ing can be applied to the systems with a low DA (Fig.5a and c).Therefore,the stability study performed in these biological media agrees with those carried out at pH 6and shown in Fig.4.

As chitosan nanocapsules are usually orally administrated,the last set of stability experiments was made in simulated digestive ?uids.Once again,only the four limit cases will be shown for the sake of clarity,although experiments were performed with our eight systems.Fig.6a–d shows the initial aggregation kinetics of nanocapsules immersed both in simulated gastric and in intestinal ?uids,as well as in successive dilutions.The stability was almost complete in gastric ?uid,since the chitosan shell was completely charged at pH 1.2.In this medium,stability is mainly provided by the electrostatic DLVO contribution.Only the nanocapsules with higher DA values,in which the charge density is lower due to the acetylation of glucosamine groups,showed a little tendency to aggregate,as dAbs/dt was not exactly zero in some dilutions (see Fig.6b and d).Nevertheless,these aggregation kinetics were almost negligible compared to those in the intestinal ?uid.The intestinal pH approximately matches the isoelectric points of our nanocap-sules.The lack of surface charge was responsible for the aggregation in those media in which the original salinity was reduced by dilu-

tion.However,some samples were stable in the original intestinal ?uid,where the ionic strength was around 200mM.This stability was ascribed to hydration repulsive forces,as they are capable of stabilizing an uncharged system when the ionic strength increases,provided that the surface is suf?ciently hydrophilic.Actually,there was no aggregation in the original ?uid in those samples with the highest DA value (LWM 51%,and HMW 56%),re?ecting higher hydrophilicity than in the samples with low DA:LWM 1.4%(which showed rather slow kinetics;Fig.6a)and HMW 1.6%(which showed signi?cant coagulation kinetics;Fig.6c).In addition,if the results are compared between samples of identical DA,but varying the molecular weight,these experiments demonstrate,once more,that low-molecular-weight chitosan gives more hydrophilic shells than do high-molecular-weight chains.For example,when the salinity of the intestinal ?uid is reduced to the half,the LMW 51%sample is almost stable (Fig.6b)while the HMW 56%rapidly aggregates (Fig.6d).Likewise,the LMW 1.4%system in the original intesti-nal ?uid is practically stable (Fig.6a),while the HMW 1.6%clearly coagulates.4.Conclusions

Different chitosan derivatives varying in molecular weight and degree of acetylation were successfully used to form nanocapsules with potential applications as drug delivery systems.Initially,the particle size and polydispersity of our eight systems were appro-priate for such a purpose.Not only the size,but also the surface properties depended on the nature of the chitosan located in the

578M.J.Santander-Ortega et al./Colloids and Surfaces B:Biointerfaces82 (2011) 571–580 external shell of the colloidal particles.Some basic studies on elec-

trokinetic mobility as well as colloidal stability experiments have

enabled us to draw certain conclusions regarding both the electrical

state and the hydrophilicity of the nanocapsule surface,respec-

tively.The electrokinetic measurements indicated that the average

surface charge was reduced with DA,as the number of positively

charged glucosamine groups diminished proportionally with the

acetylation process.With regard to hydrophilicity,the hydration

forces were fundamental in making our nanocapsule systems sta-

ble in media of moderate or high salinity,even under conditions

where the surface charge was close to zero.A broad set of stabil-

ity experiments demonstrated that hydrophilicity increased with

the DA but decreased with the molecular weight of the chitosan.

Despite that an increment in DA raises the number of hydropho-

bic parts in the chitosan backbone,the attractive hydrophobic

interactions among these fragments and the hydrophobic areas

of the oil/lecithin particle expose the hydrophilic regions to the

aqueous phase,as well as the hydrophobic parts are hidden.There-

fore,the average hydrophilicity becomes stronger in the systems

formed by chitosan with high DA values than those with low DA.

Finally,the in?uence of the molecular weight of chitosan on the

hydrophilicity was also signi?cant,as low MW chains supply a more

hydrophilic shell.In this case,the hydrophobic fragments can be

re-accommodated much better on the surface–avoiding their con-

tact with water–than those parts in high-molecular-weight chains,

where it is more than likely that some hydrophobic moieties cannot

be hidden due to steric hindrances.

As colloidal stability is a key point to develop useful drug deliv-

ery systems,our results suggest that the most stable nanocapsules,

to be used in biological media with moderate salinity,are those

formulated with low-molecular-weight chitosan having a DA value

around50%.It should be noted that repulsive hydration forces are

the main factors responsible for the stability of chitosan nanocap-

sules in biological media.

Acknowledgments

The authors thank the?nancial support given by the projects

MAT2007-66662-C02-01(European FEDER support included,

MICINN,Spain),and P07-FQM2496and P07-FQM3099(Junta de

Andalucía,Spain).

Appendix A.Theoretical appendix

To explain the stability of hydrophilic colloids quantitatively,

Molina-Bolivar et al.developed an extension to the classical DLVO

theory including hydration forces and their dependence on the salt

concentration[43].Following an approximation proposed by Chu-

raev and Derjaguin[44]in which a“structural”term that accounted

the hydration interaction was added to the classical DLVO terms,

the net potential energy for the interaction between two colloidal

particles can be described by the algebraic sum of three potentials:

V T=V A+V E+V H(3)

where V A is the London–van der Waals dispersion energy,V E repre-

sents the repulsive interaction caused by overlapping the electrical

double layers of the particles,and V H is a term that accounts the

repulsive hydration interaction energy.

The van der Waals attraction takes the following extended form

[17]:

V A=?A

6

2a2

H(4a+H)

+2a

2

(2a+H)2

+ln H(4a+H)

(2a+H)2

(4)

where A is the Hamaker constant for particles interacting in a given medium(water in our case),a is the particle radius,and H is the distance between the surfaces of the two approaching particles.

According to the constant potential model and for symmetrical electrolytes,a reasonable expression to V E(for moderate potentials in the Stern layer,<50mV),is[45]:

V E=2 (a+ )εε0

4k B T

z i e

2

e??(H?2 )(5) where is the thickness of the Stern layer,εthe dielectric constant of the medium,ε0the vacuum permittivity,k B the Boltzman con-stant,T the absolute temperature,z i the valence of the ion,e the elementary charge,?is the Debye parameter,

?=

i

i e2z2

i

εε0k B T

1/2

(6) and is given by the following equation:

=tanh

z i e ?

4k B T

(7)

where?is the Stern potential.Actually,Eq.(7)is a good approxi-mation for?a 1and?<50mV.

With regard to the non-DLVO interaction(V H),it is assumed that the ion-water structures accumulated at the proximities of the par-ticle surface decay away from that interface exponentially.This is why,as a empirical rule,it depends exponentially on the interlayer thickness“H”[32].To account for the role played by the electrolyte concentration,Molina-Bolivar et al.[43]proposed the following equation where the pre-exponential term is directly proportional to salt concentration(c e):

V H= a(N A C h c e) 2e?H/ (8) N A is the Avogadro number,C h is a proportionality constant called“hydration constant”,its value depending on the surface hydrophilicity,and is the decay length.The value of depends on the hydration number of the hydrated counterion,and it is usually within the0.2–1.1nm range[43].

It should be noted that the pre-exponential factor depends on the salt concentration in such a way that under very low salin-ity conditions the V H term can be considered negligible against the DLVO terms(V A and V E).However,the repulsive hydrophilic term becomes more and more signi?cant in the total interaction energy(V T)as soon as the ionic strength of the medium increases. This effect has been depicted in Fig.7for the LMW DA=51%sys-tem.

The above equations are useful to gain quantitative informa-tion about the surface hydrophilicity of our nanocapsules once the C h parameter is estimated by comparing the theoretical predic-tions with the experimental ccc and csc values obtained with NaCl at pH6.0(data shown in Fig.4).Since chloride acts as counte-rion at this acidic pH,the value accounting for the size of the adsorbed ions of the Stern layer was taken from the literature:for Cl?, =0.33nm[32].For a given system immersed in media with salt concentrations below the ccc(where the V H contribution is not strong enough),the Stern potential?,included in the V E term,was used as a?tting parameter to match its experimental ccc.The ccc is de?ned by the minimum salt concentration in which the repulsive potential barrier vanishes(that is,when both V T and dV T/dH are equal to zero).In this process,the Hamaker constant“A”was set at a constant value also chosen from the literature:A=0.55×10?20J. The procedure described is shown in Fig.8for the HMW DA=56% sample,which had a ccc=37mM and a csc=100mM with NaCl(see Fig.4).With the?and A values thus determined we can move now to the non-DLVO regions(around the csc)where the hydra-tion forces become important.Eq.(8)has two?tting parameters, and C h,the former depending on the counterion hydration and

M.J.Santander-Ortega et al./Colloids and Surfaces B:Biointerfaces 82 (2011) 571–580

579

-50

050100150200

250300350V /k B T

H (nm)

Fig.7.Effect caused by the hydration interaction (V H )when it is included in the DLVO interaction (V T =V A +V E )for the LMW DA =51%system in a solution containing a NaCl concentration of 150mM (which is higher than the corresponding ccc and csc values).The following parameters were set at:A =0.55×10?20J, ?=6.0mV, =0.33nm, Cl ?=0.35nm,and C h =31.9×10?20J.

-5

5

10

15

V T /k B T

H (nm)

Fig.8.Variation of the total interaction potential vs.distance when the NaCl con-centration was increased in the HMW DA =56%system.Both V T and dV T /dH become zero at the ccc and csc values The following parameters were set at:A =0.55×10?20J, ?=10.0mV, =0.33nm, Cl ?=0.35nm,and C h =7.35×10?20J.

the latter depending exclusively on the surface hydrophilicity of the particles.Nevertheless,the value for chloride was calculated in Ref.[16],being equal to 0.35nm,and thus,only C h remains as a ?tting parameter.In fact,this hydration constant was adjusted to match the experimental csc ,in which both V T and dV T /dH were also equal to zero (see Fig.8).This laborious procedure enabled us to estimate the ?and C h values for our eight systems when immersed in NaCl solutions at pH 6.0(Fig.4).Data are shown in Table 1.The Stern potential values agree with the electrokinetic mobility results (which are dependent on the -potential),and they decrease when the acetylation degree increases,as expected.In addition,this potential is higher when the shell was formed by chitosan of high molecular weight,as the charge density in this thicker layer is higher than in the LMW cases.It would be infor-mative to compare the theoretically calculated ?values with the -potential ones.Our electrophoretic instrumental device auto-matically transformed the mobility data into -potential values by means of the Helmholtz–Smoluchowski equation [46].The so obtained -potential results obtained at pH 6are also given in

Table 1.Both electrical potentials ( ?and )have similar trends,but they differ each other quantitatively.This quantitative,but not qualitative,discrepancy might be caused by the method used to transform mobility into -potential data.With regard to the surface hydrophilicity,C h gives quantitative information previously com-mented in the main text:that is,low-molecular-weight chitosan produces shells that are more hydrophilic than those formed by HMW chains.In addition,for a given molecular weight,an increase in the DA value yields to an increase in the average hydrophilicity of the surface.References

[1]J.Kreuter,Nanoparticles –a historical perspective,International Journal of

Pharmaceutics 331(2007)1–10.

[2]K.S.Soppimath,T.M.Aminabhavi,A.R.Kulkarni,W.E.Rudzinski,Biodegradable

polymeric nanoparticles as drug delivery devices,Journal of Controlled Release 70(2001)1–20.

[3]C.E.Mora-Huertas,H.Fessi,A.Elaissari,Polymer-based nanocapsules for drug

delivery,International Journal of Pharmaceutics 385(2010)113–142.

[4]C.Pinto,R.J.Neufeld,A.J.Ribeiro,F.Veiga,I.Nanoencapsulation,Methods for

preparation of drug-loaded polymeric nanoparticles,Nanomedicines:NBM2(2006)8–21.

[5]N.Anton,J.P.Benoit,P.Saulnier,Design and production of nanoparticles formu-lated from nano-emulsion templates –a review,Journal of Controlled Release 128(2008)185–199.

[6]A.Rube,Development and physico-chemical characterization of nanocapsules,

Vol Thesis,Martin-Luther University,2006.

[7]M.N.Khalid,P.Simard,D.Hoarau,A.Dragomir,J.C.Leroux,Long circulating

poly(ethylene glycol)-decorated lipid nanocapsules deliver docetaxel to solid tumors,Pharmaceutical Research 23(2006)752–758.

[8]S.H.Lee,S.H.Choi,S.H.Kim,T.G.Park,Thermally sensitive cationic polymer

nanocapsules for speci?c cytosolic delivery and ef?cient gene silencing of siRNA:swelling induced physical disruption of endosome by cold shock,Journal of Controlled Release 125(2008)25–32.

[9]C.Prego,D.Torres,E.Fernandez-Megia,R.Novoa-Carballal,E.Quinoa,M.J.

Alonso,Chitosan–PEG nanocapsules as new carriers for oral peptide delivery –effect of chitosan pegylation degree,Journal of Controlled Release 111(2006)299–308.

[10]A.Gabizon,R.Catane,B.Uziely,B.Kaufman,T.Safra,R.Cohen,F.Martin,A.

Huang,Y.Barenholz,Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,Cancer Research 54(1994)987–992.

[11]M.Tobio,A.Sanchez,A.Vila,I.I.Soriano,C.Evora,J.L.Vila-Jato,M.J.Alonso,

The role of PEG on the stability in digestive ?uids and in vivo fate of PEG–PLA nanoparticles following oral administration,Colloids and surfaces 18(2000)315–323.

[12]H.Fessi,F.Puisieux,J.P.Devissaguet,N.Ammoury,S.Benita,Nanocapsule

formation by interfacial polymer deposition following solvent displacement,International Journal of Pharmaceutics 55(1989)R1–R4.

[13]F.M.Goycoolea,A.Valle-Gallego,R.Stefani,B.Mencicchi,M.J.Santander-Ortega,C.Remu?nán-López,M.J.Alonso,Chitosan-based nanocapsules:physical characterization,capsaicin encapsulation ef?ciency and stability in biological media,Soft Matter,under review.

[14]C.Prego,D.Torres,M.J.Alonso,Chitosan nanocapsules:a new carrier for nasal

peptide delivery,Journal of Drug Delivery Science and Technology 16(2006)331–337.

[15]M.V.Lozano,D.Torrecilla,D.Torres,A.Vidal,F.Dominguez,M.J.Alonso,Highly

ef?cient system to deliver taxanes into tumor cells:docetaxel-loaded chitosan oligomer colloidal carriers,Biomacromolecules 9(2008)2186–2193.

[16]M.J.Santander-Ortega,M.V.Lozano-Lopez,D.Bastos-Gonzalez,J.M.Peula-Garcia,J.L.Ortega-Vinuesa,Novel core–shell lipid-chitosan and lipid-poloxamer nanocapsules:stability by hydration forces,Colloid and Polymer Science 288(2010)159–172.

[17]P.C.Hiemenz,R.Rajagopalan,Principles of Colloidal and Surface Chemistry,

Dekker,New York,1997.

[18]J.T.G.Overbeek,Strong and weak points in the interpretation of colloid stability,

Advances in Colloid and Interface Science 16(1982)17–30.

[19]T.Lopez-Leon,M.J.Santander-Ortega,J.L.Ortega-Vinuesa,D.Bastos-Gonzalez,

Hofmeister effects in colloidal systems:in?uence of the surface nature,Journal of Physical Chemistry C 112(2008)16060–16069.

[20]C.Schatz,C.Viton,T.Delair,C.Pichot,A.Domard,Typical physicochemi-cal behaviors of chitosan in aqueous solution,Biomacromolecules 4(2003)641–648.

[21]https://www.360docs.net/doc/4d17492021.html,marque,J.M.Lucas,C.Viton,A.Domard,Physicochernical behavior of

homogeneous series of acetylated chitosans in aqueous solution:role of various structural parameters,Biomacromolecules 6(2005)131–142.

[22]F.Quemeneur,A.Rammal,M.Rinaudo,B.Pepin-Donat,Large and giant vesicles

“Decorated”with chitosan:effects of pH,salt or glucose stress,and surface adhesion,Biomacromolecules 8(2007)2512–2519.[23]P.Calvo,C.Remu?nán-López,J.L.Vila-Jato,M.J.Alonso,Development of posi-tively charged colloidal drug carriers:chitosan-coated polyester nanocapsules

and submicron-emulsions,Colloid and Polymer Science 275(1997)46–53.

580M.J.Santander-Ortega et al./Colloids and Surfaces B:Biointerfaces82 (2011) 571–580

[24]G.G.Allan,M.Peyron,Molecular-weight manipulation of chitosan.2.Predic-

tion and control of extent of depolymerization by nitrous-acid,Carbohydrate Research277(1995)273–282.

[25]J.M.Singer,F.C.A.Vekermans,J.W.T.Lichtenbelt,T.Hesselkink,P.H.Wiersema,

Kinetics of?occulation of latex particles by human gamma globulin,Journal of Colloid and Interface Science45(1973)608–614.

[26]M.Quesada,J.Puig,J.M.Delgado,R.Hidalgo-Alvarez,Modelling the kinetics of

antigen–antibody reactions at particle enhanced optical immunoassays,Jour-nal of Biomaterials Science:Polymer Edition9(1998)961–971.

[27]M.J.Santander-Ortega,D.Bastos-Gonzalez,J.L.Ortega-Vinuesa,Electrophoretic

mobility and colloidal stability of PLGA particles coated with IgG,Colloids and Surfaces B:Biointerfaces60(2007)80–88.

[28]M.P.Desai,https://www.360docs.net/doc/4d17492021.html,bhasetwar,E.Walter,R.J.Levy,G.L.Amidon,The mechanism

of uptake of biodegradable microparticles in Caco-2cells is size dependent, Pharmaceutical Research14(1997)1568–1573.

[29]T.M.Allen,G.A.Austin,A.Chonn,L.Lin,K.C.Lee,Uptake of liposomes by cultured

mouse bone-marrow macrophages–in?uence of liposome composition and size,Biochimica et Biophysica Acta1061(1991)56–64.

[30]A.T.Florence,The oral absorption of micro-and nanoparticulates:neither

exceptional nor unusual,Pharmaceutical Research14(1997)259–266. [31]F.Sonvico, A.Cagnani, A.Rossi,S.Motta,M.T.Di Bari, F.Cavatorta,M.J.

Alonso,A.Deriu,P.Colombo,Formation of self-organized nanoparticles by lecithin/chitosan ionic interaction,International Journal of Pharmaceutics324 (2006)67–73.

[32]J.Israelachvili,Intermolecular and Surface Forces,Academic,New York,1992.

[33]D.Chandler,Interfaces and the driving force of hydrophobic assembly,Nature

437(2005)640–647.

[34]R.A.A.Muzzarelli,Colorimetric determination of chitosan,Analytical Biochem-

istry260(1998)255–257.

[35]S.P.Strand,K.Tommeraas,K.M.Varum,K.Ostgaard,Electrophoretic light

scattering studies of chitosans with different degrees of N-acetylation, Biomacromolecules2(2001)1310–1314.[36]J.A.Molina-Bolivar,J.L.Ortega-Vinuesa,How proteins stabilize colloidal parti-

cles by means of hydration forces,Langmuir15(1999)2644–2653.

[37]M.J.Santander-Ortega, A.B.Jodar-Reyes,N.Csaba, D.Bastos-Gonzalez,J.L.

Ortega-Vinuesa,Colloidal stability of pluronic F68-coated PLGA nanoparticles:

a variety of stabilisation mechanisms,Journal of Colloid and Interface Science

302(2006)522–529.

[38]M.J.Santander-Ortega,T.Stauner,B.Loretz,J.L.Ortega-Vinuesa,D.Bastos-

Gonzalez,G.Wenz,U.F.Schaefer,C.M.Lehr,Nanoparticles made from novel starch derivatives for transdermal drug delivery,Journal of Controlled Release 141(2010)85–92.

[39]R.M.Pashley,Hydration forces between mica surfaces in electrolyte-solutions,

Advances in Colloid and Interface Science16(1982)57–62.

[40]T.Lopez-Leon,P.M.Gea-Jodar, D.Bastos-Gonzalez,J.L.Ortega-Vinuesa,

Hofmeister effects in the restabilization of IgG–latex particles:testing Ruck-enstein’s theory,Langmuir21(2005)87–93.

[41]L.J.Lis,V.A.Parsegian,R.P.Rand,Binding of divalent cations to dipalmitoylphos-

phatidylcholine bilayers and its effect on bilayer interaction,Biochemistry20 (1981)1761–1770.

[42]M.Karabaliev,V.Kochev,Interaction of thin wetting?lms of lecithin with some

divalent cations,Bioelectrochemistry63(2004)177–181.

[43]J.A.Molina-Bolivar,F.Galisteo-Gonzalez,R.Hidalgo-Alvarez,The role played

by hydration forces in the stability of protein-coated particles:non-classical DLVO behaviour,Colloids and Surfaces B:Biointerfaces14(1999)3–17. [44]N.V.Churaev,B.V.Derjaguin,Inclusion of structural forces in the theory of sta-

bility of colloids and?lms,Journal of Colloid and Interface Science103(1985) 542–553.

[45]E.Matijevic,K.G.Mathai,R.H.Ottewill,M.Kerker,Detection of metal ion hydrol-

ysis by coagulation III.Aluminium,Journal of Physical Chemistry65(1961) 826–830.

[46]R.Hidalgo-álvarez,A.Martín,A.Fernández,D.Bastos,F.Martínez,F.J.de las

Nieves,Electrokinetic properties,colloidal stability and aggregation kinetics of polymer colloids,Advances in Colloid and Interface Science67(1996)1–118.

2017山香教育理论基础整理笔记(教育学、心理学、教育心理学)

第一章教育与教育学 1、《学记》——“教也者,长善而救其失者也” 2、战国时荀子——“以善人者谓之教” 3、许慎在《说文解字》中认为“教,上所施,下所效也。”“育,养子使作善也。” 4、最早将“教育”一词连用的则是战国时期的孟子:“得天下英才而教育之,三乐也。” 5、分析教育哲学的代表人物谢弗勒在《教育的语言》中把教育定义区分为三种: 规定性定义:作者自己认为的定义,即不管他人使用的“教育”的定义是什么,我认为“教育”就是这个意思。运用规定性定义虽然有一定的自由度,但是,要求作业在后面的论述和讨论中,前后一贯地遵守自己的规定。 描述性定义:回答“教育实际上是什么”的定义。尽量不夹杂自己的主观看法,适当地对术语或者使用该术语的方法进行界定。 纲领性定义:回答“教育应该是什么”的定义。即通过明确或隐含的方式告诉人们教育应该是什么或者教育应该怎么样。 6、教育是一种活动。“教育”是以一种“事”的状态存在,而不是以一种“物”的状态出现。因而。我们就把“活动”作为界定教育的起点。 7、教育活动是人类社会独有的活动。 8、“生物起源论”代表人物: 利托尔诺在《各人种的教育演变》中指出教育是超出人类社会以外的,在动物界中就存在的。 沛西·能在《教育原理》中也认为教育是一个生物学过程,扎根于本能的不可避免的行为。 9、“终身教育”概念的提出,指明人在生理成熟后仍继续接受教育。 10、社会性是人的教育活动与动物所谓“教育”活动的本质区别。 11、教育的本质:教育活动是培养人的社会实践活动。 12、教育是人类通过有意识地影响人的身心发展从而影响自身发展的社会实践活动。 13、学校教育是一种专门的培养人的社会实践活动。 14、学校教育自出现以来就一直处于教育活动的核心。 15、学校教育是由专业人员承担的,在专门机构——学校中进行的目的明确、组织严密、系统完善、计划性强的以影响学生身心发展为直接目标的社会实践活动。 16、学校教育的特征:①可控性②专门性③稳定性 17、教育概念的扩展——大教育观的形成 18、1965年,法国教育家保罗·朗格朗在《终身教育引论》中指出,教科文组织应赞同“终身教育”的原则。 19、1972年,埃德加·富尔在《学会生存》中对“终身教育”加以确定,并提出未来社会是“学习化社会”。 20、“终身教育”概念以“生活、终身、教育”三个基本术语为基础。 从时间上看,终身教育要求保证每个人“从摇篮到坟墓”的一生连续性的教育过程; 从空间上看,终身教育要求利用学校、家庭、社会机构等一切可用于教育和学习的场所; 从方式上看,终身教育要求灵活运用集体教育、个别教育、面授或远距离教育; 从教育性质上看,终身教育即要求有正规的教育与训练,也要求有非正规的学习和提高,既要求人人当先生,也要求人人当学生。 21、教育的形态,是指教育的存在特征或组织形式。 22、在教育发展史上,教育的形态经历了从非形式化到形式化,再到制度化教育的演变。

教育学教育心理学理论及代表人物

教育学有关理论、代表人物 1、神话起源说—— 2、生物起源说——利托尔诺(法国) 3、心理起源说——孟禄(美国) 4、劳动起源说——马克思(前苏联) 5、中国史上第一部教育文献——《学记》——乐正克 6、西方较早讨论教育问题的着作——《论演说家的培养》(《雄辩术原理》)——昆体良(古罗马) 7、非制度化教育思潮——库姆斯、伊里奇 8、雄辩与问答法——苏格拉底(古希腊) 9、《理想国》——柏拉图(古希腊) 10、《政治学》——亚里士多德(古希腊) 11、教育学作为一门独立学科的萌芽——《大教学论》——夸美纽斯(捷克) 班级授课制,泛智教育。 12、首次提出把教育学作为一门独立的学科——培根(英国) 13、自然主义教育——《爱弥儿》——卢梭(法国) 14、教育学进入大学讲坛——康德(德国)、《林哈德与葛笃德》——裴斯泰洛齐(瑞士)

15、科学教育思潮的兴起,课程体系——《教育论》——斯宾塞(英国) 16、实验教育学——梅伊曼、拉伊(德国) 17、发展性教学理论——《教育与发展》——赞科夫(前苏联) 高难度进行教学的原则、高速度进行教学的原则、理论知识主导作用原则(重理性原则)、理解学习过程原则、对差等生要下功夫的原则 18、范例教学——瓦.根舍因(德国) 19、和谐教育思想——苏霍姆林斯基(前苏联) 20、《教育漫话》——洛克(英国) “白板说”、绅士教育、国民教育思想与民主教育思想。 22、规范教育学的建立——《普通教育学》——赫尔巴特(德国) 传统教育学代表、教师中心,教材中心,课堂中心、四段教学法、统觉观念。 23、实用主义教育学——《民本主义与教育》——杜威(美国) 现代教育学代表、教育即生长,教育即生活,教育即经验的改造或重组、在做中学、儿童中心主义。 24、第一部马克思主义的教育学着作——《教育学》——凯洛夫(前苏联) 25、我国第一部马克思主义的教育学着作——《新教育大纲》——杨贤江 26、设计教学法——克伯屈(美国)

教育心理学理论

教育心理学理论 一、学习分类理论 1、加涅 (1)学习八水平分类 按学习水平简繁程度分为:①信号学习;②刺激—反应学习;③连锁反应;④言语联想学习;⑤辨别学习;⑥概念学习;⑦规则学习;⑧解决问题学习 (2)学习六水平分类 ①连锁学习;②辨别学习;③具体概念学习;④定义概念学习;⑤规则学习;⑥解决问题学校 (3)学习结果分类 ①言语信息的学习;②智慧技能的学习;③认知策略的学习;④态度的学习;⑤运动技能的学习 2、奥苏贝尔学习性质分类(两个维度互不依赖、相互独立) (1)根据学习的方式:接受学习、发现学习 (2)根据学习材料与学习者原有知识结构的关系:有意义学习、机械学习 3、我国学习结果的分类 ①知识学习;②技能学习;③道德品质或行为习惯的学习 二、学习理论 1、联结理论 (1)经典条件反应论 ①巴甫洛夫:学习就是形成刺激与反应之间的联系 一级条件反射、二级条件反射 动力定型:大脑皮层对刺激的定型系统所形成的反应定型系统 外抑制、超限抑制、消退、泛化、分化 正诱导:一个部位发生抑制引起周围发生兴奋地过程。 负诱导:一个部位发生兴奋引起周围发生抑制的过程。 同时诱导、继时诱导 第一信号系统:能够引起条件反应的物理性的条件刺激。 第二信号系统:能够引起条件反应的以语言符号为中介的条件刺激。 ②华生:通过建立条件作用,形成刺激与反应间的联结的过程。遵循频因律、 近因律。(学习的实质在于形成习惯) (2)操作性条件说 ①桑代克(联结试误说):在一定的情景和一定的反应之间建立联结,这种联结 通过尝试错误的过程而自动形成。三条学习规律:效果率、练习律、准备率②斯金纳 正强化、负强化、消退 惩罚:惩罚Ⅰ呈现厌恶刺激;惩罚Ⅱ消除愉快刺激 普雷马克原理:用学生喜爱的活动去强化学生参与不喜爱的活动。 强化程式:连续强化程式(灯一开就亮); 间接强化程式:a 定时强化(按时发工资) b 定比强化(计件工作) c 变时强化(随堂测验)d 变比强化(买彩票) (3)社会学习理论(班杜拉) 学习分为参与性学习和替代性学习(通过观察别人而进行的学习。) 观察学习:注意——保持——复制——动机

教育心理学的各种理论

1.桑代克的尝试——错误说 刺激——反应联结 基本规律:效果律练习律准备律 2.巴普洛夫——经典性条件作用论俄国 没有食物,只有铃声产生的唾液是条件刺激 看到食物就产生唾液是无条件反应 基本规律:获得与消退刺激泛化(对事物相似性的反应)与分化(对事物差异性的反应) 3.斯金纳——操作性条件作用论 基本规律:强化(+-)逃避条件作用和回避条件作用(负强化)消退惩罚 4.加涅——信息加工学习理论 模式——信息流控制结构(期望执行控制) 5.1-4属于联结学习理论 6.7-10属于认知学习理论 7.苛勒——完形、顿悟说 德国基本内容:学习是通过顿悟过程实现的学习的实质是在主体内部构成完形 8.布鲁纳——认知、结构学习理论 美国学习的目的在于以发现学习的方式,使学科的基本结构转变为学生头脑中的认知结构。 学习观——实质是主动地形成认知结构过程包括获得转化评价教学观——目的在于理解学科的基本结构 教学原则——动机原则结构原则程序原则强化原则 9.奥苏泊尔——有意义的接受学习美国 学习方式分类:接受学习发现学习 学习材料与原有知识结构分类:机械学习意义学习 先行组织者:是先于学习任务本身呈现的一种引导性材料,他的抽象,概括和综合水平高于学习任务,并且与认知结构中原有的观念和新的学习任务相关联。 10.建构主义学习理论

学习动机 1.学习动机的两个基本成分:学习需要学习期待 2.奥苏泊尔学校情境中的成就动机: 认知内驱力(要求理解掌握事物内部动机) 自我提高内驱力(个人学业的成就“三好学生”) 附属内驱力(获得教师、家长的赞扬) 在儿童早期,附属内驱力最为突出 在青年期,认知内驱力和自我提高内驱力成为学习的主要动机 学习期待就其作用来说就是学习诱因 3.学习动机的种类: 社会意义:低级动机(个人、利己主义) 高尚动机(利他主义) 与学习活动的关系:近景的直接性动机(兴趣、爱好、求知欲) 远景的间接性动机(个人前途,父母期望)动力来源:内部动机(个体需要引起) 外部动机(由外部诱因引起) 4.学习动机理论 强化理论:外部强化自我强化 需要层次理论:美国马斯洛五需要(从低级到高级排列) 生理的需要安全的需要归属和爱的需要 尊重的需要自我实现的需要自我实现的需要包括:认知审美创造的需要(最高级的需要)成就动机理论:代表人:阿特金森 力求成功的动机避免失败的动机 成败归因理论:美国维纳三维度六因素 6因素:能力高低努力程度任务难度运气好坏身心状态外界环境3维度:稳定性可控性内在性 自我效能感理论:美国班杜拉 人的行为受行为的结构因素与先行因素的影响。 行为的结果因素就是通常所说的强化: A.直接强化:外部因素(惩罚奖励) B.替代性强化:通过一定的榜样 C.自我强化:自我评价自我监督 5.学习动机的激发:

3中学教育心理学考试测试题第三章 学习的基本理论

中学教育心理学考试测试题第三章学习的基本理论 一、单项选择题(下列各题所给选项中只有一个符合题意的正确答案,答错、不答或多答均不得分) 1.根据学习的定义,下列属于学习的现象是( D )。 A.吃了酸的食物流唾液 B.望梅止渴 C.蜘蛛织网 D.儿童模仿电影中人物的行为 2.对黑猩猩做“顿悟实验”的是( A )。 A.苛勒 B.托尔曼 C.桑代克 D.巴甫洛夫 3.加涅提出了( A )模式。 A.积累学习 B.发现学习 C.观察学习 D.接受学习 4.操作性条件反射学说的代表人物是( A )。 A.斯金纳 B.巴甫洛夫 C.桑代克 D.班杜拉 5.美国心理学家布鲁纳认为学习的实质在于( B )。 A.构造一种完形 B.主动地形成认知结构 C.形成刺激与反应间的联结 D.对环境条件的认知 6.( B )强调学习的主动性和认知结构的重要性,主张教学的最终目标是促进学生对学科结构的一般理解。A.斯金纳 B.布鲁纳 C.苛勒 D.加涅 D A D 10.下列不属于意义学习的条件的一项是( D ) A.材料本身必须具有逻辑意义 B.学习者认知结构必须具有能够同化新知识的适当的认知结构 C.学习者必须具有积极主动地将新知识与认知结构中的适当知识加以联系的倾向性,并使两者相互作用D.学习材料要高于学习者的能力范围 11.( A )学习理论认为学习是学生建构自己的知识的过程,学生是信息意义的主动建构者。 A.建构主义 B.认知一结构 C.信息加工 D.尝试一错误 12.“一朝被蛇咬,十年怕井绳”,这种现象指( C )。 A.消退 B.刺激比较 C.刺激泛化 D.刺激分化 13.根据经典条件反射作用理论,食物可以诱发狗的唾液分泌反应,则唾液是( C )。 A.中性刺激 B.无条件刺激 C.条件反应 D.无条件反应 14.看见路上的垃圾后绕道走开,这种行为是( C )。 A.强化 B.惩罚 C.逃避条件作用 D.消退 15.先行组织者教学技术的提出者是美国著名心理学家( C )。 A.斯金纳 B.布鲁纳 C.奥苏伯尔 D.桑代克 二、多项选择题(下列各题所给选项中有两个或两个以上符合题意的正确答案,不答、少答或多答均不得分) 1.学习的定义说明( ABD )。 A.学习是行为或行为潜能的变化 B.学习引起的变化是持久的 C.学习引起的变化是短暂的 D.学习是由反复经验引起的

教育心理学家的基本理论

教育心理学家的基本理论 1、行为学派(刺激——反应联结学习理论) 2、认知学派(认知结构学习理论) 3、掌握学习和指导学习理论 4、人本主义的学习理论 5、精神分析学派 一、行为学派(刺激——反应联结学习理论 1、桑代克 A:学习理论(三条基本学习规律)(P136) ①准备律 ②练习律——应用律、失用律 ③效果律 B:迁移 ①迁移一词的提出(P209) ②共同要素论(P215) C:1903年著《教育心理学》是教育学心理学成为独立学科的开始 D:1913年,将《教育心理学》扩展《教学心理学大纲》,共分为人的本性、学习心理、个别差异及原因。(P8) 2、巴甫洛夫——经典条件反射学习理论 A:消退(P140) B:恢复 C:类化(P140)——一朝被蛇咬,十年怕井绳 D:分化(P140) E:高级条件反射——刺激强化(P141) 3、斯金纳——操作条件反射学习理论 A:有机体行为分类(P142) ①应答性行为——经典条件反射 ②操作性行为——操作条件反射 B:操作条件反射主要规律(P142) ①假如一个操作发生后,接着给予强化刺激,那么这一类反应今后发生的概率就会增加。 ②由于行为效果的强化是使行为频率增加的根本原因,所以通过对有机体的有选择的强化,就可以使行为朝着所需要的方向发展。 C:程序教学(P157) ①小步子逻辑序列 ②要求学生作出积极反应 ③及时反馈 ④学生自定步调 ⑤低的错误率 4、班杜拉——社会学习理论(P143) A:观察式学习(模仿)(P143) “上行下效”、“耳濡目染”(P144)B:替代性强化(P143、149) “杀鸡儆猴”(P149)C:自我强化(P149)D:符号强化(P144) 二、认知学派(认知结构学习理论) 1、布鲁纳——发现学习理论(P158)1)、主动认知——认为学习是一个主动认知的过程。 2)、语言学习——语言学习是儿童心理发展的关键。 3)、学习过程——重视学习的过程。4)、学习结构——强调形成学习结构。5)、直觉思维——强调直觉思维的重要性。6)、内部激励——强调内部动机的重要性。7)、早期教育——强调基础学科的早期学习。 8)、信息提取——强调信息提取(记忆问题不是贮存,而是提取) 9)、发现学习——提倡发现学习。 ——以早期教育为起点,以开发智力为核心,以学科知识结构为基础,以发现学习为手段,以直觉思维为必备要素,以内部激励为动力的旨在培养科学精英的教学思想。

教育心理学章节习题 学习的基本理论

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,把所选选项前的字母填在题后的括号内。 1.首先打出行为主义心理学旗帜的是()。 A.巴甫洛夫 B.斯金纳 C.桑代克 D.华生 2.以下心理学家不属于认知心理学派的是()。 A.苛勒 B.斯金纳 C.布鲁纳 D.奥苏伯尔 3.布鲁纳认为,学生掌握学科的基本结构的最好方法是()。 A.建构法 B.发现法 C.顿悟法 D.接受法 4.程序性教学实际上是()理论在实践中的运用。 A.学习的操作性条件作用 B.观察学习

C.认知学习 D.认知同化 5.加涅的信息加工系统中的第二级是()。 A.感受器 B.感受登记 C.短时记忆 D.长时记忆 6.苛勒在研究黑猩猩的学习时采用的实验是()。 A.迷箱实验 B.迷津实验 C.叠箱实验 D.“三座山”实验 7.建构主义的理论流派中,在皮亚杰的思想之上发展起来的是()。A.社会建构主义 B.激进建构主义 C.信息加工建构主义 D.社会主义建构主义 8.建构主义强调,知识的特点具有()。 A.主观性 B.客观性 C.普遍适应性

D.永恒性 9.将符号所代表的新知识与学习者认知结构中已有的适当观念建立起非人为的和实质性的联系属于()。 A.机械学习 B.意义学习 C.接受学习 D.发现学习 10.在发现教学中,教师的角色是学生学习的()。 A.促进者和引导者 B.领导者和参谋 C.管理者 D.示范者 11.孩子哭闹着要买玩具,母亲对其不予理睬,这是()。 A.正强化 B.负强化 C.惩罚 D.消退 12.以下心理学家及其理论匹配不正确的一项是()。 A.奥苏伯尔——认知发现说 B.苛勒——完形一顿悟说 C.托尔曼——认知目的说 D.加涅——信息加工理论

山香2016年教育心理学第三章 学习的基本理论

第三章学习的基本理论 第一节学习概述 一、学习的含义 (一)广义的学习 1、广义学习的含义:人和动物在生活过程中,凭借经验而产生的行为/行为潜能的相对持久的变化。 2、产生广义学习的三个特征: (1)学习必须使个体产生行为或行为潜能的变化。 (2)这种变化是相对持久的。有些主体的变化,如疲劳,创伤等引起的变化是暂时的,经过一段时间或一旦条件改变就会自行消失,这种变化不能称作学习。 (3)这种变化是由反复经验而引起的。 (二)狭义的学习 1、狭义学习的含义:指人类的学习,指个体在社会生活实践中,以语言为中介,自觉地、积极主动地掌握社会、个体的经验的过程。 2、人类学习与动物学习的本质区别: (1)人的学习是掌握人类社会历史经验、科学文化知识,获得个体行为经验的过程。 (2)人的学习是在社会生活实践中,与他人的交往时,以语言的中介进行的。 (3 3 (1)学生学习的含义:在教师的指导下,有目的、有计划、有组织、有系统地进行的,是在较短的时间内接受前人所积累和科学文化知识,并以此来充实自己的过程。 (2)学生学习内容:①知识、技能和学习策略的掌握,②问题解决能力、创造性的发展,③道德品质和健康心理的培养。 (3)学生学习的特点:①以系统地掌握人类的间接经验为主;②在教师的指导下进行,有较强的计划性、目的性、组织性;③具有一定程度的被动性;④要促进学生全面发展:学生不但要学习知识技能,还要发展智能,培养行为习惯、道德品质和健康的心理。 二、学习的分类 (一)从学习的主体来说,学习可以分为:动物学习、人类学习和机器学习。 (二)按学习的意识水平,[美]心理学家阿瑟.雷伯将学习分为:内隐学习和外显学习。 (三)加涅的学习结果分类:认为学习结果就是各种习得的才能、本领。获得以下五种才能:言语信息、智慧技能、认知策略、态度、动作技能。 1、言语信息的学习:帮助学生解决“是什么”的问题。掌握以言语信息传递的内容,学习结果是以言语信息表现出来的。 2、智慧技能的学习:解决“怎么做”的问题,用以对外界的符号、信息进行处理加工。辨别技能是最基本的智慧技能,按不同的学习水平及其所包含的心理运算的复杂程度,依次为:辨别、概念、规则、高级规则 3、认知策略的学习:学习者用以支配自己的注意、学习、记忆和思维的有内在组织的才能,这种才能使得学习过程的执行控制成为可能。智慧技能指向外部环境,而认知策略指向学习者内部。 4、态度的学习:态度是通过学习获得的内部状态,这种状态影响着个人对某种事物、人物及事件所采取的行动。加涅提出三类态度:(1)儿童对家庭和其他社会关系的认识;(2)对某种活动所伴随的积极的喜爱情感;(3)有关个人品德的某些方面,如热爱国家等。 5、运动技能的学习:运动技能又称为动作技能,也是能力的一个组成部分。

教育心理学专题练习第三章学习的基本理论

第三章学习的基本理论 一、单选题 1.被誉为现代教育心理学奠基人的是()。 A桑代克 B.巴甫洛夫 C.斯金纳 D.布鲁纳 2.下列不属于学习引起的变化的是()。 A. 幼儿会喊爸爸、妈妈 B.青春期嗓音变化 C.骑车 D.会使用电脑 3学习对某种信号作出一般性和弥散性的反应是()学习。 A.刺激——反应 B.连锁 C.辨别 D.信号 4.属于巴甫洛夫的经典性条件反射的学习类型是( )学习。 A.刺激——反应 B.信号 C.概念 D.连锁 5.属于操作性条件反射的学习类型是( )学习。 A.信号 B.规则 C.解决问题 D.刺激——反应 6联合两个或两个以上的刺激——反应动作,以形成一系列动作联结的学习类型是()学习。 A. 连锁 B.概念 C.辨别 D. 刺激——反应 7.各类动作技能的形成都离不开()学习。 A.信号 B.规则 C.连锁 D.刺激——反应 8.对一系列类似的刺激分别作出适当的反应的学习是()学习。 A.连锁 B.概念 C.辨别 D.规则 9.()学习是指认识一类事物的共同属性,并对其抽象特征作出反应。 A.解决问题 B.概念 C.辨别 D.规则 10.把鲸鱼、象、狗等概括为“哺乳动物”,这属于()学习。 A.解决问题 B.概念 C.辨别 D.规则 11.理解“功=力×距离”这一公式,这是()学习。 A.信号 B.概念 C.辨别 D.原理 12.掌握教育学基本原理后,用之于解决教育中的实际问题,这是()学习。 A.解决问题 B.规则 C.概念 D.刺激——反应 13.()是调节和控制自己的注意、学习、记忆、思维和问题解决过程的内部组织起来的能力。 A.智慧技能 B.认知策略 C.动作技能 D.态度 14.()是使用符合与环境相互作用的能力。 A.智慧技能 B.认知策略 C.言语信息 D.态度 15.()表现为学会陈述观点的能力。 A.智慧技能 B.认知策略 C.言语信息 D.态度 16.()是对外的平稳而精确的操作能力。 A.智慧技能 B.认知策略 C.言语信息 D.动作技能 17.()表现为个体对人、对物或某些事件的意向。 A.智慧技能 B.认知策略 C.言语信息 D.态度 18.在试误学习的过程中,学习者对环境刺激作出反应后能获得满意的结果时,其联结就会增强,这是()。 A.效果律 B.练习律 C.准备律 D.强化律 19.在试误学习的过程中,刺激与反应的联结,如果练习运用,联结的力量逐渐增大,如果不运用,则逐渐减小,这是( ).。

教育心理学-第三章 学习的基本理论 - 副本

《教育心理学》学习的基本理论 一、不定项选择题 1.下列属于学习的现象是()。 A.吃了酸的食物流唾液B.了解低碳生活并付诸行动C.蜘蛛织网D.儿童模仿电影中人物的行为2.一名学生能够运用三角形的面积公式解决一个他从来没有见到过的三角形的面积,这表明他已经具备了()。 A.言语信息B.动作技能C.智慧技能D.认知策略E.态度 3.某位学生近一段及时完成作业,老师告诉他放学后不必再留在教室里完成作业了,此后该生继续按时完成作业,这时该生受到了()。 A.正强化B.负强化c.正惩罚D.负惩罚 4.奥苏贝尔提倡的一种学习类型是()。 A.有意义-发现学习B.有意义-接受学习C.机械-接收学习D.机械-发现学习 5.引导学生分辨勇敢和鲁莽、谦让和退缩属于刺激()。 A.获得B.消退C.分化D.泛化 6.“孟母三迁”终使孟子成才,能够有效解释该现象的理论是()。 A.认知学习理论B.社会学习理论C.人本主义理论D.建构主义理论 7.学生学习“功=力×距离”,这种学习属于()。 A.辨别学习B.符号学习C.概念学习D.规则或原理学习 8.()指教材被分成若干小步子,学生可自定学习步调,让学生对所学内容进行积极反应,并给予及时强化和反馈使错误率最低。 A.程序教学B.组织教学C.个别化教学D.指导教学 9.()强调学习的主动性和认知结构的重要性,主张教学的最终目标是促进学生对学科结构的一般理解。 A.布鲁纳B.班杜拉C.桑代克D.巴甫洛夫 10.布鲁纳认为任何知识结构都可以用适合形式呈现,以下不属于他提出的呈现方式的一项是()。A.动作表象B.图像表象C.符号表象D.情感表象 11.最初主张S-R联结存在意识中介的心理学家或心理学流派是()。 A.格式塔学派B.布鲁纳C.斯金纳D.托尔曼 12.人和动物一旦学会对某一特定的条件刺激作出条件反应以后,其他与该条件刺激相类似的刺激也能诱发其条件反应,称为()。 A.刺激分化B.消退C.刺激泛化D.获得 13.操作性条件作用论的提出者是()。 A.桑代克B.苛勒C.斯金纳D.巴甫洛夫 14.布鲁纳的学习论是()。 A.完形顿悟说B.有意义接受学习论C.认知结构学习论D.建构主义 15.观察者看到榜样受到强化而如同自己也受到强化一样,这称为()。 A.外部强化B.自我强化C.直接强化D.替代强化 16.“一朝被蛇咬,十年怕井绳”,这种现象是指()。

教育心理学考试重点第三章学习的基本理论+实战演练

教育心理学考试重点提示:第三章学习的基本理论 重点提示 统观近几年全国各省的教师资格认证教育心理学考试,本章的考查重点是: (1)学习的定义。 (2)学习的主要理论: 尝试一错误学习的基本规律。 经典性条件反射的基本规律。 布鲁纳的认识一结构学习论。 当今建构主义学习理论的基本观点。 考纲链接 1.学习的实质与特征: (1)学习的概念。广义的学习指人和动物在生活过程中,凭借经验而产生的行为或行为潜能的变化。狭义的学习指人类的学习,是在社会生活实践中,以语言为中介,自觉地、积极主动地掌握社会的和个体的经验的过程。 (2)人类学习与动物学习的区别。首先,人的学习除了要获得个体的行为经验外,还要掌握人类世世代代积累起来的社会历史经验和科学文化知识;其次,人的学习是在改造客观世界的生活实践中,在与其他人的交往过程中,通过语言的中介作用而进行的;此外,人的学习是一种有目的的、自觉的、积极主动的过程。 2.学生的学习:是在教师的指导下,有目的、有计划、有组织、有系统地进行,在较短时间内接受前人所积累的科学文化知识,并以此来充实自己的过程。 3.学习内容:一是知识、技能和学习策略的掌握;二是问题解决能力和创造性的发展;三是道德品质和健康心理的培养。 4.加涅关于学习层次和学习结果的分类: (1)加涅关于学习层次分类:信号学习、刺激-反应学习、连锁学习、语言联结学习、辨别学习、概念学习、规则或原理学习、解决问题学习。 8.认知学习理论: (1)完形-顿悟说:由苛勒提出,主要观点:学习是通过顿悟实现的;学习的实质在于构造完形。 (2)认知-结构学习论:由布鲁纳提出。他主张学习的目的在于以发现学习的方式,使学科的基本结构转变为学生头脑中的认知结构。 10.建构主义学习理论。基本观点: (1)知识观。知识并不是问题的最终答案;知识并不能精确地概括世界的法则;知识不可能以实体的形式存在于具

《教育心理学》分章强化题三:第三章学习的基本理论

《教育心理学》分章强化题三:第三章学习的基本理论 一、选择题 1.下列现象可以归入到学习中的现象有()。 A.事故后体会到交通法规的重要性 B.疲劳时记忆力下降 C.乳儿抓住碰到的东西 D.青春期少年的嗓音变化 2.新生渐渐知道铃声代表上课,这属于()。 A.信号学习 B.辨别学习 C.概念学习 D.言语联结学习 3.各种动作技能的学习,都离不开()。 A.连锁学习 B.言语联结学习 C.解决问题的学习 D.信号学习 4.使用符号与环境相互作用的能力属于()。 A.认知策略 B.言语信息 C.动作技能 D.智慧技能 5.在试误学习过程中,当刺激与反应之间的联结不准备实现时,实现则感到烦恼,这符合()。

A.练习律 B.准备律 C.效果律 D.联结律 6.家长对考试成绩好的孩子给予物质奖励是()。 A.正强化 B.负强化 C.消退 D.惩罚 7.一个学生上课讲话,老师要他写“我上课讲话,真丑”1000遍,这属于()。 A.正强化 B.负强化 C.惩罚 D.替代强化 8.认为学习是个体利用本身的智慧与理解力对情境及情境与自身关系的顿悟的学说为()。 A.认知-结构学习论 B.有意义接受学习论 C.完形-顿悟说 D.建构主义学习论 9.有意义接受学习论的提出者是()。 A.苛勒 B.布鲁纳 C.斯金纳 D.奥苏伯尔 10.将符号所代表的新知识与学习者认知结构中已有的适当观念建立起非人为和实质性的联系的学习是()。 A.接受学习 B.发现学习 C.机械学习 D.意义学习 11.认为知识并不是对现实的准确表征,它只是一种解释、一种假设的理论为(或认为学生的学习不仅是对新知识的理解,而且是对新知识的分析、检验和批判的力量是)()。

教育心理学第三章 学习的基本理论

第三章学习的基本理论 1)什么是学习?人类学习和动物学习有什么本质的区别? 广义的学习指人和动物在生活过程中,凭借经验而产生的行为或行为潜能的相对持久的变化。 定义说明:1、学习表现为行为或行为潜能的变化。2、学习所引起的行为或行为潜能的变化是相对持久的。3、学习是由反复经验而引起的。 狭义的学习指人类的学习,指个体在社会生活实践中,以语言为中介,自觉地、积极主动地掌握社会的和个体的经验的过程。 人类学习vs. 动物学习有本质的区别: 1. 人的学习除了要获得个体的行为经验外,还要掌握人类世世代代积累起来的社会历史经验和科学文化知识。 2. 人的学习是在改造客观世界的生活实践中,在与其他人的交往过程中,通过语言的中介作用而进行的。 3. 人类的学习是一种有目的、自觉的、积极主动的过程。 2)学生的学习的内容和特点什么?(人类学习和学生学习有什么区别) 含义:学生的学习是人类学习中的一种特殊形式,它是在老师的指导下,有目的、有计划、有组织、有系统的进行的,是在较短的时间内接受前人所积累的文化科学知识,并以此来充实自己的过程。 学习内容:一是知识、技能和学习策略的掌握;二是问题解决能力和创造性的发展;三是道德品质和健康心理的培养。 人类学习和学生学习之间是一般与特殊的关系,学生的学习既与人类的学习有共同之处,但又有其特点:①以间接经验的掌握为主线;②具有较强的计划性、目的性和组织性;③具有一定程度的被动性。 3)加涅按照学习结果的不同把学习分成那些类型? 1、言语信息, 2、智慧技能, 3、认知策略, 4、态度, 5、运动技能。 4)简述奥苏贝尔对学习的分类 根据两个维度对认知领域的学习分类:一个是学习进行的方式,分为接受学习和发现学习;另一个维度是学习材料与学习者原有知识的关系,可分为机械学习和有意义学习。这两个维度互不依赖,彼此独立。并且每一个维度都存在许多过渡形式。 5)我国心理学家对学习是怎样分类的? 分为知识的学习、技能的学习和行为规范的学习三类。 6)联结学习理论的基本观点有哪些?(行为主义) 联结学习理论认为:一切学习都是通过条件作用,在刺激(S)和反应(R)之间建立直接联结的过程。强化在刺激—反应之间的建立过程中起着重要作用。在刺激—反应联结之中,个体学到的是习惯,而习惯是反复练习和强化的结果。习惯一旦形成,只要原来的或类似的刺激情境出现,习得的习惯性反应就会自动出现。 7 桑代克是美国著名心理学家,他采用实证主义的取向,使教育心理学研究走向了科学化的道路,是科学教育心理学的开创者,是第一个系统论述教育心理学的心理学家,被称为“现代教育心理学之父”。是最早用动物实验来研究学习规律的心理学家。 (一)经典实验:猫开笼取食的实验。 (二)学习的联结说(又叫试误说):通过这类实验,桑代克提出学习不是建立观念之间的联结,而是建立刺激—反应(S—R)联结,即在一定的刺激情境与某种正确反应之间形成联结,其中不需要观念或思维的参与。这种刺激—反应联结主要是通过尝试错误、

教育学心理学主要理论及代表人物

昆体良古罗 马 1.《雄辩术原理》世上第一部研究系统的教学方法论著,被公认为是西方教育史上的伟大 教育家,是第一位教学理论家和教学法专家。 2. 最早提出分班教学的思想 杜威美国1.提出实用主义教育学,杜威出版《民主主义与教育》《经验与教育》,克伯屈出版《设计教学法》,提倡活动课。 思想:强调儿童的主体地位:①教育即生活,教育即生长②教育社会化③做中学④教育即经验的不断改造。以儿童为中心,反对教师中心论 2.现代教育代言人现代教育的主要特点是民主 3.教育无目的论“教育是一个社会过程。” 4.问题的解决杜威的五步模式①困惑②诊断③假设④推断⑤验证 5.问题解决步骤的五步模式⑴疑难⑵分析⑶假设⑷检验和评价⑸结论 桑代克 美 国 1.1903年出版西方第一本《教育心理学》,是教育心理学体系的创始,标志着教育心理学 称为一门独立的学科。 2.学习理论之联结派的学习理论——联结学习:尝试-错误说(小猫“迷箱”试验) 试误成功条件:练习律、准备律、效果律 3.教育心理学体系(现代教育心理学)和联结主义学习心理学创始人,被誉为教育心理学 之父 4. 学习迁移理论之联结主义的相同要素说(代表人物:桑代克、伍德沃斯) 桑代克:相同要素说,即学习上的迁移是相同联结的转移。 伍德沃斯:共同成分说,即两种学习活动含有共同成分,则发生迁移,学习也就更容易。 以刺激——反应联结理论为基础。只有当学习情景和迁移情景存在共同成分时,才能产生迁移。即材料相似性是决定迁移的条件 5.现代教育测验之父 6.智力水平越高,迁移越大。 7.问题解决理论之试误说,又称联结说——(猫“迷箱”实验) 问题的解决过程是刺激情境与适当反应之间的联结完成的,联结的建立是通过尝试错误完成的。 贾德美国1.学习迁移理论之机能心理学的经验泛化说—“水下击靶”实验 他认为一个人对他的经验进行了概括,就可以完成从一个情境到另一个情境的迁移。概括就等于迁移,原理、法则等概括化的理论知识对迁移作用很大。 沃尔夫德国 1.学习迁移理论之官能心理学的形式训练说 他把迁移的实质理解为新的官能经训练而发展,认为促进迁移的条件与学习内容无大关系而偏重于形式。 魏特海默 苛勒德国 1.学习理论之认知派学习理论——格式塔的顿悟学习理论(黑猩猩取香蕉实验):学习是 一个顿悟的过程,是突然察觉到解决问题的办法。主要代表人物:魏特海墨、科夫卡和克勒 2.学习迁移理论之格式塔学派的关系转换说(代表人物:苛勒)—“小鸡啄米实验” 强调“顿悟”是迁移的一个决定因素。强调个体的作用,愈能加以概括化,愈易产生迁移。 3.问题解决理论之顿悟说(苛勒)——黑猩猩取香蕉实验 4.格式塔心理学(完形心理学)创始人魏特海墨、科夫卡和克勒研究内容是意识体验, 论点“整体大于部分之和” 解决问题时从整体把握全部问题情境和认知结构的豁然改组,而不是一次次经验的积累。 反对元素分析认为每一个心理现象都是一个整体是一个格式塔是一个完形 学习的实质在于构造完型,刺激与反应之间的联系而需要意识作为中介 布鲁美国1.结构化教材和发现学习模式(明确结构,掌握课题,提供资料→建立假说,推测答案→验证→做出结论) 2.领导美国20C60y的结构主义课程改革,主张突出学科基本结构,让学生通过发现法学习,重视智力发展(动机原则、结构原则、程序原则、反馈原则) 3.学习理论之现代认知学习理论——认知发现理论 强调认知学习和认知发展,提倡发现学习。学习的核心内容是各门学科的基本知识结构。3教学方法:发现学习,新课标中也叫“探究学习”。即教师提出课题和一定的材料,引导学生自己进行分析、综合、抽象、概括等一系列活动,最后得到学习结果。 4.提出假设考验说,研究人工概念的形成(人需要利用已有的知识主动提出一些可能的假设,即猜想这个概念是什么)——人工概念是认为的、在程序上模拟的概念,这种方法最早是赫尔于1920年首创的。 5.强调非特殊成分的迁移,也叫普遍迁移。即学习了基本的普遍的概念或原理,可作为学

教育心理学主要理论知识

第一章做合格教师 第一部分主要理论知识 1.合格教师心理素质 教师心理素质是教师在专业发展过程中,在心理过程和个性心理特征两方面所表现出来的本质特征。 教师的心理素质包括如下方面,即教师的智力素质、教师的情感素质、教师意志素质、教师的教育教学素质、教师的人格素质、教师的信念。 2、教师的智力素质 教师的智力是从事教育工作应具备的基本心理素质,是教师从事教育教学工作的心理基础。教师的智力素质表现在以下方面: (1)敏锐的观察力(2)良好的记忆力(3)丰富的想象力⑷多方位的立体思维能力 ⑸注意分配的能力 3、教师的情感素质特点 教育过程是师生情感交流的过程,教育工作最大的特点就是以情感人。 (1)成熟而稳定的情感(2)爱的情感:对教育事业的热爱、对学生的热爱、对所教学科的热爱 4、教师的意志特点 (1)实现教育目的的自觉性(2)克服困难的坚韧性(3)选择教育决策的果断性(4)解决矛盾的沉着自制性 4.教师的教育能力素质 因材施教的教育能力、获取信息的能力、独创能力、教育科研能力、心理教育能力、教育机智 5.教师的教学素质:包括教师的知识结构与教学能力。 6.教师的知识结构 教师的知识水平是其从事教学工作的前提条件。根据有关专家的研究,教师的知识结构可由三方面组成,分别为本体性知识、实践性知识和条件性知识。 7.本体性知识。 教师职业的本体性知识是教师所具有的特定的学科知识,如语文知识、数学

知识等,也即人们所熟知的科目知识。 林崇德等人的研究表明,教师的本体性知识与学生成绩之间几乎不存在统计上的关系。 由于学科不同,本体性知识的具体内容是不同的。仅仅从一般意义上说,教师的本体性知识应包括四个方面:教师应对学科的基础知识有广泛而准确的理解,熟练掌握相关的技能、技巧;教师要基本了解与所教学科相关的知识点、相关性质以及逻辑关系;教师需要了解该学科的发展历史和趋势,对于社会、人类发展的价值以及在人类生活实践中的多种表现形态;教师需要掌握每一门学科所提供的独特的认识世界的视角、域界、层次及思维的工具与方法等。 8.实践性知识 教师的实践性知识是教师在开展有目的的教育教学活动过程中解决具体问题的知识,是教师教育教学经验的积累和提炼,它主要来源于课堂教育教学情景之中和课堂内外的师生互动行为,带有明显的情景性、个体性,体现出教师个人的教育智慧和教学风格。研究表明,教龄对教师的实践性知识存在着显著影响,教师的实践性知识水平随着教龄的增加而逐步上升。 9.条件性知识 教师的条件性知识是指教师所具有的教育学与心理学知识。条件性知识是:个教师成功教学的重要保障,而这种知识是目前广大的一般教师所普遍缺乏的。教师的条件性知识分为三个方面,即学生身心发展的知识、教与学的知识和学生成绩评价的知识。 正如杜威指出的那样,科学家的学科知识与教师的学科知识是不一样的,教师必须把学科知识“心理学化”,以便学生能理解。 10.教师的教学能力 教师的教学能力是教师从事教学活动,完成教学任务的能力,是教师专业能力的重要方面。 ⑴教学认知能力⑵教学设计的能力 ⑶教学操作能力:①表达能力②课堂组织管理能力③运用现代教育技术的能力

相关文档
最新文档