解不等式组的步骤:

解不等式组的步骤:

解不等式组的步骤: 例:解不等式组:?????+<+≤+215

12426

x x x x 并把它的解集在数轴上表示出来。

解:由①得:x ≤-1;

由②得:

x > - 3

∴这个不等式组的解集是:-3<x≤-1 这个不等式组的解集在数轴上表示为:

① ②

初中数学专题 不等式及其解集试题及答案

第九章不等式与不等式组 9.1 不等式 9.1.1 不等式及其解集 要点感知1 用__________表示大小关系的式子,叫做不等式,用__________表示不等关系的式子也是不等式. 预习练习1-1 下列式子中是不等式的有__________. ①3<4;②2x2-3>0;③5y2-8;④2x+3=7;⑤3x+1<7. 1-2 “b的1 2 与c的和是负数”用不等式表示为__________. 要点感知2使不等式__________的未知数的__________叫做不等式的解. 预习练习2-1以下所给的数值中,是不等式-2x+3<0的解的是( ) A.-2 B.-1 C.3 2 D.2 2-2 不等式3x<9的解的个数有( ) A.1个 B.3个 C.5个 D.无数多个 要点感知3一个含有未知数的不等式的__________,组成这个不等式的解集.求不等式的解集的过程叫做__________. 预习练习3-1(20**·宿迁)如图,数轴所表示的不等式的解集是__________. 知识点1 不等式 1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有( ) A.2个 B.3个 C.4个 D.5个 2.“数x不小于2”是指( ) A.x≤2 B.x≥2 C.x<2 D.x>2 3.用不等式表示: (1)x的2倍与5的差不大于1; (2)x的1 3 与x的 1 2 的和是非负数; (3)a与3的和不小于5; (4)a的20%与a的和大于a的3倍. 知识点2 不等式的解集 4.下列说法中,错误的是( )

A.x=1是不等式x<2的解 B.-2是不等式2x-1<0的一个解 C.不等式-3x>9的解集是x=-3 D.不等式x<10的整数解有无数个 5.用不等式表示如图所示的解集,其中正确的是( ) A.x>-2 B.x<-2 C.x≥-2 D.x ≤-2 6.如图所示,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0 cm”和“15 cm”分别对应数轴上的-3.6和x,则( ) A.9<x<10 B.10<x<11 C.11<x<12 D.12<x<13 7.在下列各数:-2,-2.5,0,1,6中,不等式2 3 x>1的解有__________;不等式- 2 3 x>1的 解有__________. 8.由于小于6的每一个数都是不等式1 2 x-1<6的解,所以这个不等式的解集是x<6.这种说法 对不对? 9.x与3的和的一半是负数,用不等式表示为( ) A.1 2 x+3>0 B. 1 2 x+3<0 C. 1 2 (x+3)<0 D.1 2 (x+3)>0 10.下面给出5个式子:①3x>5;②x+1;③1-2y≤0;④x-2≠0;⑤3x-2=0.其中是不等式的个数有( ) A.2个 B.3个 C.4个 D.5个 11.下列说法正确的是( ) A.2是不等式x-3<5的解集 B.x>1是不等式x+1>0的解集 C.x>3是不等式x+3≥6的解集 D.x<5是不等式2x<10的解集 12.下列不等式中,4,5,6都是它的解的不等式是( ) A.2x+1>10 B.2x+1≥9 C.x+5≤10 D.3-x>-2 13.(20**·长春改编)不等式x<-2的解集在数轴上表示为( )

含参不等式(有解、无解问题)(人教版)含答案

含参不等式(有解、无解问题)(人教版)一、单选题(共10道,每道10分) 1.若不等式组的解集为,则m的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组) 2.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:含参不等式(组) 3.若不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 4.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:含参不等式(组) 5.若关于x的不等式组有解,则a的取值范围是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:含参不等式(组)

6.关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 7.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:含参不等式(组) 8.已知关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:含参不等式(组)

9.若关于x的不等式组无解,则a的取值范围是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:含参不等式(组) 10.若关于x的不等式组无解,则m的取值范围是( ) A. B. C. D. 答案:B 解题思路:

高中数学解不等式方法+练习题

不等式 要求层次 重难点 一元二次不等式 C 解一元二次不等式 (一) 知识容 1.含有一个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次不等式. 一元二次不等式的解集,一元二次方程的根及二次函数图象之间的关系如下表(以0a >为例): 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决.其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解. 判别式 24b ac ?=- 0?> 0?= 0?< 二次函数 2y ax bx c =++ (0)a >的图象 一元二次方程 2 0ax bx c ++= (0)a ≠的根 有两相异实根 12,x x = 242b b ac a -±- 12()x x < 有两相等实根 122b x x a ==- 没有实根 一元二次不等式的解集 2 0ax bx c ++> (0)a > {1 x x x < 或}2x x > {R x x ∈,且 2b x a ?≠- ?? 实数集R 20ax bx c ++< (0)a > {}1 2x x x x << ? ? 例题精讲 高考要求 板块一:解一元二次不等式 解不等式

(二)主要方法 1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间; 2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理; 3.高次不等式主要利用“序轴标根法”解. (三)典例分析: 1.二次不等式与分式不等式求解 【例1】 不等式 1 12 x x ->+的解集是 . 【变式】 不等式2230x x --+≤的解集为( ) A .{|31}x x x -或≥≤ B .{|13}x x -≤≤ C .{|31}x x -≤≤ D .{|31}x x x -或≤≥ 【变式】 不等式 25 2(1)x x +-≥的解集是( ) A .132? ?-??? ? , B .132??-????, C .(]11132??????U ,, D .(]11132?? -???? U ,, 2.含绝对值的不等式问题 【例2】 已知n *∈N ,则不等式 220.011 n n -<+的解集为( ) A .{}|199n n n *∈N ≥, B .{}|200n n n *∈N ≥, C .{}|201n n n *∈N ≥, D .{}|202n n n *∈N ≥, 【例3】 不等式 1 11 x x +<-的解集为( ) A .{}{}|01|1x x x x <<>U B .{}|01x x << C .{}|10x x -<< D .{}|0x x < 【变式】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值围是 _. 【例4】 若不等式1 21x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 【例5】 若不等式34x b -<的解集中的整数有且仅有123,,,则b 的取值围为 . 3.含参数不等式问题 【例6】 若关于x 的不等式22840x x a --->在14x <<有解,则实数a 的取值围是( ) A .4a <- B .4a >- C .12a >- D .12a <- 【变式】 ⑴已知0a <,则不等式22230x ax a -->的解集为 . ⑵若不等式897x +<和不等式220ax bx +->的解集相同,则a b -=______.

含参不等式以及含参不等式组的解法

含参不等式以及含参不等式组的解法 不等式在中考中的运用,往往掺杂参数来增加难度,我们只要读清楚题目找到解题思路便能迎刃而解了。本节课我们就重点讲讲如何读题去寻找解题思路。 含参不等式: 解不等式5(x-1)<3x+1 通过去括号、移项、合并同类项等一系列运算可以求出解为:x<3 求不等式 57x -<3 2 -x 的最小整数解. 通过去括号、移项、合并同类项等一系列运算可以求出解为:x>8 31 ,故可以得出最小整数为4. 那么含参不等式如下: 解含参不等式ax0时 X< a b X ≤ a b a<0时 X>a b X ≥a b a=0时 若b>0,则解集为任意数 若b ≥0,则解集为任意数 若b ≤0,则这个不等式无解 若b<0,则这个不等式无解 在这些需要讨论的情况下,等号最后讨论才方便,不会讨论重合。 例题:1、求不等式kx+2>2x-3的解集 移项、合并同类项、讨论取值 2、(1)求不等式解集mx+a>nx+b 移项、合并同类项、讨论取值 (2)(m-1)x>a 2+1对于任意x 都成立,则参数m 的值为 练习 :1、求不等式kx+2>3的解集 2、(1)求不等式mx-2<-7-nx 的解集 (2)求不等式m 2x+1<-x+5的解集 3、关于x 的方程5x-2m=-4-x 的解满足2

含参不等式组: 观察下列不等式组的解集 ?? ?>>31 x x ???<<31 x x ???<>31 x x ?? ?><3 1 x x 同大取大 同小取小 大小小大中间找 大大小小无限了 例题:1、(1)求不等式x-a )(x-b )>0的解集。 (2)求不等式 320-x +518-x +716-x +914-x +11 12 -x >5的解集。 那么5的倍数呢?不是5的倍数,18呢? 2、(1)已知关于x 的不等式组???>-≥-1 250 x a x 只有四个整数解,求实数a 的取值范围。 (2)已知关于x 的不等式组? ??-<+>232 a x a x 无解,则a 的取值范围是? 3、已知关于x 的不等式(a+3b )>a-b 的解集是x<-3 5 ,试求bx-a>0的解集。 4、已知关于x 的不等式组?? ? ??-<<->k x x x 111 (1)求其解集。 (2)由(1)可知,不等式组的解集是随数k 的值的变化而变化,当k 为任意有理数时,写出不等式的解集。 练习:1、已知关于x 数的不等式组?? ?>->-0 230 x a x 的整数解共有6个,则a 的取值范围是?

解不等式的方法归纳

解不等式的方法归纳 (总5页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

解不等式的方法归纳 一、知识导学 1. 一元一次不等式ax>b (1)当a>0时,解为a b x >; (2)当a <0时,解为a b x <; (3)当a =0,b ≥0时无解;当a =0,b <0时,解为R . 2. 一元二次不等式:(如下表)其中a >0,x 1,x 2是一元二次方程ax 2+bx+c=0 的两实根,且x 1<x 2(若a <0,则先把它化正,之后跟a >0的解法一样) 3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将f(x)的最高次项的系数化为正数; ②将f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的f(x)值的符号变化规律,写出不等式的解集. 4.分式不等式:先整理成 )()(x g x f >0或)()(x g x f ≥0的形式,转化为整式不等式求解,即: ) ()(x g x f >0?f(x)·g(x)>0 ) ()(x g x f ≥0?0)x (g )x (f 0)x (g 0)x (f >或????≠= 然后用“根轴法”或化为不等式组求解. 类型 解集 ax 2+bx+c >0 ax 2+bx+c ≥0 ax 2+bx+c <0 ax 2+bx+c ≤0 Δ>0 {x |x <x 1或x > x 2} {x |x ≤x 1或x ≥x 2} {x |x 1<x <x 2} {x |x 1≤x ≤x 2} Δ=0 {x |x ≠-a b 2,x ∈R} R Ф {x |x=-a b 2} Δ<0 R R Φ Φ

含参不等式的专题练习教学设计 .doc

例2 解不等式135 x <-< 课后练习: 一.选择题(共2小题) 1.(2015春?石城县月考)已知m为整数,则解集可以为﹣1<x<1的不等式组是() A .B . C . D . 2.(2002?徐州)已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p 的取值范围是() A .p>﹣1 B . p<1 C . p<﹣1 D . p>1 二.填空题(共7小题) 3.(2012?谷城县校级模拟)若不等式组恰有两个整数解.则实数a的取值范围 是. 4.(2010?江津区)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1 <<3,则x+y的值是. 5.若不等式组的解集是﹣1<x<1,则(a+b)2009=. 6.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是. 7.不等式组的解是0<x<2,那么a+b的值等于. 8.已知不等式组的解集1≤x<2,则a=. 9.若关于x的不等式的解集为x<2,则k的取值范围是. 三.解答题(共4小题)

10.(1)解方程组: (2)求不等式组的整数解. 11.(2013?乐山)已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值. 12.(2011?铜仁地区)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元. (1)篮球和排球的单价分别是多少元? (2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案? 13.(2011?邵阳)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人. 规则二:合唱队的队员中,九年级学生占合唱团总人数的,八年级学生占合唱团总人数的,余下的为七年 级学生. 请求出该合唱团中七年级学生的人数.

解不等式的方法归纳

一、知识导学
解不等式的方法归纳
1. 一元一次不等式 ax>b
(1)当 a>0 时,解为 x b ; a
(2)当 a<0 时,解为 x b ; a
(3)当 a=0,b≥0 时无解;当 a=0,b<0 时,解为 R.
2. 一元二次不等式:(如下表)其中 a>0,x1,x2 是一元二次方程 ax2+bx+c=0 的两实根,且
x1<x2 (若 a<0,则先把它化正,之后跟 a>0 的解法一样) 3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是:
①将 f(x)的最高次项的系数化为正数;
类型 解集
ax2+bx+c>0
ax2+bx+c≥0
ax2+bx+c<0
ax2+bx+c≤0
Δ>0
{x|x<x1 或 x> x2}
{x|x≤x1 或 x≥ x2}
{x|x1<x<x2} {x|x1≤x≤x2}
{x|x≠- b ,
Δ=0
2a
R
x R}
Ф
{x|x=- b }
2a
Δ<0
R
R
Φ
Φ
②将 f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的 f(x)值的符号变化规律,写出不等式的解集.
4.分式不等式:先整理成 f (x) >0 或 f (x) ≥0 的形式,转化为整式不等式求解,即:
g(x)
g(x)
f (x) >0 f(x)·g(x)>0 g(x)
f
(x)
≥0
f (x) 0 g(x) 0

f (x) g(x)>0
g(x)
然后用“根轴法”或化为不等式组求解. 二、疑难知识导析 1.不等式解法的基本思路 解不等式的过程,实质上是同解不等式逐步代换化简原不等式的过程,因而保持同解 变形就成为解不等式应遵循的主要原则,实际上高中阶段所解的不等式最后都要转化 为一元一次不等式或一元二次不等式,所以等价转化是解不等式的主要思路.代数化、 有理化、整式化、低次化是解初等不等式的基本思路.为此,一要能熟练准确地解一元 一次不等式和一元二次不等式,二要保证每步转化都要是等价变形.
整理为 word 格式

含参不等式

含参不等式知识互联网 题型一:不等式(组)的基本解法

x ( x ( b ( 无解(大大小小无解了) 典题精练 【例1】 ⑴解不等式 31 423 x x x +--+≤. ⑵解不等式组12(1)532122 x x x --?? ?-<+??≤,并在数轴上表示出解集 ⑶求不等式组2(2)43 251x x x x --??--? ≤<的整数解 ⑷解不等式组32215x x -<-<

⑸解不等式组253473 x x -?? (2012年朝阳一模) 题型二:含参数的不等式(组) 思路导航 对于含参不等式,未知数的系数含有字母需要分类讨论:如不等式ax b <, 例题精讲 【引例】⑴关于x 的一次不等式组x a x b >???? ⑵13kx +> ⑶132kx x +>- ⑷36mx nx +<--

⑸() 212m x +< ⑹()25n x --< 【例3】 ⑴不等式 ()1 23 x m m ->-的解集与2x >的解集相同,则m 的值是 . ⑵关于x 的不等式2x a -≤-1的解集如图所示,则a 的值为 . ⑶ 关于x 的不等式5ax >的解集为5 2 x <-,则参数a 的值 . ⑷ ①若不等式组3 x x a >??>? 的解集是x a >,则a 的取值范围是 . ②若不等式组3 x x a >??? ≥的解集是x a ≥,则a 的取值范围是 . A .3a ≤ B .3a = C .3a > D .3a ≥ (北京二中期中考试) ⑸已知关于x 的不等式组2 32x a x a +??-?≥≤无解,则a 的取值范围是 . ⑹已知关于x 的不等式组>0 53x a x -??-? ≥无解,则a 的取值范围是 . 【例4】 ⑴ 已知关于x 的不等式组0 521≥x a x -??->? 只有四个整数解,则实数a 的取值范围是 . ⑵ 如果关于x 的不等式50x m -≤的正整数解只有4个,那么m 的取值范围是( ) A .2025m <≤ B .2025m <≤ C .25m < D .20m ≥ (北京五中期中考试)

初中解不等式组范文

1.(2008年义乌市)不等式组 83x 41 x ≤2, 0的解集在数轴上表示为 答案 A 3(x 2) ≥ x 4, 20. (2008 年宁波市 )解不等式组 x 1 1. 答案: C ,本题主要考查了求不等式组的解以及不等式组的解集的数轴表示,解第一个不等 式可得 x ≥— 2,解第二个不等式得 以下是江苏董耀波的分类 ( 2008 恩施自治州)如果a<b< 答案: C 2x 5 x, 2008 黄冈市)解不等式组 5x 4 3x 2. 答案:解:由( 1)得 x < 5, 由( 2)得 x ≥ 3. ∴不等式组的解集为: 3≤x < 5. ( 2008 襄樊市)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋 友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物.如果每班分 10 套,那么余 5 套;如果前面的班级每个班分 13 套,那么最后一个班级虽然分有福娃,但不 足 4 套.问:该小学有多少个班级?奥运福娃共有多少套? 1 A . 0 1 2 B . 1 2 D . 答案:解:解不等式( 1),得 x ≥ 1.解不等式( 2),得 x 3 . 原不等式组的解是 1≤ x 3 . 08 凉山州)不等式组 x ≤ 2 的解集在数轴上表示正确的是( x21 2 0 3 A . 2 0 3 B . 2 0 3 C . 20 D . x < 3,所以原不等式组的解集为— 2≤x < 3,因而选 0, 下列不等式中错误..的是 A. ab > 0 B. a+b< 0 a C. < 1 D. b a-b< 0

答案:解:设该小学有 x 个班,则奥运福娃共有 (10x 5)套. 10x 5 13(x 1) 4, 10x 5 13(x 1). 14 解之,得 x 6 . 3 x 只能取整数, x 5 ,此时 10x 5 55. 答:该小学有 5 个班级,共有奥运福娃 55 套. 提 示:抓住“如果前面的班级每个班分 13 套,那么最后一个班级虽然分有福娃,但不足 4 套”建立不等式组 (2008苏州) 6月 1日起,某超市开始有.偿.提供可重复使用的三种环保购物袋, 每只售价分 别为 1 元、2元和 3 元,这三种环保购物袋每只最多分别能装大米 3 公斤、5公斤和 8公斤.6 月 7 日,小星和爸爸在该超市选购了 3 只环保购物袋用来装刚买的 20 公斤散装大米,他们 选购的 3 只环保购物袋至少..应付给超市 元. 答案: 8 解析:本题分类讨论,可选 2个 3元的,1个 2元的,费用最少为 8元 ( 2008 无锡)不等式 1 x 1 的解集是( ) 2 1 A. x B. x 2 C. x 2 1 D. x 2 2 答案: C 解析: 本题考查不等式解法, 两边同时乘以 -2,得 x 2 ,要注意不等式两边同时乘以一个 负数,不等号要改变方向 . 方法技巧:解不等式的一般步骤是 去分母 ,去括号,移项,合并同类项,系数化为 1 . 解不 等式时要注意: ( 1)去分母时不要漏乘没有分母的项; (2)去括号时不要漏乘; (3)移项要变号; (4)系数化为 1 时如果两边同除以的是负数,要改变不等号的方向。 解析: 本题考查不等式组的解法, 解不等式的一般步骤是先对两个不等式进行编号, 再分别 解不等式,最后根据规则确定不等式组的解集 . 方法技巧:解不等式组的一般步骤是先分别解不等式,再确定两个解集的公共部分。 确定不等式组解集有两种方法: ( 1)数轴表示,在用数轴表示不等式组的解集时要注 意:有等号时用实心圆圈,无等号时用空心圆圈; ( 2)用口诀: 大大取大;小小取小;大 由题意,得 2008 苏州)解不等式组: x 3 0, 2(x 1) 3≥ 3x. 并判断 x 3 是否满足该不等式组. 2 答案:原不等式组的解集是: 3 x ≤1, x 3 满足该不等式组.

解不等式的方法归纳

解不等式的方法归纳 一、知识导学1. 一元一次不等式ax>b(1)当a>0时,解为a b x >; (2)当a <0时,解为a b x <;(3)当a =0,b ≥0时无解;当a =0,b <0时,解为R .2. 一元二次不等式:(如下表)其中a >0,x 1,x 2是一元二次方程ax 2+bx+c=0的两实根,且x 1<x 2(若a <0,则先把 它化正,之后跟a >0的解法一样) 3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将f(x)的最高次项的系数化为正数; ②将f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的f(x)值的符号变化规律,写出不等式的解集. 4.分式不等式:先整理成)()(x g x f >0或) ()(x g x f ≥0的形式,转化为整式不等式求解,即: )()(x g x f >0?f(x)·g(x)>0 ) ()(x g x f ≥0?0)x (g )x (f 0)x (g 0)x (f >或????≠= 然后用“根轴法”或化为不等式组求解.二、疑难知识导析1.不等式解法的基本思路解不等式的过程,实质上是同解不等式逐步代换化简原不等式的过程,因而保持同解变形就成为解不等式应遵循的主要原则,实际上高中阶段所解的不等式最后都要转化为一元一次不等式或一元二次不等式,所以等价转化是解不等式的主要思路.代数化、有理化、整式化、低次化是解初等不等式的基本思路.为此,一要能熟练准确地解一元一次不等式和一元二次不等式,二要保证每步转化都要是等价变形.2.不等式组的解集是本组各不等式解集的交集,所以在解不等式组时,先要解出本组内各不等式的解集,然后取其交集,在取交集时,一定要利用数轴,将本组内各不等式的解集在同一数轴上表示出来,注意同一不等式解的示意线要一样高,不要将一个不等式解集的两个或几个区间误看成是两个或几个不等式的解集. 3.集合的思想和方法在解不等式问题中有广泛的应用,其难点是区分何时取交集,何时取并集.解不等式的 另一个难点是含字母系数的不等式求解—注意分类.三、经典例题导讲[例1] 如果kx 2+2kx -(k+2)<0恒成立,则实数k 的取值范围是___.A. -1≤k ≤0 B. -1≤k<0 C. - 类型解 集 ax 2+bx+c >0 ax 2+bx+c ≥0 ax 2+bx+c <0 ax 2+bx+c ≤0 Δ>0 {x |x <x 1或x > x 2} {x |x ≤x 1或x ≥x 2} {x |x 1<x <x 2} {x |x 1≤x ≤x 2} Δ=0 {x |x ≠-a b 2,x ∈R} R Ф {x |x=- a b 2} Δ<0 R R Φ Φ

含参不等式的解法

含参数的一元二次不等式的解法 含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。 一. 二次项系数为常数 例1、解关于x 的不等式:0)1(2 >--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?) (1)当1<-m 即m<-1时,解得:x<1或x>-m (2)当1=-m 即m=-1时,不等式化为:0122 >+-x x ∴x ≠1 (3)当1>-m 即m>-1时,解得:x<-m 或x>1 综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11 (){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当 例2:解关于x 的不等式:.0)2(2 >+-+a x a x (不能因式分解) 解:()a a 422 --=? (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212 +<<-<--=? ()()3 2432404222 +=-==--=? a a a a 或时当

(i )13324-≠ -=x a 时,解得:当 (ii )13-324-≠+=x a 时,解得: 当 ()()时 或即当32432404232 +>-<>--=? a a a a 两根为()2 42)2(2 1 a a a x --+ -= ,()2 42)2(2 2 a a a x --- -= . ()()2 42)2(2 42)2(2 2 a a a x a a a x --+ -> --- -< 或此时解得: 综上,不等式的解集为: (1)当3 2 4324+<<-a 时,解 R ; (2)当324-=a 时,解集为(13,-∞-)?( +∞ -,13); (3)当324+=a 时,解集为(13,--∞-)?(+∞ -- ,13); (4)当3 24-a 时, 解集为(2 48)2(, 2 +---∞-a a a )?( +∞ +-+ -,2 4 8)2(2 a a a ); 二.二次项系数含参数 例3、解关于x 的不等式:.01)1(2 <++-x a ax 解:若0 =a ,原不等式.101>?<+-?x x 若0--?或.1>x 若0 >a ,原不等式.0)1)(1(<-- ? x a x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ ; (2)当1>a 时,式)(*11<

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

含参不等式题型知识讲解

含参不等式题型 一、给出不等式解的情况,求参数取值范围: 总结:给出不等式组解集的情况,只能确定参数的取值范围。记住:“大小小大有解;大大小小无解。”注:端点值格外考虑。 1:已知关于x 的不等式组3x x a >-???????+>-??的解集是x>2a,则a 的取值范围是 。 4、已知关于x 的不等式组2113x x m -?>???>?的解集为2x >,则( ) .2.2.2.2A m B m C m D m ><=≤

5、关于x 的一元一次不等式组x a x b >?? >?的解集是x>a,则a 与b 的关系为( ) ...0.0A a b B a b C a b D a b ≥≤≥>≤< 6、若关于x 的不等式组841x x x m +-??? p f 的解集是x >3,则m 的取值范围是 7、若关于x 的不等式组8x x m ?,有解,则m 的取值范围是__ ___。 8、若关于x 的不等式组?? ?->+<121m x m x 无解,则m 的取值范围是 。 二、给出不等式解集,求参数的值 总结:给出不等式组确切的解集,可以求出参数的值。方法:先解出含参的不等式组中每个不等式的解集,再利用已知解集与所求解集之间的对应关系,建立方程。 1:若关于x 的不等式组2123x a x b -? 的解集为11x -<<,求()()11a b +-的值。 2:已知关于x 的不等式组()324213 x x a x x --≤???+>-??的解集是13x ≤<,求a 的值。 3、若关于x 的不等式组 的解集为 ,求a,b 的值 {a b x b a x 22>+<+3 3<<-x

不等式及其解集练习题#精选.

不等式及其解集练习题 一、填空题: 1.用“<”或“>”填空: ⑴4_____-6; (2)-3_____0;(3)-5_____-1;(4)6+2______5+2;(5)6+(-2)_____5+(-2);(6)6×(-2)______5×(-2). 2.用不等式表示: (1)m -3是正数______; (2)y +5是负数______; (3)x 不大于2______; (4)a 是非负数______; (5)a 的2倍比10大______; (6)y 的一半与6的和是负数______; (7)x 的3倍与5的和大于x 的3 1 ______; (8)m 的相反数是非正数______. 3.直接想出不等式的解集: (1) x +3>6的解集 ; (2)2x <12的解集 ; (3)x -5>0的解集 ; (4)0.5x >5的解集 ; 4.当X_______时,代数式2X-5的值为0, 当X_______时,代数式2X-5的值不大于0. 5.不等式的解集在数轴上表示如图所示,则该不等式可能是_____________. 6.当x_______时,代数式2x -5的值为0, 当x_______时,代数式2x -5的值不大于0. 7.不等式-5x ≥-13的解集中,最大的整数解是__ . 8.不等式x+3≤6的正整数解为_______________. 9.不等式-2x <8的负整数解的和是______. 10.一个不等式的解集如图所示,则这个不等式的正整数解是_______________. 4 3210-1 二、选择题: 1.下列不等式的解集,不包括-4的是( ) A.X ≤-4 B.X ≥-4 C.X <-6 D.X >-6 2.不等式x -3>1的解集是( ) A.x >2 B. x >4 C.x >-2 D. x >-4 3.不等式2X <6的非负整数解为( ) A.0,1,2 B.1,2 C.0,-1,-2 D.无数个 4.用不等式表示图中的解集,其中正确的是( ) A. X ≥3 B. X >3 C. X <3 D. X ≤3 5.下列说法中,错误的是( ) A.不等式x <5的整数解有无数多个 B.不等式x >-5的负整数解有有限个 C.不等式-2x <8的解集是x <-4 D.-40是不等式2x <-8的一个解 6.下列说法正确的是( ) A.x =1是不等式-2x <1的解集 B.x =3是不等式-x <1的解集 C.x >-2是不等式-2x <1的解集 D.不等式-x <1的解集是x >-1 7.下列不等式中,正确的是( ). A.4385-<- B.5 1 72< C.(-6.4)2<(-6.4)3 D.-|-27|<-(-3)3 8.“a 的2倍减去b 的差不大于-3”用不等式可表示为( ). (A)2a -b <-3 (B)2(a -b )<-3 (C)2a -b ≤-3 (D)2(a -b )≤-3 9.如果a 、b 表示两个负数,且a <b ,则( ). A. 1>b a B.1

解不等式的方法归纳

一、知识导学 1. 一元一次不等式 ax>b
(1)当 a>0 时,解为 x b ; a
解不等式的方法归纳
(2)当 a<0 时,解为 x b ; a
(3)当 a=0,b≥0 时无解;当 a=0,b<0 时,解为 R.
2. 一元二次不等式:(如下表)其中 a>0,x1,x2 是一元二次方程 ax2+bx+c=0 的两实根,且
x1<x2 (若 a<0,则先把它化正,之后跟 a>0 的解法一样)
类型 解集
ax2+bx+c>0
ax2+bx+c≥0
ax2+bx+c<0
ax2+bx+c≤0
Δ>0
{x|x<x1 或 x>x2}
{x|x≤x1 或 x≥ x2}
{x|x1<x<x2 }
{x|x1≤x≤x2}
{x|x≠- b ,
Δ=0
2a
R
x R}
Ф
b
{x|x=- }
2a
Δ<0
R
R
Φ
Φ
3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将 f(x)的最高次项的系数化为正数; ②将 f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的 f(x)值的符号变化规律,写出不等式的解集.
4.分式不等式:先整理成 f (x) >0 或 f (x) ≥0 的形式,转化为整式不等式求解,即:
g(x)
g(x)
f (x) >0 f(x)·g(x)>0 g(x)
f
(x)
≥0
f (x) 0 g(x) 0

f (x) g(x)>0
g(x)
然后用“根轴法”或化为不等式组求解. 二、疑难知识导析 1.不等式解法的基本思路 解不等式的过程,实质上是同解不等式逐步代换化简原不等式的过程,因而保持同解
精品

解绝对值不等式的方法总结(1)

解绝对值不等式题根探讨 题根四 解不等式2|55|1x x -+<. [题根4]解不等式2 |55|1x x -+<. [思路]利用|f(x)|0) ?-a-??求解。 [解题]原不等式等价于21551x x -<-+<, 即2 2 551(1)551 (2) x x x x ?-+-?? 由(1)得:14x <<;由(2)得:2x <或3x >,所以,原不等式的解集为{|12x x <<或34}x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551y x x y =-+=与的的图象,解方程 2551x x -+=,再对照图形写出此不等式的解集。 第1变 右边的常数变代数式 [变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) ?f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x ) 解得x > 12或无解,所以原不等式的解集是{x |x >12 } (2)原不等式等价于-3x <2x -2x -6<3x 即22 2 226360(3)(2)032(1)(6)016263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--()g x 型不等式 这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ?-()g x <()f x <()g x ②|()f x |>()g x ?()f x >()g x 或()f x <-()g x 1.解不等式(1)|x-x 2-2|>x 2 -3x-4;(2) 2 34 x x -≤1

相关文档
最新文档