不同冷冻保护剂和血清浓度对细胞冷冻效果的影响1

不同冷冻保护剂和血清浓度对细胞冷冻效果的影响1
不同冷冻保护剂和血清浓度对细胞冷冻效果的影响1

制冷剂的种类及特性

氨(R717)的特性 氨(R717、NH3)是中温制冷剂之一,其蒸发温度ts为-33.4℃,使用范围是+5℃到-70℃,当冷却水温度高达30℃时,冷凝器中的工作压力一般不超过1.5MPa。 氨的临界温度较高(tkr=132℃)。氨是汽化潜热大,在大气压力下为1164KJ/Kg,单位容积制冷量也大,氨压缩机之尺寸可以较小。 纯氨对润滑油无不良影响,但有水分时,会降低冷冻油的润滑作用。 纯氨对钢铁无腐蚀作用,但当氨中含有水分时将腐蚀铜和铜合金(磷青铜除外),故在氨制冷系统中对管道及阀件均不采用铜和铜合金。 氨的蒸气无色,有强烈的刺激臭味。氨对人体有较大的毒性,当氨液飞溅到皮肤上时会引起冻伤。当空气中氨蒸气的容积达到0.5-0.6%时可引起爆炸。故机房内空气中氨的浓度不得超过0.02mg/L。 氨在常温下不易燃烧,但加热至350℃时,则分解为氮和氢气,氢气于空气中的氧气混合后会发生爆炸。 氟哩昂的特性 氟哩昂是一种透明、无味、无毒、不易燃烧、爆炸和化学性稳定的制冷剂。不同的化学组成和结构的氟里昂制冷剂热力性质相差很大,可适用于高温、中温和低温制冷机,以适应不同制冷温度的要求。 氟里昂对水的溶解度小,制冷装置中进入水分后会产生酸性物质,并容易造成低温系统的“冰堵”,堵塞节流阀或管道。另外避免氟里昂与天然橡胶起作用,其装置应采用丁晴橡胶作垫片或密封圈。 常用的氟里昂制冷剂有R12、R22、R502及R1341a,由于其他型号的制冷剂现在已经停用或禁用。在此不做说明。 氟里昂12(CF2CL2,R12):是氟里昂制冷剂中应用较多的一种,主要以中、小型食品库、家用电冰箱以及水、路冷藏运输等制冷装置中被广泛采用。R12具有较好的热力学性能,冷藏压力较低,采用风冷或自然冷凝压力约0.8-1.2KPa。R12的标准蒸发温度为-29℃,属中温制冷剂,用于中、小型活塞式压缩机可获得-70℃的低温。而对大型离心式压缩机可获得-80℃的低温。近年来电冰箱的代替冷媒为R134a。 氟里昂22(CHF2CL,R22):是氟里昂制冷剂中应用较多的一种,主要以家用空调和低温冰箱中采用。R22的热力学性能与氨相近。标准气化温度为-40.8℃,通常冷凝压力不超过1.6MPa。R22不燃、不爆,使用中比氨安全可靠。R22的单位容积比R12约高60%,其低温时单位容积制冷量和饱和压力均高于R12和氨。近年来对大型空调冷水机组的冷媒大都采用 R134a来代替。 氟里昂502(R502):R502是由R12、R22以51.2%和48.8%的百分比混合而成的共沸溶液。R502与R115、R22相比具有更好的热力学性能,更适用于低温。R502的标准蒸发温度为-45.6℃,正常工作压力与R22相近。在相同的工况下的单位容积制冷量比R22大,但排气温度却比R22低。R502用于全封闭、半封闭或某些中、小制冷装置,其蒸发温度可低达-55℃。R502在冷藏柜中使用较多。 氟里昂134a(C2H2F4,R134a):是一种较新型的制冷剂,其蒸发温度为-26.5℃。它的主要热力学性质与R12相似,不会破坏空气中的臭氧层,

精子冷冻保护剂

精子冷冻保护剂 简介: 正常精液是一种混合物,在射精时由睾丸和附睾的分泌物及悬浮其中的精子与前列腺、精囊腺和尿道球腺的分泌物混合而成,最终射出的混合物是一种粘稠的液体。精子分析的方法有很多,其中可通过培养进行检测。 Leagene 精子冷冻保护剂主要由甘油、葡萄糖、枸橼酸钠、抗生素等组成,经无菌处理,其基本原理是在细胞冷冻过程中随着温度不断下降,细胞外液中作为各种电解质溶剂的水分首先形成细小的颗粒状冰晶,导致细胞外水份减少,电解质浓度增加,细胞外液渗透压升高,,用冷冻过程中产生的渗透压的梯度使细胞皱缩,而不损伤细胞。该试剂仅用于科研领域,不适用于临床诊断或其他用途。 组成: 操作步骤(仅供参考): (一)人类精液快速冷冻步骤 1、精液取出后,在37℃的水浴箱中液化。 2、精液液化后按照WHO 的标准进行常规分析,包括精液量、颜色、气味、PH 值、液化状况、精子密度、活动率、圆细胞数等,并做好相关记录。 3、提前将冷冻保护剂复温至室温。 4、将精液与冷冻保护剂按的比例混匀,并分装于冷冻管中,冷冻管做好标记。 5、将冷冻管置入4℃冰箱。 6、将冷冻管置入-80℃液氮蒸气。 7、将冷冻管投入液氮中冻存。 (二)人类精液程序冷冻步骤 1、精液取出后,在37℃的水浴箱中液化。 2、精液液化后按照WHO 的标准进行常规分析,包括精液量、颜色、气味、PH 值、液化状况、精子密度、活动率、圆细胞数等,并做好相关记录。 3、提前将冷冻保护剂复温至室温。 4、将精液与冷冻保护剂按的比例混匀,并分装于冷冻管中,冷冻管做好标记。 5、将冷冻管置于程序冷冻仪中,开始程序冷冻。冷冻程序如下:编号 名称CZ0150Storage 精子冷冻保护剂 100ml -20℃ 使用说明书1份

不良环境下的渗透保护剂

一、Osmoprotectants: Potential for Crop Improvement Under Adverse Conditions (综述) 主要介绍了几种渗透保护剂对于植物在不良环境下的保护作用,及通过基因工程而增加植物体内渗透保护剂的含量。介绍了几种主要渗透保护剂的合成途径 (一)渗透保护剂是低分子量的有机化合物,主要用于对渗透压力的反应。除对渗透压的调节外,还可以清除体内的ROS,帮助代谢解毒等。主要有三大类,包括氨基酸(如脯氨酸)、四分子铵化合物(如甜菜碱)、多羟基化合物和糖(甘露醇、海藻糖、肌醇甲酯、果聚糖) 1、多羟基化合物 (1)甘露醇和山梨糖醇 甘露醇是个己糖醇,作为许多有机体的碳源。山梨糖醇,许多作为将其作为一个主要的光合作用产物,可从成熟的组织转移到生长中的组织。研究表明,高浓度的山梨糖醇可阻碍肌醇的生物合成,并导致渗透不平衡。 (2)肌醇及其衍生物肌醇是环己胺己糖醇,有9种异构体。肌醇是正常生长发育的必需物,膜的生物合成需要其磷酸化的衍生物作为P源,并且在信号转 导过程中作为第二信使。肌醇及其衍生物肌醇半乳糖、棉子糖可作为渗透保 护剂(在盐毒害和渗透压力)。肌醇可用于一些生物分子的合成,如水苏糖2、海藻糖海藻糖是非还原性二糖,可保护机体免受一些物理和化学的伤害。海藻糖 有极强的吸水性,可保护大分子免受干燥引起的伤害。在干旱环境下,海藻糖被认为可以取代水分子,并且防止蛋白质变性和膜溶解。海藻糖可以和其他化合物如甜菜碱、脯氨酸等一起清除ROS

3、脯氨酸脯氨酸,有高水溶性,是细胞和代谢物质的基本组成,在细胞内参与渗 透调节。在植物体内,脯氨酸可通过谷氨酸途径或鸟氨酸途径合成。在渗透压力下,增加细胞内的脯氨酸含量可以稳定蛋白质的结构,保护细胞功能(通过清除ROS)。脯氨酸还可以提供氮源、碳源、能量在植物从压力环境中恢复的过程中。 在缺水环境中,可维持渗透平衡。高水平的脯氨酸可以帮助维持细胞内NADP+/NADP的比例。 4、聚胺聚胺是存在于所有真核细胞内的小分子化合物,由2个或更多氨基酸组 成。腐胺、亚精胺和精胺是主要的聚胺,存在于细胞增殖、生长、形态发生、分化和程序性死亡等过程中。 5、四氢嘧啶四氢嘧啶是许多异养需氧型细菌的常见溶解物,作为分子伴侣,在细胞 中高浓度存在,但不影响细胞功能,并且防止蛋白质和其他不稳定大分子的错误折叠。四氢嘧啶保护蛋白质的详细机制还不清楚,但确信它可帮助蛋白质的水合作用。 维持渗透压平衡。 6、甜菜碱在许多耐盐植物中,甜菜碱高浓度存在于原生质中,其浓度越高,耐受性 越高。可保护酶分子的四亚基结构,保护蛋白质和膜的完整性(在盐、冷、热环境)。在叶绿体中增加甜菜碱的浓度可更有效的提供耐受性(与增加在胞液中的相比)。外源甜菜碱可以增加一些基因的表达,这些基因可直接或间接提高耐受性,如控制清除ROS酶的基因,三价铁还原酶,膜上的运输蛋白的组成、转录因子(二)机制渗透保护剂通常存在于细胞质中,通过减少细胞渗透势抑制细胞渗透失

HFC制冷剂的特性

HFC制冷剂的特性 目前已经进入实用阶段的HFC系列制冷剂对臭氧层没有破坏作用,和以往的CFC、HCFC一样,具有难燃、稳定、低毒等特性,并且其能源效率特性良好。 替代制冷剂 (1)CFC-12替代制冷剂:HFC-134a HFC-134a 的制冷特性及安全性与CFC-12极其相似,所以很早就被作为汽车空调、冰箱等产品的制冷剂广泛利用。 HFC-134a还作为HCFC的替代制冷剂、聚乙烯等的发泡剂、注重不燃特性的空气溶胶用喷射剂等被广泛运用。 ■特征 ·是物性值最接近FC-12的HFC。 ·具有优良的热稳定性,以及防腐性、低毒性。 ·与CFC-12相比,水分溶解度大。 ·和与CFC-12共同采用的环烷系列矿物油的相互溶解性能不佳。 (和聚烯二醇油以及酯油等的相互溶解性能良好) <理论制冷周期特性> 蒸发压力(kPa)凝结压力 (kPa) 排出压力 (℃) COP 制冷能力 (kJ/m3) HFC-134a16577039 4.91300 CFC-1218274438 4.91340蒸发温度/凝结温度=-15℃/30℃过热温度/过冷却温度=0℃/5℃蒸发压力 (2)HCFC-22替代制冷剂:R-407C、R-410A 哥本哈根会议开始对HCFC-22实行新的限制,而目前HCFC-22难以被单一的制冷剂取代,所以世界各国都是采用混合有2~3种制冷剂的混合制冷剂取而代之。 AREP/JAREP(注)对R-407C和R-410A有详细评价,此两种制冷剂已开始运用于小型空调、住宅空调等。 (注)AREP:美国空调冷冻工业会的替代制冷剂评价计划 JAREP:(社)日本冷冻冷冻工业会的替代制冷剂评价计划 1.R-407C的特征 ·混合有HFC-32、125、134a三种物质的混合制冷剂(非共沸)

新型制冷剂热力性质的快速计算及其特性研究

文章编号:1671-6612(2009)02-029-03 新型制冷剂热力性质的快速计算及其特性研究 陈锦华 敖永安 沈 琳 王聪民 高兴全 (沈阳建筑大学市政与环境学院 辽宁 110168) 【摘 要】 提出了新型制冷剂R407C 、R410A 及R227热力性质的快速计算方法,并对其特性分析比较。借 鉴Cleland 制冷剂热力性质简化计算公式,拟合出热力性质快速计算方程的系数,并从运行效率、经济性和安全性等角度来研究新型制冷剂的特性。结果在制冷空调的常用温度范围内,检验拟合系数的计算精度与Cleland 给出的其他制冷剂拟合精度相仿,在某些性能上新型制冷剂要优于被替代物。此快速计算方法可应用于装置的仿真和优化计算及装置或过程的实时控制。R407C 、R410A 能很好作为R22的替代物,R227是一种很有前途的制冷剂,很有可能作为混合物的一种阻燃组份用于HCFC 的混合替代物中,或作为热泵中CFC 的纯质替代物使用。 【关键词】 制冷剂;热力性质;计算;特性研究 中图分类号 TQ025 文献标识码 A The Comparison of Characteristics of Thermal Performance and Optimization and Simulation Calculation Method of Several New Refrigerant Chen Jinhua Ao Yong’an Shen Lin Wang Congmin Gao Xingquan (Institute of Urban Services and Environment , Architecture University , Liaoning, 110168) 【Abstract 】 Through comparing the thermodynamic properties of new refrigerant of R407C, R410A and R227,propose an optimization and simulation method. By using the simplified calculation formula of refrigerant of Cleland,draw the coefficient of quick calculation equation of thermodynamic properties,and study the characteristics of the new refrigerant from various angles such as operating efficiency, economy and security.result in the commonly used temperature range of refrigerating air-conditioning, the calculation accuracy of fitting coefficient is similar to fitting precision of other refrigerants which Cleland gives. In some performance,the new refrigerant is superior to the alternatives.conclusion This quick calculation method can be applied to simulation and optimization calculation of the device and the device or process real-time control. R407C, R410A can replace R22 very well, R227 is a promising refrigerant,it is possiblily used in the mixed HCFC alternatives as one flame-retardant component of the mixture,or as pure alternative of the CFC in the heat pump. 【Keywords 】 refrigerant ; thermodynamic properties ; calculation ; characteristics study 基金项目:“十一五”国家科技支撑计划重大项目(2006BAJ03B01) 作者简介:陈锦华(1981-),男,硕士研究生,主要从事建筑节能研究。 收稿日期:2008-11-06 0 引言 制冷工质的热力学性质和热物理性质数据是制冷系统流动、传热计算的基础。传统的查图表方法因效率低且精度不够,不满足系统仿真、优化计算及实时控制的要求,而被具有较高精度的简单快速计算公式所取代。许多研究者致力于这方面的工作,并提出了繁简不一的理论公式和经验方程。考虑到在装置的仿真和优化计算时,对制冷剂热力性质计算的速度和稳定性有较高的要求及在装置或过程的实时控制时,不可能在控制模块中附加很复杂的计算程序,因此笔者提出了简化快速计算方法。 第23卷第2期 2009年4月 制冷与空调 Refrigeration and Air Conditioning V ol.23 No.2 Apr. 2009.29~31

水在制冷中是制冷剂还是载冷剂

水在制冷中是制冷剂还是载冷剂? 最近很多人会问水在制冷中是制冷剂还是载冷剂?什么是载冷剂呢?以间接冷却方式工作的制冷装置中,将被冷却物体的热量传给正在蒸发的制冷剂的物质称为载冷剂。载冷剂通常为液体,在传送热量过程中一般不发生相变。但也有些载冷剂为气体,或者液固混合物,如二元冰等。常用的载冷剂有:水、盐水、乙二醇或丙二醇溶液、二氯甲烷和三氯乙烯,一般不包括一氟二氯甲烷,这个通常作为制冷剂,只有在直接制冷时,才使用制冷剂作为载冷剂。所以水是载冷剂。 但是,水虽然是载冷剂但它的载冷效果以及防腐蚀效果是非常不好的,水的冰点非常低,用它来传递冷量是不行的,一旦温度过低就会结冰冻结管路。在传递热量方面,又有很多优质的替代品来替代水,所以水在制冷行业的受欢迎度并不高。给大家讲完水在制冷中是制冷剂还是载冷剂这一问题,下面为大家推荐一些优秀的载冷剂厂家,以防大家受骗。 说起专业载冷剂生产厂家,有这样一家企业,冰河集团,公元1994年12月6日,公司成立。目前,以冰河资产管理(朝阳)有限公司为母公司的冰河集团,旗下拥有冰河冷媒有限公司、光达化工有限公司、永胜仓储有限公司、冰河传热介质检测有限公司、辽宁省工程技术中心...公司研发中心属于辽宁省工程技术中心,设有辽宁省液态传热介质实验室,冰河传热介质检测中心,拥有国内唯一、对超低温传热介质各项理化指标进行全面检测的能力。公司主导产品冰河冷媒应用于制冷行业,彻底解决了传统载冷剂腐蚀设备、效能低下、

污染环境的三大难题。产品达到世界先进水平,先后获得中国发明专利、2000年省科学技术奖、2005年国家重点新产品、2015年省优秀新产品一等奖,入围2016年中国创新创业大赛行业总决赛。目前,公司拥有大庆石化、东北制药、雪花啤酒、清华同方、陕西航天动力和中科院化学物理所等2000多家长期合作伙伴。今天,公司上下正在以“员工幸福、企业长青、国家富强”为愿景,以“百年老店”为目标,百折不挠,齐心协力,向着那个美好的明天迈进!

生物制品的灭活剂、佐剂及保护剂

第四章兽医生物制品的 灭活剂、佐剂及保护剂 【知识目标】 ·熟悉兽医生物制品生产中常用的灭活剂、佐剂及保护剂; ·理解灭活剂、佐剂及保护剂在兽医生物制品生产中的作用; ·掌握 ·灭活剂、佐刺、保护剂的概念; ·影响灭活剂作用的因素; ·影响保护剂效能的因素。 ·了解 ·佐剂的基本要求及类型; ·保护剂的组成、效能。 【能力目标】 ·能进行白油佐剂的乳化。 第一节灭活与灭活剂 为了提高兽医生物制品的安全性、防止散毒,许多疫苗通常通过灭活制成无毒力和无感染性的制品,灭活乃是兽医生物制品中的一项基本技术。 一、灭活及灭活剂的概念 灭活(inanimation),是指破坏微生物的生物学活性、繁殖能力及致病性,但尽可能不影响其免疫原性,用以制备灭活疫苗。广义的灭活尚包含灭能(inactivation),即使一些活性物质(微生物及其代谢产物、激素、酶、血清因子和抗体等)丧失活力的过程。各种灭活疫苗、诊断抗原等的制造过程均属于灭活;血清经56℃加热30min处理,使补体丧失活性、破坏某些抑制因子的过程,以及破伤风毒素经甲醛处理后即失去致病性成为类毒素的过程均为灭能。用来灭活的药物称为灭活剂,又称化学灭活剂。化学灭活是制备灭活苗最重要的手段。 二、灭活的类型 按其灭活作用的性质可将灭活分为物理灭活和化学灭活两类,尤以化学灭活法效果确实、方法简便而最为常用。但不同的微生物、活性物物质采取灭活方法、灭活剂也不尽相同,因此,选择合适的灭活剂和灭活方法对研制灭活兽医生物制品十分重要。 (一)物理灭活 一般常用热灭活、超声波灭活、紫外线灭活和γ射线灭活等方法杀死微生物或消除其毒性。 热灭活最早由Smith等研制猪霍乱灭活菌苗时提出,后来发现热灭括容易发生菌体蛋白

空调常用制冷剂的特性

空调常用制冷剂的特性 目前我们所使用的制冷剂已达70~80种,并正在不断发展增多。但用于食品工业和空调制冷的仅十多种。其中被广泛采用的只有以下几种: 1.氨(代号:R717) 氨是目前使用最为广泛的一种中压中温制冷剂。氨的凝固温度为-77.7℃,标准蒸发温度为-33.3℃,在常温下冷凝压力一般为1.1~1.3MPa,即使当夏季冷却水温高达30℃时也绝不可能超过1.5MPa。氨的单位标准容积制冷量大约为520kcal/m3。 氨有很好的吸水性,即使在低温下水也不会从氨液中析出而冻结,故系统内不会发生“冰塞”现象。氨对钢铁不起腐蚀作用,但氨液中含有水分后,对铜及铜合金有腐蚀作用,且使蒸发温度稍许提高。因此,氨制冷装置中不能使用铜及铜合金材料,并规定氨中含水量不应超过0.2%。 氨的比重和粘度小,放热系数高,价格便宜,易于获得。但是,氨有较强的毒性和可燃性。若以容积计,当空气中氨的含量达到 0.5%~0.6%时,人在其中停留半个小时即可中毒,达到11%~13%时即可点燃,达到16%时遇明火就会爆炸。因此,氨制冷机房必须注意通风排气,并需经常排除系统中的空气及其它不凝性气体。 总上所述,氨作为制冷剂的优点是:易于获得、价格低廉、压力

适中、单位制冷量大、放热系数高、几乎不溶解于油、流动阻力小,泄漏时易发现。其缺点是:有刺激性臭味、有毒、可以燃烧和爆炸,对铜及铜合金有腐蚀作用。 2.氟利昂-12(代号:R12) R12为烷烃的卤代物,学名二氟二氯甲烷,分子式为CF2Cl2。它是我国中小型制冷装置中使用较为广泛的中压中温制冷剂。R12 的标准蒸发温度为-29.8℃,冷凝压力一般为0.78~0.98MPa,凝固温度为-155℃,单位容积标准制冷量约为288kcal/m3。 R12是一种无色、透明、没有气味,几乎无毒性、不燃烧、不爆炸,很安全的制冷剂。只有在空气中容积浓度超过80%时才会使人窒息。但与明火接触或温度达400℃以上时,则分解出对人体有害的气体。 R12能与任意比例的润滑油互溶且能溶解各种有机物,但其吸水性极弱。因此,在小型氟利昂制冷装置中不设分油器,而装设干燥器。同时规定R12中含水量不得大于0.0025%,系统中不能用一般天然橡胶作密封垫片,而应采用丁腈橡胶或氯乙醇等人造橡胶。否则,会造成密封垫片的膨胀引起制冷剂的泄漏。

制冷剂充注量的简化计算方法之欧阳家百创编

制冷剂充注量的简化计算方法—— 工况参数法 1. 欧阳家百(2021.03.07) 2.计算原理 将制冷系统看作一个压力容器,而制冷剂在制冷系统中仅以四种状态出现,即冷凝压力下饱和气体、饱和液体,蒸发压力下饱和气体、饱和液体。而计算时只需要给出制冷系统所需计算部分的内容积,再给出该部分的饱和气体及饱和液体的相对比例及比容,就可以计算出制冷系统在某一工况下运行时需要的制冷剂充注量。3.计算方法 制冷系统运行压-焓简图如下: 在计算过程中,我们将做如下简化:将压缩机排气到冷凝器进口之间管路中的制冷剂看作冷凝压力下饱和蒸气;将冷凝器进口到冷凝器出口之间换热管中的制冷剂看作是在冷凝压力下饱和气体及饱和液体按一定比例的混合物(例如饱和液体比例占15%,饱和气体比例占85%,可根据具体情况调整);将冷凝器出口至节流装置进口之间管路中的制冷剂看作冷凝压力下饱和液体;(假设节流装置到蒸发器进口距离很短,可忽略这一段管路内容积)将蒸发器进口至蒸发器出口之间的换热管中的制冷剂看作是在蒸发压力下的饱和气体及饱和液体按一定比例的混合物(例如蒸发器进口干度为x,出口干度一般可设为1,则蒸发器内平均干度为(x+1)/2,即

蒸发压力下的饱和气体比例为(x+1)/2,蒸发压力下的饱和液体比例为(x+1)/2);蒸发器出口至压缩机吸气口之间管路(包括气液分离器)中的制冷剂看作是在蒸发压力下的饱和气体。通过以上假设,再计算出制冷系统各部分管路的内容积,查压-焓图获得3、4、7、9四点的比容,就可以计算出该制冷系统在冷凝压力tk、蒸发压力t0运行时所需的制冷剂充注量了。 4.该简化计算方法的优缺点 该简化计算方法的主要优点就是简单明了,手工均可很快计算出结果,而且计算的依据是制冷系统的运行参数,与制冷剂种类无关,所以其计算原理对各种制冷剂均是通用的。其缺点主要是计算精度较差,因为制冷系统运行时制冷剂时时刻刻存在着状态的变化,将其简单地看作只有四种状态显然不能精确地计算出制冷剂充注量,而且如果精确计算各部分管路内容积将会十分繁琐,所以一般情况下均是采取简化的方法,略去一些管路的内容积或是采取一些修正系数;其次,这种简化计算方法无法确定二次节流的中间过程的制冷剂状态,例如制冷时节流状置放在室外机,那么从节流装置到室内机蒸发器这一段管路中(包括连接管)的制冷剂状态如何确定现在还没有好的方法;由于还没有对贮液罐有比较深刻的认识(根据部门检查表:高压贮液罐的出口被制冷剂液体封住制冷系统即可正常工作,但已经有几位同事向我提出,实际上加装贮液罐后制冷系统的充注量明显增加,已经远高于高压贮液罐的出口时制冷系统才能正常工作),所以如何计算带有贮液罐的系统请大家在实践中摸索。

常用制冷剂种类及特性

说明 制冷剂又称制冷工质, 1987 HCFC 制冷剂的要求 热力学的要求 在大气压力下, 要求制冷剂在常温下的冷凝压力 对于大型活塞式压缩机来说,制冷剂的单位容积制冷量 制冷剂的临界温度要高些、冷凝温度要低些。临界温度的高低确定了制冷剂在

凝固温度是制冷剂使用范围的下限,冷凝温度越低制冷剂的适用范围愈大。 物理化学的要求 制冷剂的粘度应尽可能小,以减少管道流动阻力、提换热设备的传热强度。制冷剂的导热系数应当高,以提高换热设备的效率,减少传热面积。 制冷剂与油的互溶性质:制冷剂溶解于润滑油的性质应从两个方面来分析。如 应具有一定的吸水性, 应具有化学稳定性:不燃烧、不爆炸,使用中不分解,不变质。同时制冷剂本

安全性的要求 由于制冷剂在运行中可能泄漏,故要求工质对人身健康无损害、无毒性、无刺激作用。 制冷剂的分类 在压缩式制冷剂中广泛使用的制冷剂是氨、 无机化合物制冷剂:这类制冷剂使用得比较早,如氨( 氟里昂(卤碳化合物制冷剂):氟里昂是饱和碳氢化合物中全部或部分氢元素饱和碳氢化合物:这类制冷剂中主要有甲烷、乙烷、丙烷、丁烷和环状有机化不饱和碳氢化合物制冷剂:这类制冷剂中主要是乙烯( 共沸混合物制冷剂:这类制冷剂是由两种以上不同制冷剂以一定比例混合而成高温、中温及低温制冷剂:是按制冷剂的标准蒸发温度和常温下冷凝压力来分

氨( 氨( 氨的临界温度较高 纯氨对润滑油无不良影响,但有水分时,会降低冷冻油的润滑作用。 纯氨对钢铁无腐蚀作用,但当氨中含有水分时将腐蚀铜和铜合金(磷青铜除氨的蒸气无色,有强烈的刺激臭味。氨对人体有较大的毒性,当氨液飞溅到皮氨在常温下不易燃烧,但加热至 氟哩昂的特性 氟哩昂是一种透明、无味、无毒、不易燃烧、爆炸和化学性稳定的制冷剂。不同的化学组氟里昂对水的溶解度小,

空调器制冷剂最佳充注量确定

空调器制冷剂最佳充注量确定 每一种空调器的设计都存在着如何确定制冷剂充注量的问题,特别是在采用毛细管作节流装置的空调器中,由于毛细管的调节能力较热力膨胀阀差,充注量的变化对其性能影响更大。目前这方面的研究较少,缺少成熟的理论计算方法,各生产厂家只好采取试验手段,依据经验估计值进行多次试验,以最终确定最佳充注量。这种重复的工作不仅费钱,也费时费力。为了使确定最佳充注量变得简单可行,本文在系统稳态性能模拟的基础上,对分体式空调器的最佳充注量进行了计算,并提出了确定系统最佳充注量的原则:当空调器的结构尺寸和工作条件一定,制冷量达到设计要求时,系统的能效比最大。此时,空调器及各部件处于最佳工作状态。本人曾对KFR-32GW/H分体挂壁式空调器反复做试验,理论计算和试验结果很吻合。 1充注量计算 制冷剂在制冷系统中的状态可分为单相和两相两种,这两部分的制冷剂质量计算应分别考虑。 1.1单相区质量计算 单相区制冷剂密度计算较为简单,处于单相区的各部分制冷 剂质量可通过积分计算。 (1) 式中m1为制冷剂质量,kg;ρ为密度,kg/m3;V为容积,m3;Pv为压力,Pa;Tv为制冷剂温度,K。 单相区制冷剂主要存在于蒸发器过热区、冷凝器过冷区、连接管路、压缩机壳体内、过滤器和润滑油中,故单相区制冷剂质量为: (2) 式(2)中各参数的下标含义为:filt过滤器,pipe管路,oil润滑油,com压缩机,V单相区容积。 考虑到压缩机、过滤器、接管内制冷剂温度变化不大,故式(2)中采用平均温度来计算密度。润滑油中溶解的制冷剂量,可根据油质量及制冷剂的溶解度

进行计算。 1.2两相区质量的计算 充注量计算的难点在于两相区中制冷剂量的确定,其关键是两相区空泡系数的计算。在两相区空泡系数修正模型的研究和验证方面,不少学者已经做了大量工作。笔者在此基础上,结合空调器的实际工作条件,在稳态工况下,假设换热器两相区单位面积热负荷一定,选用Hughmark模型计算两相区的制冷剂量。其数学表达式为: (3) 式中α为空泡系数,x为干度,β、kH为系数,其中kH=f(z)具体见表1。 (4) 式中G为质量流速,kg/(m2·s);μ为粘度,Pa·S;Di为管内径,m。 此模型系数计算中包括α,所以在计算α时必须经过迭代,计算量较大。 两相区中制冷剂量m2: (5) 式中ls为两相区长度,m;l为制冷剂管长,m。 制冷剂的总充注量m为各部分充注量之和: m=m1+m2(6) 2充注量对空调器性能的影响及试验结果

制冷剂与载冷剂流向

制冷剂与载冷剂流向 载冷剂是在间接冷却的制冷装置中,将被冷却系统的热量传递给正在蒸发的制冷剂的物质。也称为二次制冷剂。载冷剂与制冷剂统称为冷媒,都属于传输冷量的介质。 载冷剂通常为液体,在传递热量过程中一般不发生相变。制冷剂通过相变制冷,将冷量传递给载冷剂,然后再通过泵在常压下将载冷剂的冷量传递给冷库间实现制冷。 载冷剂代用品主要有氯化钙盐水、氯化钠盐水、甲醇、乙醇、乙二醇、丙二醇、二氯甲烷等。专业载冷剂如冰河冷媒等。 制冷剂,又称、致冷剂、雪种,是各种热机中借以完成能量转化的媒介物质。这些物质通常以可逆的相变(如气-液相变)来增大功率。如蒸汽引擎中的蒸汽、制冷机中的雪种等等。一般的蒸汽机在工作时,将蒸汽的热能释放出来,转化为机械能以产生原动力;而制冷机的雪种则用来将低温处的热量传动到高温处。 传统工业及生活中较常见的工作介质是部分卤代烃(尤其是氯氟烃),但由于它们会造成臭氧层空洞而逐渐被淘汰。其他应用较广的工作介质有氨气、二氧化硫和非卤代烃(例如甲烷)。 常见的制冷剂: NH 制冷剂 3 凝固温度 1859年氨作为制冷剂的理论确立,1875年开始用于工业制冷。NH 3 -77.7℃,标准沸点-33.3℃,临界温度132.4℃,临界压力11.52Mpa。常温下冷凝压力一般在 1.1Mpa~1.3Mpa,夏季最高不超过 1.5Mpa,单位容积制冷量约2177KJ/m3。ODP=0,GWP=0。 优点:NH 制冷剂对环境友好性,破坏臭氧层潜能值(ODP)为0、全球气候变暖 3 潜能值(GWP)为0。具有优良的热力学性质,其单位容积制冷量较传统的氟利昂制冷剂大。比重和粘度小。价格便宜、易获得;氨机造价低,由于单个氨机制冷量可达到250 kW甚至更大,而氟机(低温工况)最大为100kW,若要用于大冷量工况,就必须多机并联,因此,在大功率(100kW以上)的情况下,氨机明显较氟并联机组价格低;氨系统若发生泄漏易被发现。

养细胞过程所用的试剂简介

1.pbs缓冲液 PBS是磷酸缓冲盐溶液(phosphate buffer saline)一般作为溶剂,起溶解保护试剂的作用。它是生物化学研究中使用最为广泛的一种缓冲液,主要成分为Na2HPO4、KH2PO4、NaCl和KCl,由于Na2HPO4和KH2PO4它们有二级解离,缓冲的pH值范围很广;而NaCl和KCl主要作用为增加盐离子浓度。如有需要PBS还可以补加1 mmol/L CaCl2和0.5 mmol/L MgCl2,以提供双价阳离子。 注:PBS不是磷酸缓冲液(phosphate buffer solution,PB) 配制方法为: 称取磷酸二氢钾(KH2PO4),磷酸氢二钠(Na2HPO4·12H2O),氯化钠(NaCl),氯化钾(KCl),吐温-20 ,加水。 PBS:Phosphate Buffered Saline PBS 1L配方pH7.4:磷酸二氢钾(KH2PO4):0.27g, 磷酸氢二钠(Na2HPO4):1.42g, 氯化钠(NaCl):8g, 氯化钾(KCl)0.2g, 加去离子水约800mL充分搅拌溶解,然后加入浓盐酸调pH至7.4,最后定容到1L 保存方法 高温高压灭菌后置于4摄氏度冰箱保存待用。 PBS缓冲液(pH7.2~7.4):NaCl 137mmol/L,KCl 2.7mmol/L,Na2HPO4 10mmol/L,KH2PO4 2mmol/L PBS缓冲液一般作为溶剂,起溶解保护试剂的作用,具体试剂一般也有不同的比例配方,在针对性上就有了更好的效果。 1x PBS缓冲液就是0.01M的PBS,可直接使用,2x PBS就是2倍浓度,使用时稀释一倍使用。0.1M的PBS一般不用来配置缓冲液,用于其它用处。

非共沸混合制冷剂组分对冷凝器换热特性的影响

2009年第6期 总第172期 低 温 工 程 CRY OGEN I CS No 16 2009 Sum No 1172 非共沸混合制冷剂组分对冷凝器换热特性的影响 冯永斌 晏 刚 钱文波 (西安交通大学能源与动力工程学院 西安 710049) 摘 要:为了揭示非共沸混合工质在冷凝器内的换热特性,探明非共沸混合工质组分对制冷剂和 换热流体间沿程温度的影响,通过建立冷凝器换热模型,对不同沸点差的二元环保型非共沸混合工质进行了理论分析。结果表明:由于非共沸混合工质比焓值与温度的非线性关系,换热流体间的沿程传热温差出现极值点;混合工质中富含低沸点组分时,冷凝器内部存在最小传热温差;反之,存在最大传热温差;混合工质沸点差增加,滑移温度的限制条件之差增大,窄点现象增强。 关键词:制冷剂 非共沸 冷凝器 组分中图分类号:T B612 文献标识码:A 文章编号:100026516(2009)0620052205 收稿日期:2009208209;修订日期:2009211216 作者简介:冯永斌,男,27岁,硕士研究生。 Effect of zeotrop i c refr i geran t m i xtures co m positi on on hea t tran sfer character isti cs of conden sers Feng Yongbin Yan Gang Q ian W enbo (School of Energy and Power Engineering,Xi ’an J iaot ong University,Xi ’an 710049,China ) Abstract :I n order t o reveal the heat transfer characteristics of zeotr op ic refrigerant m ixtures in con 2denser and ascertain the effect of m ixtures compositi on on te mperature distributi on change bet w een refriger 2ant and heat transfer fluid,theoretical analysis was carried out with different nor mal boiling point te mpera 2ture difference and envir on ment 2friendly refrigerant m ixutures based on an condenser model .The results show that the te mperature difference of fluid takes on extre me point due t o the non 2linear relati onshi p be 2t w een te mperature and s pecific enthal py during the condensing p r ocess .W ith binary m ixtures,a m ini m um te mperature difference will occur within the ends of the condenserwhen the concentrati on of l ow voliatile flu 2id is high .Maxi m u m te mperature difference behavi our will be seen at l ow concentrati ons of the more volatile fluid .The constraint te mperature difference of glide te mperature will increases and the p inch point behav 2i our will be strengthen when the nor mal boiling point te mperature difference of m ixture refrigerant increases . Key words :refrigerant;zeotr op ic;condenser;compositi on 1 引 言 随着CFC 和HCFC 类物质的逐渐淘汰,混合制 冷剂在制冷、空调热泵领域得到了广泛的应用,如 R407C 、R432A 以及R433A 等。理想的混合工质换 热是变温传热,即满足Lorenz 循环,具有节能的潜力。因此,从实用的角度来看,研究混合工质的变温传热较恒温传热更具有实用价值。

04 冷冻干燥保护剂

04 冷冻干燥保护剂 冻干保护剂 一、冻干损伤机理: 蛋白质冷冻干燥全过程分为预冻、第一阶段升华干燥和第二阶段再干燥。预冻 过程中水结冰时体积增大,致使活性物质活性部位中一些由弱分子力键连接的键遭到破坏,从而使活性损失;另外,水结冰后引起溶质浓度上升以及由于各种溶质在 不同温度条件下溶解度变化不一致而引起pH值的变化,导致活性物质所处的环境 发生变化而造成失活或变性。 二、冻干保护作用机理: 第一,“水替代假说”:认为由于蛋白质分子中存在大量氢键,结合水通过氢 键与蛋白质分子联结。当蛋白质在冷冻干燥过程中失去水分后,蛋白的主相变温度会升高,发生变性。但某些糖类属于亲水性物质,形成氢键能力较强,能替代蛋白表面的水的羟基,与蛋白质中的极性基团形成氢键,使得蛋白的主相变温度变化不大,低于操作温度,从而避免了生物活性物质由于发生相变所造成的机械损伤。能够直接测量到冻干的蛋白质与保护剂蔗糖间的氢键。 第二,“玻璃态假说”:认为在含糖溶液的干燥过程中,糖-水混合物会玻璃 化,兼有固体和流体的行为,粘度极高,不容易形成结晶;且分子扩散系数很低, 因而具有粘性的保护剂包围在蛋白质分子的周围,形成一种在结构上与玻璃状的冰相似的碳水化合物玻璃体,使大分子物质的链锻运动受阻,阻止蛋白质的伸展和沉淀,维持蛋白质分子三维结构的稳定,从而起到保护作用。 研究表明,单糖、双糖、多羟基化合物以及结构蛋白质、酶都能显示玻璃行 为,只是玻璃化转变温度不同而已。由于某些糖的玻璃化温度较高,在较高的保存温度下,仍能在蛋白质分子附近形成玻璃态。(大于玻璃化温度就不形成玻璃态了)

一般说来,如工作温度低于保护剂的玻璃化温度,高于被保护的活性物质的主相变温度,那么该活性物质就能有效地保持活性。但在目前,这两种假说还不能完全解释现有的实验现象。 三、冻干保护剂的选择: 冻干保护剂需要具备四个特性:玻璃化转变温度高、吸水性差、结晶率低和不含还原基。常用的保护剂有如下几类物质: 1.糖类/多元醇:蔗糖、海藻糖、甘露醇、乳糖、葡萄糖、麦芽糖等;其中,葡萄糖、乳糖具有还原性,而蔗糖、海藻糖、葡聚糖没有还原性。 2.聚合物:HES、PVP、PEG、葡聚糖、白蛋白等; 3.无水溶剂:乙烯乙二醇、甘油、DMSO、DMF等; 4.表面活性剂:Tween 80等; 5.氨基酸:L-丝氨酸、谷氨酸钠、丙氨酸、甘氨酸、肌氨酸等; 6.盐和胺:磷酸盐、醋酸盐、柠檬酸盐等; 具体分类: (一)按相对分子量分 1.低分子化合物低分子化合物可提高微生物存活率,形成均一悬液,起到水分缓解作用。如: 酸性物质:谷氨酸、天冬氨酸、乳酸; 中性物质:葡萄糖、乳糖、蔗糖、海藻糖、山梨醇D; 碱性物质:精氨酸、组氨酸。 2.高分子化合物高分子化合物对微生物有保护作用,可促进其升华形成耐热骨架阻断热传导和热辐射。如:白蛋白、明胶、蛋白胨、脱脂奶粉。 明胶水解明胶可去掉杂质蛋白、无抗原性、无过敏反应、无热源,并且分子量小、均质、易溶于水,可过滤除菌,共熔点为,12?。对微生物的保护作用高出普通明胶10,以上。

制冷系统中制冷剂指的是载冷剂吗

制冷系统中制冷剂指的是载冷剂吗? 在制冷行业,有这么两大类物质制冷剂和载冷剂,有一些对于这领域不是很了解的人很容易就会弄混,把其工作同一种物质去看待,那么制冷系统中制冷剂指的是载冷剂吗?其实这是不对的,制冷剂和载冷剂是有明显的区别的,接下来我为大家详细的介绍一下,到底如何区分制冷剂和载冷剂。 制冷剂,又称制冷工质,在南方一些地区俗称雪种,是一种在制冷系统中不断循环并通过其本身的状态变化以实现制冷的工作物质。制冷机中完成热力循环的工质。它在低温下吸取被冷却物体的热量,然后在较高温度下转移给冷却水或空气。在蒸气压缩式制冷机中,使用在常温或较低温度下能液化的工质为制冷剂,如氟利昂(饱和碳氢化合物的氟、氯、溴衍生物),共沸混合工质(由两种氟利昂按一定比例混合而成的共沸溶液)、碳氢化合物(丙烷、乙烯等)、氨等;在气体压缩式制冷机中,使用气体制冷剂,如空气、氢气、氦气等,这些气体在制冷循环中始终为气态;在吸收式制冷机中,使用由吸收剂和制冷剂组成的二元溶液作为工质,如氨和水、溴化锂(分子式:LiBr。白色立方晶系结晶或粒状粉末,极易溶于水)和水等;蒸汽喷射式制冷机用水作为制冷剂。制冷剂的主要技术指标有饱和蒸气压强、比热、粘度、导热系数、表面张力等。但是作为载冷剂其本身的作用以及参数都和制冷剂有着明显的差别,通过上述的描述我们初步对于制冷剂有了些了解,针对于载冷剂,其实通俗来讲载冷剂不能够制造冷量,它的作用只在于作为一个载体,将冷量进行传递。说白了,载冷剂就是用来制造冷量的,而载冷剂是用来传递冷量的,所以制冷系统中制冷剂指的是载冷剂这一说法是不正确的。所以大家不要混淆。 冰河冷媒科技(北京)有限公司主导产品冰河冷媒应用于制冷行业,彻底解决了传统载冷剂腐蚀设备、效能低下、污染环境的三大难题。

几种植物伤口保护剂

几种植物伤口保护剂 发布时间:2010-11-12 浏览次数:224次【字体:大中小】 在移植树木、绿化养护中,修剪是必不可少的常用措施,而修剪后的伤口若处理不当,往往会因雨水等外来的侵蚀或病菌的侵染,造成伤口难以愈合、腐烂,严重影响植物的正常生长。因此,做好修剪后伤口的处理工作是很重要的,为促使伤口愈合,现介绍几种常用树木伤口保护剂及使用方法。 1.梳理剂 树木梳理剂英文名:Carding agent 树木梳理剂是一种附着力好,渗透性强,能高效抑杀真菌,能刺激植物的细胞分裂,加速形成层的生长,能增强树体对病害的免疫机能的黏合剂,其主要成分由天然植物和矿物质组成,是防治树木烂皮、溃疡病一种有效伤口涂抹剂。 2.光触媒英文名:Photocatalyst 光触媒是一种纳米级的金属氧化物材料(二氧化钛),它涂于基材表面,干燥后形成薄膜,在光线的作用下,产生强烈催化降解功能,有效地降解空气中有毒有害气体,有效杀灭多种细菌,并能将细菌或真菌释放出的毒素分解与无害化处理,同时还具备除臭、抗污等功能。 光触媒作用原理为在特定波长(388nm)的光照射下,会产生类似植物中叶绿素光合作用的一系列能量转化过程,把光能转化为化学能而赋予光触媒表面很强的氧化能力,可氧化分解各种有机化合物和矿化部分无机物,并具有抗菌的作用。

光触媒的特性为利用空气中的氧分子及水分子将所接触的有机 物转换为二氧化碳跟水,自身不起变化,却可以促进化学反应 的物质,有效期长,无毒无害,广泛用于各种领域。 以下几种伤口涂抹剂是传统的几种树木伤口处理方法,所选用的材料都是民间宜取常用的原材料,配制与使用方法都很简便,无污染、无副作用,对树木的伤口愈合能起到很好的作用。 3、松油合剂 用松香6份、酒精2份、动物油2份。先将松香、动物油放入锅内加热熔化,离火后立即加入酒精,趁热充分搅拌均匀,装瓶备用。使用时用毛笔或棉球蘸保护剂,均匀地涂于伤口使其形成药膜,封严伤口。此法适用于锯口面积较大的花木。 4、松蜡合剂 用松香4份,蜂蜡2份,动物油1份配制。配制时先用文火把松香、蜂蜡化开,再把动物油倒入,熔化后充分搅拌均匀,冷却后取出用手搓成团备用。使用时将其加热化开,然后用毛刷蘸着涂抹伤口。 5、油铜灰剂 用豆油、硫酸铜、熟石灰各1份,先将硫酸铜和熟石灰研成细末,然后把豆油倒入锅内熬煮沸腾,随即将硫酸铜和熟石灰加入油中,充分搅拌,冷却后即可涂抹使用。 6、沥青胶剂 将沥青加热熔化后,涂抹伤口效果很好,不但可以保护伤口,而且能有效地防止木质腐烂。 7、胶泥糊剂 修剪多浆的花卉伤口流出汁液时,可采用细土加胶水拌成泥糊状涂抹伤口。用硫磺粉或草木灰涂抹伤口效果也很好。

相关文档
最新文档