应变片测量组桥方式

应变片测量组桥方式
应变片测量组桥方式

下图为1/4桥(类型I)轴向应变配置中的应变计电阻:

下图为1/4桥(类型I)弯曲应变配置中的应变计电阻:

1/4桥(类型I)的应变计配置具有下列特性:

?单个有效应变计元素位于轴向或弯曲应变的主方向。

?具有补偿电阻(1/4桥完整电桥结构电阻)和半桥完整桥结构电阻。?温度变化可降低测量精度。

?1000 με时的灵敏度为~0.5 mV out/ V EX输入。

上级主题:应变计电桥配置

相关概念

电桥传感器换算

1/4桥(类型I)的电路图

电路图使用下列符号:

? R1是半桥的完整电桥结构电阻。

? R2是半桥的完整电桥结构电阻。

? R3是1/4桥的完整电桥结构电阻,称为补偿电阻。

? R4是用于测量伸展应变(+ε)的有效应变计元素。

? V EX是激励电压。

? R L是导线电阻。

? V CH是测量电压。

通过下列方程将1/4桥配置的电压比率转换为应变单位。

V r是虚拟通道用于电压—应变转换方程的电压比率,GF是应变计因子,R L是导线电阻,R g是额定应变计电阻。下图为1/4桥(类型II)轴向应变配置中的应变计电阻:

下图为1/4桥(类型II)弯曲应变配置中的应变计电阻:

1/4桥(类型II)的应变计配置具有下列特性:

?有效应变计元素和无效应变计元素(1/4桥的温度传感元素,称为补偿电阻)。有效元素位于轴向或弯曲应变的方向。补偿应变计位于连接至应变样本的温度电阻附近,但并未连接至应变样本,通常平行或垂直于主要的轴向应变方向。该配置常被误认为是半桥(类型I)配置,在半桥(类型I)配置中,R3为有效元素且连接至应变样本,用于测量泊松比的效应。

?完整桥结构电阻可使半桥保持完整。

?可补偿温度对测量产生的影响。

?1000 με时的灵敏度为~0.5 mV out/ V EX输入。

上级主题:应变计电桥配置

相关概念

电桥传感器换算

1/4桥(类型II)的电路图

电路图使用下列符号:

? R1是半桥的完整电桥结构电阻。

? R2是半桥的完整电桥结构电阻。

? R3是1/4桥的温度传感元素,称为补偿电阻。

? R4是用于测量伸展应变(+ε)的有效应变计元素。

? V EX是激励电压。

? R L是导线电阻。

? V CH是测量电压。

通过下列方程将1/4桥配置的电压比率转换为应变单位。

V r是虚拟通道用于电压—应变转换方程的电压比率,GF是应变计因子,R L是导线电阻,R g是额定应变计电阻。下图为半桥(类型I)轴向应变配置中的应变计电阻:

下图为半桥(类型I)弯曲应变配置中的应变计电阻:

半桥(类型I)的应变计配置具有下列特性:

?两个有效应变计元素,一个位于轴向应变方向,另一个平行或垂直于主要的轴向应变方向,作为泊松应变计。

?完整桥结构电阻可使半桥保持完整。

?轴向和弯曲应变的灵敏度较高。

?可补偿温度对测量产生的影响。

?对主应变测量总效应的补偿由材料的泊松比确定。

?1000 με时的灵敏度为~0.65 mV out/ V EX输入。

上级主题:应变计电桥配置

相关概念

电桥传感器换算

半桥(类型I)的电路图

电路图使用下列符号:

? R1是半桥的完整电桥结构电阻。

? R2是半桥的完整电桥结构电阻。

? R3是有效应变计元素,用于测量泊松效应(-ε)导致的收缩。

? R4是用于测量伸展应变(+ε)的有效应变计元素。

? V EX是激励电压。

? R L是导线电阻。

? V CH是测量电压。

通过下列方程将半桥(类型I)配置的电压比率转换为应变单位。

V r是虚拟通道用于电压—应变转换方程的电压比率,GF是应变计因子,v是泊松比,R L是导线电阻,R g是额定应变计电阻。

半桥(类型II)配置仅适用于测量弯曲应变。

下图为半桥(类型II)弯曲应变配置中的应变计电阻:

半桥(类型II)的应变计配置具有下列特性:

?两个有效应变计元素分别位于应变样本顶部的轴向应变方向,以及应变样本底部的轴向应变方向。

?完整桥结构电阻可使半桥保持完整。

?弯曲应变的灵敏度较高。

?不能测量轴向应变。

?可补偿温度对测量产生的影响。

?1000 με时的灵敏度为~1 mV out/ V EX输入。

上级主题:应变计电桥配置

相关概念

电桥传感器换算

半桥(类型II)的电路图

电路图使用下列符号:

? R1是半桥的完整电桥结构电阻。

? R2是半桥的完整电桥结构电阻。

? R3是用于测量收缩应变(+ε)的有效应变计元素。

? R4是用于测量伸展应变(+ε)的有效应变计电阻。

? V EX是激励电压。

? R L是导线电阻。

? V CH是测量电压。

通过下列方程将半桥(类型II)配置的电压比率转换为应变单位。

V r是虚拟通道用于电压—应变转换方程的电压比率,GF是应变计因子,R L是导线电阻,R g是额定应变计电阻。全桥(类型I)配置仅适用于测量弯曲应变。

下图为全桥(类型I)弯曲应变配置中的应变计电阻:

全桥(类型I)的应变计配置具有下列特性:

?四个有效应变计元素;两个位于应变样本顶部的弯曲应变方向,两个位于应变样本底部的弯曲应变方向。?弯曲应变的灵敏度较高。

?不能测量轴向应变。

?可补偿温度对测量产生的影响。

?可补偿导线电阻对测量产生的影响。

?1000 με时的灵敏度为~2.0 mV out/ V EX输入。

上级主题:应变计电桥配置

相关概念

电桥传感器换算

全桥(类型I)的电路图

电路图使用下列符号:

? R1是用于测量收缩应变(+ε)的有效应变计元素。

? R2是用于测量伸展应变(+ε)的有效应变计元素。

? R3是用于测量收缩应变(+ε)的有效应变计元素。

? R4是用于测量伸展应变(+ε)的有效应变计元素。

? V EX是激励电压。

? R L是导线电阻。

? V CH是测量电压。

通过下列方程将全桥(类型I)配置的电压比率转换为应变单位。

V r是虚拟通道用于电压—应变转换方程的电压比率,GF是应变计因子。

全桥(类型II)配置仅适用于测量弯曲应变。

下图为全桥(类型II)弯曲应变配置中的应变计元素:

全桥(类型II)的应变计配置具有下列特性:

?四个有效应变计元素。两个位于弯曲应变方向,一个位于应变样本的顶部,一个位于应变计样本的底部。

两个作为泊松应变计,一个位于应变样本的顶部,一个位于应变计样本的底部,分别平行或垂直于主要的轴向应变方向。

?不能测量轴向应变。

?可补偿温度对测量产生的影响。

?对主应变测量总效应的补偿由材料的泊松比确定。

?可补偿导线电阻对测量产生的影响。

?1000 με时的灵敏度为~1.3 mV out/ V EX输入。

上级主题:应变计电桥配置

相关概念

电桥传感器换算

全桥(类型II)的电路图

电路图使用下列符号:

? R1是用于测量收缩泊松效应(-ε)的有效应变计元素。

? R2是用于测量伸展泊松效应(+ε)的有效应变计元素。

? R3是用于测量收缩应变(+ε)的有效应变计元素。

? R4是用于测量伸展应变(+ε)的有效应变计元素。

? V EX是激励电压。

? R L是导线电阻。

? V CH是测量电压。

通过下列方程将全桥(类型II)配置的电压比率转换为应变单位。

V r是虚拟通道用于电压—应变转换方程的电压比率,GF是应变计因子,v是泊松比。下图为全桥(类型III)轴向应变配置中的应变计电阻:

全桥(类型III)配置仅适用于测量轴向应变。

全桥(类型III)的应变计配置具有下列特性:

?四个有效应变计元素。两个位于轴向应变方向,一个位于应变样本的顶部,一个位于应变计样本的底部。

两个作为泊松应变计,一个位于应变样本的顶部,一个位于应变计样本的底部,分别平行或垂直于主要的轴向应变方向。

?可补偿温度对测量产生的影响。

?不能测量弯曲应变。

?对主应变测量总效应的补偿由材料的泊松比确定。

?可补偿导线电阻对测量产生的影响。

?1000 με时的灵敏度为~1.3 mV out/ V EX输入。

上级主题:应变计电桥配置

相关概念

电桥传感器换算

全桥(类型III)的电路图

电路图使用下列符号:

? R1是用于测量收缩泊松效应(-ε)的有效应变计元素。

? R2是用于测量伸展应变(+ε)的有效应变计元素。

? R3是用于测量收缩泊松效应(-ε)的有效应变计元素。

? R4是用于测量伸展应变(+ε)的有效应变计元素。

? V EX是激励电压。

? R L是导线电阻。

V CH是测量电压。

通过下列方程将全桥(类型III)配置的电压比率转换为应变单位。

V r是虚拟通道用于电压—应变转换方程的电压比率,GF是应变计因子,v是泊松比。

电阻应变测量原理及方法

目录 电阻应变测量原理及方法 (2) 1. 概述 (2) 2. 电阻应变片的工作原理、构造和分类 (2) 2.1电阻应变片的工作原理 (2) 2.2电阻应变片的构造 (4) 2.3电阻应变片的分类 (4) 3. 电阻应变片的工作特性及标定 (6) 3.1电阻应变片的工作特性 (6) 3.2电阻应变片工作特性的标定 (10) 4. 电阻应变片的选择、安装和防护 (12) 4.1电阻应变片的选择 (12) 4.2电阻应变片的安装 (13) 4.3电阻应变片的防护 (14) 5. 电阻应变片的测量电路 (14) 5.1直流电桥 (15) 5.2电桥的平衡 (17) 5.3测量电桥的基本特性 (18) 5.4测量电桥的连接与测量灵敏度 (19) 6. 电阻应变仪 (24) 6.1静态电阻应变仪 (24) 6.2测量通道的切换 (26) 6.3公共补偿接线方法 (27) 7. 应变-应力换算关系 (28) 7.1单向应力状态 (28) 7.2已知主应力方向的二向应力状态 (29) 7.3未知主应力方向的二向应力状态 (29) 8. 测量电桥的应用 (31) 8.1拉压应变的测定 (31) 8.2弯曲应变的测定 (34) 8.3弯曲切应力的测定 (35) 8.4扭转切应力的测定 (36) 8.5内力分量的测定 (36)

电阻应变测量原理及方法 1. 概述 电阻应变测量方法是实验应力分析方法中应用最为广泛的一种方法。该方法是用应变敏感元件——电阻应变片测量构件的表面应变,再根据应变—应力关系得到构件表面的应力状态,从而对构件进行应力分析。 电阻应变片(简称应变片)测量应变的大致过程如下:将应变片粘贴或安装在被测构件表面,然后接入测量电路(电桥或电位计式线路),随着构件受力变形,应变片的敏感栅也随之变形,致使其电阻值发生变化,此电阻值的变化与构件表面应变成比例,测量电路输出应变片电阻变化产生的信号,经放大电路放大后,由指示仪表或记录仪器指示或记录。这是一种将机械应变量转换成电量的方法,其转换过程如图1所示。测量电路的输出信号经放大、模数转换后可直接传输给计算机进行数据处理。 电阻应变测量方法又称应变电测法,之所以得到广泛应用,是因为它具有下列优点 1.测量灵敏度和精度高。其分辨率达1微应变(με),1微应变=10-6应变(ε)。 2.测量范围广。可从1微应变测量到2万微应变。 3.电阻应变片尺寸小,最小的应变片栅长为0.2毫米;重量轻、安装方便,对构件无 附加力,不会影响构件的应力状态,并可用于应力梯度变化较大的应变的测量。 4.频率响应好。可从静态应变测量到数十万赫的动态应变。 5.由于在测量过程中输出的是电信号,易于实现数字化、自动化及无线电遥测。 6.可在高温、低温、高速旋转及强磁场等环境下进行测量。 7.可制成各种高精度传感器,测量力、位移、加速度等物理量。 该方法的缺点是: 1.只能测量构件表面的应变,而不能测构件内部的应变。 2.一个应变片只能测定构件表面一个点沿某一个方向的应变,不能进行全域性的测量。 3.只能测得电阻应变片栅长范围内的平均应变值,因此对应变梯度大的应力场无法进 行测量。 2. 电阻应变片的工作原理、构造和分类 2.1 电阻应变片的工作原理 由物理学可知,金属导线的电阻值R 与其长度L 成正比,与其截面积A 成反比,若 图1 用电阻应变片测量应变的过程

应变片测量组桥方式

应变片测量组桥方式 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

下图为1/4桥(类型I)轴向应变配置中的应变计电阻:下图为1/4桥(类型I)弯曲应变配置中的应变计电阻: 1/4桥(类型I)的应变计配置具有下列特性: ?单个有效应变计元素位于轴向或弯曲应变的主方向。 ?具有补偿电阻(1/4桥完整电桥结构电阻)和半桥完整桥结构电阻。 ?温度变化可降低测量精度。 ?1000 με时的灵敏度为~ mV out/ V EX输入。 上级主题: 相关概念 1/4桥(类型I)的电路图 电路图使用下列符号: ?R1是半桥的完整电桥结构电阻。 ?R2是半桥的完整电桥结构电阻。 ?R3是1/4桥的完整电桥结构电阻,称为补偿电阻。 ?R4是用于测量伸展应变(+ε)的有效应变计元素。 ?V EX是激励电压。 ?R L是导线电阻。 ?V CH是测量电压。 通过下列方程将1/4桥配置的电压比率转换为应变单位。 V r是虚拟通道用于电压—应变转换方程的电压比率,GF是应变计因子,R L是导线电阻,R g是额定应变计电阻。 下图为1/4桥(类型II)轴向应变配置中的应变计电阻: 下图为1/4桥(类型II)弯曲应变配置中的应变计电阻: 1/4桥(类型II)的应变计配置具有下列特性: ?有效应变计元素和无效应变计元素(1/4桥的温度传感元素,称为补偿电阻)。有效元素位于轴向或弯曲应变的方向。补偿应变计位于连接至应变样本的温度电阻附近,但并未连接至应变样本,通常平行或垂直于主要的轴向应变方向。该配置常被误认为是半桥(类型I)配置,在半桥(类型I)配置中,R3为有效元素且连接至应变样本,用于测量泊松比的效应。 ?完整桥结构电阻可使半桥保持完整。 ?可补偿温度对测量产生的影响。 ?1000 με时的灵敏度为~ mV out/ V EX输入。 上级主题: 相关概念 1/4桥(类型II)的电路图 电路图使用下列符号:

应变片单臂、半桥、全桥性能比较实验

应变片单臂、半桥、全桥性能比较实验 应变片基本原理: 电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应 (a) 丝式应变片 (b) 箔式应变片 应变片结构图 (a)单臂(b)半桥(c)全桥 应变片测量电路 在差动放大器增益相同的情况下:半桥电压表读数是单臂的两倍,全桥电压表读数是单臂的四倍。因此在整个实验过程中都要保持放大器增益不变。 单臂:在应变片测量原理图中R1、R2、R3为固定电阻,RX为金属箔式应变片。半桥:在应变片测量原理图中R1、R2、为固定电阻,R3、RX为金属箔式应变片。R3与RX符号相反。 全桥:在应变片测量原理图中R1、R2、R3、RX全为金属箔式应变片。全桥实验时图中四个电阻均为金属箔式应变片,接线时两相邻的应变片的位置符号相反,对应位置的应变片符号相同。

应变片测量原理图 实验步骤: 一、调零: 1、按图接线 差动放大器调零接线示意图 2、增益电位器RW3顺时针轾轻转到底再逆时针回调1圈,再调RW4使电压表在200mv时显示为零。 二、单臂实验: 1、按图接线后用RW1调零。

电阻应变片直流电桥测量电路的攻略

电阻应变片直流电桥测量电路的攻略 在复杂的机械系统中,研究其功耗和性能,设计它们的结构以及研究 各模块组间的润滑状态,测量各器件间的摩擦力等重要参数,多年来,一直被 人们所重视。由于机械内部运动复杂,环境恶劣,摩擦力相对很小,给测量带 来了很大困难,如何精确地测量出这些数据就显得格外重要。 采用无线收发方式,利用传感器信号通过无线收发电路进行信号传输, 可以先存储数据再把存储卡里面的数据读入到计算机进行分析,为复杂及数据 要求精确的系统的数据采集提供了新的方法。另外,在采集频率较高时,数据 量比较大,这对采集系统中处理器处理速度、射频无线传输速度、接口传输速度、A/D转换速度以及功耗等都有很高的要求,加上机械系统内部尺寸的限制,困难较大。这样一来,数据采集电路板的设计成为该数据采集系统的关键,我 们需要设计专门的数据采集和无线收发装置。 测量系统原理 系统由传感器、电源、信号调理电路、信号处理电路和PC机组成在实 际测量时,传感器安装在运动件上,由于采用引线装置传递信号会限制机械部 件的运动,因此可采用无线收发电路传输数据,也可采用存储方式进行数据采集,即先把数据保存到存储卡,数据采集完之后再拿出存储卡读入到计算机, 测量系统原理如气压传感器和应变片经过信号调理电路输出0~2.5V的电压,可通过信号处理电路把模拟信号转化为数字信号再存入存储卡,热电偶经 过信号调理电路输出12位SPI格式的数字信号,可由单片机直接把信号存入 存储卡。存储卡的容量应能保证采集信号的时间要求(在采集频率为3000Hz时,选择512M以上的存储卡可保证采集时间不少于25分钟)。而该测量系统中电 阻应变片直流电桥测量电路的设计是一个关键,下面我们将对这一部分进行详

-应变片单臂电桥性能实验

周康海洋技术1121班学号:2 实验一应变片单臂电桥性能实验 一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。 二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 1、应变片的电阻应变效应 所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得 (1—1) 当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。对式(1—1)全微分得电阻变化率 dR/R为: (1—2) 式中:dL/L为导体的轴向应变量ε L ; dr/r为导体的横向应变量ε r 由材料力学得:ε L = - με r (1—3) 4) 2、应变灵敏度 它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取 (1—5) 其灵敏度系数为: K= 金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。金属导体的电阻应变灵敏度一般在2左右。 3、贴片式应变片应用 在贴片式工艺的传感器上普遍应用金属箔式应变片,贴片式半导体应变片(温漂、稳定性、线性度不好而且易损坏)很少应用。一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出半导体电阻应变薄膜(扩散出敏感栅),制成扩散型压阻式(压阻效应)传感器。 *本实验以金属箔式应变片为研究对象。 4、箔式应变片的基本结构 金属箔式应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm左右的金属丝或金属箔制成,如图1—1所示。 (a) 丝式应变片 (b) 箔式应变片 图1—1应 (a)、单臂 Uo=U①-U③ =〔(R1+△R1)/(R1+△R1+R5)-R7/(R7+R6)〕E ={〔(R7+R6)(R1+△R1)-R7(R5+R1+△R1)〕/〔(R5+R1+△R1)(R7+R6)〕}E 设R1=R5=R6=R7,且△R1/R1=ΔR/R<<1,ΔR/R=Kε,K为灵敏度系数。 则Uo≈(1/4)(△R1/R1)E=(1/4)(△R/R)E=(1/4)KεE

应变片单臂半桥全桥性能比较实验

应变片单臂半桥全桥性 能比较实验 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

应变片单臂、半桥、全桥性能比较实验应变片基本原理: 电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应 (a) 丝式应变片 (b) 箔式应变片 应变片结构图 (a)单臂(b)半桥(c)全桥 应变片测量电路 在差动放大器增益相同的情况下:半桥电压表读数是单臂的两倍,全桥电压表读数是单臂的四倍。因此在整个实验过程中都要保持放大器增益不变。 单臂:在应变片测量原理图中R1、R2、R3为固定电阻,RX为金属箔式应变片。 半桥:在应变片测量原理图中R1、R2、为固定电阻,R3、RX为金属箔式应变片。R3与RX符号相反。

全桥:在应变片测量原理图中R1、R2、R3、RX全为金属箔式应变片。全桥实验时图中四个电阻均为金属箔式应变片,接线时两相邻的应变片的位置符号相反,对应位置的应变片符号相同。 应变片测量原理图 实验步骤: 一、调零: 1、按图接线 差动放大器调零接线示意图 2、增益电位器RW3顺时针轾轻转到底再逆时针回调1圈,再调RW4使电压表在 200mv时显示为零。 二、单臂实验: 1、按图接线后用RW1调零。 2、把10个20克的法码放到托盘上调增益RW3使电压表显示为50mv。 3、把法码全取下再依放上读取数据填于表中。 4、关闭电源,取下法码。 应变片单臂电桥性能实验数据 应变片单臂电桥实验接线示意图 三、半桥实验: 1、按图接线。 应变片半桥实验接线示意图 2、用RW1调零(增益RW3和放大器调零RW4保持在单臂实验壮态不变) 。

应变测量原理

应变片原理 敏感元件的种类很多,其中以电阻应变片(简称电阻片或应变片)最简单、应用最广泛。 电阻片的应变-电性能(图1、图2) 电阻片分丝式和箔式两大类。丝绕式电阻片是用0.003mm‐0.01mm的合金丝绕成栅状制成的;箔式应变片则是用0.003mm‐0.01mm厚的箔材经化学腐蚀制成栅状的,其主体敏感栅实际上是一个电阻。金属丝的电阻随机械变形而发生变化的现象称为应变‐电性能。电阻片在感受构件的应变时(称作工作片),其电阻同时发生变化。实验表明,构件被测量部位的应变ΔL/L与电阻变化率ΔR/R成正比关系,即: ? ? 比例系数 称为电阻片的灵敏系数。 由于电阻片的敏感栅不是一根直丝,所以 不能直接计算,需要在标准应变梁上通过抽样标定来确定。 的数值一般约在2.0左右。 温度补偿片 温度改变时,金属丝的长度也会发生变化,从而引起电阻的变化。因此在温度环境下进行测量,应变片的电阻变化由两部分组成,即: ? ? ? ? ——由构件机械变形引起的电阻变化。 ? ——由温度变化引起的电阻变化。 要准确地测量构件因变形引起的应变,就要排除温度对电阻变化的影响。方法之一是,采用温度能够自己补偿的专用电阻片;另一种方法是,把普通应变片,贴在材质与构件相同、但不参与机械变形的材料上,然后和工作片在同一温度条件下组桥。电阻变化只与温度有关的电阻片称作温度补偿片。利用电桥原理,让补偿片和工作片一起合理组桥,就可以消除温

度给应力测量带来的影响。 应变花(图3) 为同时测定一点几个方向的应变,常把几个不同方向的敏感栅固定在同一个基底上,这种应变片称作应变花。应变花的各敏感栅之间由不同的角度α组成。它适用于平面应力状态下的应变测量。应变花的角度α可根据需要进行选择。 电阻片的粘贴方法 粘贴电阻片是电测法的一个重要环节,它直接影响测量精度。粘贴时,首先必须保证被测表面的清洁、平整、光滑、无油污、无锈迹。二要保证粘贴位置的准确、 并选用专用的粘接剂。三、应变片引线的焊接和导线的固定要牢靠,以保证测量时导线不会扯坏应变片。为满足上述要求,粘贴的大致过程如下:打磨测量表面→在测量位置准确画线→清洗测量表面→在画线位置上准确地粘贴应变片→焊接导线并牢靠固定。 电桥工作原理 应变仪测量电路的作用,就是把电阻片的电阻变化率ΔR/ R转换成电压输出,然后提供给放大电路放大后进行测量。 电桥原理

应变片性能实验

实验一 应变传感器的性能研究 一、实验类型:验证性实验。 二、实验目的 1. 观察了解箔式应变片的结构及粘贴方式; 2. 测试应变梁变形的应变输出; 3. 验证单臂、半桥、全桥测量电桥的输出关系,比较不同桥路的功能。 三、实验内容 1. 设计并实现应变传感器的测试桥路; 2. 测量单臂、半桥、全桥测量电桥的输出,记录数据、绘制关系曲线,并分析。 四、实验原理 1. 本实验说明箔式应变片及单臂直流电桥的原理和工作情况。 应变片是最常用的测力传感元件。当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。通过测量电路,转换成电信号输出显示。 电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R1、R2、R3、R4中,电阻的相对变化率分别为ΔR1/R1、ΔR2/R2、ΔR3/ R3、ΔR4/R4,当使用一个应变片时,∑?= R R R ;当二个应变片组成差动状态工作,则有 2R R R ?= ∑;用四个应变片组成二个差动对工作,且R1= R2 = R3 = R4 = R ,4R R R ?= ∑。 由此可知,单臂,半桥,全桥电路的灵敏度依次增大。 2. 已知单臂、半桥和全桥的 R ∑分别为ΔR/R 、2ΔR/R 、4ΔR/ R 。根据戴维南定理可以 得出测试电桥的输出电压近似等于1/4E R ??∑,电桥灵敏度//Ku V R R =?,于是对应 于单臂、半桥和全桥的电压灵敏度分别为1/4E 、1/2E 和E 。由此可知,当E 和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无关。 五、实验要求 1. 熟悉CSY 系统传感器实验系统; 2. 能自行设计实现应变式传感器的测量桥路; 3. 掌握应变式传感器的各种测量电路的性能。 六、实验仪器设备 主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V 直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。

应变片测量组桥方式

应变片测量组桥方式 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

下图为1/4桥(类型I)轴向应变配置中的应变计电阻: 下图为1/4桥(类型I)弯曲应变配置中的应变计电阻: 1/4桥(类型I)的应变计配置具有下列特性: 单个有效应变计元素位于轴向或弯曲应变的主方向。 具有补偿电阻(1/4桥完整电桥结构电阻)和半桥完整桥结构电阻。 温度变化可降低测量精度。 1000 με时的灵敏度为~ mV out/ V EX输入。 上级主题: 相关概念 1/4桥(类型I)的电路图 电路图使用下列符号: R1是半桥的完整电桥结构电阻。 R2是半桥的完整电桥结构电阻。 R3是1/4桥的完整电桥结构电阻,称为补偿电阻。 R4是用于测量伸展应变(+ε)的有效应变计元素。 V EX是激励电压。 R L是导线电阻。 V CH是测量电压。 通过下列方程将1/4桥配置的电压比率转换为应变单位。 V r是虚拟通道用于电压—应变转换方程的电压比率,GF是应变计因子,R L是导线电阻,R g是额定应变计电阻。 下图为1/4桥(类型II)轴向应变配置中的应变计电阻: 下图为1/4桥(类型II)弯曲应变配置中的应变计电阻: 1/4桥(类型II)的应变计配置具有下列特性: 有效应变计元素和无效应变计元素(1/4桥的温度传感元素,称为补偿电阻)。有效元素位于轴向或弯曲应变的方向。补偿应变计位于连接至应变样本的温度电阻附近,但并未连接至应变样本,通常平行或垂直于主要的轴向应变方向。该配置常被误认为是半桥(类型I)配置,在半桥(类型I)配置中,R3为有效元素且连接至应变样本,用于测量泊松比的效应。 完整桥结构电阻可使半桥保持完整。 可补偿温度对测量产生的影响。 1000 με时的灵敏度为~ mV out/ V EX输入。 上级主题: 相关概念

全桥实验报告

《EDA技术应用》大作 业 --全桥开关电源设计与测试 学院:信息与电子工程学院 班级:13应用电子技术2班 指导老师:严添明 姓名:王浩 学号:1305220147 日期:2015-01-10

目录 全桥电源开关电源的设计与测试 (1) 1.1作业内容 (1) 1.2芯片工作原理 (1) 1.2.1VIPER22A芯片管脚功能 (1) 1.2.2VIPER22A芯片内部构图 (1) 1.2.3TOP246Y芯片管脚功能 (2) 1.2.4TOP246Y芯片内部构图 (2) 1.2.5TL494芯片管脚功能 (3) 1.2.6TL494芯片内部构图 (4) 1.3电路工作原理 (5) 1.3.1高频开关电源的电磁兼容 (5) 1.3.2软开关技术 (5) 1.3.3功率因数校正技术(PFC) (5) 1.3.4低电压大电流技术 (5) 1.3.5整理滤波 (5) 1.3.6填谷式功率因数校正 (5) 1.3.7辅助电源模块设计 (6) 1.3.8PWM脉冲产生模块设计 (7) 1.3.9驱动模块设计 (8) 1.4原理图 (1) 1.5印制板 (3)

1.6元件清单 (3) 1.7调试过程 (5) 1.7.1前级辅助电源调试 (5) 1.7.2TL494 PWM产生调试 (5) 1.7.3死区电压比较电路 (6) 1.7.4输出控制电路 (7) 1.7.5驱动电路和功率变换调试 (8) 1.8总结 (10)

全桥电源开关电源的设计与测试 1.1作业内容 (1)使用DXP2004软件,画出TOP246Y PCB板及元件封装。 (2)熟悉掌握制作PCB板的流程,成功制作出TOP246Y PCB板。 (3)调试TOP246Y电路板。 (4)了解TOP246Y电路的工作原理。 1.2芯片工作原理 1.2.1VIPER22A芯片管脚功能 图1.1 VIPER22A芯片管脚图 1.2.2VIPER22A芯片内部构图 图1.2 VIPER22A 芯片内部构图

实验一 金属箔式应变片 单臂、半桥、全桥性能比较实验

实验一 金属箔式应变片 单臂、半桥、全桥性能比较实验 一、实验目的 比较单臂、半桥、全桥输出时的灵敏度和非线性误差,得出相应的结论。 二、实验原理 电阻丝在外力作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为 ε?=?k R R (1) 式中 R R ?为电阻丝电阻相对变化;k 为应变灵敏系数;l l ?=ε为电阻丝长度相对变化。 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件。如图1所示,将四个金属箔式应变片分别贴在双孔悬臂梁式弹性体的上下两侧,弹性体受到压力发生形变,则应变片随弹性体形变被拉伸,或被压缩。 图1 应变式传感器安装示意图 三、主要实验设备 1.应变传感器实验模块 2.托盘 3.砝码

4.±15V 、±4V 电源 5.直流电压表 6. 万用表(自备) 四、实验内容 1.应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。通过这些应变片转换弹性体被测部位受力状态变化,电桥的作用完成电阻到电压的比例变化,如图2所示R5=R6=R7=R 为固定电阻,与应变片一起构成一个单臂电桥,其输出电压 R R R R E U ?? +??= 211/4 0 (2) 其中,E 为电桥电源电压。 2.差动放大器调零。从主控台接入±15V 电源,检查无误后,合上主控台电源开关,将差动放大器的输入端Ui 短接并与地短接,输出端Uo 接数显电压表(选择2V 档)。将电位器调节放大倍数的Rw4调到适当位置(注意:不能置于逆时针最小位置!),调节电位器Rw3使电压表显示为0V 。关闭主控台电源(Rw3、Rw4的位置确定后不能改动)。 3.按图2连线,将应变式传感器的其中一个应变电阻(如R1)接入电桥与R5、R6、R7构成一个单臂直流电桥。 图2 单臂电桥面板接线图 4.加托盘后电桥调零。电桥输出接到差动放大器的输入端Ui ,检查接线无误后,合上

应变片式电阻传感器的测量电路

应变片式传感器的测量电路 电阻应变计可把机械量变化转换成电阻变化,但电阻变化是很小的,用一般的电子仪表很难直接检测。例如,常规的金属应变计的灵敏系数k 值在1.8~4.8之间,机械应变在10~6000με之间,相对变化电阻 /R R k ε?=就比较小。 例1设某被测件在额定载荷下产生的应变为1000με,粘贴的应变计阻值120R =Ω,灵敏系数2k =,则其电阻的相对变化为 6/21000100.002R R k ε-?==??= 电阻变化率仅为0.2%。这样小的电阻变化,必须用专门的电路才能测量。测量电路把微弱的电阻变化转换为电压的变化,电桥电路就是这种转换的一种最常用的方法。 2.3.1 应变电桥 电桥电路即是惠斯通电桥,其结构如图所示。四个阻抗臂1234 ,,,Z Z Z Z 以顺时针排列,AC 是电源端,工作电压为U ;BD 为输出端,输出电压为0U 。在这个阻抗电桥的桥臂上接入应变计,就叫应变电桥。 应变电桥按不同的方式可分为不同的类型,主要有以下分类方式。 1 按工作臂分 单臂电桥:电桥的一个臂接入应变计。 双臂电桥:电桥的两个臂接入应变计。 全臂电桥:电桥的四个臂都接入应变计。 2 按电源分 按电源不同,可分为直流电桥和交流电桥。 直流电桥的电源是直流电压,其桥臂只能接入阻性元件,主要用于应变电桥的输出,不需中间放大就可直接显示的情况。例如半导体应变计的输出灵敏度高,可采用直流应变电桥作为测量电路,直接输出并显示结果。 交流电桥的电源是交流电压,其桥臂可以是阻性(R )、感性(L )或容性(C )元件。主要用于输出需放大的场合。例如金属应变计的输出灵敏度较低,应采用这种交流应变电桥作为测量电路,以进一步放大输出。 3 按工作方式分 图2.3.1 电桥电路的结构

测试技术课后题答案8力

习题8 8.2一等强度梁上、下表面贴有若干参数相同的应变片,如题图8.1 所示。 题图8.1 梁材料的泊松比为μ,在力P的作用下,梁的轴向应变为ε,用静态应变仪测量时,如何组桥方能实现下列读数? a)ε;b) (1+μ)ε;c) 4ε;d) 2(1+μ)ε;e) 0;f) 2ε 解: 本题有多种组桥方式,例如图所示。 8.2如题图8.2所示,在一受拉弯综合作用的构件上贴有四个电阻应变片。试分析各应变片感受的应变,将其值填写在应变表中。并分析如何组桥才能进行下述测试:(1) 只测弯矩,消除拉应力的影响;(2) 只测拉力,消除弯矩的影响。电桥输出各为多少?

题图8.2 解 组桥如图。 设构件上表面因弯矩产生的应变为ε,材料的泊松比为μ,供桥电压为u0,应变片的灵敏度系数为K。 各应变片感受的弯应变如题表8.1-1。 题表8.1-1 R1R2R3R4 -μεε-εμε 可得输出电压 )] 1(2[ 4 1 ] ( ) ( [ 4 1 με με με ε ε+ = - - + - - =K u K u u y 其输出应变值为) 1(2με + (1)组桥如题图。 2

3 设构件上表面因拉力产生的应变为ε,其余变量同(1)的设定。 各应变片感受的应变如 题表8.1-2。 可得输出电压 )] 1(2[4 1 ]()([4100μεμεε μεε+=--+--= K u K u u y 输出应变值为 )1(2με+ 8.4 用YD -15型动态应变仪测量钢柱的动应力,测量系统如题图10.3所示,若R 1=R 2=120Ω,圆柱轴向应变为220με,μ=0.3,应变仪外接负载为R fz =16Ω,试选择应变仪衰减档,并计算其输出电流大小。(YD -15型动态应变仪的参数参见题表8.3-1和8.3-2。) 解 电桥输出应变 286220)3.011仪=?+=+=()(εμεμε 由题表8.3-1选衰减档3。

实验三__应变片全桥性能实验

实验三应变片全桥性能实验 一、实验目的:了解应变片全桥工作特点及性能。掌握测量方法。 二、基本原理:应变片基本原理参阅实验一。应变片全桥特性实验原理如图3—1所示。应变片全桥测量电路中,将应力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压Uo≈(△R/R)E=KεE。其输出灵敏度比半桥又提高了一倍,非线性得到改善。 图3—1应变片全桥性能实验接线示意图 三、需用器件和单元:主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码。 四、实验步骤: 将实验数据填入表3作出实验曲线并进行灵敏度和非线性误差计算。实验完毕,关闭电源 五、实验结果及分析 位移(mm)0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 电压(mv)0 -0.03 -0.07 -0.10 -0.14 -0.17 -0.20 位移(mm)-3.5 -4.0 -4.5 -5.0 -5.5 电压(mv)-0.23 -0.27 -0.30 -0.34 -0.37 位移(mm)0 0.5 1.0 1.5 2.0 2.5 3.0 电压(mv)0.01 0.05 0.09 0.13 0.18 0.23 0.27

位移(mm) 3.5 4.0 4.5 5.0 5.5 电压(mv)0.32 0.36 0.41 0.46 0.51 最小二乘法拟合如图所示 由此可知灵敏度为0.07935,经计算最大非线性误差为0.039mv,线性度为7.69%。 六、实验心得 实验中应变梁的自由端产生负位移后,重新回到位移原点时,其电压值并不为零,这体现了传感器的迟滞。迟滞误差在本次拟合中修正了。

电阻应变片直流电桥测量电路攻略

在复杂的机械系统中,研究其功耗和性能,设计它们的结构以及研究各模块组间的润滑状态,测量各器件间的摩擦力等重要参数,多年来,一直被人们所重视。由于机械内部运动复杂,环境恶劣,摩擦力相对很小,给测量带来了很大困难,如何精确地测量出这些数据就显得格外重要。 采用立创无线收发方式,利用传感器信号通过无线收发电路进行信号传输,可以先存储数据再把存储卡里面的数据读入到计算机进行分析,为复杂及数据要求精确的系统的数据采集提供了新的方法。另外,在采集频率较高时,数据量比较大,这对采集系统中处理器处理速度、射频无线传输速度、接口传输速度、A/D 转换速度以及功耗等都有很高的要求,加上机械系统内部尺寸的限制,困难较大。这样一来,数据采集电路板的设计成为该数据采集系统的关键,我们需要设计专门的数据采集和无线收发装置。 测量系统原理 系统由传感器、电源、信号调理电路、信号处理电路和PC 机组成在实际测量时,传感器安装在运动件上,由于采用引线装置传递信号会限制机械部件的运动,因此可采用无线收发电路传输数据,也可采用存储方式进行数据采集,即先把数据保存到存储卡,数据采集完之后再拿出存储卡读入到计算机,测量系统原理如图1 所示。 气压传感器和应变片经过信号调理电路输出0~2.5V 的电压,可通过信号处理电路把模拟信号转化为数字信号再存入存储卡,热电偶经过信号调理电路输出12 位SPI 格式的数字信号,可由单片机直接把信号存入存储卡。存储卡的容量应能保证采集信号的时间要求(在采集频率为3000Hz 时,选择512M以上的存储卡可保证采集时间不少于25 分钟)。而该测量系统中电阻应变片直流电桥测量电路的设计是一个关键,下面我们将对这一部分进行详细的分析和设计。 电阻应变片直流电桥测量电路

应变片-实验指导书

静态电阻应变仪操作及应变片组桥实验 1 实验目的 ⑴掌握静态电阻应变仪的使用方法; ⑵了解电测应力原理,掌握直流测量电桥的加减特性; ⑶分析应变片组桥与梁受力变形的关系,加深对等强度梁概念的理解。 2 设备仪器 ⑴50KN电子万能试验机一台; ⑵静态电阻应变仪一台; ⑶等强度测试梁一套。 3 实验原理 图2-1实验装置图 实验装置如图2-1,梁的厚h=11.65mm 、宽b(X)=X/9 ,在X=200mm和X=300mm 处梁的上下表面沿对称轴方向粘贴了四片电阻应变片D1、D2、D3、D4。电阻片阻值:120Ω,灵敏度系数:2.12,电阻片长:5mm。由这四个电阻片在静态电阻应变仪上接成不同的测量

桥路进行测量可以熟练掌握应变仪的使用。 实验中,要明确电阻应变片和静态电阻应变仪的测量原理: ⑴电阻应变片测量原理 目前常用的箔式电阻应变片是用0.003~0.01mm 高阻抗镍铜箔材经化学腐蚀等工序制成电阻箔栅,然后焊接引出线,涂上绝缘胶粘固到塑料基膜上。使用时,只须把基膜面用特制胶水牢固粘贴到构件的测点处。这样当构件受力变形时电阻应变片亦随之变形,则电阻应变片的电阻值将发生改变。其特性关系为: ΔR/R 0∕ΔL/L 0=K 即是说,应变片电阻的改变率与长度的改变率的比为一常数K ,而长度的改变率ΔL/L 0=ε。 常数K 也称电阻应变片的灵敏系数,电阻应变片作为产品出厂时会给出K 、R 0、L 0 。 因此,只要有专门的电子仪器能测出应变片的电阻改变率ΔR/R 0,即可完成应力测量σ=E ε 这种专门的电子仪器已广泛应用,就是静态电阻应变仪。 ⑵静态电阻应变仪测量原理 静态电阻应变仪是依据惠斯顿电桥原理进行测量的。 惠斯顿电桥如图2-2所示: 图2—2 惠斯顿电桥 若在节点A 、C 之间给一直流电压V AC ,则B 、D 之间有电压输出V BD ,且V BD =(R 1R 3-R 2R 4)V AC /(R 1+R 2)(R 3+R 4),当R 1R 3=R 2R 4时,称电桥满足平衡条件,此时V BD =0,且由该电桥特性知当 R 1=R 2=R 3=R 4=R 时,电桥为全等臂电桥。 dV BD = 4 AC V (ΔR 1/R-ΔR 2/R+ΔR 3/R-ΔR 4/R ) 由于电阻应变片有ΔR/R=K ε,上式可写成: dV BD =K 4 AC V (ε1-ε2+ε3-ε4) 即是说电桥输出电压与四个桥臂上电阻应变片所产生应变的代数和成正比。即 BD

实验2:应变片全桥性能实验

实验2 应变片全桥性能实验 一、实验目的:了解应变片全桥工作特点及性能。 二、基本原理: 1. 应变片的基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。 2. 应变片的电阻应变效应:所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。以圆柱形导体为例:设其长为:L 、半径为r 、材料的电阻率为ρ时,根据电阻的定义式得: 2 ρρπ==g L L R A r ..................(1-1) 当导体因某种原因产生应变时,其长度L 、截面积A 和电阻率ρ的变化为dL 、dA 、dρ相应的电阻变化为dR 。对式(1—1)全微分得电阻变化率 dR/R 为: 2ρρ =-+dR dL dr d R L r ..................(1-2) 式中:dL/L 为导体的轴向应变量εL ; dr/r 为导体的横向应变量εr 。由材料力学知识可得: εL = - μεr ..................(1-3) 式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。将式(1-3)代入式(1-2)得:()12ρμερ =++dR d R ..............(1-4),该式说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能。 3. 半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ?ρ。半导体材料之所以具有较大的电阻变化率,是因为它有远比金属导体显著得多的压阻效应。在半导体受力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应 。不同材质的半导体材料在不同受力条件下产生的压阻效应不同,可以是正(使电阻增大)的或负(使电阻减小)的压阻效应。也就是说,同

电桥性能实验

直流电桥原理 在进行金属箔式应变片单臂、半桥、全桥性能实验之前,我们有必要先来介绍一下直流电桥的相关知识。电桥电路有直流电桥和交流电桥两种。电桥电路的主要指标是桥路灵敏度、非线性和负载特性。下面具体讨论有关直流电路和与之相关的这几项指标。 一、 平衡条件 直流电桥的基本形式如图1-1所示。R 1, R 2,R 3 , R 4 为电桥的桥臂电阻,R L 为其负载(可以是测量仪表内阻或其他负载)。 当R L ∞时,电桥的输出电压V 0应为 V 0=E( 4 33 211R R R R R R +-+) 当电桥平衡时,V0=0,由上式可得到R 1R 4=R 2R 3 或 4 3 21R R R R = (1-1) 图1-1 式(1-1)秤为电桥平衡条件。平衡电桥就是桥路中相邻两桥臂阻值之比应相等,桥路相邻两臂阻值之比相等方可使流过负载电阻的电流为零。 二、 平衡状态 1.单臂直流电桥 所谓单臂就是电桥中一桥臂为电阻式传感器,且其电阻变化为△R ,其它桥臂为阻值固定不变,这时电桥输出电压V 0≠0(此时仍视电桥为开路状态),则不平衡电桥输出电压V 0为

V 0= E R R R R R R R R R R ? ??? ??+???? ? ?+?+??? ? ?????? ??341211114113 (1-2) 设桥臂比n=1 2R R ,由于△R 1《R 1,分母中11 R R ?可忽略,输出电压便为 V"0= E R R R R R R R R ? ??? ??+???? ? ?+? ?? ? ?????? ??3412114113 这是理想情况,式(1-2)为实际输出电压,由此可求出电桥非线性误差。实际的非线性特性曲线与理想线性曲线的偏差秤为绝对非线性误差。则其相对线性误差r 为: r=''000V V V -= ???? ??+?+???? ???-1211111R R R R R R = ??? ? ??+?+???? ???-n R R R R 11111 (1-3) 由此可见,非线性误差与电阻相对变化11R R ?有关,当11R R ?较大时,就不可忽略误差了。 下面来看电桥电压灵敏度S V 。在式(1-2)中,忽略分母中11 R R ?项,并且考虑到起始平衡条件 4 3 21R R R R = ,从式(1-2)可以得到 V 0'≈1 12)1(R R n n E ?+ (1-4) 电桥灵敏度的定义为 S V = 1 10R R V ?≈11' 0R R V ? = E n n 2 )1(+ (1-5) 当n=1时,可求得S V 最大。也就是说,在电桥电压E 确定后,当R 1=R 2,R 3=R 4 时,电桥电压灵敏度最高。此时可分别将式(1-2)、(1-3)、(1-4)、(1-5)化简为

金属箔式应变片——全桥性能实验实验报告

金属箔式应变片——全桥性能实验 实验报告 一. 实验目的: 了解全桥测量电路的优点。 二. 基本原理: 全桥测量电路中,将受力性质相同的两应变片接入电桥对边,受力方向不同的接入邻边,当应变片初始阻值:1234R R R R ===,其变化值 1234R R R R ?=?=?=?时,其桥路输出电压3o U KE ε=。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。 三. 需用器件和单元: 应变单元电路、应变式传感器、砝码、数显表(实验箱上电压表)、±4V 电源、万用表。 四. 实验步骤:

图1 应变式传感器全桥实验接线图

1. 保持单臂、半桥实验中的3Rw 和4Rw 的当前位置不变。 2. 根据图1接线,实验方法与半桥实验相同,全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,将实验结果填入表1;进行灵敏度和非线性误差计算。 表1 全桥输出电压与加负载重量值 3. 根据表1计算系统灵敏度S ,/S u W =??(u ?输出电压变化量;W ?重量变化量);计算非线性误差:1 /100%f F S m y δ?=??,式中m ?为输出值(多次测量时为平均值)与拟合直线的最大偏差,F S y ?满量程输出平均值。 五. 实验结果计算 1. 计算系统灵敏度S ,/S u W =??(u ?输出电压变化量;W ?重量变化量) 表2 全桥测量灵敏度

2. 计算非线性误差:1 /100%f F S m y δ?=??,式中m ?为输出值(多次测量时为平均值)与拟合直线的最大偏差,F S y ?满量程输出平均值。 实验时,测的最大重量为80()g ,因此,0.157()F S y ?=电压表测得、 =0.15293(LABVIEW )F S y ?测得 (1) 由电压表测得数据拟合得到的方程为:0.00170.0185y x =+ 拟合得到数据: 拟合得到图像: 01020304050607080 计算得到非线性误差为: 表3 电压表测得数据计算得到非线性误差

应变片式电阻传感器的测量电路

2.3 应变片式传感器的测量电路 电阻应变计可把机械量变化转换成电阻变化,但电阻变化是很小的,用一般的电子仪表很难直接检测。例如,常规的金属应变计的灵敏系数k 值在1.8~4.8之间,机械应变在10~6000με之间,相对变化电阻 /R R k ε?=就比较小。 例1设某被测件在额定载荷下产生的应变为1000με,粘贴的应变计阻值120R =Ω,灵敏系数2k =,则其电阻的相对变化为 6/21000100.002R R k ε-?==??= 电阻变化率仅为0.2%。这样小的电阻变化,必须用专门的电路才能测量。测量电路把微弱的电阻变化转换为电压的变化,电桥电路就是这种转换的一种最常用的方法。 2.3.1 应变电桥 电桥电路即是惠斯通电桥,其结构如图所示。四个阻抗臂1234 ,,,Z Z Z Z 以顺时针排列,AC 是电源端,工作电压为U ;BD 为输出端,输出电压为0U 。在这个阻抗电桥的桥臂上接入应变计,就叫应变电桥。 应变电桥按不同的方式可分为不同的类型,主要有以下分类方式。 1 按工作臂分 单臂电桥:电桥的一个臂接入应变计。 双臂电桥:电桥的两个臂接入应变计。 全臂电桥:电桥的四个臂都接入应变计。 2 按电源分 按电源不同,可分为直流电桥和交流电桥。 直流电桥的电源是直流电压,其桥臂只能接入阻性元件,主要用于应变电桥的输出,不需中间放大就可直接显示的情况。例如半导体应变计的输出灵敏度高,可采用直流应变电桥作为测量电路,直接输出并显示结果。 交流电桥的电源是交流电压,其桥臂可以是阻性(R )、感性(L )或容性(C )元件。主要用于输出需放大的场合。例如金属应变计的输出灵敏度较低,应采用这种交流应变电桥作为测量电路,以进一步放大输出。 3 按工作方式分 按工作方式不同,可分为平衡桥式电路和不平衡桥式电路。 平衡桥式电路又叫零位测量法,它带有调整桥臂平衡的伺服反馈机构,当仪表指示测量值时,电桥处于平衡状态。零位测量法常用于高精度、长时间的静态应变测量。 不平衡桥式电路又称为偏差测量法,其输出的是与桥臂应变量成一定函数关系的不平衡电量,再作进一步放大和显示。当仪表指示测量值时,电桥处于不平衡状态。偏差测量法响应快,常用于动态应变测量。 4按桥臂关系分 按桥臂关系不同,可分为半等臂电桥和全等臂电桥。 半等臂电桥又可分为对电源端对称电桥(即1423,Z Z Z Z ==)和对输出端对称电桥(即 1234,Z Z Z Z ==)。 图2.3.1 电桥电路的结构

相关文档
最新文档