第三章 内积空间,正规矩阵,Hermite矩阵

第三章 内积空间,正规矩阵,Hermite矩阵
第三章 内积空间,正规矩阵,Hermite矩阵

复矩阵(向量)的4个一元运算复矩阵(向量)的一元运算的性质

特征值,特征向量特征值、特征向量续线性相关与线性无关

§3.1: 欧式空间,酉空间内积的概念欧式空间的概念欧氏空间例1

欧氏空间例3酉空间的概念关于欧式空间和酉空间的注酉空间例1酉空间例2

§3.3: 酉变换,正交变换

§3.8: Hermite矩阵,Hermite二次齐式

§3.9: 正定二次齐式,正定Hermite矩阵

(半)正定矩阵A的任何主子式都是(0或)正的用主子式刻画(半)正定矩阵

半正定矩阵是正定矩阵序列的极限(续)(半)正定矩阵的补充结果

应用举例应用举例

二矩阵经复相合变换同时对角化续§3.11: Rayleigh商

厦大《高代》讲义第9章+内积空间

第九章内积空间Inner Product Space

§9.1 目的与要求 ?掌握内积、内积空间的概念 ?熟练掌握欧氏空间的度量概念,如长度、距离、夹角、正交等 ?熟练掌握Cauchy-Schwarz不等式、三角不等式的含义及应用 厦门大学数学科学学院 网址: https://www.360docs.net/doc/4718683733.html,

?定义:设V 是R 上线性空间,存在映射( ,):, 使得对任意x , y , z ∈V, c ∈R,有 (1). ( x , y ) = ( y , x ) (2). ( x + y , z ) = ( x ,z ) + (y , z ) (3). ( cx , y ) = c ( x , y ) (4). ( x , x ) ≥ 0.且等号成立当且仅当x = 0.则称在V 上定义内积( , ). V 称为内积空间. 有限维实内积空间称为Euclid 空间(欧氏空间). R V V →?对称线性非负(实)内积空间

?定义:设V 是C 上线性空间,存在映射( , ):使得对任意x , y , z ∈V, c ∈C,有 (1).(2). (x + y , z ) = (x , z ) + ( y , z ) (3). (cx , y ) = c ( x , y ) (4). (x , x ) ≥ 0.且等号成立当且仅当x = 0. 则称在V 上定义内积( , ). V 称为复内积空间.有限维复内积空间称为酉空间. ?注1:对任意实数a , , 所以复内积空间与实内积空间的定义是一致的, 统称为内积空间. ?注2:在复内积空间中, (,)(,) x y y x =a a =(,)(,) x cy c x y =R V V →?(复)内积空间

第二章 内积空间

第二章 内积空间 目的:在线性空间中引入向量的长度、向量之间夹角等度量概念,深化对线性空间、线性变换等的研究。 §1 内积空间的概念 定义2-1 设V 是实数域R 上的线性空间。如果对于V 中任意两个向量βα,,都有一 个实数(记为()βα,)与它们对应,并且满足下列条件(1)-(4),则实数()βα,称为向量βα,的内积。 (1) ()()αββα,,=; (2)),(),(βαβαk k =,(R k ∈) (3)),(),(),(γβγαγβα+=+,(V ∈γ) (4)()0,≥αα,当且仅当θα=时,等号成立。 此时线性空间V 称为实内积空间,简称为内积空间。 例2-1 对于n R 中的任二向量()n x x x X ,,,21 =,()n y y y Y ,,,21 =,定义内积 ()∑==n i i i y x Y X 1 ,,n R 成为一个内积空间。内积空间n R 称为欧几里得(Euclid )空间,简称 为欧氏空间。由于n 维实内积空间都与n R 同构,所以也称有限维的实内积空间为欧氏空间。 例2-2 如果对于n n R B A ?∈?,,定义内积为()∑== n j i ij ij b a B A 1 ,,,则n n R ?成为一个内积 空间。 例2-3 ],[b a R 定义dx x g x f x g x f b a ? = )()())(),((,则可以验证))(),((x g x f 满足内积 的条件,从而],[b a R 构成内积空间。 内积()βα,具有下列基本性质 (1) ()()βαβα,,k k =,(R k ∈);(2) ()()()γαβαγβα,,,+=+; (3) ()()0,,==βθθα。

【精品】第三章函数逼近及最小二乘法

第三章函数逼近及最 小二乘法

第三章 函数逼近及最小二乘法 §1 内积空间及函数的范数 定义1 设)(x ρ是定义在(a,b)上的非负函数,且满足: 1)dx x x n b a )(ρ?存在 (n=0,1,2,…) 2)对非负的连续函数g(x),若 0)()(=?dx x x g b a ρ 则在(a,b)上有g(x)=0,则称)(x ρ为(a,b)上的权函数。 定义2 设f(x),g(x)为[a,b]上的连续函数,)(x ρ为(a,b)上的权函数,称 ),(g f = dx x x g x f b a )()()(ρ? 为函数f(x)与g(x)在[a,b]的内积。特别当)(x ρ=1时,上式变为 ),(g f = dx x g x f b a ?)()( 设],[b a C 表示在区间[a,b]上连续函数的全体,那么定义了内积之后,],[b a C 就变成了一个内积空间。显然有 ),(f f = dx x x f b a )()(2ρ? 为一个非负值,因此我们有 定义3 对],[)(b a C x f ∈,称 ),()(2f f x f = 为)(x f 的欧氏范数(又称2-范数)。

其实,我们还经常用到函数的其他范数。比如, ) ( max ) (x f x f b x a≤ ≤ ∞ =dx x x f x f b a ) ( ) ( ) ( 1 ρ ?= n维向量空间中两个向量正交的定义也可以推广到连续内积空间] , [b a C中. 定义4 若] , [ ) ( ), (b a C x g x f∈,满足 ) , (g f = dx x x g x f b a ) ( ) ( ) (ρ ?=0 则称函数f(x)与g(x)在[a,b]上带权) (x ρ正交. 若函数族 ), ( , ), ( ), ( 1 x x x n ? ? ?满足 ? ? ? ? = > ≠ = =b a k k j k j k j A k j dx x x x ) ( ) ( ) ( ) , (? ? ρ ? ? 则称函数族{})(x k?是[a,b]上带权)(x ρ的正交函数族.特别地,若1 = k A ,就称之为标准正交函数族. 由高等数学的知识,我们知道, Foureir级数展开中函数族 1,cosx,sinx,cos2x,sin2x,……即为] , [π π -上带权) (x ρ=1的正交函数族. 如同线性代数中的向量组线性无关概念一样,在此也有函数组的线性无关概念. 定义5设函数组) ( , ), ( ), ( 1 1 x x x n- ? ? ? 在[a,b]上连续,若 ) ( ) ( ) ( 1 1 1 1 = + + + - - x a x a x a n n ? ? ? 当且仅当0 1 1 = = = = - n a a a 时成立,则称函数族 ) ( , ), ( ), ( 1 1 x x x n- ? ? ? 在[a,b]上是线性无关的.否则称为线性相关函数组。

内积空间的基本概念汇总

第四章 Hilbert 空间 一 内积空间的基本概念 设H 是域K 上的线性空间,对任意H y ,x ∈,有一个中K 数 ),(y x 与之对应,使得对任意H z ,y ,x ∈;K ∈α满足 1) 0)y ,x (≥;)y ,x (=0,当且仅当 0x =; 2) )y ,x (=_ __________)x ,y (; 3) )y ,x ()y ,x (αα=; 4) )z ,y x (+=)z ,x (+)z ,y (; 称)(,是H 上的一个内积,H 上定义了内积称为内积空间。 定理1.1设H 是内积空间,则对任意H y x ∈,有: |)y ,x (|2 )y ,y )(x ,x (≤。 设H 是内积空间,对任意H x ∈,命 ),(||||x x x = 则||||?是H 上的一个范数。 例 设H 是区间],[b a 上所有复值连续函数全体构成的线性空间,对任意H y x ∈,,定义 dt t y t x y x b a ?=________ )()(),( 则与],[2b a L 类似,), (y x 是一个内积,由内积产生的范数为 2 12 ) |)(|(||||?=b a dt t x x 上一个内积介不是Hilbert 空间。

定理 1.2 设H 是内积空间,则内积),(y x 是y x ,的连续函数,即时x x n →,y y n →,),(),(y x y x n n →。 定理1.3 设H 是内积空间,对任意H y x ∈,,有以下关系式成立, 1) 平行四边形法则: 2 || ||y x ++2 || ||y x -=2)||||||(||2 2 y x +; 2) 极化恒等式: ),(y x =4 1 (2 || ||y x +- 2 || ||y x -+ 2 || ||iy x i +- )||||2 iy x i - 定理1.4 设X 是赋范空间,如果范数满足平行四边形法则,则可在X 中定义一个内积,使得由它产生的范数正是X 中原来的范数。 二 正交性,正交系 1 正交性 设H 是内积空间,H y x ∈,,如果0),(=y x ,称x 与y 正交,记为y x ⊥。 设M 是H 的任意子集,如果H x ∈与M 中每一元正交,称x 与M 正交,记为M x ⊥;如果N M ,是H 中两个子集, 对于任意 ,M x ∈,N y ∈y x ⊥,称M 与 N 正交,记 N M ⊥。设M 是H 的子集,所有H 中与M 正交的元的全体

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

24 内积空间中的正交性

2.4 内积空间中的正交性 Inner Product Spaces and Orthogonality 在三维空间中,如右图1所示任取一平面M ,空间中的每一个矢量x 必能分解成两个直交的向量和,其中一个向量0x 在平面M 上,另一个向量z 与平面M 垂直,即0x x z =+, 0x z ⊥.这种向量的分解形式,在一般的内积空间是否成立? 图2.4.1 三维空间向量的分解,向量0x x z =+,其中0x z ⊥ 2.4.1 正交分解 定义2.4.1 正交 设X 是内积空间,,x y X ∈,如果(,)0x y =,则称x 与y 正交或垂直,记为x y ⊥.如果X 的子集A 中的每一个向量都与子集B 中的每一个向量正交,则称A 与B 正交,记为A B ⊥.特别记x A ⊥,即向量x 与A 中的每一个向量垂直. 定理2.4.1 勾股定理 设X 是内积空间,,x y X ∈,若x y ⊥,则2 2 2 x y x y +=+. 证明 2 (,)x y x y x y +=++ (,)(,)(,)(,)x x x y y x y y =+++ (,)(,)x x y y =+ 22 x y =+.□ 注1: 在内积空间中,是否存在222 x y x y +=+ ?x y ⊥?显然由 2 x y +(,)(,)(,)(,)x x x y x y y y =+++22 2Re(,)x y x y =++, 可知在实内积空间中2 2 2 x y x y x y +=+?⊥成立. 定义2.4.2 正交补Orthogonal complement

设X 是内积空间,M X ?,记{|,}M x x M x X ⊥=⊥∈,则称M ⊥为子集M 的正交补.显然有{0}X ⊥=,{0}X ⊥=以及{0}M M ⊥= . 性质2.4.1 设X 是内积空间,M X ?,则M ⊥是X 的闭线性子空间. 证明 (1) M ⊥是X 的线性子空间 ,x y M ⊥?∈,,αβ∈K ,z M ?∈,有 (,)(,)(,)(,)(,)0x y z x z y z x z y z αβαβαβ+=+=+=, 于是x y M αβ⊥+∈,因此M ⊥是X 的线性子空间. (2) M ⊥是X 的闭子空间 设{}n x M ⊥?,且依范数0n x x →()n →∞,于是z M ?∈,有 0(,)(lim ,)lim(,)0n n n n x z x z x z →∞ →∞ ===. 因此0x M ⊥∈,即M ⊥是X 的闭子空间.□ 注2: 由于完备度量空间中的子空间完备的充要条件是子空间闭,因此在Hilbert 空间中(完备的内积空间),任意子集M 的正交补M ⊥是完备的子空间,即Hilbert 空间的正交补M ⊥也是Hilbert 空间. 定义2.4.3 正交分解 设M 是内积空间X 的子空间,x X ∈,如果存在0,x M z M ⊥∈∈,使得0x x z =+,则称0 x 为x 在M 上的正交投影或正交分解. 引理 2.4.1 设X 是内积空间,M 是X 的线性子空间,x X ∈,若存在y M ∈,使得(,)x y d x M -=,那么x y M -⊥. 证明 令z x y =-,若z 不垂直于M ,则存在1y M ∈,使得1(,)0z y ≠,显然10y ≠. 因为α?∈K ,有 2 1 11(,)z y z y z y ααα-=-- 2 1111(,)(,)(,)z y z z y y y αααα=--+ 21111(,)[(,)(,)]z z y y z y y ααα=--- 特别取111(,) (,) y z y y α= ,则可得

第二章内积空间

第二章 内积空间 在以前学习的线性代数中,我们知道在n R 中向量的长度、夹角和正交等性 质是用内积刻划的,在本章中将内积的概念推广到一般线性空间,从而讨论一般线性空间中向量的度量性质。定义了内积的线性空间称为内积空间,常用的内积空间有欧氏空间与酉空间。 §2.1欧氏空间与酉空间 一、欧氏空间与酉空间 定义1 设V 是R 上的线性空间,如果V 中每对向量,x y ,按某一对应法则都有唯一确定的实数(,)x y 与之对应且满足: ),(),(.1x y y x = ),(),(.2y x y x λ=λ,λ?∈R ),(),(),(.3z y z x z y x +=+,z V ?∈ 0),(.4≥x x 等号成立当且仅当x θ= 则称(,)x y 为V 的内积。称定义了上述内积的有限维线性空间()V R 为欧几里得空间,简称欧氏空间,称21 ),(x x x =为x 的长度或模。 例1 在[]n P x 中定义1 0((),())()()f x g x f x g x dx =?,(),()[]n f x g x P x ∈,则[]n P x 构成一个欧氏空间。 例2 在n n ?R 中对,n n A B ??∈R 定义T (,)tr()A B AB =,则n n ?R 为欧氏空间。 证明 因为,,,n n A B C λ??∈∈R R (1) T T T T (,)tr tr[()]tr (,)A B AB AB BA B A ==== (2) T T (,)tr tr (,)A B AB AB A B λλλλ=== (3) T T T (,)tr[()]tr[](,)(,)A B C A B C AC BC A C B C +=+=+=+

求矩阵的基本运算

求矩阵的基本运算 #include #include void jiafa() { int m,n; float a[20][20],b[20][20],c[20][20]; int i,j; printf("请输入矩阵行数:"); scanf("%d",&m); printf("请输入矩阵列数:"); scanf("%d",&n); printf("请输入第一个矩阵:"); for(i=0; i

第三章 内积空间,正规矩阵,Hermite矩阵

复矩阵(向量)的4个一元运算 ()?A=(a ij )∈C m ×n , 复矩阵(向量)的一元运算的性质 11221122k A k A k A k A +=+ ; T T T A k A k A k A k 22112211)(+=+方阵A=(a ij )∈C n ×n 的迹定义为其所有对角元之和: 行列式的性质 方阵乘积的行列式公式 重要特殊矩阵 A=(a ij )∈C n ×n 称为对角矩阵,如果?i ≠j,a ij =0; A称为上(下)三角矩阵,如果?i>(<)j,a =0.

特征值,特征向量 λ∈C称为A=(a ij )∈C n×n的一个特征值,如果存在0≠x∈C n,使得Ax=λx.此时,x称为A的特征向量. 特征值、特征向量续 三角矩阵A的所有对角元组成A的谱: σ(A)={a,…,a}. 线性相关与线性无关 定义1.1.3 (p.5): F上线性空间V中的向量组{α,…,α}是线性相关的充要条件是:在数域F 线性映射与线性变换 关于线性映射与线性变换的定义,请看教本第24页§3.1: 欧式空间,酉空间 §3.2: 标准正交基,Schmidt方法 第三章内积空间,正规矩阵,Hermite矩阵

§3.1: 欧式空间,酉空间 从解析几何知二平面向量 内积的概念 定义3.1.1:设V是实数域R 上的n维线性空间,对V 中的任意两个向量α,β,按照某一确定法则对应着欧式空间的概念 例3.1.1:?α=(a 1,…,a n )T ,β=(b 1,…,b n )T ∈R n ,定义标准内积:(α,β)=a b +…+a b , 欧氏空间例1 例3.1.2:?α=(a 1,a 2)T ,β=(b 1,b 2)T ∈R 2,定义内积(R 2×R 2到R的映射): 欧氏空间例2 在R 2中至少可定义两个不同的内积. 今后讨论R n 时都用例3.1.1中定义的内积. 关于例1和例2的注

泛函分析第4章 内积空间

第四章 内积空间 在第三章中,我们把n 维Euclid 空间n R 中的向量的模长推广到一般线性空间中去,得到了赋范线性空间的概念。但在n R 中可以通过两个向量的夹角讨论向量与方向的问题。这对仅有模长概念的赋范线性空间是做不到的。我们知道,n R 中向量的夹角是通过向量的内积描述的,因此在本章我们引入了一般的内积空间的概念。 4.1 内积空间的基本概念 首先回忆几何空间3R 中向量内积的概念。设123(,,)x t t t =,123(,,)y s s s R =∈,设x 与y 夹角为?,由解析几何知识可得 112233 cos t s t s t s x y ?++= ? 其中, 13 2 2 1 ()k k x t ==∑,13 22 1 ()k k y s ==∑ 令3 1 ,k k k x y t s ==∑,称为x 与y 的内积,不难证明它有如下性质: (1)3,0,,,0;x y x R x x x θ≥?∈=?=且 (2)3,,,,;x y y x x y R =?∈ (3)3121212,,,,,,;x x y x y x y x x y R +=+?∈ (4)3,,,,,.x y x y R x y R λλλ=?∈?∈ 注:由定义可得x = 内积我们可以讨论如向量的直交及投影等重要几何问题。 现在我们引入一般的内积空间的概念。 【定义 4.1】 设X 为数域F 上线性空间,若对任两个元素(向量)x ,y X ∈,有惟一F 中数与之对应,记为,x y ,并且满足如下性质: (1),0,,,0;x y x X x x x θ≥?∈=?=且 (2),,,,;x y y x x y X =?∈

矩阵的基本运算

矩阵的基本运算 (摘自:华东师范大学数学系;https://www.360docs.net/doc/4718683733.html,/)§3.1 加和减 §3.2矩阵乘法 §3.2.1 矩阵的普通乘法 §3.2.2 矩阵的Kronecker乘法 §3.3 矩阵除法 §3.4矩阵乘方 §3.5 矩阵的超越函数 §3.6数组运算 §3.6.1数组的加和减 §3.6.2数组的乘和除 §3.6.3 数组乘方 §3.7 矩阵函数 §3.7.1三角分解 §3.7.2正交变换 §3.7.3奇异值分解 §3.7.4 特征值分解 §3.7.5秩 §3.1 加和减

如矩阵A和B的维数相同,则A+B与A-B表示矩阵A与B的和与差.如果矩阵A和B的维数不匹配,Matlab会给出相应的错误提示信息.如: A= B= 1 2 3 1 4 7 4 5 6 2 5 8 7 8 0 3 6 0 C =A+B返回: C = 2 6 10 6 10 14 10 14 0 如果运算对象是个标量(即1×1矩阵),可和其它矩阵进行加减运算.例如: x= -1 y=x-1= -2 0 -1 2 1 §3.2矩阵乘法 Matlab中的矩阵乘法有通常意义上的矩阵乘法,也有Kronecker乘法,以下分别介绍. §3.2.1 矩阵的普通乘法 矩阵乘法用“ * ”符号表示,当A矩阵列数与B矩阵的行数相等时,二者可以进行乘法运算,否则是错误的.计算方法和线性代数中所介绍的完全相同. 如:A=[1 2 ; 3 4]; B=[5 6 ; 7 8]; C=A*B, 结果为 C=×==

即Matlab返回: C = 19 22 43 50 如果A或B是标量,则A*B返回标量A(或B)乘上矩阵B(或A)的每一个元素所得的矩阵. §3.2.2 矩阵的Kronecker乘法 对n×m阶矩阵A和p×q阶矩阵B,A和B的Kronecher乘法运算可定义为: 由上面的式子可以看出,Kronecker乘积A B表示矩阵A的所有元素与 B之间的乘积组合而成的较大的矩阵,B A则完全类似.A B和B A均为np ×mq矩阵,但一般情况下A B B A.和普通矩阵的乘法不同,Kronecker乘 法并不要求两个被乘矩阵满足任何维数匹配方面的要求.Kronecker乘法的Matlab命令为C=kron(A,B),例如给定两个矩阵A和B: A= B= 则由以下命令可以求出A和B的Kronecker乘积C: A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; C=kron(A,B) C = 1 3 2 2 6 4 2 4 6 4 8 12 3 9 6 4 12 8

泛函分析题1.6内积空间答案

泛函分析题1_6内积空间p75 1.6.1 (极化恒等式) 设a是复线性空间X上的共轭双线性函数,q是由a诱导的二次型,求证:?x, y∈X,有 a(x, y) = (1/4) · ( q(x + y) -q(x-y) + i q(x + i y) -i q(x-i y)). 证明:?x, y∈X, q(x + y) -q(x-y) = a(x + y, x + y) -a(x-y, x-y) = (a(x, x) + a(x, y) + a(y, x) + a(y, y)) - (a(x, x) -a(x, y) -a(y, x) + a(y, y)) = 2 (a(x, y) + a(y, x)), 将i y代替上式中的y,有 q(x + i y) -q(x-i y) = 2 (a(x, i y) + a(i y, x)) = 2 (-i a(x, y) + i a( y, x)), 将上式两边乘以i,得到 i q(x + i y) -i q(x-i y) = 2 ( a(x, y) -a( y, x)), 将它与第一式相加即可得到极化恒等式. 1.6.2 求证在C[a, b]中不可能引进一种内积( · , · ),使其满足 ( f, f )1/2 = max a ≤x≤b| f (x) |(?f∈C[a, b] ). 证明:若C[a, b]中范数|| · ||是可由某内积( · , · )诱导出的, 则范数|| · ||应满足平行四边形等式. 而事实上,C[a, b]中范数|| · ||是不满足平行四边形等式的, 因此,不能引进内积( · , · )使其适合上述关系. 范数|| · ||是不满足平行四边形等式的具体例子如下: 设f(x) = (x–a)/(b–a),g(x) = (b–x)/(b–a), 则|| f || = || g || = || f + g || = || f –g || = 1, 显然不满足平行四边形等式. 1.6.3 在L2[0, T]中,求证函数x# | ?[0, T]e- ( T-τ)x(τ) dτ| ( ?x∈L2[0, T] )在单位球面上达到最大值,并求出此最大值和达到最大值的元素x. 证明:?x∈L2[0, T],若|| x || = 1,由Cauchy-Schwarz不等式,有 | ?[0, T]e- ( T-τ)x(τ) dτ|2≤ (?[0, T] (e- ( T-τ))2dτ) (?[0, T] ( x(τ))2dτ) = ?[0, T] (e- ( T-τ))2dτ = e- 2T ?[0, T]e 2τdτ= (1-e- 2T )/2. 因此,该函数的函数值不超过M = ((1-e- 2T )/2)1/2. 前面的不等号成为等号的充要条件是存在λ∈ ,使得x(τ) = λ e- ( T-τ). 再注意|| x || = 1,就有?[0, T] (λ e- ( T-τ))2dτ= 1. 解出λ= ±((1-e- 2T )/2)- 1/2. 故当单位球面上的点x(τ) = ±((1-e- 2T )/2)- 1/2 ·e- ( T-τ)时, 该函数达到其在单位球面上的最大值((1-e- 2T )/2)1/2. 1.6.4 设M, N是内积空间中的两个子集,求证:M?N ?N⊥?M⊥. 证明:若x∈N⊥,则?y∈N,(x, y) = 0. 而M?N,故?y∈M,也有(x, y) = 0. 因此x∈M⊥.所以,N⊥?M⊥.

内积空间与希尔伯特空间

2.3 内积空间与希尔伯特空间 通过前面的学习,知道n 维欧氏空间就是n 维线性赋范空间的“模型”,范数相当于向量的模,表明了线性赋范空间的代数结构.对于三维向量空间,我们知道向量不仅有模,而且两个向量有夹角,例如θ为向量α和β的夹角时有:cos αβ θαβ ?= 或者cos αβαβθ?=,其中αβ?表示两个向量的数量积(或点积或内积),α表示向量的模.于是便有了直交性、直交投影以及向量的分解等概念,这些均反映了空间的“几何结构”.通过在线性空间上定义内积,可得到内积空间,由内积可导出范数,若完备则为Hilbert 空间. 2.3.1 内积空间 定义1.1 设U 是数域K 上的线性空间,若存在映射( , )??:U U ?→K ,使得,,x y z U ?∈, α∈K ,它满足以下内积公理: (1) (,)0x x ≥;(,)00x x x =?=; 正定性(或非负性) (2) (,)(,)x y y x =; 共轭对称性 (3) (,)(,)(,)x z y x y z y αβαβ+=+, 线性性 则称在U 上定义了内积( , )??,称(,)x y 为x 与y 的内积,U 为K 上的内积空间(Inner product spaces ).当=K R 时,称U 为实内积空间;当=K C 时,称U 为复内积空间.称有限维的实内积空间为欧几里德(Euclid spaces )空间,即为欧氏空间;称有限维的复内积空间为酉(Unitary spaces )空间. 注1:关于复数:设z a bi =+∈C ,那么z oz =;(cos sin )z r i θθ=+其中θ为辐射角、r z =;2 z z z ?=;z z =;对于12,z z ∈C ,有1212z z z z ?=?. 注2:在实内积空间中,第二条内积公理共轭对称性变为对称性. 注3:在复内积空间中,第三条内积公理为第一变元是线性的,第二变元是共轭线性的. 因为(,)(,)(,)(,)(,)x y y x y x y x x y ααααα===?=,所以有 (,)(,)(,)x y z x y x z αβαβ+=+, 即对于第二变元是共轭线性的.在实内积空间中,第三条内积公理为第一变元、第二变元均为

第3讲 实内积空间

第3讲 实内积空间 内容:1. 实内积空间 2. 正交基及正交补与正交投影 3. 内积空间的同构 4. 正交变换与对称变换 在线性空间中,元素(向量)之间的运算仅限于元素(向量)的线性运算.但是,如果以向量作为线性空间的一个模型,则会发现向量的度量(即长度)与向量间的位置关系在线性空间的理论中没有得到反映,而这些性质在许多实际问题中却是很关键的.因此,将在抽象的线性空间中引进内积运算,导出内积空间,并讨论正交变换与正交矩阵及对称变换与对称矩阵. §1 内积空间 在解析几何中,向量的长度与夹角等度量性质都可以通过向量的数量积来表示,而向量的数量积具有以下的代数性质:对称性),(),(αββα=;可加性 ),(),(),(γβγαγβα+=+;齐次性R k k k ∈?=),,(),(βαβα;非负性0),(≥αα,当且仅当0=α时,0),(=αα.以数量积为基础,向量的长度与夹角可表示为: ),(ααα=,β αβαβα?>=<),(,cos .可见数量积的概念蕴涵着长度与夹角的概念,将该概念推广至抽象的线性空间.

定义1.1 设V 是实线性空间,若对于V 中任意两个元素(向量)α和β,总能对应唯一的实数,记作),(βα,且满足以下的性质: (1) 对称性 ),(),(αββα= (2) 可加性 ),(),(),(γβγαγβα+=+ (3) 齐次性 R k k k ∈?=),,(),(βαβα (4) 非负性 0),(≥αα,当且仅当0=α时,0),(=αα. 则称该实数是V 中向量α和β的内积. 称内积为实数的实线性空间V 为欧几里得(Euclid)空间,简称为欧氏空间.称定义了内积的线性空间为内积空间. 例 1.1 在n 维向量空间n R 中,任意两个向量:T n x x x ),,,(21 =α,T n y y y ),,,(21 =β,若规定: βαβαT n k k k n n y x y x y x y x ==+++=∑=12211),( , 则容易验证,这符合内积的定义,是n R 中向量α和β的内积.另外,若规定:∑==n k k k y kx 1),(βα,0>k ,同样可验证,这也 是n R 中向量α和β的内积. 由此可见,在同一个实线性空间的元素之间,可以定义不同的内积,即内积不是唯一的.从而,同一个实线性空间在不同内积下构成不同的欧氏空间. 例 1.2 在[]b a ,上连续的实函数的实线性空间[]b a C ,中,

矩阵的简单运算公式

矩阵的运算 (一) 矩阵的线性运算 特殊乘法:222()A B A AB BA B +=+++ 2 22 ()()() A B A B A B A B =≠ (二) 关于逆矩阵的运算规律 111 1 1 11 1 1(1)()(2)() /(3)( )( )(4)()( ) T T n n A B B A k A A k A A A A ---------==== (三) 关于矩阵转置的运算规律 (1)()(2)()T T T T T T A B B A A B B A =+=+ (四) 关于伴随矩阵的运算规律 **1 *2 ***1* **1*11**1(1)(2)(2)(3)()(4)(), ()(5)()1,()1 0,()2(6)()()()n n n AA A A A E A A n A A A kA k A n r A n r A r A n r A n A A A A A A A A A -------===≥===?? ==-??≤-?= ==若若若若可逆,则,, (五) 关于分块矩阵的运算法则 1 1 1 110000(2)000 0T T T T T A B A C C D B D B B B C C C C B -----?? ?? =????????????????==????????????????(1);, (六) 求变换矩阵 ()121 1 2 11121311111121222321121121313233313131100(a )(2)i n n i i i ij i i i i A T TAT T P P P AP P A a a a p p p a a a p p P p a a a p p p AP P P i λλλλλλλ--?? ? ?= ? ? ? ?===???????? ??? ? ? =→= ??? ? ? ??? ? ?????????=+≥已知矩阵,及其特征值求使得,设,则其中若有重根则时再1 T T -由求 (七) 特征值与矩阵

泛函分析第4章内积空间

第四章 积空间 在第三章中,我们把n 维Euclid 空间n R 中的向量的模长推广到一般线性空间中去,得到了赋线性空间的概念。但在n R 中可以通过两个向量的夹角讨论向量与方向的问题。这对仅有模长概念的赋线性空间是做不到的。我们知道,n R 中向量的夹角是通过向量的积描述的,因此在本章我们引入了一般的积空间的概念。 4.1 积空间的基本概念 首先回忆几何空间3R 中向量积的概念。设123(,,)x t t t =,123(,,)y s s s R =∈,设x 与y 夹角为?,由解析几何知识可得 112233 cos t s t s t s x y ?++= ? 其中, 13 2 2 1 ()k k x t ==∑,13 22 1 ()k k y s ==∑ 令3 1 ,k k k x y t s ==∑,称为x 与y 的积,不难证明它有如下性质: (1)3,0,,,0;x y x R x x x θ≥?∈=?=且 (2)3,,,,;x y y x x y R =?∈ (3)3121212,,,,,,;x x y x y x y x x y R +=+?∈ (4)3,,,,,.x y x y R x y R λλλ=?∈?∈ 注:由定义可得x = 我们可以讨论如向量的直交及投影等重要几何问题。 现在我们引入一般的积空间的概念。 【定义 4.1】 设X 为数域F 上线性空间,若对任两个元素(向量)x ,y X ∈,有惟一F 中数与之对应,记为,x y ,并且满足如下性质: (1),0,,,0;x y x X x x x θ≥?∈=?=且 (2),,,,;x y y x x y X =?∈

矩阵的基本运算法则

矩阵的基本运算法则 1、矩阵的加法 矩阵加法满足下列运算规律(设A 、B 、C 都是m n ?矩阵,其中m 和n 均为已知的正整数): (1)交换律:+=+A B B A (2)结合律:()()++++A B C =A B C 注意:只有当两个矩阵为同型矩阵(两个矩阵的行数和列数分别相等)时,这两个矩阵才能进行加法运算。 2、数与矩阵相乘 数乘矩阵满足下列运算规律(设A 、B 是m n ?矩阵,λ和μ为数): (1)结合律:()λμλμ=A A (2)分配律:()λμλμ+=+A A A (3)分配律:()λλλ+=+A B A B 注意:矩阵相加与数乘矩阵合起来,统称为矩阵的线性运算。 3、矩阵与矩阵相乘 矩阵与矩阵的乘法不满足交换律、但是满足结合律和分配率(假设运算都是可行的): (1)交换律:≠AB BA (不满足) (2)结合律:()()=AB C A BC (3)结合律:()()()λλλλ==其中为数AB A B A B (4)分配律:()(),+=++=+A B C AB AC B C A BA CA 4、矩阵的转置 矩阵的转置满足下述运算规律(假设运算都是可行的,符号()T g 表示转置): (1)()T T =A A

(2)()T T T +=+A B A B (3)()T T λλ=A A (4)()T T T =AB B A 5、方阵的行列式 由A 确定A 这个运算满足下述运算法则(设A 、B 是n 阶方阵,λ为数): (1)T =A A (2)n λλ=A A (3)=AB A B 6、共轭矩阵 共轭矩阵满足下述运算法则(设A 、B 是复矩阵,λ为复数,且运算都是可行的): (1)+=+A B A B (2)λλ=A A (3)=AB AB 7、逆矩阵 方阵的逆矩阵满足下述运算规律: (1)若A 可逆,则1-A 亦可逆,且()11--=A A (2)若A 可逆,数0λ≠,则λA 可逆,且()111 λλ--=A A (3)若A 、B 为同阶矩阵且均可逆,则AB 亦可逆,且()111---=AB B A 参考文献: 【1】线性代数(第五版),同济大学

内积空间

内积空间 (2012-06-17 20:13:58) ▼ 内积空间 内积的几何解释 在数学上,内积空间是增添了一个额外的结构的矢量空间。这个额外的结构叫做内积或标量积。这个增添的结构将一对矢量与一个纯量连接起来,允许我们严格地谈论矢量的“夹角”和“长度”,并进一步谈论矢量的正交性。内积空间由欧几里得空间抽象而来(内积是点积的抽象),这是泛函分析讨论的课题。 关于内积空间的例子,请参看希尔伯特空间。 内积空间有时也叫做准希尔伯特空间(pre-Hilbert Space),因为由内积定义的距离完备化之后就会得到一个希尔伯特空间。 在早期的著作中,内积空间被称作酉空间,但这个词现在已经被淘汰了。在将内积空间称为酉空间的著作中,“内积空间”常指任意维(可数/不可数)的欧几里德空间。 定义 下文中的数量域F是实数域或复数域。 域F上的一个内积空间V备有一个正定、非退化以及共轭双线性形式,称作内积(F是[[实数域]]时,内积是一个正定、对称、非退化以及双线性形式): 满足以下公理: 共轭对称; 这个设定蕴含着对于所有, 因为. (共轭也写成加星号:,如同共轭转臵。)

?对第一个元素是线性算子; 由前两条可以得到: 因此实际上是一个半双线性形式。 ?非负性: (这样就定义了对于所有。说明内积是从点积抽象而来。) ?非退化: 从V到对偶空间V*的映射:是同构映射。 在有限维的矢量空间中,只需要验证它是单射。 当且仅当。 因此,内积空间是一个Hermitian形式。 V满足可加性: 对所有的,, 如果F是实数域R那么共轭对称性质就是对称性。 共轭双线性变成了一般的双线性。 备注。多数数学家要求内积在第一个参数上是线性的而在第二个参数上是共轭线性的,本文接受这种约定。很多物理学家接受相反的约定。这种改变是非实质性的,但是相反的定义提供了与量子力学中的狄拉克符号更平滑的连接,现在也偶尔被数学家使用。某些作者接受约定 < , > 在第一个分量是线性的而 < | > 在第二个分量上是线性的,尽管不普遍。 选择R或C作为内积空间的基域是有原因的。首先,这个域要包含一个有序关系的子域,否则就无法谈论“非负性”,因此它的特征必须是零。这样就排除了所有的有限域。基础域必须有额外的结构,比如有显著的自同构。 在某些情况下,必须考虑非负半定半双线性形式。这意味着 是只要求非负性,下面会展示如何处理它们。 例子 内积的一个简单的例子是实数的乘法 欧几里德空间R n和点积构成一个内积空间:

matlab中矩阵基本运算命令.docx

1.1矩阵的表示 1.2矩阵运算 1.2.14特殊运算 1.矩阵对角线元素的抽取 函数diag 格式X = diag(v,k)% 以向量 v 的元素作为矩阵 X 的第 k 条对角线元素,当 k=0 时, v 为 X 的主对角线;当 k>0 时,v 为上方第 k 条对角线;当 k<0 时, v 为下方第 k 条对角线。 X = diag(v)% 以 v 为主对角线元素,其余元素为 0 构成 X。 v = diag(X,k)%抽取 X 的第 k 条对角线元素构成向量 v。k=0:抽取主对角线元素; k>0 :抽取上方第 k 条对角线元素;k<0 抽取下方第 k 条对角线元素。 v = diag(X)% 抽取主对角线元素构成向量 v。 2.上三角阵和下三角阵的抽取 函数tril% 取下三角部分 格式L = tril(X)%抽取 X 的主对角线的下三角部分构成矩阵L L = tril(X,k)% 抽取 X 的第 k 条对角线的下三角部分; k=0 为主对角线; k>0 为主对角线以上; k<0 为主对角线以下。 函数triu% 取上三角部分 格式U = triu(X)%抽取 X 的主对角线的上三角部分构成矩阵U U = triu(X,k)% 抽取 X 的第 k 条对角线的上三角部分; k=0 为主对角线; k>0 为主对角线以上; k<0 为主对角线以下。3.矩阵的变维 矩阵的变维有两种方法,即用“:”和函数“reshape,”前者主要针对 2 个已知维数矩阵之间的变维操作;而后者是对 于一个矩阵的操作。 (1)“:”变维 (2)Reshape 函数变维 格式 B = reshape(A,m,n)%返回以矩阵 A 的元素构成的 m×n 矩阵 B B = reshape(A,m,n,p,)% 将矩阵 A 变维为 m×n×p× B = reshape(A,[m n p])%同上 B = reshape(A,siz)% 由 siz 决定变维的大小,元素个数与 A 中元素个数 相同。 (5)复制和平铺矩阵 函数repmat 格式 B = repmat(A,m,n)% 将矩阵 A 复制 m×n 块,即 B 由 m×n 块 A 平铺而成。 B = repmat(A,[m n])%与上面一致 B = repmat(A,[m n p]) %B 由 m×n×p× 个 A 块平铺而成 repmat(A,m,n)%当 A 是一个数 a 时,该命令产生一个全由 a 组成的 m×n 矩阵。 1.3矩阵分解 1.3.1Cholesky 分解 函数chol 格式R = chol(X)% 如果 X 为 n 阶对称正定矩阵,则存在一个实的非奇异上三角阵R,满足 R'*R = X ;若 X 非正定,则产生错误信息。 [R,p] = chol(X)% 不产生任何错误信息,若X 为正定阵,则p=0 ,R 与上相同;若X 非正定,则p 为正整数, R 是有序的上三角阵。 1.3.2 LU 分解

相关文档
最新文档