切线不等式的应用

切线不等式的应用
切线不等式的应用

利用不等式“1x x R,e x ?∈≥+”解决高考压轴题

呼和浩特市第二中学

郎砺志

“1x x R,e x ?∈≥+”这一结论频繁地出现在与导数相关的各种教辅材料中,可以说学生很熟悉这个不等式的结论和证明过程,但是大多数人可能仅仅把它当成是一道练习题,殊不知,就是这样一个看似不起眼的结论,却撑起了近5年高考理科数学导数试题(压轴题)的半边天,所以本文的主要内容就是:分析近几年高考导数试题,诱发新的解题线索,提供高效而实用的解题方案,最后给出2013年全国理科数学新课标卷第21题的一种新解法。 命题1. 1x x R,e x ?∈≥+.

可以从两个角度证明这个命题的正确性。

角度1. 构造函数

证明:设1x f (x )e x ,x R =--∈,则1x f (x )e '=-

令1x f (x )e '=-=0,解得0x =,

则当0x (,)∈-∞时,0f (x )'<,f (x )单调递减;

则当0x (,)∈+∞时,0f (x )'>,f (x )单调递增;

于是由单调性可知,00min f (x )f (x )=f ()==极小 ,即1x x R,e x ?∈≥+。 角度2.数形结合

在同一坐标平面内作出两个函数1x

f (x )e ,g(x )x ==+的图象,如下图所示,

证完!

由上图可知,这个不等式实际上反映的是曲线x f (x )e =和其图象上的点01(,)处的切线图形的高低关系。

于是这里得到,

定理*. 1x x R,e x ?∈≥+,当且仅当0x =时取等号。

由上面的定理可以立即得到,

推论1. 21[0,),12

x x e x x ?∈+∞≥++ 证明:让我们换一套思路证明它, 1t t R ,e t +?∈≥+,则 001x x t

x R ,e dt (x )dt +?∈>+??, 根据牛顿-莱布尼茨公式可得2112

x e x x ≥++,证完! 这里要点明,这个结论实际上在高等数学中是显然的,根据函数的幂级数展开可得,

).,0[,211!3!21232∞+∈++≥++++=x x x x x x e x

。 推论2. 1x R ,ln x x +?∈≤-,当且仅当1x =时取等号。

证明:由定理*

可得,1x x R ,e x +-?∈≥,两边同时取以e 为底的对数得, 1ln x x ≤-,当且仅当1x =时取等号。

推论3. 1112x [,),ln x (x )x

?∈+∞≤-. 证明:11t [,),lnt t ?∈+∞≤-,则1111x x

x [,),

lntdt (t )dt ?∈+∞≤-??, 化简可得推论3.

接下来就是高考试题的分析。

题1(2010年全国理科数学Ⅱ卷第22题节选)

设函数1x f (x )e -=-. 求证:当1x >-时,1

x f (x )x ≥

+。 证明:欲证 当1x >-时,1

x f (x )x ≥+,只须证明: 1

111+-≥--x e x ,即 11+≤-x e x ,也即 1+≥x e x ,得证。

题2.(2013年辽宁理科数学卷第21题节选)

已知函数.)1()(2x e x x f -+=

求证:当]1,0[∈x 时,x

x f +≤11)(. 证明:事实上,等价于证明22)1(+≥x e x ,也即

1+≥x e x .

题3.(2010年理科数学新课标卷第21题节选)

设函数21)(ax x e x f x ---=,

当0≥x 时,.0)(≥x f 求实数a 的取值范围。

解:由推论1可知,21=a 满足条件,于是当21≤a 时均满足条件,事实上,当2

1>a 时,a e x f ax e x f x x 2)(,21)(-=''--=',

故当))2ln(,0(a x ∈时,,02)(<-=''a e x f x 此时函数)(x f '单调递减,有,0)0()(='<'f x f 从而函数)(x f 单调递减,所以0)0()(=

1≤a 。 这里顺便指出,利用这道题的结论可以轻松断定2012年辽宁理科数学高考第12题的A 选项是错误的,从而我们也能感受到高考试题的延续性。

题4.(2011年湖北省理科数学卷第21题节选)

设),,3,2,1(,n k b a k k =均为正数,证明:

若,212211n n n b b b b a b a b a +++≤+++

则12121≤n b n

b b a a a 。 证明:欲证12121≤n b n b b a a a ,只须证01ln )ln(2121=≤n b n b b a a a ,

即0ln ln ln 2211≤+++n n a b a b a b ①

事实上,根据题意即推论2可知,

n k a a k k ,,3,2,1,1ln =-≤,带到①式左边可得,

)1()1()1(ln ln ln 22112211-++-+-≤+++n n n n a b a b a b a b a b a b

=,0)()(212211≤+++-+++n n n b b b a b a b a b 证完。

题5.(2010年湖北省理科数学卷21题节选)

求证:)

1(2)1ln(131211+++>++++n n n n 证明:由推论3知:11[1,),ln ()2x x x x

?∈+∞≤-; 且 当)1(21ln ,1x

x x x -<>; 令),,3,2,1(,11n k k k x =>+= 有)1

11(211ln +-+≤+k k k k k

于是有,.,3,2,1),1

11(21ln )1ln(n k k k k k =++<-+ 将这n 个同向不等式相加并整理即可得:

)

1(2)1ln(131211+++>++++

n n n n 证完。 下面给出2013年全国新课标卷第21题的一种新解法。

题6.已知函数)ln()(m x e x f x

+-=

当2≤m 时,0)(>x f .

证明:很明显,)2ln()(+-≥x e x f x ,若记)2l n ()(+-=x e x g x ,则只须证明0)2ln()(≥+-=x e x g x 即可,事实上,由推论2,1)2ln(+≤+x x 知,

)1()(+-≥x e x g x ,设)1()(+-=x e x h x ,由定理*可知0)(≥x h 成立,但上述等号无法同时取得,综上,利用“>”的传递性可得,当2≤m 时,0)(>x f . 证完! 上面的各个例题告诉我们,不等式“1x x R,e x ?∈≥+”及其推论在高考试卷中的应用是广泛而重要的,能灵活地运用这些结论对快速高效地解决高考导数大题意义深远,另外,通过分析高考试题,我们也可以得到一个结论:看似纷繁芜杂的导数试题中其实蕴含着永恒的规律,遵循本文给出的解题线索,你一定能拥有针对性极强的解题意识,在高考压轴题的海洋中遨游。 )111(21)]1

11()11[(21++=+--+=k k k k

导数不等式证明

1.函数2ln 2)(x x x f -=,求函数)(x f y =在]2,2 [上的最大值 2.. 已知f(x)=e x -ax- (1)求f(x)的单调增区间; (2)若f(x )在定义域R 内单调递增,求a 的取值范围; (3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由. 3. 已知函数f(x)=x 2e -ax (a >0),求函数在[1,2]上的最大值. 4.已知x =3是函数f(x)=aln(1+x)+x2-10x 的一个极值点. (1)求a 的值; (2)求函数f(x)的单调区间; (3)若直线y =b 与函数y =f(x)的图象有3个交点,求b 的取值范围. 5. (2010年全国)已知函数 f(x)=x3-3ax2+3x +1. (1)设a =2,求 f(x)的单调区间; (2)设 f(x)在区间(2,3)中至少有一个极值点,求a 的取值范围. 不等式的证明: 一、函数类不等式证明 函数类不等式证明的通法可概括为:证明不等式 ()()f x g x >(()()f x g x <) 的问题转化为证明 ()()0f x g x ->(()()0f x g x -<),进而构造辅助函数 ()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小 值(最大值)大于或等于零(小于或等于零)。 一、利用题目所给函数证明 【例1】 已知函数 x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+- )1ln(1 1 1 【绿色通道】1 111)(+- =-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(m a x ==f x f ,因此,当1->x 时, 0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证) , 现证左令11 1 )1ln()(-+++=x x x g , 2 2)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1 )1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1 ,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、直接作差构造函数证明 【例2】已知函数 .ln 2 1)(2 x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数3 3 2)(x x g = 的图象的下方; 【绿色通道】设)()() (x f x g x F -=,即x x x x F ln 2 132)(2 3--= ,

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转专题

导数中的不等式证明 命题角度1 构造函数 【典例1】 已知函数()ln 1 1,()x x ae f x g x bx x e x =- =+-,若曲线()y f x =与曲线()y g x =的一个公共点是()1,1A ,且在点A 处的切线互相垂直. (1)求,a b 的值; (2)证明:当1x ≥时,()2 ()f x g x x +≥. 命题角度2 放缩法 【典例2】 已知函数()()()x f x x b e a =+-(0)b >,在(1,(1))f --处的切线方程为(1)10e x ey e -++-=. (1)求,a b ; (2)若0m ≤,证明:2()f x mx x ≥+. 【典例3】 已知函数()ln 1,f x x x ax a R =++∈. (1)当0x >时,若关于x 的不等式()0f x ≥恒成立,求a 的取值范围; (2)当*n N ∈时,证明:22231ln 2ln ln 2421 n n n n n n +<+++<++L

【典例4】 已知函数()2ln 2 x x f x e += . (1)求函数()f x 的单调区间; (2)证明:当0x >时,都有()()222ln 1x x f x x e e +'+<+. 命题角度3 切线法 【典例5】 已知函数()2x f x e x =-. (1)求曲线()f x 在1x =处的切线方程; (2)求证:当0x >时,()21 ln 1x e e x x x +--≥+. 命题角度4 二元或多元不等式的解证思路 【典例6】 若,,x a b 均为任意实数,且()()2 2 231a b ++-=,则()()2 2 ln x a x b -+-的最小值为 .A .18B .1C .19D - 【变式训练】 设2D a = +,其中 2.71828e ≈,则D 的最小值为 .A .B .1C .1A

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

【高中数学】利用导数证明不等式

第四节利用导数证明不等式 考点1作差法构造函数证明不等式 (1)欲证函数不等式f(x)>g(x)(x>a),只需证明f(x)-g(x)>0(x>a),设h(x)=f(x)-g(x),即证h(x)>0(x>a).若h(a)=0,h(x)>h(a)(x>a).接下来往往用导数证得函数h(x)是增函数即可. (2)欲证函数不等式f(x)>g(x)(x∈I,I是区间),只需证明f(x)-g(x)>0(x∈I). 设h(x)=f(x)-g(x)(x∈I),即证h(x)>0(x∈I),也即证h(x)min>0(x∈I)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决. 已知函数f(x)=ax+x ln x在x=e-2(e为自然对数的底数)处取得极小值. (1)求实数a的值; (2)当x>1时,求证:f(x)>3(x-1). [解](1)因为f(x)定义域为(0,+∞),f(x)=ax+x ln x, 所以f′(x)=a+ln x+1, 因为函数f(x)在x=e-2处取得极小值, 所以f′(e-2)=0,即a+ln e-2+1=0, 所以a=1,所以f′(x)=ln x+2. 当f′(x)>0时,x>e-2;当f′(x)<0时,0<x<e-2, 所以f(x)在(0,e-2)上单调递减,在(e-2,+∞)上单调递增, 所以f(x)在x=e-2处取得极小值,符合题意,所以a=1. (2)证明:由(1)知a=1,所以f(x)=x+x ln x. 令g(x)=f(x)-3(x-1), 即g(x)=x ln x-2x+3(x>0). g′(x)=ln x-1,由g′(x)=0,得x=e. 由g′(x)>0,得x>e;由g′(x)<0,得0<x<e. 所以g(x)在(0,e)上单调递减,在(e,+∞)上单调递增,

分析法证明不等式

分析法证明不等式 山东 林 博 分析法是不等式证明的基本方法,但它不失为不等式证明的重要方法.下面以几道不等式证明题作为分析法的范例加以阐释. 例1 已知:a b c +∈R ,,, 求证:3223a b a b c ab abc +++????-3- ? ????? ≤. 分析:这道题从考查思维的角度来看,方法基本,只要从分析法入手———步步变形,问题极易解决. 证明:为了证明3223a b a b c ab abc +++????-3- ? ????? ≤, 只需证明323ab c abc --≤, 即证明332abc c ab c ab ab +=++≤. 而3333c ab ab c ab ab abc ++=≥成立,且以上各步均可逆, ∴32323a b a b c ab abc +++????-- ? ????? ≤. 点评:分析法是思考问题的一种基本方法,容易找到解决问题的突破口. 例2 已知关于x 的实系数方程2 0x ax b ++=有两个实根αβ,,证明: (1)如果||2α<,||2β<,那么2||4a b <+,且||4b <; (2)如果2||4a b <+,且||4b <,那么||2α<,||2β<. 分析:本题涉及参数较多,应注意它们之间的等量关系. 证明:∵αβ,是方程20x ax b ++=的两个实根, ∴a αβ+=-,b αβ=. (1)欲证2||4a b <+,且||4b <. 只要证2||4αβαβ+<+,且||4αβ<, 而||2α<,||2β<,从而有||4αβ+<,40αβ+>. 故只要证224()(4)αβαβ+<+,只要证22(4)(4)0αβ-->.

放缩法证明不等式的基本策略

放缩法”证明不等式的基本策略 近年来在高考解答题中, 常渗透不等式证明的内容, 而不等式的证明是高中数学中的一个难点, 以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一 提的是,高考中可以用 证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点 能体现出创造性。 放缩法”它可以和很多知识内容结合, 而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度, 些高考试题,例谈 放缩”的基本策略,期望对读者能有所帮助。 1、添加或舍弃一些正项(或负项) 2、先放缩再求和(或先求和再放缩) 子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或 分母放大即可。 3、先放缩,后裂项(或先裂项再放缩) n J k 例 3、已知 a n =n ,求证:k=1 a k V 3- 它可 放缩法” ,有极大的迁移性,对它的运 用往往 对应变能力有较高的要求。 因为放缩必须有目标, 否则就不能同向传递。下面结合一 例1、已知 a n 2n 1(n N ).求证: a 1 a ^ a 2 a 3 丑(n N a n 1 ). 证明:Q 皀 a k 1 2k 1 2k 1 2(2k1 1) 1 3.2k 2k 2 1,2,..., n. a_ a 2 a 2 a 3 a n a n 1 1 ( 1 1 二(二 二 1 a_ 3 a 2 a 2 a 3 多项式的值变小。由于证 若多项式中加上一些正的值,多项式的值变大, 多项式中加上一些负的值, 明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证 明的目的。本题在放缩时就舍去了 2k 2,从而是使和式得到化简 例2、函数f (x ) =±- 1 4x ,求证: (1)+f ( 2) +…+f (n ) 证明:由 f(n)= 羊7=1-- 1 4n 1 得 f (1) +f (2) + …+f (n ) n 2(1 4 1 1 丄 2 21 2 22 1 1 * 芦 >1 此题不等式左边不易求和 ,此时根据不等式右边特征 ,先将分子变为常数,再对分母进行放缩,从而对 左边可以进行求和.若分子, 分母如果同时存在变量时 ,要设法使其中之一变为常量,分式的放缩对于分

证明基本不等式的方法

2.2 证明不等式的基本方法——分析法与综合法 ●教学目标:1、理解综合法与分析法证明不等式的原理和思维特点. 2、理解综合法与分析法的实质,熟练掌握分析法证明不等式的方法与步骤. ●教学重点:综合法与分析法证明不等式的方法与步骤 ●教学难点:综合法与分析法证明不等式基本原理的理 ●教学过程: 一、复习引入: 1、复习比较法证明不等式的依据和步骤? 2、今天学习证明不等式的基本方法——分析法与综合法 二、讲授新课: 1、综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法综合法又叫顺推证法或由因导果法。 用综合法证明不等式的逻辑关系是:例1、已知a,b,c是不全相等的正数,求证: . 分析:观察题目,不等式左边含有“a2+b2”的形式,我们可以创设运用基本不等式:a2+b2≥2ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右边有三正数a,b,c的“积”,我们可以创设运用重要不等式:a3+b3+c3≥3abc.(教师引导学生,完成证明) 解:∵a>0,b2+c2≥2bc∴由不等式的性质定理4,得a(b2+c2)≥2abc.① 同理b(c2+a2)≥2abc,②c(a2+b2)≥2abc.③ 因为a,b,c为不全相等的正数,所以以上三式不能全取“=”号,从而①,②,③三式也不能全取“=”号. 由不等式的性质定理3的推论,①,②,③三式相加得:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc. 点评:(1)综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。基本不等式以及一些已经得证的不等式往往与待证的不等式有着这样或那样的联系,作由此及彼的联想往往能启发我们证明的方向.尝试时贵在联想,浮想联翩,思潮如涌。 (2)在利用综合法进行不等式证明时,要善于直接运用或创设条件运用基本不等式,其中拆项、并项、分解、组合是变形的重要技巧. 变式训练:已知a,b,c是不全相等的正数,求证:例2、已知且,求证:分析:观察要证明的结论,左边是个因式的乘积,右边是2的次方,再结合,发现如果能将左边转化为的乘积,问题就能得到解决。 2、分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法这是一种执果索因的思考和证明方法。 ①用分析法证明不等式的逻辑关系是:②分析法论证“若A则B”这个命题的模式是:为了证明命题B为真,这只需要证明命题B1为真,从而有……这只需要证明命题B2为真,从而又有……这只需要证明命题A为真,而已知A为真,故B必真。 例3.求证:分析:观察结构特点,可以利用分析法。 点评:①分析法的思维特点是:执果索因.对于思路不明显,感到无从下手的问题宜用分析法探究证明途径.另外,不等式的基本性质告诉我们可以对不等式做这样或那样的变形,分析时贵在变形,不通思变,变则通! ②证明某些含有根式的不等式时,用综合法比较困难,常用分析法. ③在证明不等式时,分析法占有重要的位置.有时我们常用分析法探索证明的途径,然后用综

最新导数证明不等式试题教学教材

利用导数证明不等式专题训练 1:已知函数() ln(1)f x x x (1) 求()f x 的单调区间 (2) 证明: 11 1ln(n 1)1 23 n 2.已知函数1()ln x f x x ax (1)若()f x 在1, 上为增函数,求实数a 的 取值范围。 (2)求证:111ln 23 n n 3. 已知函数 2()ln(1)(1,f(1))5x 2y 2ln 21f x ax bx x 在点处的切线为 (1)求实数()a b f x ,的值及的极值 (2)证明: 2 2 2 231 ln(1) 12n n n

4.已知1()ln(1) 311 f x a x x x (1)0,()0 x f x ,恒成立,求a 的取值范围 (2)求证:2222 234 11 ln(21)4 11421431 414 n n n 5.已知函数2()()x f x e kx x R (1)1 ,0, ,()12 k x f x 求证:当时 (2)求证: 4*4444 2222+1+1+1+1()123e n N n 6.已知函数1() ln 1f x x x (1)求()f x 的单调区间。 ( 2 ) 设 m R ,对任意 00(1,1),1,() 0a x e ma f x 总存在使得成立,求m 的取值范围。 (3)证明:2 (1)ln1 ln 2...ln 2n n n 7.已知函数() ln 3()f x a x ax a R

(1)讨论()f x 的单调性。 (2)求证: ln 2ln 3ln 4ln 1234 n n n 8.设() e x f x ax a (1)若() 01f x x 对一切恒成立,求a 的取值范围 (2)求证: 11008 2 2015()2016 e 导数证明不等式答案 1.(1) '''1 () 1 ,()0,1x 01 1 ()0()(1,0),(0, ) x f x f x x x f x f x 令得得x>0 的增区间为减区间为 (2)由(1)可知max () (0)0,ln(1)0,ln(1)f x f x x x x x 111ln ln 2131ln 2241ln 3311ln n x n n n n n n 令,则相加得34111 1 ln(2 )12323n n n 2.(1) '2 1 1 1()01,01 1 ,1,0ax ax f x x ax a a a a a 在恒成立, 或

不等式证明的常用基本方法(自己整理)

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等 号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2 +1,则s 与t 的大小关系是( A ) A.s≥t B.s>t C.s≤t D.s0;②a 2+b 2≥2(a-b-1);③a 2+3ab>2b 2;④,其中所有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2 +b 2 -2(a-b-1)=(a-1)2 +(b+1)2 ≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

用放缩法证明不等式Word版

利用放缩法证明数列型不等式 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。裂项放缩法 主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333 n n n S a +=-?+,1,2,3, n =。设2n n n T S =,1,2,3, n =,证明: 1 3 2 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 1 1 131131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例 2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S , 2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 711 12n +≥ 。 证明:(I )111 111 1()23 2212 2n n T T n n n n n n +-= +++ -++++++++ 111 21221n n n = +- +++10(21)(22) n n =>++ ∴1n n T T +>. (II ) 112211222222,n n n n n n S S S S S S S S ---≥∴=-+-+ +-+1221122n n T T T T S --=++ +++ 由(I )可知n T 递增,从而12222n n T T T --≥≥ ≥,又11217 ,1,212T S T ===, 12211222n n n S T T T T S --∴=+++++21171711 (1)(1)112212 n n T T S n +≥-++=-++= 即当2n ≥时,2n S 711 12 n +≥。

不等式的证明分析法与综合法习题

2.3不等式的证明(2)——分析法与综合法习题 知能目标锁定 1.掌握分析法证明不等式的方法与步骤,能够用分析法证明一些复杂的不等式; 2.了解综合法的意义,熟悉综合法证明不等式的步骤与方法; 重点难点透视 1.综合法与分析法证明不等式是重点,分析法是证明不等式的难点. 方法指导 1. 分析法 ⑴分析法是证明不等式的一种常用方法.它的证明思路是:从未知,看需知,逐步靠已知.即”执果索因”. ⑵分析法证明的逻辑关系是:结论A B B B B n ????? 21 (A 已确认). ⑶用分析法证题一定要注意书写格式,并保证步步可逆. ⑷用分析法探求方向,逐步剥离外壳,直至内核.有时分析法与综合法联合使用.当不等式两边有多个根式或多个分式时,常用分析法. 2. 综合法 ⑴综合法的特点是:由因导果.其逻辑关系是:已知条件 B B B B A n ????? 21(结论),后一步是前一步的必要条件. ⑵在用综合法证题时要注意两点:常用分析法去寻找证题思路,找出从何处入手,将不等式变形,使其结构特点明显或转化为容易证明的不等式. 一.夯实双基 1.若a>2,b>2,则ab 与a+b 的大小关系是ab( )a+b A.= B. < C.> D.不能确定 2.0>>a b 设,则下列不等式中正确的是( ) A.0 lg >b a B.a b a b ->- C. a a a a ++< +211 D. 1 1++< a b a b

3.若a,b,c + ∈R ,且a+b+c=1,那么 c b a 111+ + 有最小值( ) A.6 B.9 C.4 D.3 4.设2 6,37,2-=-== c b a ,那么a,b,c 的大小关系是( ) c b a A >>. b c a B >>. c a b C >>. a c b D >>. 5.若x>y>1,则下列4个选项中最小的是( ) A. 2 y x + B. y x xy +2 C.xy D. )11(21y x + 二.循序厚积 6.已知两个变量x,y 满足x+y=4,则使不等式m y x ≥+ 41恒成立的实数m 的取值范 围是________; 7.已知 a,b 为正数,且a+b=1则22+++b a 的最大值为_________; 8.若a,b,c + ∈R ,且a+b+c=1,则c b a ++的最大值是__________; 9.若xy+yz+zx=1,则222z y x ++与1的关系是__________; 10. b a n b a m b a -= - = >>,,0若,则m 与n 的大小关系是______. 三、提升能力 11. a 、b 、c 、d 是不全相等的正数,求证:(a b+cd)(ac+bd)>abcd 12.设x>0,y>0,求证: 2 2 y x y x +≤ + 13.已知a,b + ∈R ,且a+b=1,求证:2 25)1()1(2 2 ≥ + ++ b b a a .

切线不等式的应用

利用不等式“1x x R,e x ?∈≥+”解决高考压轴题 呼和浩特市第二中学 郎砺志 “1x x R,e x ?∈≥+”这一结论频繁地出现在与导数相关的各种教辅材料中,可以说学生很熟悉这个不等式的结论和证明过程,但是大多数人可能仅仅把它当成是一道练习题,殊不知,就是这样一个看似不起眼的结论,却撑起了近5年高考理科数学导数试题(压轴题)的半边天,所以本文的主要内容就是:分析近几年高考导数试题,诱发新的解题线索,提供高效而实用的解题方案,最后给出2013年全国理科数学新课标卷第21题的一种新解法。 命题1. 1x x R,e x ?∈≥+. 可以从两个角度证明这个命题的正确性。 角度1. 构造函数 证明:设1x f (x )e x ,x R =--∈,则1x f (x )e '=- 令1x f (x )e '=-=0,解得0x =, 则当0x (,)∈-∞时,0f (x )'<,f (x )单调递减; 则当0x (,)∈+∞时,0f (x )'>,f (x )单调递增; 于是由单调性可知,00min f (x )f (x )=f ()==极小 ,即1x x R,e x ?∈≥+。 角度2.数形结合 在同一坐标平面内作出两个函数1x f (x )e ,g(x )x ==+的图象,如下图所示, 证完! 由上图可知,这个不等式实际上反映的是曲线x f (x )e =和其图象上的点01(,)处的切线图形的高低关系。

于是这里得到, 定理*. 1x x R,e x ?∈≥+,当且仅当0x =时取等号。 由上面的定理可以立即得到, 推论1. 21[0,),12 x x e x x ?∈+∞≥++ 证明:让我们换一套思路证明它, 1t t R ,e t +?∈≥+,则 001x x t x R ,e dt (x )dt +?∈>+??, 根据牛顿-莱布尼茨公式可得2112 x e x x ≥++,证完! 这里要点明,这个结论实际上在高等数学中是显然的,根据函数的幂级数展开可得, ).,0[,211!3!21232∞+∈++≥++++=x x x x x x e x 。 推论2. 1x R ,ln x x +?∈≤-,当且仅当1x =时取等号。 证明:由定理* 可得,1x x R ,e x +-?∈≥,两边同时取以e 为底的对数得, 1ln x x ≤-,当且仅当1x =时取等号。 推论3. 1112x [,),ln x (x )x ?∈+∞≤-. 证明:11t [,),lnt t ?∈+∞≤-,则1111x x x [,), lntdt (t )dt ?∈+∞≤-??, 化简可得推论3. 接下来就是高考试题的分析。 题1(2010年全国理科数学Ⅱ卷第22题节选) 设函数1x f (x )e -=-. 求证:当1x >-时,1 x f (x )x ≥ +。 证明:欲证 当1x >-时,1 x f (x )x ≥+,只须证明: 1 111+-≥--x e x ,即 11+≤-x e x ,也即 1+≥x e x ,得证。 题2.(2013年辽宁理科数学卷第21题节选)

利用切线方程证明一类不等式

利用切线方程证明一类不等式 湖北黄冈罗田一中:杨德兵 余咏梅(438600) 文[2]证明了三个问题: ⅰ.通过证明)31(1091322-≥+-x x x x ,)1,0(∈x 证明了:若1,0,,=++>c b a c b a 则01313132 22222≥+-++-++-c c c b b b a a a ; ⅱ.通过证明 )2(50 27112x x -≤+,)1,0(∈x 证明了:若1,0,,=++>c b a c b a 则10 27111111222≤+++++c b a ; ⅲ.通过证明)2(5027122x x x x -≤+,)1,0(∈x 证明了:若1,0,,=++>c b a c b a 则109111222≤+++++c c b b a a . 本文解决两个问题: ①)31(109132 2-≥+-x x x x 和)2(5027112x x -≤+中的)31(109-x 和)2(5027x -是如何构造的? ②改进(ⅲ)的证明.统一解决类似的问题的思路. 先解决问题① 可以猜想(ⅰ),(ⅱ)中的不等式均在31===c b a 处取等号,容易求得2 213x x x y +-=和211x y +=在31=x 处的切线刚好分别为)31(109-=x y 和)2(5027x y -=,这难道是巧合吗? 事实上,证明形如“已知∑=A a i ,求证∑≤B a f i )(或∑≥B a f i )(”这类不等式时,可以通过证明d cx a f i +≤)(或d cx a f i +≥)(达到目的,而d cx y +=为)(x f y =在变量取等号处的切线.若d cx a f i +≤)(或d cx a f i +≥)(在给定范围内成立,在这类问题很容易突破. 再解决问题② 下面我用上述方法改进(ⅲ)的证明. 分析: 可以猜想(ⅲ)中的不等式均在31= ==c b a 处取等号,容易得到21x x y +=在31=x 处的切线分别为)12 1(2518+=x y

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a )2·( c +d), ∵a +b >0,∴4c d <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <3 1ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-3 2ab ,显然矛盾.

数列不等式证明的几种方法

数列不等式证明的几种方法 一、巧妙构造,利用数列的单调性 例1. 对任意自然数n,求证:。 证明:构造数列 。 所以,即为单调递增数列。 所以,即 。 点评:某些问题所给条件隐含数列因素或证明与自然数有关的不等式问题,均可构造数列,通过数列的单调性解决。 二、放缩自然,顺理成章 例2. 已知函数,数列的首项,以后每项按如下方式取定:曲线处的切线与经过(0,0)和两点的直线平行。 求证:当时: (1);

(2)。 证明:(1)因为,所以曲线处的切线斜率为。 又因为过点(0,0)和两点的斜率为,所以结论成立。(2)因为函数 , 所以,即,因此 ; 又因为。 令,且。 所以 因此, 所以

三、导数引入 例3. 求证: 证明:令,且当时,,所以 。要证明原不等式,只须证 。 设, 所以。 令, 所以。 设, 所以上为增函数 所以,即

所以 同理可证 所以。对上式中的n分别取1,2,3,…,,得。 四、裂项求和 例4. 设是数列的前n项和,且 (1)求数列的首项,及通项; (2)设,证明。 解:(1)首项(过程略)。 (2)证明:将, 得,

则 点评:本题通过对的变形,利用裂项求和法化为“连续相差”形式,从而达到证题目的 五、独辟蹊径,灵活变通 独辟蹊径指处事有独创的新方法,对问题不局限于一种思路和方法,而是善于灵活变通,独自开辟新思路、新方法。 例5. 已知函数。设数列,数列满 足 (1)求证:; (2)求证:。 证明:(1)证法1:由 令,则只须证;易知,只须证。 由分析法:

。 因为,, 所以,得证。 证法2:由于的两个不动点为。又,所以 所以 所以 , 由上可求得, 因此只需证,

相关文档
最新文档