分水岭分割算法

分水岭分割算法
分水岭分割算法

如果图像中的目标物体是连在一起的,则分割起来会更困难,分水岭算法经常用于处理这类问题,通常会取得比较好的效果。分水岭分割算法把图像看成一副“地形图”,其中亮度比较强的地区像素值较大,而比较暗的地区像素比较小,通过寻找“汇水盆地”和“分水岭界限”,对图像进行分割。

步骤:

1.读取图像

2.求取图像的边界,在此基础上可直接应用分水岭分割算法,但效果不佳;

3.对图像的前景和背景进行标记,其中每个对象内部的前景像素都是相连的,背景里面的每个像素值都不属于任何目标物体;

4.计算分割函数,应用分水岭分割算法的实现

注:直接用分水岭分割算法效果并不好,如果在图像中对前景和背景进行标注区别,再应用分水岭算法会取得较好的分割效果。

例步骤:

1.读取图像并求取图像的边界。

rgb = imread('pears.png');%读取原图像

I = rgb2gray(rgb);%转化为灰度图像

figure; subplot(121)%显示灰度图像

imshow(I)

text(732,501,'Image courtesy of Corel',...

'FontSize',7,'HorizontalAlignment','right')

hy = fspecial('sobel');%sobel算子

hx = hy';

Iy = imfilter(double(I), hy, 'replicate');%滤波求y方向边缘

Ix = imfilter(double(I), hx, 'replicate');%滤波求x方向边缘

gradmag = sqrt(Ix.^2 + Iy.^2);%求摸

subplot(122); imshow(gradmag,[]), %显示梯度

title('Gradient magnitude (gradmag)')

2. 直接使用梯度模值进行分水岭算法:(往往会存在过的分割的情况,效果不好)

L = watershed(gradmag);%直接应用分水岭算法

Lrgb = label2rgb(L);%转化为彩色图像

figure; imshow(Lrgb), %显示分割后的图像

title('Watershed transform of gradient magnitude (Lrgb)')

3.分别对前景和背景进行标记:本例中使用形态学重建技术对前景对象进行标记,首先使用开操作,开操作之后可以去掉一些很小的目标。

se = strel('disk', 20);%圆形结构元素

Io = imopen(I, se);%形态学开操作

figure; subplot(121)

imshow(Io), %显示执行开操作后的图像

title('Opening (Io)')

Ie = imerode(I, se);%对图像进行腐蚀

Iobr = imreconstruct(Ie, I);%形态学重建

subplot(122); imshow(Iobr), %显示重建后的图像

title('Opening-by-reconstruction (Iobr)')

Ioc = imclose(Io, se);%形态学关操作

figure; subplot(121)

imshow(Ioc), %显示关操作后的图像

title('Opening-closing (Ioc)')

Iobrd = imdilate(Iobr, se);%对图像进行膨胀

Iobrcbr = imreconstruct(imcomplement(Iobrd), ...

imcomplement(Iobr));%形态学重建

Iobrcbr = imcomplement(Iobrcbr);%图像求反

subplot(122); imshow(Iobrcbr), %显示重建求反后的图像

title('Opening-closing by reconstruction (Iobrcbr)')

fgm = imregionalmax(Iobrcbr);%局部极大值

figure; imshow(fgm), %显示重建后局部极大值图像

title('Regional maxima of opening-closing by reconstruction (fgm)')

I2 = I;

I2(fgm) = 255;%局部极大值处像素值设为255

figure; imshow(I2), %在原图上显示极大值区域

title('Regional maxima superimposed on original image (I2)')

se2 = strel(ones(5,5));%结构元素

fgm2 = imclose(fgm, se2);%关操作

fgm3 = imerode(fgm2, se2);%腐蚀

fgm4 = bwareaopen(fgm3, 20);%开操作

I3 = I;

I3(fgm4) = 255;%前景处设置为255

figure; subplot(121)

imshow(I3)%显示修改后的极大值区域

title('Modified regional maxima')

bw = im2bw(Iobrcbr, graythresh(Iobrcbr));%转化为二值图像

subplot(122); imshow(bw), %显示二值图像

title('Thresholded opening-closing by reconstruction')

4. 进行分水岭变换并显示:

D = bwdist(bw);%计算距离

DL = watershed(D);%分水岭变换

bgm = DL == 0;%求取分割边界

figure; imshow(bgm), %显示分割后的边界

title('Watershed ridge lines (bgm)')

gradmag2 = imimposemin(gradmag, bgm | fgm4);%置最小值

L = watershed(gradmag2);%分水岭变换

I4 = I;

I4(imdilate(L == 0, ones(3, 3)) | bgm | fgm4) = 255;%前景及边界处置255 figure; subplot(121)

imshow(I4)%突出前景及边界

title('Markers and object boundaries')

Lrgb = label2rgb(L, 'jet', 'w', 'shuffle');%转化为伪彩色图像

subplot(122); imshow(Lrgb)%显示伪彩色图像

title('Colored watershed label matrix')

figure; imshow(I),

hold on

himage = imshow(Lrgb);%在原图上显示伪彩色图像

set(himage, 'AlphaData', 0.3);

title('Lrgb superimposed transparently on original image')

改进的利用门限的分水岭图像分割算法

2007年第12期福建电脑 改进的利用门限的分水岭图像分割算法 李洪军,王继成 (同济大学计算机系上海201804) 【摘要】:分水岭变换的一些优秀的性质使它在许多不同的图像分割应用中非常常用:它简单并且具有直观性,可以并行实现,并且总是产生完整的图像轮廓。然而,它仍然有许多缺点(过度分割,对噪声敏感,难于检查出细结构物体或者低信噪比的结构)。本文提出一种改进的使用门限的分水岭算法来在不同程度上克服分水岭的这些缺陷。我们把该算法应用在三类图片上,一种具有复杂结构,一种具有低对比度,一种有低的信噪比。本文展示了该算法的分割结果,展示了该算法在这几类图片上出色表现。 【关键词】:图像分割,过度分割,基于沉浸的分水岭算法,标记的分水岭算法 1.前言 1.1分水岭变换 分水岭变换是一种流行的图像分割方法,它来自数学形态学领域[1]。我们把灰度图象看作地形表面,让每一点的像素值代表这点的高度。然后考虑雨水降落到该地表,随着水位不断上升,水会从不同的局部最小点形成汇水盆,而分水岭就是阻挡这些汇水盆相互融合的堤坝。一般情况下,分水岭变换计算的是原始图片的梯度图,这样这些分水岭就正好位于梯度变化大的那些点上。 分水岭变换由于它以下的优点被用在图像处理的许多领域:直观,快速并且可以并行计算,总是产生完整的边界,这样就避免了边界连接的后处理。而且,不少研究人员把分水岭嵌入到多尺度框架中[2]。但是分水岭算法还是有一些致命的缺点,下面列出了最重要的几点[2]。 过度分割。由于大部分图像的梯度图都有许许多多的局部最小,所以分水岭变换的结果是无数的小区域边界,这样的结果毫无意义。通常的解决办法是是使用标记的图片来减少局部最小的数量,即使用带标记的分水岭变换[3]。 对噪声的敏感。局部的一些改变会引起分割结果的明显改变,强烈的噪声有时候使得分水岭变换无法找出真正的边界。其中的一个解决办法是使用各向异性的滤波器。 难以准确检测出低对比度的边界。由于对比度低所以使得信噪比高。所以由于前一个原因,对这种图片分水岭变换仍然无法很好的工作。一般的办法仍然是使用带标记的分水岭变换。而V.Grau提出使用基于MRF的分水岭变换对核磁共振脑灰白质的分割效果更好。 即使是这样,在医学图像分割中,比起近年来兴起的snakemodels和levelset方法,分水岭变换由于分水线总是位于梯度变换最剧烈的地方,并且总是产生完整的边界,从而在对比度低的图像分割中显示出了无可比拟的优势。这使得让分水岭变换能更好的工作是非常有意义的。 1.2本文所做的工作概览 我们提出一种改进的分水岭算法,它极大程度上改善了分水岭变换的表现。第2部分给出了算法。2.1部分给出了分水岭变换的定义,2.2部分给出标记分水岭变换的算法描述,2.3部分给出了我们改进的算法描述。第3部分给出我们的分割结果和其他分割方法的分割结果。3.1部分给出了低对比度的图像的分割结果。我们的分割结果明显优于直接的分水岭分割结果。并且与常用的带标记的分水岭算法分割结果做了比较。3.2部分给出了对于复杂结构的分割结果,我们的分割结果与带标记的分水岭变换的比较。3.3部分给出了对于低信噪比的图像分割结果,并且与经过去噪后的分割结果进行了比较,显示出该算法对噪声的稳定性。第4部分给出了结论和展望。 2.算法 2.1离散图像的分水岭变换的定义及算法描述2.1.1离散图像的分水岭变换的定义 对于分水岭变换,目前存在着几种定义,文献[4]对这些定义进行了归纳,整理。我们这里所采用的定义是基于沉浸的分水岭变换(watershedbyimmersion)。 令f:D'N是一幅灰度图象,它的最大和最小灰度值为h_max和h_min。定义一个从h_min到h_max的水位h不断递增的递归过程。在这个过程中每个与不同的局部最小相关的汇水盆地都不断扩展。定义X(h)记做在水位h时候汇水盆地的集合的并。在h+1层,一个连通分量T(h+1)或者是一个新的局部最小,或者是一个已经存在的X(h)中的一个盆地的扩展。对于后者,按邻接关系计算高度为h+1的每一个点与各汇水盆地的距离。如果一个点与两个个以上的盆地等距离,则它不属于任何盆地,否则它属于与它距离最近的盆地。这样从而产生新的X(h+1)。把在高度h出现的局部最小记作MIN(h)。把Y(h+1,X(h))记作高度为h+1同时属于X(h)的点的集合。 定义2.1(基于沉浸的分水岭变换) 分水岭变换[5]Wshed(f)就是X(h_max)的补集: 2.1.2分水岭算法直观描述 整个算法模拟水平面从最低的地理高度逐渐沉浸到最高的地理高度。这时水会逐渐从各个局部最小中涌出,形成不同的汇水盆地。随着水位不断升高,当两个不同的汇水盆地将融合时,我们使用堤坝把两个盆地分开。这个堤坝足够高,即使水位到最高也无法使相邻的盆地的水汇合。当水位涨到最高时,将完全沉浸地表,这时候那些堤坝就是产生的轮廓线。 2.2带标记的分水岭算法描述 引入标记是为了控制过度分割。一个标记是属于一副图像的连通分量。我们需要找到有与重要对象相联系得内部标记,同时也要找到与背景相联系得外部标记。取得内部标记和外部标记,就可以使用imposition技术[5]使梯度图像的局部最小只在这些标记的地方出现。这样所有的局部最小,即汇水盆地的个数就都是已知的。这时再使用分水岭变换,这样就可以避免过度分割。 2.3本文提出的改进的分水岭算法描述 过度分割是由于过多的局部最小而造成。带标记的分水岭算法是用预处理的办法来控制汇水盆地的数量。而本文中的算法则在算法进行的同时,通过融合一些小的,不值得考虑的汇水盆地,从而来控制盆地的数量。当两个盆地即将连通时,标准的分水岭算法就会在他们之间修堤坝来阻挡汇水盆地的相连通。而本文的算法则要进行判断。我们只认为储水量达到一定程度,并且高度达到一定高度的盆地才是我们所要的盆地。不符合这种要求的盆地我们把他们融合给与其相邻的最大的盆地。我们 77

肺部CT分割算法实现

肺部CT分割算法实现 蒋黎丽,吕英华 北京邮电大学通信网络综合技术研究所,北京(100876) E-mail: blueriffle@https://www.360docs.net/doc/4818955207.html, 摘要:医学图像分割技术发展至今,其相关算法的可谓种类繁多,层出不穷,但依然无法完全满足人们的实际需求。针对医学图像的特点,研究更有效的医学图像分割方法有着重要意义。本文重点介绍了医学图像分割算法中的基于小波的分割算法,并对肺CT图像进行切割,得到较好的实验结果。 关键词:肺,CT图像,分割 中图分类号:TP 1. 引言 近年来,随着计算机及其相关技术的迅速发展及图形图像技术的日渐成熟,使得该技术渗入医学领域中,开创了数字医疗的新时代。自20世纪90年代起,借助计算机影像处理与分析、计算机图形学、虚拟现实和计算机网络等技术的医学影像处理与分析,一直是国内外研究与应用的热点,也逐渐形成了具有特色的一门交叉学科。借助图形图像技术的有力手段,使得诊疗水平大大提高[1]。 医学图像分割技术发展至今,其相关算法的可谓种类繁多,层出不穷,但依然无法完全满足人们的实际需求。包括:无法完全用数学模型来简单描述人们说面临的实际问题;图像结构性质的千差万别;导致图像退化性质迥异以及人们对分割结果预期目标互不相同等。这些都决定了难以实现一种通用的分割方法。因此,针对医学图像的特点,研究更有效的医学图像分割方法有着重要意义。 2. 图像分割技术 图像分割(image segmentation)是一种重要的图像技术,它不仅得到人们广泛的重视和研究,也在实际中得到大量的应用。其实在不同领域中说到的目标轮廓技术、阈值化技术、图像区分或求差技术、目标检测技术、目标识别技术和目标跟踪技术等,这些技术本身或核心实际上也是图像分割技术[2]。 因此,围绕着图像分割的研究,至今为止,产生了许多分割技术。这里,根据处理图像性质的不同将分割算法划分为两类:一类就是对一般的数字图像进行处理的算法,称为传统的分割技术;一类就是对特殊的数字图像(例如医学图像等)进行处理的算法。 2.1传统的分割技术 这里所说的传统的分割方法是指那些已经被人们广泛运用于图像分割的方法,这些方法的特点就是经过时间的验证,对一些常用而比较普遍的图像分割处理问题能比较理想的解决。但是现在社会的高速发展必定会提出更高层次的分割问题,所以我们必须要发掘新的理论领域来结合图像的特征要求,从而发现新的方法。 传统的分割算法有阀值分割算法,边缘检测算法,腐蚀运算,边界跟踪与拟合,直方图等算法,这里就不详细说明。本文重点介绍下面的基于小波的分割技术。

关于图像分割算法的研究

关于图像分割算法的研究 黄斌 (福州大学物理与信息工程学院 福州 350001) 摘要:图像分割是图像处理中的一个重要问题,也是一个经典难题。因此对于图像分割的研究在过去的四十多年里一直受到人们广泛的重视,也提山了数以千计的不同算法。虽然这些算法大都在不同程度上取得了一定的成功,但是图像分割问题还远远没有解决。本文从图像分割的定义、应用等研究背景入手,深入介绍了目前各种经典的图像分割算法,并在此基础比较了各种算法的优缺点,总结了当前图像分割技术中所面临的挑战,最后展望了其未来值得努力的研究方向。 关键词:图像分割 阀值分割 边缘分割 区域分割 一、 引言 图像分割是图像从处理到分析的转变关键,也是一种基本的计算机视觉技术。通过图像的分割、目标的分离、特征的提取和参数的测量将原始图像转化为更抽象更紧凑的形式,使得更高层的分析和理解成为可能,因此它被称为连接低级视觉和高级视觉的桥梁和纽带。所谓图像分割就是要将图像表示为物理上有意义的连通区域的集合,也就是根据目标与背景的先验知识,对图像中的目标、背景进行标记、定位,然后将目标从背景或其它伪目标中分离出来[1]。 图像分割可以形式化定义如下[2]:令有序集合表示图像区域(像素点集),H 表示为具有相同性质的谓词,图像分割是把I 分割成为n 个区域记为Ri ,i=1,2,…,n ,满足: (1) 1,,,,n i i j i R I R R i j i j ===??≠ (2) (),1,2,,i i i n H R True ?== (3) () ,,,i j i j i j H R R False ?≠= 条件(1)表明分割区域要覆盖整个图像且各区域互不重叠,条件(2)表明每个区域都具有相同性质,条件(3)表明相邻的两个区域性质相异不能合并成一个区域。 自上世纪70年代起,图像分割一直受到人们的高度重视,其应用领域非常广泛,几乎出现在有关图像处理的所有领域,并涉及各种类型的图像。主要表现在: 1)医学影像分析:通过图像分割将医学图像中的不同组织分成不同的区域,以便更好的

基于全卷积网络的图像语义分割算法研究

哈尔滨工业大学工程硕士学位论文 Abstract Because of the development of deep learning and the emergence of fully convolutional networks,the domain of the image semantic segmentation has been rapidly developed.It is widely used in the fields of driverless,medical diagnosis, machine navigation and so on.Driverless technology has been a research hotspot,in this technology,the perception of the environment around the vehicle is the key points.It can classify images on the pixel-level to obtain the overall information of the image,and the semantic segmentation requires the low-cost vision sensors,so it fits the demand of driverless technology. Fully convolutional networks is a feasible and effective image semantic segmentation algorithm.The algorithm innovatively replaces the fully connected layer with the convolutional layer and applies it to the pixel-level classification task. DeepLab is an improved algorithm with the fully convolutional networks and this algorithm has a high accuracy.However,there are still some problems in this algorithm,and there is a great space for improvement.We research each sub-module of the algorithm,then research the problem and give the improvement plan to further improve the accuracy of the algorithm. In order to solve the problem that the DeepLab algorithm does not make full use of global information,resulting in poor results in complex scenes,we introduces the global context information module,this module can provides prior information of complex scenes in the picture,the global context features are extracted and then merged with the local features.This module can improve the expression ability of the features.In order to solve the problem that decoder module of the DeepLab is too simple and the boundary of the predicted result is rough,we design an efficient decoder module,the shallow layer features are fully utilized,the shallow layer features are merged with the deep layer features,and we adjusts the proportion of the deep features and the shallow features,this way can restore some of the details information,and the boundary of the object is optimized.In order to solve the problem that the DeepLab is over fitting the fixed size picture,two effective multi-scale feature level fusion modules are designed by combining the idea of integrated learning with the multi-scale model training,and on this basis,an extra supervision module is introduced,this way can improve the robustness of the algorithm. We mainly use the extended Pascal VOC2012dataset for experiments. Specifically,first we determine the optimal parameter of the improved method,then

算法设计与分析:递归与分治法-实验报告

应用数学学院信息安全专业班学号姓名 实验题目递归与分治法 综合实验评分表

实验报告 一、实验目的与要求 1.掌握递归算法的设计思想 2.掌握分治法设计算法的一般过程 3.理解并掌握算法渐近时间复杂度的分析方法 二、实验内容 1、折半查找的递归算法 (1)源程序代码 #include #include using namespace std; int bin_search(int key[],int low, int high,int k) { int mid; if(low>high) return -1; else{ mid = (low+high) / 2; if(key[mid]==k) return mid; if(k>key[mid]) return bin_search(key,mid+1,high,k); else return bin_search(key,low,mid-1,k); } } int main() { int n , i , addr; int A[10] = {2,3,5,7,8,10,12,15,19,21}; cout << "在下面的10个整数中进行查找" << endl; for(i=0;i<10;i++){ cout << A[i] << " " ; } cout << endl << endl << "请输入一个要查找的整数" << endl; cin >> n; addr = bin_search(A,0,9,n);

if(-1 != addr) cout << endl << n << "是上述整数中的第" << addr << "个数" << endl; else cout << endl << n << "不在上述的整数中" << endl << endl; getchar(); return 0; } (2)运行界面 ①查找成功 ②查找失败

图像分割算法的比较与分析

中北大学 课程设计说明书 学生姓名:学号: 学生姓名:学号: 学生姓名:学号: 学生姓名:学号: 学院:信息与通信工程学院 专业:电子信息工程 题目:信息处理综合实践: 图像分割算法的比较与分析 指导教师:陈平职称: 副教授 2014 年12 月29 日

中北大学 课程设计任务书 14/15 学年第一学期 学院:信息与通信工程学院专业:电子信息工程 学生姓名:学号: 课程设计题目:信息处理综合实践: 图像分割算法的比较与分析起迄日期:2015年1月5日~2015年1月16日课程设计地点:电子信息工程专业实验室 指导教师:陈平 系主任:王浩全 下达任务书日期: 2014 年12月29 日课程设计任务书

课程设计任务书

目录 第一章绪论 (1) 研究目的和意义 (1) 图像分割的研究进展 (1) 第二章区域生长法分割图像 (4) 区域生长法介绍 (4) 区域生长法的原理 (4) 区域生长法的实现过程 (5) 第三章程序及结果 (6) 区域生长算法及程序 (6) 图像分割结果 (7) 第四章方法比较 (8) 阈值法 (8) 区域法 (8) 分水岭法 (8) 形态学方法 (9) 第五章总结 (10) 参考文献 (11)

第一章绪论 研究目的和意义 图像分割是一种重要的图像技术,在理论研究和实际应用中都得到了人们的广泛重视。图像分割的方法和种类有很多,有些分割运算可直接应用于任何图像,而另一些只能适用于特殊类别的图像。许多不同种类的图像或景物都可作为待分割的图像数据,不同类型的图像,已经有相对应的分割方法对其分割;但某些分割方法只是适合于某些特殊类型的图像分割,所以分割结果的好坏需要根据具体的场合及要求衡量。图像分割是从图像处理到图像分析的关键步骤,可以说,图像分割结果的好坏直接影响对图像的理解。 图像分割是由图像处理到图像分析的关键步骤,在图像工程中占有重要位置。一方面,它是目标表达的基础,对特征测量有重要的影响。另一方面,因为图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象、更紧凑的表达形式,使得更高层的图像分析和理解成为可能。因此在实际应用中,图像分割不仅仅要把一幅图像分成满足上面五个条件的各具特性的区域,而且要把其中感兴趣的目标区域提取出来。只有这样才算真正完成了图像分割的任务,为下一步的图像分析做好准备,使更高层的图像分析和理解成为可能。 图像分割在很多方面,如医学图像分析,交通监控等,都有着非常广泛的应用,具有重要的意义。(1)分割的结果常用于图像分析,如不同形式图像的配准与融合,结构的测量,图像重建以及运动跟踪等。(2)在系统仿真,效果评估,图像的3D重建以及三维定位等可视化系统中,图像分割都是预处理的重要步骤。 (3)图像分割可在不丢失有用信息的前提下进行数据压缩,这就降低了传输的带宽,对提高图像在因特网上的传输速度至关重要。(4)分割后的图像与噪声的关系减弱,具有降噪功能,便于图像的理解。 图像分割的研究进展 图像分割是图像处理中的一项关键技术,至今已提出上千种分割算法。但因

基于OpenCV的分水岭分割算法的及应用

基于OpenCV的分水岭分割算法的研究及应用 [摘要]本文对基于形态学分水岭算法进行了深入的研究,并针对其存在的过分割问题对分水岭算 法提出改进:使用区域合并方法限制允许出现的区域的数目,这种改进的方法不仅可以很好地抑制 过分割问题,还能有效分割出图像中的感兴趣区域,以达到提取图像有效边缘信息的目的。将此方 法在OpenCV下进行实验,结果表明这种方法可以有效清除干扰噪声及局部极小值,从而得到精确 的分割结果。 [关键词]分水岭算法;过分割;区域合并;OpenCV [中图分类号]TP391.4[文献标识码]A[文章编号]1008-178X(2012)12-0020-03 燕杨1,2,王云吉2 (1.长春师范学院计算机科学与技术学院,吉林长春 130032;2.吉林大学通信工程学院,吉林长春130022) [收稿日期]2012-07-16 [基金项目]吉林省科技发展计划项目青年科研基金(201201112)。 [作者简介]燕杨(1981-),女,吉林长春人,长春师范学院计算机科学与技术学院讲师,博士研究生,从事数字图像处理研究。第31卷第12期 Vol.31No.12长春师范学院学报(自然科学版)JournalofChangchunNormalUniversity(NaturalScience)2012年12月Dec.2012 1分水岭算法简介 分水岭算法是基于形态学的图像分割方法,其分割特点为定位精确和分割图像边缘准确,在图像分割领域得到了广泛的应用。在许多实际情况下,我们要分割图像,但无法从背景图像中获得有用信息。分水岭算法在这方面往往是有效的,该算法可以将图像中的边缘转化为“山脉”,将均匀区域转化为“山谷”以便分隔目标。分水岭算法先计算灰度图像的梯度,让亮度值低的点(山谷)、山脊对应的边缘(山头)同时形成,然后从指定点开始持续“灌注”盆地,直到这些区域链接在一起。这种方法产生的标记可以把各个区域合并到一起,合并后的区域又通过“聚集”的方式进行分割,好像图像被“填充”起来一样。与 指示点相连的盆地就为指示点“所拥有” ,从而得到被分割成相应的标记区域的图像。分水岭算法允许用户来标记目标某个部分为目标,或背景的某个部分为背景。用户也可以通过画一条简单的线,告知分水岭算法把这些点组合起来。分水岭算法就会通过“拥有”边沿定义的山谷来分割图像。 分水岭算法定位精确且分割细致,对微弱的物体边缘响应比较敏感,能确保得到目标区域封闭连续边缘。但物体表面一些细微的灰度变化以及图像中的噪声干扰等因素皆会导致对图像过度分割的产生,从而产生过多无用的边缘信息。 本文在对分水岭算法进行了深入的研究的基础上针对其过分割的问题提出改进:使用区域合并方法限制允许出现的区域的数目,这样不仅可以有效地抑制过分割问题,还能较好地分割出图像中的目标区域,以达到提取图像有效边缘信息的目的。 2原理 2.1分水岭传统方法 分水岭分割方法是基于拓扑理论的形态学分割方法,它的基本概念是将图像看成地形学上被水覆盖的自然地貌,图像中的每一点像素的灰度值表示这一点海拔的高度,其中每一个局部极小值和它所影响的区域称为集水盆,集水盆的边界形成了分水岭[1];其思想和形成可以通过模拟“溢流”的过程来说明:首先,20··

分水岭算法原理

所谓分水岭算法有好多种实现算法,拓扑学,形态学,浸水模拟和降水模拟等方式。要搞懂就不容易了。WatershedAlgorithm(分水岭算法),顾名思义,就是根据分水岭的构成来考虑图像的分割。现实中我们可以或者说可以想象有山有湖的景象,那么那一定是水绕山,山围水的情形。而区分高山(plateaus)与水的界线,以及湖与湖之间的间隔或都是连通的关系,就是我们可爱的分水岭(watershed)。为了得到一个相对集中的集水盆,那么让水涨到都接近周围的最高的山顶就可以了,再涨就要漏水到邻居了,而邻居,嘿嘿,水质不同诶,会混淆自我的。那么这样的话,我们就可以用来获取边界高度大,中间灰阶小的物体区域了,它就是集水盆。浸水法,就是先通过一个适当小的阈值得到起点,即集水盆的底;然后是向周围淹没也就是浸水的过程,直到得到分水岭。当然如果我们要一直淹没到山顶,即是一直处理到图像灰阶最高片,那么,当中就会出现筑坝的情况,不同的集水盆在这里想相遇了,我们要洁身自爱,到这里为止,因为都碰到边界了。不再上山。构筑属于自己的分水岭。在计算机图形学中,可利用灰度表征地貌高。图像中我们可以利用灰度高与地貌高的相似性来研究图像的灰度在空间上的变化。这是空域分析,比如还可以通过各种形式的梯度计算以得到算法的输入,进行浸水处理。分水岭具有很强的边缘检测能力,对微弱的边缘也有较好的效果。为会么这么说呢?为什么有很强的边缘检测能力,而又能得到相对集中的连通的集水盆?现实中很好办,我们在往凹地加水的时候,直到它涨到这一块紧凑的山岭边缘就不加了;但是如果有一条小山沟存在,那没办法,在初始阈值分割的时候,也就是山沟与集水盆有同样的极小值,而且它们之间是以这个高度一直连接的。那没关系,我们将它连通。在图像上呢?如何实现? 看看算法,算法思想是这样的: 首先准备好山和初始的水。这山就是我们的初始图像了,比如用自然获取的图像的梯度来表征山地的每一点的高度吧;而初始的水就是在阈值记为Thre底下,所有的低于这个高度的整个山地都加水,直到这个阈值Thre高度。从而有三个初始量:unsignedchar**Ori_image、 char**Seed_image和int**Label_image。最后一个是为最终的结果做准备的。当然要做好初始化,比如,Ori_image赋值为原图像(256色灰度图)的梯度值,Seed_image则是初始状态下有水的置位,无水的复位,而Label_image则全初始化为0,最终得到的是各点对应的区域号。接下来是考虑将已加的水进行记录,记录成连通的区域,也就是看看有多少个互不相关的集水盆,有五个,那么我们就涨出五个湖,而且尽可能的高,只要大家想到不溢出。在算法上,有多少个连通的区域就记录成多少个数据结构,功夫就在于如何将这些连通的区域连接成一块,并由一个数据结构来表达了。很好,我们准备用一个向量容器来实现初始保存,保存所有标记区域种子队列的数组,里面放的是种子队列的指针vque,而且这个队列是由一系列属于同一个区域的图像点组成,我们来自一个集水盆:);其保存方式是这样的:queue *pque=newqueue[256];(pque),这样便将一个成员放进到这个区域来了,即容器--集水盆的

归并排序算法实现 (迭代和递归)

归并排序算法实现(迭代和递归)\递归实现归并排序的原理如下: 递归分割: 递归到达底部后排序返回: 最终实现排序: #include void merge(int *array, int low, int center, int high) { if(low >= high) return; int m = center - low + 1; int n = high - center; int L[m], R[n]; for(int i=0; i R[j]) array[k] = R[j++]; else array[k] = L[i++];

} while(i #include

图像分割常用算法优缺点探析

图像分割常用算法优缺点探析 摘要图像分割是数字图像处理中的重要前期过程,是一项重要的图像分割技术,是图像处理中最基本的技术之一。本文着重介绍了图像分割的常用方法及每种方法中的常用算法,并比较了各自的优缺点,提出了一些改进建议,以期为人们在相关图像数据条件下,根据不同的应用范围选择分割算法时提供依据。 关键词图像分割算法综述 一、引言 图像分割决定了图像分析的最终成败。有效合理的图像分割能够为基于内容的图像检索、对象分析等抽象出十分有用的信息,从而使得更高层的图像理解成为可能。目前图像分割仍然是一个没有得到很好解决的问题,如何提高图像分割的质量得到国内外学者的广泛关注,仍是一个研究热点。 多年来人们对图像分割提出了不同的解释和表达,通俗易懂的定义则表述为:图像分割指的是把一幅图像分割成不同的区域,这些区域在某些图像特征,如边缘、纹理、颜色、亮度等方面是一致的或相似的。 二、几种常用的图像分割算法及其优缺点 (一)大津阈值分割法。 由Otsu于1978年提出大津阈值分割法又称为最大类间方差法。它是一种自动的非参数非监督的门限选取法。该方法的基本思路是选取的t的最佳阈值应当是使得不同类间的分离性最好。它的计算方法是首先计算基于直方图而得到的各分割特征值的发生概率,并以阈值变量t将分割特征值分为两类,然后求出每一类的类内方差及类间方差,选取使得类间方差最大,类内方差最小的t作为最佳阈值。 由于该方法计算简单,在一定条件下不受图像对比度与亮度变化的影响,被认为是阈值自动选取的最优方法。该方法的缺点在于,要求得最佳阈值,需要遍历灰度范围0—(L-1)内的所有像素并计算出方差,当计算量大时效率会很低。同时,在实际图像中,由于图像本身灰度分布以及噪声干扰等因素的影响,仅利用灰度直方

针对卫星图像的语义分割算法研究

哈尔滨工业大学工学硕士学位论文 Abstract With the rapid improvement of satellite technology, satellite images, especially high resolution remote sensing satellite images have been paid great attention by various countries, and have been applied in different fields. Satellite image can extract the relative position and spatial distribution of various natural elements with its rich information and visual image, which provides great space for the development of target semantic segmentation in both civil and military aspects. At the same time, in the wave of artificial intelligence, deep learning has been greatly developed with the ability of computing, which not only brings great changes in the traditional computer vision and robot, but also brings new solutions in such aspects as finance and medical care. Therefore, deep learning is applied to the semantic segmentation of satellite images, which opening up new ideas for military tactics and civilian business planning. In this paper, we use convolution neural network to classify multi resolution satellite images. The main contents of this paper are as follows: Firstly, it summarizes the basic models of deep learning and three characteristics of deep learning, namely, the simplicity, extensibility and mobility of models. The focus is mainly on the conformation, characteristics, research mechanism and development direction of convolution neural network. For the semantic segmentation of satellite images using the learning features of artificial design, the feature design learning is too complicated and the adaptation range is limited. This paper uses convolution neural network to automatically design and extract features. Based on the typical semantic segmentation network, the semantic segmentation network structure of satellite images is designed, which combines the advantages of the existing Convolutional Neural Network (CNN) and the conditional random field (Conditional Random Field, CRF). In view of the small number of images in the satellite image set, and the uneven distribution between classes, this paper adjusts the context semantic environment in the satellite image segmentation network, and combines the rough feature and the fine feature by increasing the jump connection. At the same time, the conditional random field was added to the network output to make the precision more than 16%. In order to improve the network performance, the sample set is preprocessed and added and includ the multispectral image channel synthesis, and the increase of multi remote sensing imaging index. In the view of the difference between the loss function of the convolution neural network in the semantic segmentation process and the traditional classification network, the loss function of the network is improved and the joint loss

基于改进的Otsu准则的递归图像分割算法

基于改进的Otsu 准则的递归图像分割算法 蔡燕柳,贾振红 (新疆大学信息科学与工程学院,新疆乌鲁木齐 830046) 提要:基于最大类间方差阈值图像分割算法的基本原理,然后结合目标与背景两类之间间距和类内距离对图像分割效果的影响,提出了一种改进的最大类间方差法,运用递归思想局部搜索图像的最佳阈值。这样不但缩短了计算时间,而且具有较好的自适应特点。该算法在图像背景不均匀或者图像的直方图不是简单的单峰、双峰图像的情况下可以进行有效的分割,分割后的图像细节更加丰富,能有效的去除噪声的干扰,有利于分割后的特征提取。本文对理论结果进行了仿真实验,获得了较好的分割效果。 关键词:图像分割:Ots u 准则;递归分割;阈值 中图分类号:TN911.73 文献标识码:A 文章编号:0253-2743(2008)04-0028-03 A recursive image segmentation algorithm based on the modified Otsu .s rule CAI Yan-liu,JIA Zhen-hong (School of Information Science and Engineering,Xi njiang Uni versity,Urumuqi 830046,China) Abs tract:Based on the principle of O ts u method with maxi mum vari ance bet ween thres hold al gori thm of image segmentati on,an i mproved method derived from Otsu algorithm is put forward,which combi nes i nterclass dis tance with intraclas s distance,a partial recursive algorithm i s used to search opti mum threshold.It not only reduces the running ti me,but als o has better self-adaptability.With this algorithm,the image can be segmented effec tively even if i t is uneven and not the single-modal or bi modal one.The s egmentation res ult has more details,and can remove the disturbance of the noise,which is good to feature extracti on.An e x -peri ment wi th the result of theory is made and good result is obtained. K ey words :i mage segmentation;Otsu rule;recursive segmentati on;thres holding 收稿日期:2008-04-05 基金项目:教育部新世纪优秀人才支持计划(项目批准号:NCET-05-0897) 作者简介:蔡燕柳(1982-),男,江西宜春人,硕士研究生,目前主要从事数字图像处理的研究。 图像分割是数字图像处理中的一项极为重要而且棘手 的问题,是由图像处理到图像分析的关键步骤,也是进一步图像理解的基础。从20世纪70年代起,图像分割技术就引起了关注,很多研究人员为此付出了大量的心血,目前有相当多的图像分割方法11-52,而且这方面的研究仍然在积极的进行。尽管人们在图像分割方面做了许多工作,但至今仍无通用的分割算法,也不存在一个判断分割是否成功的客观标准。目前已经提出的分割算法大都是针对具体问题的,并没有一种适合于所有图像的通用的分割算法,所以上述算法存在很多局限性。阈值化法是一种极为重要且广泛使用的图像分割方法。它是利用图像中要提取的目标物与背景每一个像素点应该属于目标还是属于背景区域,从而得到相应的二值化图像。早期提出的阈值分割算法11,4,8,9,102,其基本思想都是求取目标函数,然后对目标函数求取最大值时所对应的那个阈值就是最佳阈值。这种算法虽然解决了阈值分割门限的选取问题,优于常用的灰度差直方图法、微分直方图法等。但由于缺乏自适应性,会造成噪声干扰和过分割现象,同时也需要大量的运算时间。为此最近几年又提出了一些算法,如用遗传算法解决图像分割问题112,162,而基于模糊聚类分析的图像分割算法是图像分割领域中一类极其重要和应用相当广泛的算法15,14,172,还有用神经网络处理图像分割也是这两年研究的一大热点1182。这些算法较文献11,2,4,8,9,102所提出的算法效果有所增强,避免了阈值设定的问题,而且聚类过程中不需要任何人工的干预,但是仍然存在着不足之处,比如遗传算法所需要的迭带次数可能有所增加,用聚类分析算法的聚类类别数难以确定,迭带容易陷入局部极值的问题,迭带过程中的计算量太大,空间结构信 息未能有效利用,容易产生过分割现象等等。基于上述提出的这些问题,本文提出了一种新的算法,创新点是通过对最大类间方差法的改进,采用局部递归分割算法,利用目标与背景的差异性决定递归的次数和每次分割进行的局部区域,与传统的算法11,2,8,9,102,和近两年所提出的一些算法112,14,16,17,182比较,提高了运算速度。通过对一幅沙漠植被图像进行仿真实验,结果表明该算法分割效果优于传统以及一些改进的算法,并且简单易实现,能在有效滤除噪声的同时很好的保护图像的细节,即目标部分,对比于文献112和116,172中所提出的算法,在速度和性能方面都显示出了优势。 1 基本原理 1.1 最大类间方差阈值分割法 最大类间方差法(Otsu 法)是1979年N.Otsu 提出的动态阈值方法,它的基本思想是利用图像的灰度直方图,以目标和背景的方差最大来动态的确定图像的分割阈值,通过它的基本原理我们可以得到Otsu 方法求出图像最佳阈值的公式为 t *=Arg M a x 0F t F L-1 1p a (w a -w 0)2+p b (w b -w 0)22(1) 具体的数学推导和理论部分以及各个变量所代表的物理意义可以参考文献 112 1.2 改进的最大类间方差阈值分割方法 采用阈值法进行图像分割的关键在于选择阈值。在图像分割时,阈值选取的过高或者过低都不利于图像分割后的特征提取、目标识别、图像分析等一系列处理。所以如何找到一个合适的阈值使得图像分割的效果达到最好就显得特别重要。通过参考文献112我们可以知道,阈值分割出来的两部分要尽量远离图像中心,即使w a 、w b 之间的距离尽可能的大,这样目标和背景就分得越开。我们不妨假设一个距离度 28 蔡燕柳等:基于改进的Otsu 准则的递归图像分割算法 5激光杂志62008年第29卷第4期 LASER J OURNAL(Vol.29.No.4.2008)

相关文档
最新文档