永磁直线同步伺服系统采用神经网络实现的实时IP位置控制器的在线设计

永磁直线同步伺服系统采用神经网络实现的实时IP位置控制器的在线设计
永磁直线同步伺服系统采用神经网络实现的实时IP位置控制器的在线设计

永磁直线同步伺服系统采用神经网络实现的

实时IP 位置控制器的在线设计

N eural N etw ork R eal -Time IP Position Controller On -Line Design

for Permanent Magnet Linear Synchronous Motor

郭庆鼎 周 悦 郭 威(沈阳工业大学电气工程系 110023)

G uo Q ingding Zhou Yue G uo Wei (Shenyang P olytechnic University 110023 China )

摘要 针对永磁直线同步电机PM LS M 伺服系统中的诸多不确定性问题,提出了采用神经网络来实现实时积分-比例IP 位置控制器的在线设计。本文所提出的神经网络结构合理、简单,

权值具有明确物理意义和可以在线快速调整的特点,以便进行实时控制。用由递推最小二乘估计器R LS 和负载扰动力观测器构成的估计器来估计动子质量、粘滞摩擦系数和负载扰动力。将观测的负载扰动力前馈,进一步增强系统的鲁棒性。

关键词:永磁直线同步伺服电机 神经网络实时积分-比例位置控制器 递推最小二乘估计器 鲁棒性Abstract This paper presents a real 2time IP position controller realized by neural netw ork for permanent magnet linear synchronous m otor (PM LS M )serv o system 1In the paper ,neural netw ork s con figuration is sim 2ple and reas onable ,and weight has definitely physical meaning 1It has rapidly adjusting character in ordef to real 2time control 1The m over mass ,viscous friction factor and disturbance force are estimated by the proposed estimator ,which is com posed of a recursive least 2square (R LS )estimator and a disturbance observer 1The observed disturbance force is fed forward ,to increase the robustness of PM LS M drive system 1

K eyw ords :PM LS M Neural netw ork real 2time IP position controller R LS R obustness

国家自然科学基金资助项目。19990402收到稿件。

郭庆鼎 1939年生,1964年毕业于哈尔滨工业大学电机工程系,现为沈阳工业大学电气工程系教授,主要研究方向为交流伺服、数控技术、鲁棒控制及智能控制。

周 悦 1970年生,沈阳建筑工程学院教师,现为沈阳工业大学在读研究生,主要研究方向为交流永磁同步伺服系统、系统辨识、智能控制及鲁棒控制。

G uo Q ingding was born in 1939,graduated from Harbin P olytechnic University 1H is speciality is industrial electrical automation 1N ow ,he is a profess or of electrical engineering department in Shenyang P olytechnic University 1He mainly studies NC technique ,AC serv o system ,robustness control and intelligent con 2trol 1

1 引言

直接驱动的直线电机伺服系统由于去掉了中间的传动环节,消除了机械传动链的影响,从而在精密与超精进给、高速与超高速运行等方面显示出了优越性能。永磁直线同步伺服电机采用高能永磁体,具有推力强度高、损耗低、电气时间常数小和响应快等特点。因而,近年来在高档数控机床进给

驱动中得到了应用,成为新一代数控机床的主要标志之一,这就对高精度、微进给永磁直线同步伺服电机的速度和位置伺服控制提出了很高的要求。为此,本文提出了采用神经网络来实现实时积分-比例IP 位置控制器的在线设计。本文所提出的神经网络结构合理、简单,权值具有明确的物理意义和可以在线快速调整的特点,消除了一般神经网络控制实时性差的缺点,进一步提高了控制器实时控制

的功能,满足了位置伺服系统高性能的要求。其次,通过本文所提出的估计器能无偏地估计出动子质量和粘滞摩擦系数,以便用于神经网络权值的在线调整。由于系统还受一些其他非确定性因素的影响,如负载的扰动,非线性摩擦力,特别是PM L S M的端部效应产生力的波动,为了消除其影响把观测的扰动力前馈,以增强控制系统的鲁棒性。神经网络IP位置控制器和观测器采用PC—586,R LS 估计器采用T MS32025数字信号处理器运算。

2 PMLSM模型

以动子移动速度为参考坐标的电压方程

u q=R s i q+pλq+π

τv

λd(1)

u d=R s i d+pλd-π

τv

λq(2)

其中λq=L q i q(3)

λ

d

=L d i d+λPM(4)电磁推力

F e=3π

2τ[

λPM i q+(L d-L q)i d i q](5)

对PM LS M进行矢量控制,即要求动子电流矢量与定子永磁体磁场在空间上正交。如果i d=0,电磁推力F e与i q成正比,则

F e=3π

λ

PM

i q=K f i q(6)

永磁直线伺服电动机的运动方程为

M d v(t)

d t

=K f i q(t)-F L(t)-Bv(t)(7)

式中 u d,u q———d、q轴动子电压

i d,i q———d、q轴动子电流

L d,L q———d、q轴动子电感

λ

d

,λq———d、q轴动子磁链

λ

PM

———定子永磁体产生的励磁磁链

M———动子和动子所带动负载的总质量

R s———动子电阻

v———动子速度

τ———极距

B———粘滞摩擦系数

K f———电磁推力系数

F L———负载阻力3 神经网络实时IP位置控制器的设计

在数控机床中,高性能的位置伺服系统要求输出位置无超调而又快速地跟踪位置指令、稳态无静差、很强的抗扰能力和对系统参数的变化具有鲁棒性。由于IP速度控制器在选择较高的积分增益K I 时,对参考信号具有很快的响应能力和对负载扰动亦具有较强的抑制能力[1]。如图1所示,位置调节器是比例环节,速度调节器是IP环节,由于设计时二者合一,故称为IP位置控制器

图1 具有扰动力观测器前馈的IP位置控制系统

Fig11 IP position control system with

distubance force feedforward

由图1中的IP位置控制器可得

e(t)=x3r(t)-x r(t)(8)

x1(t)=v3(t)=K S e(t)(9)

x2(t)=x1(t)-v(t)(10)

x3(t)=K I∫x2d t-K P v(t)(11)式中 v3———速度指令

将式(9)~(11)离散化

x1(k)=v3(k)=K S e(k)(12)

x2(k)=x1(k)-v(k)(13) x3(k)=K I∑

k

i=0

x2(i)T S-K P v(k)(14)即 x3(k)=x3(k-1)-K P[v(k)-v(k-1)]+

K I T S

2

[x2(k)+x2(k-1)](15)式中 T S———采样周期,令T S=01001s

由上式,设计神经网络结构如图2所示。

为了使系统具有快速的响应速度,位置控制器权值的初始值不是随机的小数,而是令w1=K S, w2=K P,w3=

K I T S

2

,其中K S,K P,K I分别为IP

图2 神经网络实现的IP位置控制器

Fig12 IP position controler realized by neural netw ork

位置控制器在空载、M和B为标称情况,且满足规定的性能指标下所设计的控制器参数,可见权值具有明确的物理意义,即与IP位置控制器参数具有对应的关系。神经网络权值具有在线调整功能,实现了实时控制,使系统具有很好的鲁棒性。当M和B变化时,主要靠速度环调节。在这里,IP 位置控制器采用神经网络调节时,权的学习规则为

w1(n0+1)=w1(n0)(16) w2(n0+1)=w2(n0)+d1Δ^M-d2Δ^B(17) w3(n0+1)=w3(n0)+d3Δ^M(18)式中 Δ^M———(包括负载的)动子质量增量的估计值Δ^B———粘滞摩擦系数增量的估计值

d1,d2,d3———在不同规定的性能指标下的系数

为了使估计器能估计出无偏差的辨识结果,让最小乘估计器与负载扰动力观测器相结合,如图1所示,观测器采用电动机驱动系统的逆动力学模型获得扰动的推力,表示为^F L/K f;估计器的输入为推力电流指令与观测扰动力等效电流的差及动子速度,输出为无偏差的辨识参数———动子质量(包括负载)^M和粘滞摩擦系数^B。那末,观测器中的M和B可以立即由^M和^B代替,则负载的扰动能被精确地观测。通过递推处理,被辨识的M和B 参数,以及观测的负载扰动力能很快地收敛到它们的真实值。观测器和神经网络实现的实时IP位置控制器由PC—586实现。

通过Z OH(零阶保持器)对电机模型进行Z 变换,当F L=0时

Z 1-e-T C

s

?

K f/B

1+(M/B)s

=

b1

1+a1Z-1

(19)

式中 a1=-exp(T C B/M)(20) b1=-(K f/B)[1-exp(-T C B/M)](21)

T C———采样周期,令T C=010002s

系统模型可表示为

v(k+1)=-a1v(k)+b1i q(k)(22)估计器估计系统参数的递推过程为[2]

θ(k)=θ(k-1)+K(k)[v(k)-C(k)θ(k-1)]

(23)

K(k)=

P(k-1)C(k-1)T

1+C(k-1)P(k-1)C(k-1)T

(24) P(k)=

1

γ[P(k-1)-K(k)C(k-1)P(k-1)]

(25)式中 C(k)=[v(k),(i q-^F L/K f)](26)

θ(k)=[-a

1

(k),b1(k)](27)γ———遗忘因子,γ=019~1

θ(k)求得后,M和B的估计值很容易从式(20)和式(21)求得。为保证估计的参数和观测的负载扰动力收敛,只在位置指令跟踪的暂态中用最小二乘估计器,而在被估计量收敛之前,观测器和神经网络实现的实时IP位置控制器的参数将不被修正。

如图1所示,为了提高位置控制系统的鲁棒性,被观测的扰动力通过加权因子Q还被前馈。理想情况下,Q=1。考虑系统含有非确定性因素,在实际应用选择Q<1,以保证系统的稳定性[3]。4 仿真实验结果

以我们制作的一台永磁直线同步伺服电机为研究对象,其参数为:极距τ=36mm,M e=10kg,B =112N?s/m,K f=25N/A,F Ln=40N。为了满足位置阶跃指令跟踪无超调、稳态无静差和设置位置上升时间为013s,则权的初始值为w1=6107,w2= 341602,w3=014048,d1=31475,d2=0104,d3= 0104048。取Q=01707。图3为在t=0115s,突加负载至F L=250N时,无/有观测器前馈时系统的位置和速度的响应,可见后者具有很强的抗负载扰动性能。图4为动子与所带动的负载总质量和粘滞摩擦系数都增加5倍时,传统IP位置控制器与神经网络实现的实时IP位置控制器的位置和速度的输出响应,可见后者对动子质量和粘滞摩擦系数等参数的变化具有较强的鲁棒性。

5 结论

本文提出的用于实现PM LS M伺服系统实时IP

3

第14卷第6期郭庆鼎等 永磁直线同步伺服系统采用神经网络实现的实时IP位置控制器的在线设计

位置控制器的神经网络结构合理、简单,权值具有明确的物理意义和在线快速调整的特点,并且为了进一步增强控制系统的鲁棒性将负载扰动力前馈。仿真实验结果表明所设计的系统能实现对位置阶跃指令的快速无超调跟踪和稳态无静差,以及对电机伺服系统参数的变化和扰动具有很强的鲁棒性,满足高精度、微进给永磁直线电机伺服驱动系统的要求

图3 在t =0115s ,负载突加为

F L =250N 时,位置和速度的输出响应

Fig 13 Simulation results of position and speed

at t =0115s ,F L =250N

loaded

图4 M =50kg ,B =6N ?s/m 时,位置和速度的输出响应

Fig 14 Simulation results of position and speed under

M =50kg ,B =6N ?s/m

参考文献

1 郭庆鼎,王成元1交流伺服系统1北京:机械工业出版

社,19941

2 方崇智,萧德云1过程辨识1北京:清华大学出版社,

19941

3 Lin Faa -Jeng 1Real -time IP position controller design with

torque feed forward control for P M synchronous m otor 1IEEE T rans ,1997,44(3):398~407

4

电工技术学报1999年12月

永磁同步电机无传感器控制技术

哈尔滨工业大学,电气工程系 Department of Electrical Engineering Harbin Institute of Technology 电力电子与电力传动专题课 报告 报告题目:永磁同步电机无传感器控制技术 哈尔滨工业大学 电气工程系 姓名:沈召源 学号:14S006040 2016年1月

目录 1.1 研究背景 (1) 1.2 国内外研究现状 (1) 1.3 系统模型 (2) 1.4 控制方法设计 (4) 1.5 系统仿真 (7) 1.6 结论 (8) 参考文献 (8)

1.1 研究背景 永磁同步电机具有体积小、惯量小、重量轻等优点,在各领域的应用越来越广泛。目前在永磁同步电机的各种控制算法中,使用最多的是矢量控制和直接转矩控制,而这两种控制方式都需要转子位置,但转子位置传感器的采用限制了系统使用范围。永磁同步电机控制系统大多采用测速发电机或光电码盘等传感器检测速度和位置的反馈量,这不但提高了驱动装置的造价,而且增加了电机与控制系统之间的连接线路和接口电路,使系统易于受环境干扰、可靠性降低。由于永磁同步电机无传感器控制系统具有控制精度高、安装、维护方便、可靠性强等一系列优点,成为近年来研究的一个热点。 1.2 国内外研究现状 无传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情况下,利用电机绕组中的有关电信号,通过直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量如定子电压、定子电流中提取出与速度、位置有关的量,利用这些检测到的量和电机的数学模型推测出电机转子的位置和转速,取代机械传感器,实现电机闭环控制。 最早出现的无机械传感器控制方法可统称为波形检测法。由于同步电机是一个多变量、强耦合的非线性系统,所要解决的问题是采用何种方法获取转速和转角。目前适合永磁同步电机的最主要的无速度传感器的控制策略主要有以下几种 (1)利用定子端电压和电流直接计算出θ和ω。该方法的基本思想是基于场旋转理论,即在电机稳态运行时,定子磁链和转子磁链同步旋转,且两磁链之间的夹角相差一个功角δ,该方法适用于凸极式和表面式永磁同步电机。该方法计算方法简单,动态响应快,但对电机参数的准确性要求比较高,应用这种方法时需要结合电机参数的在线辨识。 (2)模型参考自适应(MRAS)方法。该方法的主要思想是先假设转子所在位置,利用电机模型计算出该假设位置电机的电压和电流值,并通过与实测的电压、电流比较得出两者的差值,该差值正比于假设位置与实际位置之间的角度差。当该值减小为零时,则可认为此时假设位置为真实位置。采用这种方法,位置精度与模型的选取有关。该方法应用于PMSM时有一些新的需要解决的问题。 (3)观测器基础上的估计方法。观测器的实质是状态重构,其原理是重新构造一个系统,利用原系统中可直接测量的变量,如输出矢量和输入矢量作为它的输入信号,并使输出信号在一定条件下等价于原系统的状态。目前主要存在的观测器:全阶状态观测器、降阶状态观测器、推广卡尔曼滤波和滑模观测器。其中滑模观测器有很好的鲁棒性,但其在本质上是不连续的开关控制,因此会引起系统发生抖动,这对于矢量控制在低速下运行是有害的,将会引起较大的转矩脉动。扩展卡尔曼滤波器提供了一种迭代形式的非线性估计方法,避免了对测量的微分

一种永磁同步电机转子初始位置的判断方法

说明书摘要 本发明公开一种永磁同步电机转子初始位置的判断方法,步骤是:首先利用脉振高频电压注入法得到初次估计的转子位置,然后在初次估计的交轴上注入一个正方向扰动信号,再估计转子位置,根据估计得到的转速方向判断磁极极性,得到电机转子初始位置。此种方法可解决脉振高频电压信号注入法检测转子初始位置时磁极极性的收敛问题,无需在直轴上注入正负方向的脉冲电流,可以有效地实现转子初始位置估算。

摘要附图

1、一种永磁同步电机转子初始位置的判断方法,其特征在于包括如下步骤: (1)在??d q -估计同步旋转坐标系的?d 轴上注入高频电压信号?cos()d mh h u U t ω=,给定?q 轴电压?0q u =; (2)检测电机的两相电流,并经过Clarke 和Park 坐标系变换,得到??d q -估计同步旋转坐标系的?q 轴电流?q i ,并依照以下步骤估计转子的位置和转速:首先,将检测得到的?q 轴电流?q i 乘以调制信号cos()t h u t ω=;然后,对相乘后所得的信号低通滤波,得到?q 轴电流?q i 的幅值信号()f θ?;最后,对该幅值信号()f θ?进行PI 调节,得到估计转速?ω ,对估计转速?ω积分得到估计的转子位置; (3)重复步骤(2),直至估计的转子位置收敛为一恒定值,即为初次估计 的转子位置?first θ; (4)在??d q -估计同步旋转坐标系的?d 轴上注入高频电压信号?cos()d mh h u U t ω=,在?q 轴注入一个正方向扰动信号,重复步骤(2),直至电机转过一定角度γ,0γ>; (5)根据步骤(3)估计得到的转速方向判断磁极极性,当转速为正时,收 敛的磁极极性为N 极,转子初始位置??=initial first θθ;当转速为负时,收敛的磁极极性为S 极,转子初始位置??=initial first θθπ+。 2、如权利要求1所述的一种永磁同步电机转子初始位置的判断方法,其特 征在于:所述步骤(1)中,采用转子的估计位置?θ进行Park 逆变换,获得实际两相静止坐标系下电压的给定值?u α和?u β。

永磁直线电机精确相变量建模方法(精)

第29卷第9期中国电机工程学报V ol.29 No.9 Mar.25, 2009 98 2009年3月25日 Proceedings of the CSEE ?2009 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2009 09-0098-06 中图分类号:TM 351;TM 359 文献标志码:A 学科分类号:470?40 永磁直线电机精确相变量建模方法 曾理湛1,陈学东1,李长诗2,农先鹏1,伞晓刚1 (1. 数字制造装备与技术国家重点实验室(华中科技大学,湖北省武汉市 430074; 2. 郑州轻工业学院机电工程学院,河南省郑州市 450002 Accurate Phase Variable Modeling of PM Linear Motors ZENG Li-zhan1, CHEN Xue-dong1, LI Chang-shi2, NONG Xian-peng1, SAN Xiao-gang1 (1. State Key Laboratory of Digital Manufacturing Equipment & Technology (Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, China; 2. College of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, China ABSTRACT: This paper proposes a general finite element (FE based phase variable modeling method of permanent magnet (PM linear motors for the accurate dynamic simulation of drive systems. A general phase variable model of PM linear motors is established taking account of the effects of the nonideal geometrical structure on the thrust force, in which the mover position dependent variables are obtained from FE

一种微小型永磁直流直线电机

第10卷 第1期2006年1月   电 机 与 控 制 学 报 EL EC TR IC MACH I N ES AND CON TROL   Vol 110No 11Jan .2006 一种微小型永磁直流直线电机 王坤东, 颜国正 (上海交通大学电信与电气工程学院820所,上海200030) 摘 要:针对永磁直流直线电机的微型化问题,提出了近似拼接的设计方案,优化了结构参数,并 加工出样机进行了试验。在尺寸所限下,该电机使用多个长方体永磁块拼接的正八边形来近似逼近全径向磁化管形磁铁励磁。利用有限元分析软件Max W ell910优化了气隙和磁铁厚度等结构参数。对样机进行了试验分析,结果表明电机驱动力和电流呈线性关系,在整个行程中,输出力均匀,驱动力在电流01004A 时可达0172N,线圈温度在5516°C 。关键词:微小型;永磁;直线电机;有限元优化 中图分类号:T M351 文献标识码:A 文章编号:1007-449X (2006)01-0070-04 A m i n i a ture per manent magnet li n ear DC motor WANG Kun 2dong, Y AN Guo 2zheng (School of Electrical and I nf or mati on Eng .,Shanghai J iaot ong Univ .,Shanghai 200030,China ) Abstract:This paper p resented a method based on j ointed per manents for m iniature of DC linear mot or .Structural para meters were op ti m ized .Pr ot otype was manufactured t o make s ome experi m ents .Under the constraint of m icr o di m ensi on,several rectangular per manent magnets were j oined t o be octagon,whose field app r oaches the filed of tube 2shaped per manent magnetized at radial directi on .Based on the FEA s oft w are Max W ell 910,the structural para meters such as dep th of air gap and per manent magnet were op 2ti m ized .The characters of mot or are analyzed thr ough experi m ents .Research de monstrates that driving f orce is p r oporti onal with the current,and driving force is stable in the whole str oke,and driving force reaches 0172N when the current strength is 01004A ,and the te mperature of coil rises t o 5516°C .Key words:m iniature;per manent;linear mot or;FE op ti m is m 收稿日期:2004-10-21;修订日期:2005-06-15 基金项目:国家高技术研究发展计划(863)资助项目(2001AA422210) 作者简介:王坤东(1978-),男,博士研究生,研究方向为微型特种机器人; 颜国正(1960-),男,博士后、教授、博士生导师,研究方向为特种机器人、仿生机械。 1 引 言 在微小空间进行作业的行走机构,如工业细小管道或人体消化道的检测机器人等,要求直径在10~15mm 之间,同时对驱动技术也提出了新的要求, 如驱动力大、控制方便、可靠等[1,2] 。微型旋转电机受尺寸的限制,加上将旋转运动变为直线运动的中间机构也占有一定空间,因此将外形尺寸控制在直径为10mm 以下比较困难 [3] 。压电驱动器行程较 短,一般都是在μm 量级,存在如何将位移进行放大 的问题,而且驱动力很难控制[4] 。形状记忆合金驱动器由于记忆合金的加热变形—冷却回复的时间较 长,因此速度较慢[5] 。直线电机是近年来出现的一种新型驱动技术,它将电能直接转换为直线运动的机械能,不需要运动转换的中间机构,因此结构尺寸上能够进一步减小。直线电机种类繁多,其中永磁直流直线电机由永磁励磁,结构简单,控制方便。从现有的产品看,还没有出现直径在10mm 以下的圆

一种永磁同步电机转子初始位置的判断方法

一种永磁同步电机转子初始位置的判断方法

1、一种永磁同步电机转子初始位置的判断方法,其特征在于包括如下步骤: (1)在??d q -估计同步旋转坐标系的?d 轴上注入高频电压信号?cos()d mh h u U t ω=,给定?q 轴电压?0q u =; (2)检测电机的两相电流,并经过Clarke 和Park 坐标系变换,得到??d q -估计同步旋转坐标系的?q 轴电流?q i ,并依照以下步骤估计转子的位置和转速:首先,将检测得到的?q 轴电流?q i 乘以调制信号cos()t h u t ω=;然后,对相乘后所得的信号低通滤波,得到?q 轴电流?q i 的幅值信号()f θ?;最后,对该幅值信号()f θ?进行PI 调节,得到估计转速?ω ,对估计转速?ω积分得到估计的转子位置; (3)重复步骤(2),直至估计的转子位置收敛为一恒定值,即为初次估 计的转子位置?first θ; (4)在??d q -估计同步旋转坐标系的?d 轴上注入高频电压信号?cos()d mh h u U t ω=,在?q 轴注入一个正方向扰动信号,重复步骤(2),直至电机转过一定角度γ,0γ>; (5)根据步骤(3)估计得到的转速方向判断磁极极性,当转速为正时, 收敛的磁极极性为N 极,转子初始位置??=initial first θθ;当转速为负时,收敛的磁极极性为S 极,转子初始位置??=initial first θθπ+。 2、如权利要求1所述的一种永磁同步电机转子初始位置的判断方法,其特 征在于:所述步骤(1)中,采用转子的估计位置?θ 进行Park 逆变换,获得实际两相静止坐标系下电压的给定值?u α和?u β。

机械毕业设计954交流永磁直线电机及其伺服控制系统的设计

摘 要 直线电机在各行各业中发挥着越来越重要的作用,特别是在机床进给驱动系统中。本 文以平板式交流永磁同步直线电机为研究对象,从电机机体到伺服驱动系统的软、硬件设 计作了深入研究。 本文首先介绍了交流永磁同步直线电机机体设计过程中电枢绕组、铝芯和定子磁钢的 设计和改进方法,较大程度上减小了推力波动,并且结合大推力直线电机的特点设计了方 便有效的装配过程。 建立交流永磁同步直线电机的数学模型,在此基础上分析了当今最通用的伺服控制策 略,选择了矢量控制方法。确定0 d i 的矢量控制实现形式。通过SVPWM 方法进行脉宽调 制,合成三相正弦波。选用TI 公司2000系列最新DSP TMS320F2812,深入研究了以上算法 在DSP 中的实现形式。采用了C 语言和汇编语言混合编程的实现方法。在功率放大装置中, 以智能功率模块IPM 为核心,设计了功率伺服驱动系统。还包括电流采样、光电隔离、过 压欠压保护和电源模块等。 由于知识和能力的限制,本次课题只对直线电机做一些理论研究。 关键词:永磁同步直线电机 DSP SVPWM 矢量控制

Abstract Line motors are playing a more and more important role in all kinds of trade , especially in machine tool feed system. We carry out our study in motor , software and hardware servo system based on flat AC permanent magnet synchronous linear motor(PMSLM). First introduce the design method of armature ,core of al and magnet which can minish the thrust ripples, then introduce the means of assembly base on high thrust permanent magnet synchronous motors. To ensure the accuracy to a high requirements and get a wide speed range, we choose the dsp of Texas Instruments named TMS320F2812 which is the core of the servo system .In the paper we set up mathematical model of PMSLM, then analyse the current control strategies and choose the vector control method which is realized by the method of 0 d i .The three phase sine wave is compounded by space voltage pulse width modulation(SVPWM).The arithmetic realized by C language and assembly language in DSP. Intelligent Power Model (IPM) is the core of the power amplification circuit system which also contains current sampling circuit, photoelectric-isolation circuits, over-voltage protection circuits, under-voltage protection circuits and power supply. As a result of the knowledge and ability limit, this topic only does a fundamental research to the linear motor. Key words: permanent magnet synchronous linear motor(PMSLM), DSP, SVPWM, vector control

永磁同步电机无位置传感器

Performance Comparison of Permanent Magnet Synchronous Motors and Controlled Induction Motors in Washing Machine Applications using Sensorless Field Oriented Control Aengus Murray, Marco Palma and Ali Husain Energy Saving Products Division International Rectifier El Segundo, CA 90245 Abstract—This paper describes two alternative variable speed motor drive systems for washing machine applications. Three phase induction motors with tachometer feedback and direct drive permanent magnet synchronous motors with hall sensor feedback are two drive systems commonly used in North American washers today. Appliance manufacturers are now evaluating sensorless drive systems because of the low reliability and high cost of the speed and position feedback sensors. A Field Oriented Control Algorithm with an embedded rotor flux and position estimation algorithm enables sensorless control of both permanent magnet synchronous motors and induction motors. The estimator derives rotor shaft position and speed from rotor flux estimates obtained from measured stator currents and the applied voltages. Sampling of currents in the dc link shunt simplifies stator current measurement and minimizes cost. Field oriented control algorithm allows good dynamic control of torque and enables an extended speed range through field weakening. The digital control algorithm runs on a unique hardware engine that allows algorithms to be designed using graphical tools. A common hardware platform can run either the PMSM or IM using sensorless field oriented control in a front loading washer application. Test results are presented for both drives in standard wash cycles. Keywords-component; Advanced Control; Field Oriented Control Algorithm;, Appliance control architecture; I.I NTRODUCTION Accurate control of drum speed is required in both horizontal and vertical axis washer machines [1]. In front loading horizontal axis washers, the drum speed determines the washing action. There is a critical drum RPM, depending on the drum radius, above which the clothes stick to the inside edge of the drum. At this speed, the centrifugal force due to rotation balances the weight of the wet clothes. At speeds below this, the clothes will stick to the side of the drum until the component of the weight acting along the radius is greater than the centrifugal force. Once this angle is reached, the clothes fall back down into the base of the drum. The speed of the drum determines how vigorously the clothes are washed and allows a gentle wash cycle to be selected for delicate items. In the spin mode, the water is drained and the drum speed is increased well beyond the critical speed and the water forced out of the cloths by the centrifugal force. In traditional top loading vertical axis machines, the agitation action is produced mechanically using a gearbox and clutch. However, the introduction of speed control systems not only simplifies the mechanical system but also allows for wash cycle control. The control of the speed and angle of stroke allows the system designer to better manage the washing action and so develop wash cycles that use less water. European front-loading washers have used variable speed control for many years and typically use a universal ‘brush type’ motor. However, the American washer uses a larger drum size, which requires a motor with a power range beyond that of the universal motor solution. The front-loading drive solutions on the market today include direct drive permanent magnet synchronous motor drives or a belt drive using an induction motor. Appliance manufacturers are now evaluating these two drive types in top-loading machine to reduce cost and improve performance. However, both these drive systems use shaft feedbacks sensors. The direct drive PMSM typically uses a Hall Effect sensor for position feedback while the induction motor drive typically uses an analog or digital tachometer for speed feedback. The ideal universal drive can run either a PMSM or an induction motor without shaft feedback sensors. However, a single hardware platform can efficiently run either a PMSM or an induction motor using sensorless field oriented control algorithm. In both cases, speed and position estimates derive from motor terminal voltages and currents. Induction motors were initially preferred for washing machine drives because of the ease of running in high speed field weakening mode even with simple scalar control methods. However, the PMSM is now becoming a viable solution because field oriented control approach enables high speed field weakening. In an induction motor, the torque producing current flows in both the rotor and stator windings while the air gap field generation needs additional field current. Therefore, in washing mode, the total copper losses are more than double

永磁同步电机转子初始位置估计

工学硕士学位论文 永磁同步电机转子初始位置估计 INITIAL ROTOR POSITION ESTIMATION FOR PMSM 胡任之 哈尔滨工业大学 2008年7月

国内图书分类号:TM351 国际图书分类号:470.40 工学硕士学位论文 永磁同步电机转子初始位置估计 硕士研究生:胡任之 导师:邹继斌 教授 申请学位:工学硕士 学科、专业:电机与电器 所在单位:电气工程系 答辩日期:2008年7月 授予学位单位:哈尔滨工业大学

Classified Index:TM351 U.D.C.: 470.40 Dissertation for the Master Degree in Engineering INITIAL ROTOR POSITION ESTIMATION FOR PMSM Candidate:Hu Renzhi Supervisor:Prof. Zou Jibin Academic Degree Applied for:Master of Engineering Specialty:Electrical Machine and Apparatus Affiliation:Dept. of Electrical Engineering Date of Defence:July, 2008 Degree-Conferring-Institution:Harbin Institute of Technology

哈尔滨工业大学工学硕士学位论文 摘要 永磁同步电机(PMSM)具有高效率、高功率密度、控制性能好、启动特性好等优点。然而转子初始位置的准确检测是PMSM可靠启动的必要保证。转子初始位置偏差将引起电机启动电流过大,甚至会造成电机过流或发生反转,负载较大时情况更加严重。本文针对PMSM的转子初始位置估计的问题进行了深入的研究。 基于转子预定位的PMSM初始位置估计是一种常用的方法。本文分析了转子预定位法的原理和初始位置估计精度的影响因素,采用了电流闭环的转子预定位方法,并提出平均值法来克服摩擦力引起的初始位置估计误差。该方法可以准确的估计空载条件下的转子初始位置。 针对负载对转子初始位置估计的影响,在分析转子初始位置偏差与电流矢量、电磁转矩关系的基础上,提出了基于电流矢量控制的PMSM转子初始位置估计方法。将该方法与转子预定位法相结合,可以克服极限位置下无法进行初始位置估计的问题。所提出的方法实现了较大负载条件下的初始位置估计。 针对在转子静止条件下进行初始位置估计的问题,在PMSM饱和凸极效应分析的基础上,对基于饱和凸极效应的转子初始位置估计的原理进行分析,研究了具体的实现方法。通过采用电压矢量优化和对电流矢量进行后处理的方法来提高初始位置估计的精度,实现了负载条件下的转子初始位置估计。 最后,对基于高频信号注入的PMSM转子初始位置估计方法进行了研究,分析了旋转高频电压注入法的原理,并进行了仿真验证。该方法可以在负载条件下准确地估计内嵌式永磁同步电机的转子初始位置。 关键词永磁同步电机;转子初始位置;估计;凸极效应 - I -

表贴式永磁同步电机磁极优化建模与分析

Modeling and Analyzing of Surface-Mounted Permanent-Magnet Synchronous Machines With Optimized Magnetic Pole Shape Zhenfei Chen1,Changliang Xia1,2,Qiang Geng2,and Yan Yan1 1School of Electrical Engineering and Automation,Tianjin University,Tianjin300072,China 2Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy,Tianjin Polytechnic University, Tianjin300387,China Two types of eccentric magnetic pole shapes for optimizing conventional surface-mounted permanent-magnet(PM)synchronous machines with radial magnetization are presented in this paper.An analytical method based on an exact subdomain model and discrete idea is proposed for obtaining the air-gap?ux density distribution in the improved motor.Cogging torque and back EMF analytical models are further built with the?eld solution,which provide useful tools for investigating motor performances with unequal thickness magnetic poles.The accuracy and feasibility of the models have been validated by a?nite element method.Based on the analytical models,the effects of pole shape parameters on motor performance are investigated.Results show that both pole shapes can perfect magnetic?eld distribution,decrease harmonic content of back EMF,reduce torque ripples,and improve the utilization of PMs. Index Terms—Exact subdomain model,?ux density distribution,magnetic pole shape optimization,surface-mounted permanent-magnet(PM)synchronous machine. I.I NTRODUCTION T HE surface-mounted permanent-magnet(PM) synchronous machine has been widely used in elevator,wind turbine,and hybrid electric vehicle applications due to its high ef?ciency,power factor,and torque density [1],[2].The PM pole,as a pivotal part of the PM motor, directly affects motor cost and behavior,such as magnetic ?eld,back EMF,torques,and so on.As a result,magnetic pole design is particularly important in PM motor design and has attracted lots of attention.Studies in[3]–[6]point out that the contributions of different PM parts are not uniform and magnetic pole optimization can not only improve PM material utilization,reduce magnet material cost,but also achieve more sinusoidal magnetic?eld distribution and lower cogging torque performance. The magnetic?eld calculation is an important prerequisite for the analysis of PM machines.Many methods have been proposed for magnetic?eld prediction in past few decades. In[7],the drawbacks and stability of numerical implementa-tion are discussed and a semianalytical framework is presented for solving2-D PM machine models in three different coordi-nates.Nevertheless,analytical modeling is usually much more complex for improved PM motors with optimized magnetic pole con?gurations,since the radial thickness of magnetic pole changes with the circumferential position,which makes its mathematical modeling more dif?cult than that of conven-tional magnetic poles.Several analytical methods are given in[8]–[10],which provide valuable theoretical references for magnetic pole design and analysis.Stator slotting is usually neglected or complicated pole boundary is simpli?ed to reduce the dif?culty of modeling,which also results in a low accuracy of the models. Manuscript received March3,2014;revised May11,2014;accepted May24,2014.Date of current version November18,2014.Corresponding author:C.Xia(e-mail:motor@https://www.360docs.net/doc/4719034842.html,). Color versions of one or more of the?gures in this paper are available online at https://www.360docs.net/doc/4719034842.html,. Digital Object Identi?er 10.1109/TMAG.2014.2327138Fig.1.PM pole shapes.(a)Conventional pole shape S0.(b)Outer arc eccentric pole shape SA.(c)Inner arc eccentric pole shape SB. In this paper,two types of eccentric magnetic pole designs are chosen for pole shape optimization of surface-mounted PM machines with radial magnetization.To solve the problem of unequal thickness magnetic pole modeling,a modi?ed subdomain model method based on discrete idea is proposed to predict magnetic?eld distribution in the air-gap.With the ?eld solution,cogging torque and back EMF models are built. The effects of magnetic pole dimensions on motor behavior are further investigated to draw some conclusions. II.A NALYTICAL M ODELING A.Eccentric Magnetic Pole Shapes Compared with the conventional magnetic pole,two kinds of eccentric magnetic pole shapes for improving the?eld distribution of surface-mounted PM motors are shown in Fig. 1.Fig.1(a)is the conventional magnetic pole shape designated as S0,Fig.1(b)is the outer arc eccentric magnetic pole shape designated as SA,and Fig.1(c)is the inner surface arc magnetic pole shape designated as SB. As shown in Fig.1,O is the center of motor and h m is the magnet thickness at the pole centerline.For conventional pole shape S0,its inner and outer arcs have the same centre O and the radial thickness does not change with position. R r and R m are the radii of magnet inner and outer surfaces,and h m=R m?R r.For the shape SA,the center of its outer arc moves to O and the radius changes to be R o.For the shape SB,the center of its inner arc moves to O ,and the radius 0018-9464?2014IEEE.Personal use is permitted,but republication/redistribution requires IEEE permission. See https://www.360docs.net/doc/4719034842.html,/publications_standards/publications/rights/index.html for more information.

相关文档
最新文档