大跨高墩变截面曲线箱梁桥悬臂施工变形分析与控制

大跨高墩变截面曲线箱梁桥悬臂施工变形分析与控制
大跨高墩变截面曲线箱梁桥悬臂施工变形分析与控制

大跨高墩变截面曲线箱梁桥

悬臂施工变形分析与控制

石雪飞 高 宝

(同济大学,上海200092)

提 要 结合大跨高墩曲线箱梁连续刚构施工监控项目,分析此类桥梁悬臂施工中产生空间变形的主要因素,并介绍针对此空间变形应采用的施工控制措施,以保证桥梁建成后的线形状态。

关键词 悬臂施工,曲箱梁,施工线形控制,预偏位

Deform ation Analysis and G eometric Control

for Long Span Continuous Curved Box G irder

B ridges in

C antilever Construction

SHI Xuefei G AO Bao

(Tongji University,Shanghai200092)

Abstract By using the spacial analysis software,ANSYS,the mechanic characteristic of vari2 able cross2section PC continuous curved box girder bridge is analyzed and influences of high pier applied on cantilever casting are researched too,then geometric control methods are proposed in cantilever construction.

K eyw ords curved box girder,cantilever construction,geometric control,coupling

1前 言

与直桥相比,曲线梁桥因受弯扭耦合效应的影响,其受力变形更加复杂。在影响曲线梁桥受力的众多因素中,曲率的影响是最明显的。在此之前,国内学者对曲线桥梁的分析多为平面梁格系或空间杆系方法进行,获得了一定的成果,这些成果对小跨径、等截面箱梁的设计与建造起了极大的推动作用。随着我国山区高等级公路的建设,在公路正线上采用曲线梁桥的要求越来越高。这些曲线桥梁跨度大,跨越深谷时必须采用接近或超过百米高的桥墩,一般采用变高度箱梁,桥宽也远比匝道桥宽,箱梁的浇筑也必须采用悬臂浇筑等非一次落架的方式。对于大跨度高墩变截面曲线箱梁桥,国内对其在悬臂施工过程的受力及变形规律尚认识不多,目前迫切要求对施工阶段的曲线箱梁展开研究,并提出相应的施工控制措施,确保悬浇桥合龙精度以及成桥后的线形满足设计要求。

2工程背景

结合京福高速公路某大跨预应力混凝

土连续刚构桥施工监控项目,作者利用空间有限元建立了曲线桥参数化分析模型,研究曲率、墩高对施工过程中结构变形的影响。按中心线展开,主桥跨布置为85+150+85=320m ,最大墩高75m ,箱梁顶板宽12.0m ,箱梁底板宽7.0m ,根部梁高9.0m ,跨中

梁高2.8m ,从根部到跨中梁高为二次抛物线变化。最大单悬臂为74m ,除0号块利用墩顶托架现浇外,其余19个悬浇节段,采用挂篮逐段施工;两边跨侧各留有一现浇段,边跨及中跨合龙段均利用吊架合龙。

3施工阶段曲率对自重的影响

311竖向位移

图1~4为最大悬臂工况下,仅考虑自

重作用的不同弯曲半径、不同墩高T 构,其悬臂端部的竖向变形。从图中可以看出,在自重作用下,悬臂向曲线内侧扭转,造成挠度曲线内侧低、外侧高,截面产生扭转角,同时使得曲线梁比相同跨径直线梁的挠度大。弯曲半径越小,悬臂端部竖向变形越大;墩身越高,由于墩身自重产生的压缩变形也越大,同样会引起悬臂端部竖向位移的增大,并且由于曲率影响,弯扭耦合产生的扭矩作用在墩顶位置,使得墩身产生向内弧偏转的变形越大,墩顶水平位移引起的墩顶转角同时也会引起悬臂梁体的刚体转动,使悬臂端部的扭转角更大

图1 620半径T

构悬臂端顶板竖向位移

图2 620半径T

构悬臂端底板竖向位移

图3 100m 半径T

构悬臂端顶板竖向位移

图4 100m 半径T 构悬臂端底板竖向位移

312径向位移

自重作用下,受曲率影响,曲线箱梁T 构上部结构重心偏向内弧一侧,由此对墩中心线产生的扭矩使得T 构墩身如同悬臂端受一弯矩的悬臂梁一样产生偏向圆心的径向位移,显示出如下规律:半径越小,箱梁自重重心偏离墩身轴线越大,墩身所受横桥向弯矩越大,产生的侧向水平位移就越大;墩身越高,相同横桥向弯矩引起的位移也越大,如图5、图6所示。

图5 100m 半径T

构悬臂根部底板径向位移

图6 620m 半径T

构悬臂根部底板径向位移

图7 620m 半径T

构扭转角沿纵向的分布

图8 100m 半径T 构扭转角沿纵向的分布

313扭转角沿纵向分布

在弯扭耦合作用下,悬臂阶段的箱梁除

发生挠曲外,而且还产生扭转。以往一般认

为扭转角由悬臂根部向端部逐渐增加,计算结果如图7、图8所示,从中可以看出扭转角的最大值不在悬臂端部,而是在距离悬臂端一段距离后。这种现象可以解释为:对于宽箱梁来说,由于外弧比内弧长,对称截面的曲线箱梁的重心线与截面形心连线不重合,重心线向外弧偏移,这使得梁体微段自身产生外弧低于内弧的扭转,如同直线箱梁的偏载扭转;同时,对于悬臂整体而言,悬臂体整体重心对计算截面又产生扭矩,使得梁体产生外弧高于内弧的扭转;梁体产生扭转是这两种扭矩共同作用的结果。扭转角的最大点位置不但与悬臂的圆心角有关,同时还与主梁的弯扭刚度比有关。

4悬浇顶板预应力束张拉效应

按照杆系理论,在横断面上对称布置预

应力束后,张拉预应力后截面上不会产生扭矩,也就是没有扭转效应;从空间分析来看,悬臂顶板预应力束张拉后,梁体会上翘,并在悬臂端部变形达到最大,并且曲线梁的外弧一侧的向上竖向位移要比内弧一侧略大(如图9),说明截面有略微扭转,但数值与平均

位移相比非常小。扭转可以解释为主梁在预

应力作用下向上弯曲时,由于曲线的几何形状使曲线外侧边缘的拱度比内侧边缘大,这

一扭转量从悬臂端向悬臂根部逐渐减小。

图9 第19节段悬浇预应力束张拉后顶

板竖向位移沿悬臂纵向的变化

图10 边跨合龙预应力束张拉后中跨

悬臂端部竖向位移

5曲率对合龙预应力束张拉效应的影响

预应力混凝土连续曲线箱梁刚构采用悬臂浇筑方法时需在施工过程中进行体系转换,即在悬臂施工时,结构的受力状态呈T形刚构,待施工合龙后形成连续梁。T构合龙时,一般通过张拉合龙预应力使各个T 构成为一体,合龙预应力钢束将作用在连续体系上,其受力规律与施工阶段不同。合龙预应力使得合龙跨跨中明显上拱,并使相邻未合龙跨悬臂端部产生向下的竖向位移(如图10)。相邻跨的竖向位移完全是由于墩顶处产生弯曲转角和扭转角,从而使悬臂梁体发生了刚体转动引起的。同时,合龙预应力产生的桥墩次反弯矩,使得梁体产生向外侧的扭转,墩顶截面和悬臂段产生偏离圆心的径向位移(如图11、图12),但相对于竖向

位移,径向位移量非常小,可以忽略不计

图11 

边跨预应力束张拉后墩顶处径向偏位

图12 边跨预应力束张拉后主跨侧悬

臂端部顶板径向偏位

6墩高对变位的影响

对于大跨高墩连续刚构弯桥来说,墩身的刚度对结构的变形有很大影响,主梁的扭转将会使墩身发生横桥向扭转和平移。从图7和图8中可以看出,不计桥墩作用时箱梁本身的扭角非常小,墩顶的转角使箱梁各断面的扭角增加了一个常量。在主梁的扭转成分中相当大比例是由桥墩横桥向转角贡献的,并且墩身愈高,此扭转角愈大,对主梁的扭转影响也愈大。从图5和图6也可以看出,箱梁的扭转不但使墩顶发生转角,同时还产生很大的横桥向水平位移,墩身愈高,横向抗水平变位刚度愈小,产生的水平位移愈大。并且对于采用不同高度墩的T 构合龙,预应力束张拉后较高墩会产生较大的偏向合龙段方向的切向位移,同时较低墩T构悬臂端会产生大于较高墩T构一侧的向上竖向位移。

7结论

对大跨变截面曲线梁桥,曲率是影响结构变形的主要因素。曲率半径愈小,自重作用下的竖向变形愈大,扭转效应也愈明显,梁体偏向曲线内侧的位移也愈大;高墩则进一步放大了这一影响,并且墩身也会在施工过程中产生的横向弯矩作用下沿平曲线法线方向偏位。

从施工过程分析可知,曲线梁桥明显区别于直桥之处在于,墩身与梁体轴线会产生相对平曲线法线方向的偏位,因此要保证成桥后墩身的垂直度以及主梁轴线达到设计位置,就必须在施工过程中设置反向的预偏位。影响径向位移的主要因素是悬臂浇注施工阶段的混凝土自重,悬浇预应力束和合龙预应力束影响较小,因此径向预偏设置只要考虑施工过程中的混凝土自重效应即可。

由于弯扭耦合效应,曲线梁桥在悬臂施工过程中产生扭转,从空间分析结果看,曲率半径愈小、墩身愈高,施工过程中曲线箱梁产生的扭转角会愈大。但对于高速公路常规大曲率半径下桥梁(不小于600m半径情况下),主梁的扭转效应很小,箱梁内外弧的高差相对于总竖向变形可以忽略不计。在梁底线形控制措施中,最关键的是设置竖向预拱度,以确保成桥后顶面标高达到设计位置。

参考文献

[1] 范 伟,石雪飞.大跨弯坡高刚架桥施工控

制分析.山东建筑工程学院学报,2002

[2] 李惠生,张罗溪.曲线梁桥结构分析.北京:

中国铁道出版社,1992

(上接第9页)

(2)从宁波市甬江的桥型规划角度出发,根据庆丰桥江北岸的地理条件,选用单跨地锚式悬索桥是合适的。

(3)在软土地基上设计地锚式悬索桥,钢加劲梁与锚碇成了必然的配对:地锚式悬索桥的主缆具有强大的重力刚度,它为采用相对自重轻、梁高小的钢加劲梁提供了条件;同时也只有较轻的钢梁能相应减少主缆拉力,从而减轻锚碇的受力负担。

(4)由于软土地基锚碇造价昂贵,如庆丰桥锚碇费用接近总造价的40%,所以在软土地区建造地锚式悬索桥时,尤其要重视锚碇基础方案的选择和优化。

参考文献

[1] 刘健新,胡兆同.大跨度吊桥.北京:人民交通

出版社,1995

[2] 严国敏.现代悬索桥.北京:人民交通出版社,

2002

[3] 吴胜东,吉 林,阮 静.润扬大桥悬索桥北

锚碇基础方案比选.桥梁建设,2003;(2) [4] 杨士金,唐虎翔.景观桥梁设计.上海:同济大

学出版社,2003

(上接第61页)

(3)在选取土钉长度时,以内力计算结果为主要依据,同时考虑有限元分析结果和工程经验进行优化,加长上部钉体长度可使支护变形减小,结构更加稳定。

(4)有限元分析对土钉支护的设计和施工具有一定的指导价值。

参考文献

[1] 陈肇元,崔京浩1土钉支护在基坑工程中应

用1北京:中国建筑工业出版社,2002[2] 黄 强1建筑基坑支护技术规程应用手册1

北京:中国建筑工业出版社,1999

[3] 曾宪明,黄久松,王任民1土钉支护设计与施

工手册1北京:中国建筑工业出版社,2000 [4] 陈希哲1土力学地基基础1北京:清华大学

出版社,1994

[5] 林润德,曾宪明1土钉支护软土边壁(坡)机

理相似模型实验研究1北京:岩土力学与工

程学报,2000

[6] 杨林德,李象苑,钟子雄1复合型土钉墙的非

线性有限元分析1岩土工程学报,2001

山区高墩连续刚构桥梁设计分析

工 程 技 术 在我国公路、铁路交通建设中,山区V 型U型峡谷的跨越是关系到路线设计以及行车安全的关键。针对我国现代公路铁路建设发展的需求,山区大跨度、高墩连续刚构桥梁近年来得到了广泛的应用。利用高墩连续刚构桥梁的技术特点有效解决山区峡谷跨越面临的技术问题,为促进我国公路铁路建设发展奠定了基础。在现代公路铁路建设快速发展的今天,山区桥高墩连续刚构桥梁结构应用能够为山区交通基础建设提供技术支持,促进交通基础建设中科学的应对山区地形条件。 1 高墩连续刚构桥梁技术概述 高墩连续梁刚构桥梁技术是现代桥梁技术综合应用的典型技术。利用高墩技术提高桥梁基础的稳定,利用连续梁技术的变形和内力小特点提高工程结构的受力结构的科学性、提高连续梁的稳定性。在现代桥梁设计与建设中,高墩连续刚构桥梁技术有着广泛的应用。利用高墩连续刚构桥梁技术特点以及其使用寿命长、受力结构稳定等特点促进我国基础交通建设的发展。在现代山区公路、铁路的建设过程中,高墩连续梁刚构桥结构式跨越山涧、峡谷的主要结构,其在我国路桥建设中有着广泛的应用。笔者从自身的实际工作经验出发,结合一部分桥梁的实际案例对山区高墩连续刚构桥梁的设计进行了简要论述。 2 山区高墩连续刚构桥梁设计分析 2.1针对山区高墩连续刚构桥梁设计需求,强化地质勘探与地形勘测的分析 由于山区地形、地质情况复杂,因此在进行山区高墩连续刚构桥梁设计前需要对地质勘探以及地形勘测报告进行细致的分析与探讨。通过详细的分析与探讨使设计人员能够了解山区高墩连续刚构桥梁的实际情况,同时为后期针对地质情况、地形条件进行设计奠定基础。 2.2了解气候条件,针对气候条件进行桥梁设计 了解山区高墩连续刚构桥梁所在地的气候条件能够为设计人员风荷载计算、使用寿命与使用安全性相关计算工作奠定基础。另外,通过山区气候条件的分析还能够了解山区气候条件对高墩连续刚构桥梁的影响,为科学的设计桥梁寿命与荷载奠定基础。2.3以桥梁设计基本原则与规范为基础进 行山区高墩连续刚构桥梁的设计 在山区高墩连续刚构桥梁设计中,要 以桥梁设计的基本原则与规范作为基础, 以此实现桥梁设备使用需求、实现经济安 全和美观的目的。山区高墩连续刚构桥梁 的设计过程中首先要对设计要求以及桥梁 的需求进行论证。以论证结果以及设计要 求作为基础开展荷载等计算工作。在此基 础上依照桥梁设计的基本原则进行山区高 墩连续刚构桥梁的设计,并在此技术上实 现桥梁承载力、使用寿命等要求。针对现代 路桥建设的需求,设计过程中应以设计的 基本原则作为基础,综合考虑桥梁技术性、 经济性以及后期使用维护便捷性以及成本 等问题。针对山区桥梁建设的特点,现代桥 梁设计过程中必须从桥梁设计的基本原则 入手,根据设计规范的要求进行高墩连续 刚构桥梁的设计工作。以基本原则以及规 范的遵守确保山区高墩连续刚构桥梁设计 能够满足设计、施工要求,满足信贷路桥建 设的需求。 2.4山区高墩连续刚构桥梁设计的注意事 项 连续刚构桥梁虽然应用时间较长、已不 是新兴桥梁结构型式,但在温州地区乃至全 国范围内仍属复杂的桥梁结构形式之一,其 设计和施工仍存在许多不确定因素,特别是 桥墩高度在40m以上的高敦连续刚构桥梁, 在设计和施工过程中许多方面仍值得关注 和研究。这在很大程度上影响了山区高墩连 续刚构桥梁结构的应用以及相关质量工作 的开展。针对这样的情况,山区高墩连续刚 构桥梁的设计过程中应从高墩连续刚构桥 梁的结构特点入手,针对实际情况进行设计 与计算。针对山区气候特点,山区高墩连续 刚构桥梁的设计中需要对其结构使用性能、 工程建设情况等进行分析。设计人员应根据 高墩连续刚构桥梁易受环境侵蚀、车辆荷载 以及人为因素等作用造成的性能退化进行 承载力以及荷载计算。按照设计使用寿命进 行相关结构设计以此保障桥梁的使用安全。 2.5实例分析与探讨 外呈山大桥工程设计荷载为公路-Ⅱ 级。主桥上部结构为46+80+46m预应力砼 连续刚构箱梁结构。单箱单室结构。刚构墩 顶处梁高4.8m,跨中梁高2.3m。引桥上部 结构为单孔简支的25m装配式预应力砼组 合小箱梁。下部结构主桥主墩采用空心薄 壁墩,挖孔灌注桩基础,边墩采用桩柱式桥 墩,挖孔灌注桩基础。引桥桥台均为重力式 U台,扩大基础。从该桥基础结构的设计中 可以看出,本桥设计过程中充分考虑了大 桥设计与使用需求、考虑了环境以及地形 的影响。运用将现代桥梁设计技巧以及不 同的结构形式满足桥梁建设与使用的需 求。为了实现桥梁风荷载、使用寿命、结构 强度的需求,该桥桥墩内沿竖向每隔15米 间距设置一道横隔板。通风孔设在每个分 箱室的中间,泄水孔直径8cm,设在墩低最 低处。通过设计的注意事项以及设计方式 的运用有效的保障了桥墩主体结构的稳定 性、同时充分考虑山区降水量大、时间短等 特点。以针对实际情况的设计保障了桥体 的安全、保障了桥体结构的使用寿命。 3 预应力箱梁结构的设计探讨 预应力箱梁结构具有高强度、高刚度 的优势在山区桥梁设计中有着重要的应 用。在山区高墩连续刚构桥梁设计中,应针 对预应力箱梁结构的特点进行设计。针对 预应力箱梁设计与应用的特点,设计过程 中需要注重箱梁结构与高墩结构的适应 性,注重箱梁结构耐久性与安全性。根据山 区气候条件进行箱梁结构受风荷载以及超 载等因素的影响,同时注重使用过程中使 用年限对箱梁结构的影响。针对山区桥梁 建设的实际情况进行预应力箱梁结构设 计,以此保障桥梁使用安全。 4 结论 综上所述,现代公路交通以及铁路发 展过程中山区桥梁建设关系到我国交通运 输行业的发展、关系到经济的发展。在现代 交通基础建设中,应针对山区地形特点选 用合理的结构以满足建设设计需求。以桥 梁设计基本原则以及规范作为指导进行山 区高墩连续刚构桥梁设计,通过科学的设 计保障设计质量、满足桥梁建设与使用需 求,保障桥梁的使用安全。 参考文献 [1]周长军.预应力箱梁结构设计探析.路 桥设计信息,2010(5). [2]刘宏宇.山区桥梁设计注意事项.桥梁 设计资讯,2010(2). [3]王绍江.高墩连续刚构桥梁结构特点与 设计要点.公路设计与施工,2010(12). 山区高墩连续刚构桥梁设计分析 张继明 (温州市交通规划设计研究院浙江温州325000) 摘要:在我国经济快速发展的今天,公路与铁路的建设成为了影响经济发展的关键。山区公路桥梁建设以及铁路桥梁建设是现代公路交通与铁路建设的关键。针对山区地形特点科学运用桥梁设计方法能够有效减少路线距离、提高行车速度。本文就山区高墩连续刚构桥梁的设计进行了简要的论述与分析。 关键词:山区高墩连续刚构桥梁设计 中图分类号:U448文献标识码:A文章编号:1674-098X(2012)01(a)-0098-01 98科技创新导报Science and Technology Innovation Herald

变截面连续梁式桥设计入门

变截面连续梁桥设计入门 预应力混凝土连续梁桥在公路桥梁中的应用范围越来越广泛,跨径超过40m时多采用变截面箱梁,本文主要介绍变截面连续箱梁桥设计的入门知识和容易遗漏的一些技术处理措施。 一、变截面连续梁桥的适用范围 变截面连续梁桥主跨经济跨径一般在40~250m之间,桥型优点在于施工技术成熟、造价低廉、行车舒适、养护简单;缺陷在于结构自重大、容易开裂、恒载在使用荷载中占据较大比例、建筑高度高。 二、箱梁构造设计 1.箱梁箱室分配 (1)鉴于多室箱梁弯曲内力分配难以把握,箱梁最好采用单箱单室; (2)箱梁分室受畸变和横框架抗弯控制,当箱梁最大宽高比超过3~3.5时应考虑分室; (3)当采用单箱多室结构时,各墩支撑最好一条腹板对应一排支座; (4)当腹板与支座不是一一对应或支座中心与腹板中心存在偏离时应进行支座处横隔板的横向抗弯计算。 2.箱梁梁高 箱梁梁高的控制因素主要包括: (1)箱梁根部梁高一般取主跨跨径的1/16~1/20;跨中梁高一般取主跨跨径的1/40~1/60。 (2)跨中梁高最小箱内净高一般不宜小于1.5m,特小跨径桥梁例外。 (3)箱梁最矮梁段箱体宽高比不大于3.5。 3.梁高变化 箱梁梁高一般采用抛物线变化,主跨跨径小于120m时采用2次抛物线,大于120m时采用1.8、1.6或1.5次抛物线。 4.底板厚度 箱梁底板厚度变化规律一般采用2次抛物线,最薄处根据桥梁跨径、构造需要和横向抗弯计算确定一般为20cm~32cm;最厚处底板厚度一般取跨径的1/200~1/120,根据下缘压应力要求控制。

1.纵向预应力 一般由内力设计控制:抵抗负弯矩设置顶板束;抵抗正弯矩设置底板束;抵抗主拉应力设置腹板束。

高墩大跨连续刚构梁桥快速施工

高墩大跨连续梁桥快速施工工法 一、前言 随着桥梁技术的快速发展,我国在高墩大跨连续刚构梁桥施工技术方面有成熟的经验。但在实际的施工过程中,施工工期、施工环境、自然条件、以及其他不可预见因素影响施工。在各种不利的条件影响下,施工单位的施工组织能力、施工方案的选择、机械设备的投入,是施工任务的关键因素。 李子沟特大桥集“深基、群桩、高敦、、大跨、刚构——连续组合梁结构”为一体,建筑高度161.1m,砼圬工10.5万m3。因各种因素的影响工期滞后11个月,常年大风、夏季暴雨、冬季天气寒冷,大雾、大雨、冰冻等不良气候条件也是影响大桥施工的重要因素。 经过合理安排,精心组织施工,加大投入以及全体参战人员的努力,克服诸多不利因素给工期带来的影响,自1999年3月份主体工程正式开工至2000年9月份大桥全部和拢,实际施工时间为17个月,不但将延误的10个月工期全部抢回,还比计划工期提前两个月完成。 二、工法特点 1、施工组织合理,保证措施得力。 2、缆索吊、塔吊、液压翻升模板、走行挂篮等大型机械设备配套设置,为工程的快速施工提供了必要保证。 3、多层立体交叉作业,满空间施工。 三、适用范围 本工法适用于铁路和公路单双线高墩大跨连续梁桥施工,尤其在施工工期短、砼圬工量大、施工条件恶劣的条件下,施工效果更加明显。 四、梁桥快速施工的保证措施 (一)、配套的机械设备 大型设备的配套使用,不仅减少劳动强度,降低了高空作业的难度,为确保大桥快速施工提供了重要保障。针对大跨刚构梁桥施工特点的设备主要有:大跨度缆索吊(用于砼灌注、材料运输)、液压自升翻版模设备(高墩施工)、走行挂蓝(连续梁施工)。 1、大跨度缆索吊 缆索吊车的高墩大跨度桥梁常用的运输设备,因地制宜的架设不受地形的限制,尤其对山

变截面预应力混凝土连续箱梁大桥施工技术研究

变截面预应力混凝土连续箱梁大桥施工技术研究 发表时间:2016-03-21T10:10:38.140Z 来源:《基层建设》2015年26期供稿作者:徐立骞 [导读] 杭州市城市建设基础工程有限公司随着桥梁技术不断发展,变截面预应力混凝土箱梁得到越来越广泛的应用。杭州市城市建设基础工程有限公司浙江杭州 310004 摘要:随着桥梁技术不断发展,变截面预应力混凝土箱梁得到越来越广泛的应用。某桥主桥为变截面连续梁桥,在施工过程中进行了相应的施工控制。本文结合某桥对变截面预应力混凝土连续箱梁施工要点进了研究,可为同类型工程施工提供参考。关键词:变截面;预应力;箱梁大桥;钢管桩;施工技术 1、工程概况 某桥工程桩号分别为K0+000,终点桩号K2+300,全长2.3km。主桥上部构造:混凝土C55:16293.6m3Ⅰ钢筋606t,Ⅱ钢筋2747t,预应力钢绞线841t。该桥左幅设计为:(4×32m)等截面预应力砼连续箱梁+(58+3×96+58)变截面预应力砼连续箱梁+(3×24)等截面预应力砼连续箱梁+(4×32)等截面预应力砼连续箱梁+(3×32)等截面预应力砼连续箱梁;右幅设计为:(3×32m +24.175m)等截面预应力砼连续箱梁+(58+3×96+58)变截面预应力砼连续箱梁+(25.825+2×27)等截面预应力砼连续箱梁+(4×32)等截面预应力砼连续箱梁+(3×32)等截面预应力砼连续箱梁,总长828m。全桥位于直线段,部分纵面位于-2.4%和2.4%直线纵坡段,其余位于R=8000,T=144的竖曲线上。 2、箱梁结构形成 该桥起点桩号为K0+842.877,终点桩号K1+670.877,大桥全长828m(双幅),主桥设计为58m+3×96m+58m五跨变截面预应力混凝土连续箱梁。主桥上部箱梁为变截面单箱双室断面,箱梁梁高、底板厚度均按圆曲线变化。主跨箱梁根部梁高(箱梁中心线)为560cm,跨中梁高(箱梁中心线)为270cm,箱梁顶板全宽为2050cm,厚度25cm。底板宽度957.7至1180.8cm变化,厚度为73.6—30cm。腹板厚度分别为75cm及50cm。箱梁在花瓶墩顶处设300cm厚的横隔板。主跨箱梁单“T”共分12段悬臂浇筑,0号梁段长12m,其余1-12号梁分段长为7x300+5x400cm,边跨、次边跨、中跨合拢段都为2m,边跨现浇段长10m。0号梁段和边跨现浇段采用钢管桩支架现浇施工,主跨T构采用对称挂篮悬臂现浇施工,悬浇最重梁段为1794kN。全桥合拢顺序为:先合拢两个边跨,接着合拢次边跨,最后合拢中跨。 3、0#段桥梁结构特点 3.1 0#块施工 该桥0#段采用单箱双室结构,节段长1200cm,墩顶高560cm,底板宽957.7cm,顶板宽2050cm,0号块混凝土方量为473.3m3,0号块重量为12542kN。考虑0#块长度较长,桥面与墩身宽比大,结合设计图纸及实际施工条件,主桥0#块支架选用钢管桩支架,图1 0#段支架示意。 图1 0#段支架示意 3.2钢管桩支架构造 钢管桩支架由钢管桩立柱、剪刀撑、主横梁、纵向分配梁、落架系统、模板系统等分别由六部形成: 1)钢管桩立柱:墩柱两侧底板位置各设置3根φ700σ10钢管桩立柱,用于支撑底板、腹板荷载以及抵抗部分施工不平衡力距;两侧各设置3根φ530σ6钢管桩立柱,用于支撑腹板和翼板荷载。 2)剪刀撑:钢管桩立柱之间设置[20槽钢剪刀撑增加支架横向稳定,剪刀撑的层数根据支架高度进行调整。 3)主横梁:主横梁采用两根Ⅰ45b工字钢,横梁与钢管桩采用焊接。 4)纵向分配梁:纵向分配梁采用Ⅰ25b工字钢,分配梁按照支架设计进行布设。 5)落架系统:纵向分配梁与主横梁之间设置木楔,以便于后期模板拆除。 6)模板系统:外侧模采用定型钢模,单侧模板长度组合为4.5m+3.5m+4.5m,几何尺寸以设计图为准;考虑0#段内部几何尺寸变化较大,内模采用组合木模。 3.3钢管桩支架搭设 安装前准备→钢管立柱→设置剪力撑→安装主横梁→安装纵向分配梁及木模→铺设底模→预压→卸载→调整模板标高→安装侧模→钢筋预应力绑扎→砼浇筑。 3.4准备顺序 钢管桩支架拼装应做好以下准备: 1)根据设计图纸要求,在加工场下料,焊接过程中应注意控制杆件的结合尺寸及焊接质量;

连续曲线梁桥设计探析

连续曲线梁桥设计探析 文章论述了曲线桥梁的受力性,并且阐述了设计时要注意的要素。 标签:曲线梁桥;受力特点;结构设计 1 概述 曲线桥是当前的道桥项目中非常关键的一个组成部分,尤其是在最近几年它得到了非常广泛的应用。对于那些互通型的立交匝道来讲,它的使用更是非常的明显。在设计匝道的时候会受到很多要素的干扰,比如地形以及所在区域的规模等,这些要素的存在使得该项设计有如下的一些特征。第一,此类桥的宽度不是很宽,通常匝道的尺寸在六米到十米之间。第二,匝道本身是为了辅助道路转向的,在立交工程中会受到土地规模的影响,因此这类桥大多数是小尺寸的曲线桥。第三,匝道桥的纵向坡度非常大,有时会横跨下方的车道,此时就使得桥的长度变长。因为这种桥本身弯斜,形状特别,所以它的设计工作无法正常的开展。 2 曲线梁桥的平面及纵、横断面布置 最近几年高速路在设计的时候更加的关注线形方面的内容,规定设计要合乎线形要求。因此在布局桥梁平面的时候,要遵照总的线形布局规定,其纵坡也要和路线的纵坡保持一致。通常为了应对截面的扭矩以及弯矩,在设计的时候常使用箱形的截面。由于桥面超高的需要及梁体受扭时外边梁受力较大的需要,所以可以在其水平方向上把主梁设置成不一样的高度。为了便于构造,方便建设,也可以将其设置成一样高度的,其超高横坡由墩台顶面形成。 3 曲线梁桥结构受力特点 3.1 梁体的弯扭耦合作用 一般来说,当受到外在力影响的时候,曲梁会出现一定的弯矩以及扭矩,两者会彼此影响,进而导致截面处在一种耦合的状态中,截面的拉力要较之于直梁大,这个特征是这种梁所特有的。因为这种桥会承受较高的扭矩力,所以会发生变形现象,它的外侧的挠度要比相同尺寸的直桥大一些。因为存在耦合作用,所以在桥上方会存在翘曲现象。 3.2 内外梁无法均匀受力 对于曲梁桥来讲,因为其扭矩较大,所以会导致外梁发生超载而内梁出现卸载的情况,特别是当桥梁较宽的时候这种现象更加的明显。因为两个梁的支点反力差别非常大,如果活载发生了偏移的话,内梁就会生成一种反向力,此时假如内梁无法承受这种力的话,就会使得梁体和支座分离。

悬臂梁的受力分析与结构优化

悬臂梁的受力分析与结构优化 吴鑫龙3136202062 【摘要】悬臂梁不管是在工程设计还是在机械设计中都有着广泛的应用,其有着结构简单,经济实用等优点。但受到其自身结构的限制,一般悬臂梁的力学性能和使用性能都会受到很大的限制。本篇主要探究悬臂梁在使用中的受力情况并从材料力学的角度来对其进行优化设计,并对新设计悬臂梁进行分析。 【Abstract 】Cantilever whether in engineering or mechanical design have a wide range of applications, it has a simple structure, economical and practical advantages. But by its own structural limitations, the general cantilever mechanical properties and performance will be greatly limited. This thesis is focus on exploring the cantilever in use from the perspective of the forces and the mechanical design to be optimized., and analysis the new design cantilever . 【关键词】悬臂梁受力设计 【Keywords】cantilever force analysis optimization 背景及意义 悬臂梁是指梁的一端为不产生轴向、垂直位移和转动的固定支座,另一端为自由端(可以产生平行于轴向和垂直于轴向的力)。在实际工程分析中,大部分实际工程受力部件都可以简化为悬臂梁。但是悬臂梁的缺点在于它的受力性能不好,即使只是在悬臂梁末端施加一个较小的载荷,通过较长力臂的放大作用,也会对底部连接处产生一个很大的弯矩。因此,对悬臂梁强度校核前的受力分析和对其进行优化设计对工程和机械领域的发展都有着极大的意义。 一般悬臂梁的受力分析 一般悬臂梁,既没有经过任何结构和形状改变的普通悬臂梁。

变截面连续梁完整计算书

一、工程概况 上部结构采用预应力混凝土变截面连续箱梁,为双幅结构。单幅箱梁采用单箱单室截面,箱梁顶板宽11.99m,底板宽为6.99米,箱梁顶板设置1.5%的横坡。边跨端部及中跨跨中梁高均为2.0m(以梁体中心线为准),箱梁根部梁高为4.0米,梁高从2.0m到箱梁根部按1.5次抛物线规律变化;边跨端部及中跨跨中底板厚度为0.25米,箱梁悬臂根部底板厚度为0.6米,箱梁底板厚度从2.0m到悬臂根部按1.5次抛物线规律变化。箱梁腹板在3.5m长度内由0.45米直线变化至0.6米。 桥台采用重力式U型桥台,桥台与道路中心线正交布置。桥台扩大基础应嵌入中风化岩面不少于0.5m,同时应满足基底持力层抗压承载力要求,桩基础应嵌入中风化岩层长度不小与2.5倍桩径,桥台台身采用C25片石混凝土浇筑,台帽混凝土采用C30钢筋混凝土。台后的填料采用压实度不小于96%的砂卵石,回填时应预设隔水层或排水盲沟。 桥墩均采用钢筋混凝土八棱形截面,基础采用桩基接承台。桥墩墩身截面为3.5×2.0m,截面四角对应切除70×50cm倒角。墩顶设盖梁,桥墩盖梁尺寸为 6.99m(长)×2.4m(宽)×2.6m(高),承台尺寸为8.4m(长)×3.4m(宽)×2.5m。每个承台接两根直径2.0m的桩基。 所有的桩基础均采用嵌岩桩,用人工挖孔成桩。桩基础应嵌入完整的中风化岩面不少于3倍桩径,并要求嵌岩岩石襟边宽度大于3.0m,同时应满足基底持力层岩石抗压强度要求。 桥型布置见图1 桥型立面布置图。 图1 桥型立面布置图 二、主要技术标准 汽车荷载:公路-I级。 人群荷载:3.5 KN/m2。 2.4.桥梁宽度:

变截面连续箱梁毕业开题报告

开题报告 1 工程简介 该桥为南水北调中线一期工程总干渠邯邢渠段跨渠公路。地震设防烈度7度。地质资 料如图所示:粘性土(厚度为1.5-4.9m),壤土(厚度为2.2-9.5),粉砂(厚度为1.3-5.3m)。 材料:C50混凝土,铰缝采用C50细石混凝土。立柱、盖梁及桥头搭板采用C30混 凝土,基桩采用C25混凝土。桥面铺装采用三涂FYT-1改进型防水层+10cm厚C50混凝 土(原路面为混凝土路面)或10cmC50混凝土找平层+三涂FYT-1改进型防水层+10cm厚 C50混凝土(原路面为沥青路面)。预应力钢绞线采用1860级高强低松弛s 15.24钢绞线。 2 桥梁设计 (1)桥型布置 分孔:该桥采用现浇预应力变截面连续箱梁,对于多于两跨的连续梁,其边跨一般为中跨的0.6-0.8倍左右,当采用箱型截面的三跨连续梁时,其边跨可以是中跨的0.5-0.7倍。该桥共3跨,跨径采用18+30+18比例合适,总跨径为66m;一般30

梁高的确定:该桥型为变截面连续箱梁。根据规定可知,变截面梁支点截面的梁高H支约为(1/16-1/20)l(l为中间跨径),跨中梁高H中约为(1/1.6-1/2.5)H支。因此该桥中间跨径l=30m,H支=1.7m,H中=1m。桥宽为4.5m+2×1m的人行道·。 桥两端设置耳墙和背墙,长3m,主要是固定桥两端的土,桥两端分别设置8cm的伸缩缝。 (2)桥横断面设置 ①桥向两侧设置2%横坡,主要是有利于排水。桥宽6.5m,属于窄桥,由于桥宽小于20m的一般设置为单箱单室截面,因此该桥箱型设置单箱单室,由于该桥墩型为独立中墩,在中墩处箱梁采用全实梁,全实梁长度为2m,桥台处也采用全实梁,长度为1m。悬臂端部厚度不小于10cm,故跨中梁悬臂端取20cm,悬臂根部取30cm,悬臂长150cm,箱梁顶板厚度应满足横向弯矩的要求和布置纵向预应力筋的要求;参考如下: 腹板与顶板尺寸的关系 ②底板厚的拟定:箱梁底板厚度随箱梁负弯矩的增大而逐渐加厚之墩顶,以适应箱梁下缘的受压要求,墩顶区域底板不宜太薄,否则压应力过高,由此产生的徐变将使跨中区域梁体下挠度较多。一般底板厚度与主跨之比宜为1/140~1/170,跨中区域底板厚度可按构造要求设计,跨中底板宜为20~25cm。底板除承受自身荷载外,还承受一定的施工

高墩大跨径连续刚构桥

特高墩大跨径连续刚构桥 施工监控软件操作手册 特高墩大跨径连续刚构桥研究课题组 2004年5月

施工监控使用说明 一、监控内容和方法 施工监控包括挠度监控和应力监控两部分。 1、挠度监控利用现场测量数据识别系统状态,提前预报 悬浇过程中的变形,通过调整立模高度,克 服或减少施工中不确定因素影响,使成桥达 到设计形态。 2、应力监控通过大梁根部埋设的应力传感器监测根部应 力,判断根部索力,避免卡索、断索或张拉力 不均,保证每根(对)索预应力都达到设计状 态。 二、程序安装 开始——设置——控制面板——安装/删除程序——安装 具体按照提示逐步完成。 三、数据结构 程序中使用的数据集中存放在Bridge 子目录中。名称编 排如下:

每个梁系(桥墩)有五个文件。记录结构、计划、仪表、测量和预报数据。前四个要预先输入,预报数据自动建立。分述如下。 1、结构(受力)数据(Construct.txt )文件由五个表组成。各 表项的含义见以下图表: a、桥墩数据表 b、桥梁数据表

c、一类顶板索 d、二类顶板索 说明:无某类索时,其Frop=0。Soktpst.txt 表中( x,y) 也取零。 e、腹板索

附图: 2、索孔与传感器位置(soktpst.txt)

3、施工计划表(workproj.txt) 间。即ts

变截面箱型连续梁桥桥梁工程毕业设计

目录 第一章方案比选 (1) 1.1方案选取 (1) 1.11方案一:50+80+50M的变截面箱型连续梁桥 (1) 1.12方案二:4×45M等截面预应力砼连续刚构梁 (2) 1.13方案三:65+115M斜拉桥 (3) 1.2各方案主要优缺点比较表 (4) 1.3.结论 (4) 第二章毛截面几何特性计算 (5) 2.1基本资料 (5) 2.1.1主要技术指标 (5) 2.1.2材料规格 (5) 2.2结构计算简图 (5) 2.3毛截面几何特性计算 (6) 第三章内力计算及组合 (9) 3.1荷载 (10) 3.1.1结构重力荷载 (10) 3.1.2支座不均匀沉降 (11) 3.1.3活载 (11) 3.2结构重力作用以及影响线计算 (11) 3.2.1输入数据 (11) 3.3支座沉降(SQ2荷载)影响计算 (20) 3.5荷载组合 (24) 3.5.1按承载能力极限状态进行内力组合 (25) 3.5.2按正常使用极限状态进行内力组合 (27)

第四章配筋计算 (31) 4.1计算原则 (31) 4.2预应力钢筋估算 (31) 4.2.1材料性能参数 (31) 4.2.2预应力钢筋数量的确定及布置 (31) 4.3预应力筋的布置原则 (37) 第五章预应力钢束的估算及布置 (39) 5.1按正常使用极限状态的应力要求估算 (39) 5.1.1截面上、下缘均布置预应力筋 (39) 5.1.2仅在截面下缘布置预应力筋 (40) 5.1.3仅在截面上缘布置预应力筋 (41) 5.2按承载能力极限状态的强度要求估算 (41) 5.3预应力筋估算结果 (42) 5.4预应力筋束的布置原则 (44) 5.5预应力筋束的布置结果 (45) 第六章净截面及换算截面几何特性计算 (45) 6.1净截面几何特性计算(见表6-1) (46) 6.2换算截面几何特性计算(见表6-2) (46) 第七章预应力损失及有效预应力计算 (47) 7.1控制应力及有关参数的确定 (48) 7.1.1控制应力 (48) 7.1.2其他参数 (48) σ的计算 (48) 7.2摩阻损失1l σ的计算 (50) 7.3混凝土的弹性压缩损失4l σ的计算 (52) 7.4预应力筋束松弛损失5l

桥墩对曲线连续梁桥自振特性的影响

桥墩对曲线连续梁桥自振特性的影响 摘要多次桥梁脉动试验结果揭示连续箱型梁桥的竖向自振频率与理论分析结果吻合较好而纵向和横向自振频率吻合不好。理论分析时桥墩的简化是关键影响因素。本文以某六跨连续弯梁桥为基础分析了桥墩对于桥梁自振特性的影响,结果表明桥墩对于桥梁的纵向及横向自振频率具有较大的影响,而对桥梁竖向的自振特性影响不明显。 关键词连续箱梁桥自振特性桥墩 1 前言 所谓固有振动是指弹性系统在没有外部动力的作用下形成的振动。固有振动反映系统的固有特性,是研究一切振动问题的基础[1]。因此准确求解桥梁结构的自振特性是桥梁振动问题的首要环节。在成桥后的荷载试验也往往通过脉动法测试桥梁的自振特性,通过与理论结果对比揭示桥梁的刚度情况。然而多次实践表明连续箱型梁桥的竖向自振频率实测与理论分析结果吻合较好而纵向和横向自振频率吻合不好。分析认为,桥墩是关键影响因素。本文通过对某桥的实体建模分析支持了该观点。 该桥总长170m,整座桥梁位于半径220m的平曲线。孔垮布置为25m+4×30m+25m,如图1所示。上部构造为等截面预应力混凝土箱型连续梁,单箱单室直腹板箱梁,梁高1.6m,顶板宽8.1m,底板宽4m,两侧翼缘悬臂长度2.05m,该桥跨中箱梁截面如图2所示。下部构造3号桥墩为独柱墩,其余桥墩为门式刚架墩、钻孔灌注桩基础。 图1连续梁桥总体布置图 图2跨中箱梁截面 2 有限元模型建立 为了研究桥墩对该桥自振特性的影响,分别按两种情况建立了有限元模型,第一个模型不考虑桥墩的影响,第二个模型考虑桥墩和梁的共同作用。Ansys为构建有限元模型提供了丰富的单元选择,具体到该问题可以选用梁单元也可以选用实体单元。使用梁单元分析时模型构建简单,求解速度较快,但是不能直观的反应梁的振型特性。使用实体单元构建模型虽较复杂,求解速度较慢,但是可以获得较高的精度,振型直观。经综合考虑最后决定采用Ansys实体单元Solid45。在墩台附近箱梁截面形式有所改变,采用实体单元可以精确的反映这种截面的变化。考虑桥墩的有限元模型图3所示。

ANSYS悬臂梁的自由端受力的有限元计算[1]

悬臂梁自由端受力的有限元计算 任柳杰10110290005 一、计算目的 1、掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。 2、熟悉有限元建模、求解及结果分析步骤和方法。 3、利用ANSYS软件对梁结构进行有限元计算。 4、梁的变形、挠曲线等情况的分析。 5、一维梁单元,二维壳单元,三维实体单元对计算结果的影响。 6、载荷施加在不同的节点上对结果的影响。 二、计算设备 PC,ANSYS软件(版本为11.0) 三、计算内容 悬臂梁受力模型 如上图所示,一段长100[mm]的梁,一端固定,另一段受到平行于梁截面的集中力F的作用,F=100[N]。梁的截面为正方形,边长为10[mm]。梁所用的材料:弹性模量E=2.0 105[MPa],泊松比0.3。 四、计算步骤(以梁单元为例) 1、分析问题。 分析该物理模型可知,截面边长/梁长度=0.1是一个较小的值,我们可以用梁单元来分析这样的模型。当然,建立合适的壳单元模型和实体单元模型也是可以的。故拟采用这三种不同的 方式建立模型。以下主要阐述采用梁单元的模型的计算步骤。 2、建立有限元模型。 a)创建工作文件夹并添加标题; 在个人的工作目录下创建一个文件夹,命名为beam,用于保存分析过程中生成的各种文件。 启动ANSYS后,使用菜单“File”——“Change Directory…”将工作目录指向beam 文件夹;使用/FILNAME,BEAM命令将文件名改为BEAM,这样分析过程中生成的文件均 以BEAM为前缀。 偏好设定为结构分析,操作如下: GUI: Main Menu > Preferences > Structural b)选择单元; 进入单元类型库,操作如下: GUI: Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add… 对话框左侧选择Beam选项,在右侧列表中选择2D elastic 3选项,然后单击OK按钮。

大跨变截面钢连续梁桥(主跨185m)——崇启大桥(现场高清图文简介)

工程名称:崇明至启东长江公路通道工程(江苏段) 设计:中交公路规划设计院 施工:中交二航局 开工日期:2009-2 竣工日期:2011-2 工程简介:崇启大桥为多跨连续梁结构,主桥跨度为102+185×4+102= 944m。无论联长还是跨径均属国内第一!主桥钢箱梁为变高等宽断面,箱梁单幅宽16.1m,主桥总宽33.2m,两幅桥间距1m,顶板设计为25000m的竖曲线,底板呈二次抛物线变化,近引桥一跨箱梁高度从3.5米变化至9米,中跨部分高度从4.8米变化至9米。主桥钢箱梁横隔板间距5.6m,两道横隔板之间设置一道横肋。横隔板采用实腹式和框架式两种构造,框架中根据断面高低设置“X”或“V”形斜撑。根据受力需要,钢箱梁在不同区段采用了不同的横肋布置,底板受力较大的部位,采用框架式横肋,底板受力较小的部位,采用只在顶部加劲的横肋型式。支点处及边跨端部横隔板采用实腹式横隔板。 钢箱梁采用正交异性钢桥面板,顶板均采用U肋加劲,底板及腹板采用扁钢加劲。根据受力情况的不同,钢箱梁在不同区段采用不同钢板厚度:顶板板厚为16~22mm,腹板厚度为16~28mm,底板厚度为14~48mm。 钢箱梁大节段现场工地连接采用以栓接为主的栓焊组合方式:除了顶板采用焊接连接外,其余的U肋、底板和腹板及其加劲肋均采用高强螺栓连接。 为确保挑臂桥面下U肋加劲的密闭性,在每个梁段端部U肋内设置隔板,并与顶板焊接,保证U肋内部密闭。梁段间U肋依旧采用栓接。 施工特点:根据国内现有起重船的起重能力及钢箱梁制造运输能力,崇启大桥钢箱梁采用大节段整跨吊装。最大吊装长度185m,最大吊重约2730t ,全桥共分12个大节段,现场采用栓焊组合方式进行连接。

曲线连续梁桥的结构设计

曲线连续梁桥的结构设计 曲线梁桥是高速公路和城市立交中普遍应用的一种桥型。文章根据曲线梁桥的结构受力特点,论述了曲线梁桥在施工及成桥运营阶段出现病害的原因,论述了曲线梁桥在设计中应注意的问题,并提出了该类型桥梁设计中的一些经验做法和解决方案。 标签:曲线梁桥;结构设计;受力特点 1 概述 目前在高等级公路及城市立交中曲线梁桥的应用得到了普遍的认可,尤其在城市立交匝道设计中最为广泛。曲线梁桥的设计中常采用箱型截面,因其具有材料用量少、结构自重小、抗扭刚度大、整体稳定性好、截面应力分配合理等优点,而在曲线梁桥中应用非常普遍。 现阶段曲线梁桥的设计和理论研究已经取得了很多成果,但由于曲线梁桥结构受力复杂、施工过程中标高不能准确的控制,由于设计的原因导致在项目的施工或使用过程中已多次发生过事故。常见问题主要为:曲梁内侧支座脱空;主梁横向侧移量过大;横向刚度不足引起扭曲变形;固结墩墩身开裂;梁体的外移和翻转进一步导致支座、伸缩缝的剪切破坏和平曲线超高的丧失等。故在曲线梁桥的设计与施工过程中应充分考虑结构的弯、剪、扭受力特性,对结构内力进行准确分析及合理优化,消除设计带来的不安全隐患。 2 曲线梁桥受力特点 2.1 “弯-扭”耦合作用 曲梁由于自身及外荷载的作用下会同时产生弯矩和扭矩,并且相互作用。表现为曲梁内外侧尺寸不同、支座反力不等、外荷载偏心及预应力径向作用共同引起较大的扭矩,使梁截面处于“弯-扭”耦合作用的状态,其截面主拉应力比相应的直梁桥大得多,这是曲梁所独有的受力特点。 在变形方面,强大的扭矩作用致使曲线梁桥产生扭转变形;曲线外侧的竖向挠度要大于同等跨径的直桥;由于“弯-扭”耦合作用,在梁端可能出现“翘曲”;当梁端处横桥向约束较弱时,梁体有向曲线外侧“爬移”的趋势。 在受力方面,由于存在较大的扭矩,通常会使外梁超载、内梁卸载,尤其当活载偏置时,内侧支座甚至会出现负反力,如果支座不能承受拉力,就会出现梁体与支座发生脱离的现象,即“支座脱空”现象,这种现象在小半径的宽桥中特别明显。 2.2 下部墩台受力复杂

悬臂梁应变测量

悬臂梁应变测量 摘要:在航空、机械及材料研究领域中,零件的强度是一个很重要问题。研究强度问题的途径之一便是实验应力分析。本课程设计便是利用实验应力分析中的电测法来测定弹性元件等强度悬臂梁在力的作用下产生的应变。具体方法是通过在悬臂梁上粘贴三个应变片,它们均分布在悬臂梁的上表面上,其中一应变片位于纵向轴的中心线上,其余两个应变片分别位于轴中心线的两侧等距离处,且靠近变动端;然后通过增减砝码的个数改变所加的力,利用数字万用表记录、读取数据。为了减小实验误差,本实验采用多次测量求平均值的方法,并对实验数据利用Excel进行了拟合,作出了应变片的电阻变化值与载荷之间的关系图,再根据有关公式,最终得出在弹性限度内悬臂梁的应变与它所受到的外力大小成线性关系。 关键词:电测法;应变片;悬臂梁;数字万用表

引言 研究强度问题可以有两种途径,即理论分析和实验应力分析。实验应力分析是用实验方法来分析和确定受力构件的应力、应变状态的一门科学,通过实验应力分析可以检验和提高设计质量、工程结构的安全性和可靠性,并且可以达到减少材料消耗、降低生产成本和节约能源的要求。实验应力分析的方法很多,有电测法、光测法、机械测量方法等。本实验主要是利用电测法。电测法有电阻、电容、电感测试等多种方法,其中以电阻应变测量方法应用较为普遍。电阻应变测量方法是用电阻应变片测定构件表面的应变,再根据应变--应力关系确定构件表面应力状态。工程中常用此方法来测量模型或实物表面不同点的应力,它具有较高的灵敏度和精度。由于输出的是电信号,易于实现测量数字化和自动化,并可进行遥测。电阻应变测量可以在高温、高压、高速旋转、强磁场、液下等特殊条件下进行,此外还可以对动态应力进行测量。由于电阻应变片具有体积小、质量轻、价格便宜等优点,且电阻应变测试方法具有实时性、现场性,因此它已成为实验应力分析中应用最广的一种方法。它的主要缺点就是,一个电阻应变片只能测量构件表面一个点在某一个方向的应变,不能进行全域性的测量]1[。 本实验为悬臂梁的应变测量,所谓的悬臂梁,即一端固定,另一端可以动的弹性元件。应变是描述一点处变形程度的力学量,它是由载荷、温度、湿度等因素引起的物体局部的相对变形,主要有线应变和切应变两类。电阻应变片是一种将机械构件上应变的变化转换为电阻变化的传感元件。 本实验使用的方法为电测法,通过逐级加减载荷改变悬臂梁所受的力,使之发生不同的形变,用电阻应变片作为传感器,将微小的形变这个非电学量转换成电学量电阻的变化来测量悬臂梁的主应变。在该实验中电阻的变化量是通过数字万用表直接读数处理得到的,之后通过应力与应变之间的关系得出悬臂梁所受的正应力,利用Excel制作出拟合曲线进行分析。本实验主要目的在于了解悬臂梁、电阻应变片的结构及工作原理,掌握数字万用表测电阻的方法及原理,理解灵敏度对测量结果的影响,最终利用数

变截面连续梁完整计算书

28+36+46+36+28m变截面连续梁计算书 第一章概述 1.1、工程简介 上部标准段结构为预应力混凝土现浇箱梁结构,跨径28+36+46+36+28m,桥宽23.5m,梁高1.8~5.9m,桥面布置为8m(人行道)+15m(车行道)+0.5m (防撞护栏),桥面铺装为10cm沥青混凝土+8cm C50混凝土。梁体采用后张法预应力构件,结构计算考虑施工和使用阶段中预应力损失以及预应力、温度、混凝土收缩徐变等引起的次内力对结构的影响。 1.1.1、采用的主要规范及技术标准 ①、《工程建设标准强制性条文》建标【2000】202号 ②、建设部部颁标准《城市桥梁设计荷载标准》CJJ11-2011 ③、交通部部颁标准《公路桥涵设计通用规范》JTG D60-2015 ④、交通部部颁标准《公路桥涵地基与基础设计规范》JTG D63—2007 ⑤、交通部部颁标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004 ⑥、建设部部颁标准《城市道路设计规范》CJJ37-90 技术标准: 1、道路等级:主干路 2、设计车速:主线60km/h。 3、设计荷载:公路—Ⅰ级。

4、地震烈度:Ⅶ度,地震动峰值加速度0.1g。 5、横断面:8m(人行道)+15m(车行道)+0.5m(防撞护栏)=23.5m 6、桥梁结构设计安全等级:一级 7、路面类型:沥青混凝土路面。 1.1.2、应用的计算软件 Midas CIVIL 1.1.3、主要参数及荷载取值 1)主梁:C55混凝土,γ=26kN/m3,强度标准值f ck=35.5MPa,f tk=2.74MPa。强度设计值f cd=24.4MPa,f td=1.89Pa,桥梁达到设计强度的100%张拉2)二期恒载: 结构部分:155KN/m; 装饰部分:①侧面装饰12KN/m ②底面装饰6K N/m 3)预应力钢束采用1860级φs15.20钢绞线,公称面积139.0mm2,标准强度f pk=1860MPa(270级),张拉控制应力σcon=1350MPa。 4)管道每米局部偏差对摩擦的影响系数:0.0015 k=; μ=; 5)预应力钢筋与管道壁的摩擦系数:0.17 ζ=; 6)钢筋松弛系数,Ⅱ级(低松弛),0.3 7)锚具变形、钢筋回缩和接缝压缩值:6mm l?=(单端); 8)混凝土加载龄期:7天; 9)收缩徐变效应计算至3650天 10)端横梁支座不均匀沉降为采用5.6mm,次中横梁支座不均匀沉降为采

二桥北汊桥大跨径变截面连续箱梁施工组织设计方案

大跨径变截面连续箱梁施工 赵根生王小山姜艳玲 山东省交通工程总公司 【摘要】南京长江二桥北汊桥为预应力连续箱型梁桥,主桥桥跨布置为(90+3 * 165十90)m。采用悬臂浇注法施工,主要介绍其上部结构的施工工艺。 【关键词】PC连续箱梁施工工艺 一、简介 南京长江二桥北汊桥主桥上部90m+3 * 165m+90m五跨PC变截面连续箱梁,位于半径R=16000m 的竖曲线上。桥宽32m,PC箱梁由上下分离的单箱单室箱梁截面组成。箱梁根部 0号块高 8.8m,跨中梁高 3m,箱梁顶板宽15.42m,底板宽7.5m,翼缘板悬壁长3.96m。箱形梁高按二次抛物线变化。 0号块设两道横隔板。 二、现浇段施工为方便挂篮施工 1.支架搭设 根据挂篮的构造特点,0号、1号、2号段采用在支架上浇注混凝土施工。支架采用4根φ1000mm、壁厚10mm的钢管作为竖向主要受力构件。墩身施工时在墩身顶端预留纵向孔,内穿2根φ15mm 丝杠,通过丝杠将以钢管为主件联接而成的架结构锚固于墩身上,从而形成稳定安全的支架体系。 在支架体系上设灌砂筒,上安放支架,其上铺设底模板。用行架结构将两根钢管锚固于墩顶,可节省许多落地支架所需要的构件安设,即节约材料、缩短安装时间,又增加了支架的安全系数。支架体系上设砂筒,有利于底膜的高度调整和拆除,加快了施工进度。 2.支架预压 现浇支架搭设完成后,进行预压,以检测支架的承载力和稳定性,同时消除永久变形,测定弹性变形,底板高程的调整提供依据。

压载是以 1号梁段重量确定预压荷载。取安全系数 1.4倍即 210号,进行堆载压载,压载结果证明支架是安全可靠的,满足施工要求。 3.0号、1号、2号段施工 0号段混凝土体积大,配筋多,断面复杂,且预应力管道密集,是上部结构受力最复杂的主要浇至箱梁顶。 l号、2号分别一次浇注完成。0号、1号、2号所用侧模均为挂篮悬浇段侧模,这样增加模板的周转次数,节省材料,加快了进度。 4.边跨现浇段基本相同 三、挂篮施工O号、回号、2号现浇段完成以后,进行挂篮悬浇施工 1.挂篮构造及特点 根据本桥梁体分段多、工期紧,结构要求严格等特点,选择了正梯形整体行架挂篮。 挂篮由主行系,后锚系及滑动行走系、悬吊系、模板系及工作平台等五部分组成。连同所有模板及施工机具荷载共重80.5t。 挂篮具有以下特点:结构重量轻,整体钢度大、变型小、构件数量少,拼装快,挂篮下有足够行走作业空间。挂篮同模板整体前移,加工容易,造价低廉操作系统实用方便(如图1)。

相关文档
最新文档