雷达大作业

雷达大作业
雷达大作业

雷达原理

实验名称:脉冲压缩技术在雷达信号处理中的应用学院:电子工程学院

专业:信息对抗技术

班级:021231

姓名:

学号:

脉冲压缩技术在雷达信号

处理中的应用

引言:

雷达是通过对回波信号进行接收再作一些检测处理来识别复杂回波中的有用信息的。其中,波形设计有着相当重要的作用,它直接影响到雷达发射机形式的选择,信号处理方式,雷达的作用距离及抗干扰,抗截获等很多重要问题。现代雷达中广泛采用了脉冲压缩技术。脉冲压缩雷达常用的信号有线性调频信号和二相脉内编码信号。脉冲压缩雷达具有高的辐射能量和高的距离分辨力,这种雷达具有很强的抗噪声干扰和欺骗干扰的性能。因此,脉冲压缩技术在雷达信号处理中广泛应用。

一、脉冲压缩技术原理

雷达是Radar(Radio Detection And Ranging)的音译词,意为“无线电探测和测距”,即利用无线方法来发现目标并测定目标在空间的位置,这也是雷达设备在最初阶段的功能。典型的雷达系统主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。

随着雷达应用的不断扩大,对雷达的作用距离,分辨精度等的要

求相应提高。增大雷达作用距离ΔR=cτ/2可以提高其脉宽或峰值功率,但由于发射管的限制,增大功率往往不容易,于是可以用增大脉冲宽度的方法。对于恒定载频单脉冲信号,脉宽的增大意味着带宽的减小,B=1/μτ。根据距离分辨率的表达式,ΔR=cτ/2。

测距精度和距离分辨力对信号形式的要求是一致的,主要取决于信号的频率结构,为了提高测距精度和距离分辨力,要求信号具有大的带宽。而测速精度和速度分辨力则取决于信号的时域结构,为了提高测速精度和速度分辨力,要求信号具有大的时宽。除此之外,为提高雷达系统的发现能力,要求信号具有大的能量。由此可见,为了提高雷达系统的发现能力、测量精度和分辨能力,要求雷达信号具有大的时宽、带宽、能量乘积。但是,在系统的发射和馈电设备峰值功率受限制的情况下,大的信号能量只能靠加大信号的时宽来得到。测距精度和距离分辨力同测速精度和速度分辨力以及作用距离之间存在着不可调和的矛盾。于是在匹配滤波器理论指导下,人们提出了脉冲压缩的概念。

窄脉冲具有宽频谱带宽。如果对宽脉冲进行频率或相位调制,那么它就可以具有和窄脉冲相同的带宽。假设调制后的脉冲带宽增加了B,由接收机的匹配滤波器压缩后,带宽将等于1/B,这个过程叫脉冲压缩。脉冲压缩雷达不需要高能量窄脉冲所需要的高峰值功率,就可同时实现宽脉冲的能量和窄脉冲的分辨力。脉冲压缩比定义为宽脉冲宽度τ与压缩后脉冲宽度的之比。带宽B与压缩后的脉冲宽度的关系为1/B。这使得脉冲压缩比近似为Bτ。即压缩比等于信号的时宽-

带宽积。在许多应用场合,脉冲压缩系统常用其时宽-带宽积表征。脉冲压缩显著的特点是:

(1)提高了检测性能。它的发射信号采用载频按一定规律变化的宽脉冲,使其脉冲宽度与有效频谱宽度的乘积1B,这两个信号参数基本上是独立的,因而可以分别加以选择来满足战术要求。在发射机峰值功率受限的条件下,它提高了发射机的平均功率 Pav增加了信号能量,因此扩大了探测距离。

(2)提高了距离分辨率。在接收机中设置一个与发射信号频谱相匹配的压缩网络,使宽脉冲的发射信号(一般认为也是接收机输入端的回波信号)变成窄脉冲,因此保持了良好的距离分辨力。这一处理过程称之为“脉冲压缩”。

(3)有利于提高系统的抗干扰能力,大大提高了信噪比。对有源噪声干扰来说,由于信号带宽很大,迫使干扰机发射宽带噪声,从而降低了干扰的功率谱密度。

二、线性调频(LFM)信号

脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。

脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation)信号,接收时采用匹配滤波器(Matched Filter)压缩脉冲。

LFM 信号(也称Chirp 信号)的数学表达式为:

22()

2()()c K j f t t t s t rect T

e π+= (2.1)

式中c f 为载波频率,()t rect T

为矩形信号,

11()0,t t rect T

T elsewise

? , ≤?

=?? ?

(2.2) B

K T

=

,是调频斜率,于是,信号的瞬时频率为()22

c T

T f Kt t + -≤≤,如图

2.1

(a )(K>0) (b )(K<0) 图2.1 典型的chirp 信号 线性调频仿真代码:

%%线性调频仿真

T=10e-6; %脉冲宽度

B=10e6; %频率调制带宽 K=B/T; %斜率 Fs=2*B;Ts=1/Fs; %采样率 N=T/Ts;

t=linspace(-T/2,T/2,N);

St=exp(j*pi*K*t.^2); %信号产生

subplot(211)

plot(t*1e6,real(St)); xlabel('us');

title('线性调频 时域'); grid on;axis tight; subplot(212)

freq=linspace(-Fs/2,Fs/2,N);

plot(freq*1e-6,fftshift(abs(fft(St)))); xlabel(' MHz');

title('线性调频 频域'); grid on;axis tight;

仿真结果:

-5

-4

-3

-2

-1

012

3

4

5

-1-0.50

0.5us

线性调频 时域

-10

-8

-6

-4

-2

02

4

6

8

10

51015

20 MHz

线性调频 频域

图2.2:LFM 信号的时域波形和幅频特性

结果分析:

在满足大时宽宽带积的条件下,线性调频信号振幅接近矩形函数。线性调频信号具有平方率特性。

三、LFM 脉冲的匹配滤波

信号()s t 的匹配滤波器的时域脉冲响应为:

*0()()h t s t t =- (3.1)

0t 是使滤波器物理可实现所附加的时延。理论分析时,可令0t =0,重

写3.1式,

*()()h t s t =- (3.2)

将2.1式代入3.2式得:

2

2()()c

j f t j Kt t h t rect e e T

ππ-=? (3.3 )

图3.1:LFM 信号的匹配滤波

如图3.1,()s t 经过系统()h t 得输出信号()o s t ,

2

222()()()()*()

()()()()()()c c o j f u j f t u j Ku j K t u s t s t h t s u h t u du h u s t u du u t u e rect e e rect e du T T ππππ∞

-∞-∞

----∞

= =- =-

- =

? ???

当0t T ≤≤时,

2

2

2

2

2022

22

2()2sin ()T T c c j Kt j Ktu t j Ktu T j f t j Kt T j f t

s t e e du

e e

e t j Kt K T t t e

Kt

πππππππππ---=

=?--- =

?

(3.4)

当0T t -≤≤时,

2

2

2

2

202222

2()2sin ()T T c c t j Kt j Ktu j Ktu T j f t

j Kt T j f t

s t e e du

t e e

e

j Kt K T t t e

Kt

πππππππππ+---=

+ =?--+ =

?

(3.5) 合并3.4和3.5两式:

20sin (1)()()2c j f t t

KT t

t T s t T

rect e KTt T

πππ-= (3.6) 3.6式即为LFM 脉冲信号经匹配滤波器得输出,它是一固定载频c f 的信号。当t T ≤时,包络近似为辛克(sinc )函数。 0()()(

)()()22t t

S t TSa KTt rect TSa Bt rect T T

ππ== (3.7)

图3.2:匹配滤波的输出信号

如图3.2,当Bt ππ=±时,1

t B

=±为其第一零点坐标;当2

Bt π

π=±时,

1

2t B

,习惯上,将此时的脉冲宽度定义为压缩脉冲宽度。 11

22B B τ=?= (3.8)

LFM 信号的压缩前脉冲宽度T 和压缩后的脉冲宽度τ之比通常称为压缩比D ,

T

D TB τ

=

= (3.9)

3.9式表明,压缩比也就是LFM信号的时宽频宽积。

由2.1,3.3,3.6式,s(t),h(t),so(t)均为复信号形式,Matab仿真时,只需考虑它们的复包络S(t),H(t),So(t)。以下Matlab程序段仿真了图3.1所示的过程,并将仿真结果和理论进行对照。

匹配滤波仿真代码:

%%匹配滤波仿真

T=10e-6; %脉冲宽度

B=30e6; %频率调制带宽

K=B/T; %斜率

Fs=10*B;Ts=1/Fs; %采样频率及间距

N=T/Ts;

t=linspace(-T/2,T/2,N);

St=exp(j*pi*K*t.^2); %线性调频信号

Ht=exp(-j*pi*K*t.^2); %匹配滤波

Sot=conv(St,Ht); %滤波后

subplot(211)

L=2*N-1;

t1=linspace(-T,T,L);

Z=abs(Sot);Z=Z/max(Z);

Z=20*log10(Z+1e-6);

Z1=abs(sinc(B.*t1)); %sinc 函数

Z1=20*log10(Z1+1e-6);

t1=t1*B;

plot(t1,Z,t1,Z1,'r.');

axis([-15,15,-50,inf]);grid on;

legend('结果sin函数');

xlabel('Time in sec \times\itB');

ylabel('Amplitude,dB');

title('匹配滤波后的线性调频信号');

subplot(212) %放大

N0=3*Fs/B;

t2=-N0*Ts:Ts:N0*Ts;

t2=B*t2;

plot(t2,Z(N-N0:N+N0),t2,Z1(N-N0:N+N0),'r.');

axis([-inf,inf,-50,inf]);grid on;

set(gca,'Ytick',[-13.4,-4,0],'Xtick',[-3,-2,-1,-0.5,0,0.5,1,2,3]); xlabel('Time in sec \times\itB');

ylabel('Amplitude,dB');

title('匹配滤波后的线性调频信号(放大)A/db');

仿真结果:

-15

-10

-5

0510

15

-40-20

Time in sec ?B

A m p l i t u d e ,d B

匹配滤波后的线性调频信号

-3-2-1

-0.500.5123

-13.4

-4

0Time in sec ?B

A m p l i t u d e ,d B

匹配滤波后的线性调频信号(放大)A/db

结果sin 函数

图3.3:Chirp 信号的匹配滤波

图3.3中,时间轴进行了归一化,(/(1/)t B t B =?)。图中反映出理论与仿真结果吻合良好。第一零点出现在1±(即1B

±)处,此时相对幅度-13.4dB 。压缩后的脉冲宽度近似为1

B

(12B

±),此时相对幅度-4dB,这理论分析(图3.2)一致。

四:Matlab 仿真结果

雷达发射线性调频信号,载频10GHz ,线性调频信号带宽10MHz ,脉宽5us ,采样率自设,两目标距离雷达5000米和5020米。 (1) 模拟两个目标的回波,并进行脉冲压缩(匹配滤波),验证脉冲

压缩对改善雷达距离分辨力的作用

(2)调整两个目标的间距从1米到20米,观察结果得出结论。

①源代码:

fc=10e9; %载频

B=10e6; %带宽

fs=2*fc; %采样率

T=5*10^-6; %雷达脉宽

t=0:1/fs:10*T;

s1=5000; %目标1距离

s2=5020; %目标2距离

c=3e8; %光速

t1=2*s1/c; %雷达波从目标1回波的延时

t2=2*s2/c; %雷达波从目标2回波的延时

u=B/T;

st=rectpuls(t,T).*exp(j*2*pi*(fc*t+u*t.^2)); %发射信号

sr1=rectpuls((t-t1),T).*exp(j*2*pi*(fc*(t-t1)+u*(t-t1).^2)); %目标1的回波sr2=rectpuls((t-t2),T).*exp(j*2*pi*(fc*(t-t2)+u*(t-t2).^2)); %目标2的回波sr=sr1+sr2; %两目标总的回波

figure(1);

plot(real(sr)); %未压缩回波

title('未压缩回波');

axis([6*10^5,7.4*10^5,-2,2]);

F=fftshift(fft(sr)); %进行脉冲压缩

Ft=F.*conj(F);

f=ifft(Ft);

figure(2);

plot(fftshift(abs(f))); %压缩回波

title('压缩回波');

axis([4.9*10^5,5.1*10^5,0,2*10^5]);

②运行结果:

6 6.2 6.4 6.6 6.877.27.4x 10

5

-2

-1.5-1-0.500.511.5

2未压缩回波

4.92 4.94 4.96 4.985

5.02 5.04 5.06 5.08 5.1x 10

5

0.20.40.60.811.21.41.61.82

x 10

5

压缩回波

改变相对距离为1米,运行结果如下:

6 6.2 6.4 6.6 6.877.27.4x 10

5

-2

-1.5-1-0.500.511.5

2未压缩回波

4.92

4.94

4.96

4.98

5

5.02

5.04

5.06

5.08

5.1x 10

5

0.20.40.60.811.21.41.61.82

x 10

5

压缩回波

两目标不可分辨,直到两目标相对距离为13米时,目标可清晰分辨,如下:

6 6.2 6.4 6.6 6.877.27.4x 10

5

-2

-1.5-1-0.500.511.5

2未压缩回波

4.92 4.94 4.96 4.985

5.02 5.04 5.06 5.08 5.1x 10

5

0.20.40.60.811.21.41.61.82

x 10

5

压缩回波

结论:当目标的相对距离较近时,目标的未压缩回波已不能分辨出两目标的位置,这时使用脉冲压缩可以增加雷达的分辨力,但其能力也是有限的,当两目标的相对距离太近时,即使脉冲压缩也不能分辨,即脉冲压缩不能使脉宽无限小。由此可见,脉冲压缩技术在雷达信号处理中有着重要作用,脉冲压缩技术被广泛应用于雷达信号处理中。

雷达运动目标检测大作业

非均匀空时自适应处理 摘要 本文首先依次介绍了在非均匀环境下的STAP处理法,包括降维、降秩以及LSMI方法,接着重点分析了直接数据域(DDD)方法的原理及实现过程,最后针对直接数据域方法进行了仿真实验。 引言 机载雷达对运动目标检测时, 面临的主要问题是如何抑制强大的地面杂波和各种类型的干扰,空时自适应处理(STAP)是解决该问题的关键技术。STAP 技术通过对杂波或干扰训练样本分布特性的实时学习来来形成空域—时域二维自适应权值,实现对机载雷达杂波和干扰的有效抑制。 STAP技术在形成自适应权值时,需要计算杂波协方差矩阵R。实际系统的协方差矩阵是估计得到的,即先在待检测距离单元的临近单元测得K个二维数 据矢量样本V i(i=1,2…K),再计算R的估计值?=Σ i=1K V i V i H∕K,然后可得自 适应权值W=μR^-1S,其中μ为常数,S为空时导向矢量。临近训练样本的选择必须满足独立同分布(IID)条件。同时,为了使由杂波协方差矩阵估计引起的性能损失控制在3dB内,要求均匀训练样本数K至少要2倍于其系统自由度(DOF)。如果所选样本非均匀,则形成的权值无法有效对消待检测单元中所含有的杂波和干扰,从而大大降低对运动目标的检测性能。 在实际应用中, 机载雷达面临的杂波环境往往是非均匀的, 这对经典的S T A P 技术带来了极大的挑战。针对这一难题, 许多新的适用于非均匀杂波环境的S T A P 方法不断被提出。 1、解决非均匀样本的方法 1.1、降维方法 降维方法的最初目的是为了减少空时自适应处理时所需的巨大运算量, 但后来发现该类方法同时大大减少了对均匀训练样本数的需求, 对非均匀情况下杂波抑制起到了积极的作用。降维方法将每次自适应处理所需要抑制的杂波范围限制在某一个较小杂波子空间内, 根据RMB准则和Brennan定理, 自适应处理时所需要的均匀训练样本数由2 倍于整体系统自由度减至降维后2 倍于子空间系统自由度。降维程度越高, 对均匀训练样本的需求就越少。降维方法属固定结构方法, 无法充分利用杂波的统计特性。当辅助波束与杂波谱匹配很好时, 处理性能往往很好。反之, 则性能下降。 1.2、降秩方法 与固定结构降维方法相反, 降秩方法充分利用回波中杂波的分布特性, 每次处理选取完备杂波空间来形成自适应权值对消杂波分量, 可看作依赖回波数据的自适应降维方法。该类方法在形成权值过程中利用的信息中不含噪声分量, 所以避免了小样本情况下噪声发散带来的性能下降问题, 故减少了对均匀训练样本数的需求。同样, 该类方法在满足信杂噪比损失不超过 3 d B 条件时所需的训练样本数约为 2 倍的杂波子空间的维数。从处理器结构上来看, 降秩方法可

机械原理大作业

机械原理大作业 This model paper was revised by the Standardization Office on December 10, 2020

机械原理大作业三 课程名称:机械原理 设计题目:齿轮传动设计 院系: 班级: 设计者: 学号: 指导教师: 设计时间: 1、设计题目 机构运动简图 机械传动系统原始参数

2、传动比的分配计算 电动机转速min /745r n =,输出转速m in /1201r n =,min /1702r n =, min /2303r n ,带传动的最大传动比5.2max =p i ,滑移齿轮传动的最大传动比4m ax =v i ,定轴齿轮传动的最大传动比4m ax =d i 。 根据传动系统的原始参数可知,传动系统的总传动比为: 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。设带传动的传动比为5.2max =p i ,滑移齿轮的传动比为321v v v i i i 、、,定轴齿轮传动的传动比为f i ,则总传动比 令 4max 1==v v i i 则可得定轴齿轮传动部分的传动比为 滑移齿轮传动的传动比为 设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、8、9和10为角度变位齿轮,其齿数: 35,18,39,14,43,111098765======z z z z z z ;它们的齿顶高系数1=* a h ,径向间 隙系数25.0=*c ,分度圆压力角020=α,实际中心距mm a 51'=。

雷达大作业---振幅和差角度测量及仿真

雷达原理大作业 单脉冲自动测角的原理及应用 学院:电子工程学院 作者: 2016年5月21日

单脉冲自动测角的原理及应用 一.摘要 单脉冲测角法是属于振幅法测角中的等信号法中的一种,其测角精度高,抗干扰能力强,在现实中得到了广泛的应用。而其中对于接收支路要求不太严格的双平面振幅和差式单脉冲雷达,更是备受青睐。 本文首先讲述了单平面振幅和差式单脉冲雷达自动测角的原理,再简述了双平面振幅和差式单脉冲雷达自动测角的结构框图,接着简述了本文仿真所用的一些原理和公式推导,包括天线方向图函数及其导数的推导,最后做了基于高斯形天线方向图函数的单脉冲自动测角,基于辛克函数形天线方向图函数的单脉冲自动测角,和基于高斯形天线方向图函数的双平面单脉冲自动测角。源代码在附录里。 二.重要的符号说明 三.单平面振幅和差式单脉冲自动测角原理 单脉冲测角法是属于振幅法测角中的等信号法中的一种。在单平面内,两个相同的波束部分重叠,交叠方向即为等信号轴的方向。将这两个波束接收到的回波信号进行比较就可以在一定范围内,一定精度要求下测到目标的所在角度。因为两个波束同时接到回波,故单脉冲测角获得目标角误差信息的时间可以很短,理论上只要分析一个回波脉冲即可,所以称之为“单脉冲”。 因取出角误差的具体方式不同,单脉冲雷达种类很多,其中应用最广的是振幅和差式单脉冲雷达,其基本原理说明如下: 1.角误差信号 雷达天线在一个平面内有两个重叠的部分,如下图1所示: 图1.振幅和差式单脉冲雷达波束图

(a)两馈源形成的波束 (b)和波束 (c)差波束 振幅和差式单脉冲雷达取得角误差信号基本方法是将这两个波束同时收到的信号进行和差处理,分别得到和信号和差信号。其中差信号即为该角平面内角误差信号。 若目标处在天线轴方向(等信号轴),误差角0ε=,则两波束收到的回波信号振幅相同,差信号等于0。目标偏离等信号轴而有一个误差角ε时,差信号输出振幅与ε成正比而其符号则由偏离方向决定。 2.和差比较器 这里主要使用双T 插头,示意图如下图2(a )所示。它有四个端口:和端,差端和1, 2端。假定四个端都是匹配的,则从和端输出信号时,1,2端输出等幅同相的信号,差端无输出;从1,2端输入同相信号时,和端输出两信号之和,差端输出两信号之差。 图2.双T 接头和差比较器示意图 (a)双T 接头 (b) 和差比较器示意图 在发射信号时,从发射机来的信号加在和端,故1,2端输出等幅同相的信号,两波束在空间各点产生的场强同相相加,形成发射和波束的天线方向性函数为()F θ∑。 接收时,回波脉冲同时加到1,2端,此时在和端,输出两个回波信号同相相加之和,记为E ∑;在差端,输出两信号反相相加之和,记为E ?。 假设两个波束方向性函数完全相同,记为()F θ,两波束衰减倍数为k ,两波束相对天线轴线的偏角为δ,则对于θ方向的目标来说: 和信号振幅为:2 ()()()()()E kF F kF F kF θδθθδθθ∑∑∑∑=-++= 差信号振幅为:()()()()()()E kF F kF F kF F θδθθδθθθ?∑∑∑?=--+= 其中:()()()F F F θδθδθ∑=-++,()()()F F F θδθδθ?=--+。 实际情况下,θ是很小的,可以对()F δθ-和()F δθ+在δ附近做一阶泰勒展开:

哈工大机械原理大作业凸轮 - 黄建青

H a r b i n I n s t i t u t e o f T e c h n o l o g y 机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 院系:能源学院 班级: 1302402 设计者:黄建青 学号: 1130240222 指导教师:焦映厚陈照波 设计时间: 2015年06月23日

凸轮机构设计说明书 1. 设计题目 设计直动从动件盘形凸轮机构,机构运动简图如图1,机构的原始参数如表1所示。 图1 机构运动简图 表1 凸轮机构原始参数

计算流程框图: 2. 凸轮推杆升程,回程运动方程及推杆位移、速度、加速度线图 2.1 确定凸轮机构推杆升程、回程运动方程 设定角速度为ω=1 rad/s (1) 升程:0°<φ<50° 由公式可得 )]cos(1[20 ?π Φh s -=

)sin( 20 1 ?π ωπΦΦh v = )cos(20 2 2 12?π ωπΦΦh a = (2) 远休止:50°<φ<150° 由公式可得 s = 45 v = 0 a = 0 (3) 回程:150°<φ<240° 由公式得: ()()22 0000200000002200000 0,2(1)(1)1,12(1)(1),2(1)s s s s s s s s s Φhn s h ΦΦΦΦΦΦn Φn ΦΦn h n s h ΦΦΦΦΦΦn Φn n ΦΦΦn hn s ΦΦΦΦΦn Φn ??????'?=---+<≤++?'-? ???''-? =----++ <≤++???'-??? ?'---?'=-++<≤++'-?? 201 00000010002001 000 00n (),(1)(1)n ,(1)(1)n (1),(1)s s s s s s s s Φh v ΦΦΦΦΦΦn Φn ΦΦn h v ΦΦΦΦn Φn n ΦΦΦn h v ΦΦΦΦΦn ΦΦn ω??ω??ω??'=- --+<≤++?'-? ?''-? =- ++<≤++?'-? ?'---'?=--++<≤++''-??

雷达软件操作说明

雷达软件操作说明 一、UCP软件的安装与设置 1. UCP软件的主要作用 UCP的主要作用是根据气象雷达算法生成雷达产品,以及分发产品到各路的PUP上;接收RDASC的部分信息从而监视和控制雷达运行;同时可以在本机磁盘存放基数据,存放路径可通过适配文件addedcfg.txt查阅、修改。 2.UCP的安装与设置 (1)双击安装程序“RPG(SA) Setup.exe”开始安装,一 直点击“next”(下一步),直到选择安装路径时,其默认 的安装路径是D:\RPG,可以通过“Browse”命令按钮打 开对话框修改。如右图: (2)输入RDASC计算机的网络名,默认是RDA,直接点击 “next”。如图5.2.2: (3)输入保存雷达状态信息和基数据的位置,默认保存在D盘(如左下图)。资料保存路径等设置亦可在安装结束后通过UCP所在的安装路径D:\RPG 10.8.1.S.C\下的参数配置文件addedcfg.txt中修改,其内容如右下图: (4)点击“next”,选择典型安装(Typical),再一直点击 “next”即可完成安装。 (5)软件注册。 启动UCP软件,第一次启动时,会弹出一个“RPG Program

Register”的注册框, 打开注册软件“RpgReg.exe”,出现“RPG Register (Version 10)”。如右图 把“RPG Program Register”上面的“Product Serial Number”框内的数字2181699293复制并粘贴到“RPG Register(Version 10)”的“Serial Num”栏,尔后点击“Register”按钮,即可生成注册码。如右图 再把注册码复制、粘贴到RPG注册提示框“RPG Program Register”上,点击OK即可完成安装。 (6)设置通信配置文件C:\ WINNT\Nbcomm.ini UCP生成的雷达产品如何发送到PUP产品显 示终端,是通过窄带通信配置文件Nbcomm.ini 来控制,相应地PUP也有Nbcomm.ini配置文件, 预报员通常是将RPG与PUP安装在同一台电脑, 则需要将RPG和PUP的Nbcomm.ini配置文件设 置为同一个文件,其通信配置内容如右图

雷达使用手册

道闸雷达安装调试手册

目录 一、前言 (3) 二、产品概述 (3) 三、雷达技术参数 (4) 四、雷达安装规范 (5) 五、接线定义 (5) 六、雷达参数设置 (8) 七、调试 (9) 八、注意事项 (11) 九、保修 (12)

一、前言 本手册适用于触发和防砸道闸雷达,以下将描述道闸雷达的安装、参数设置、调试以及注意事项,指导您正确安装和使用道闸雷达。本雷达采用当今集成度最高的24G雷达单芯片收发方案,具有技术含量高、专业强的特性,使用前请仔细阅读产品安装调试手册。 二、产品概述 2.1、工作原理 道闸雷达是采用24-24.5GHz可调连续波(FMCW)和高速数字信号处理技术,通过计算接收的回波频率与发射频率之间的频率差来计算目标距离,经逻辑运算后执行外部控制和数据传输。 2.2雷达特点与应用 ▲本产品工作于24-24.5GHz频域区间,全天侯,不受任何气候环境的影响。 ▲可完全替代“车辆检测器”,实现关闸和防砸功能,省掉了繁琐的切地感线圈工序。降低人工成本。 ▲可检测人体,或人体以上大小的非金属物体,可确保人员和物资在闸机下方的安全通行。 ▲可用于触发检测,如触发摄像机抓拍。 ▲可用于警戒区域报警触发器用。 ▲有流量记录功能,断电不丢失数据。

2.3雷达天线HFSS仿真效果 从上图可看出,要获得更窄的波束,可将雷达横向安装 三、雷达技术参数 1、输入电压:DC12V 150mA 2、工作频率:24-24.5GHz 3、调制模式:FMCW 4、发射功率:10-15dBm 5、波束与闸杆夹角:宽波<15°、窄波<12° 6、检测距离:1-6米,±0.2米。 7、通讯方式:RS485 、波特率115200 8、工作温度:-40℃~+85℃ 9、防护等级:IP67 10、外型尺寸(长*宽*厚) 131mm*106mm*28.5mm

(完整版)雷达系统导论第3-4章作业答案

雷达系统导论作业 [1] 3.1沿圆轨道绕地球飞行的卫星高度为5000海里,速度为2.7海里/秒。(a )如果UHF (450MHz )雷达位于轨道平面内,当卫星 刚出现在地平线上时观察到的多普勒频移是多少(地球半径为3440海里,忽略大气折射和地面反射的影响)?(b)当卫星处于天顶时多普勒频移是多少? 解答:(a )当卫星刚出现在地平线上时 径向速度为 )(1.15000 344034407.2cos 节=+?=+?==h R R v v v r α (注:1节=1海里/小时,1海里=1.852公里) 故多普勒频移)(7.1)45.01.143.343.32)(Hz GHz f v v Hz f t r r d =??===((节)λ (b)当卫星处于天顶时径向速度为)(7.2节=r v 故多普勒频移)(17.4)45.07.243.343.3)(Hz GHz f v Hz f t r d =??==((节) [2] 3.2. 220MHz VHF 雷达的最大非模糊距离为180海里。(a )第一盲速(单位为节)是多少?(b) 重复习题(a ),但雷达工作在1250MHz 的L 波段。(c) 重复习题(a ),但雷达工作在9375MHz 的X 波段。(d)为了获得与(a )中的VHF 雷达一样的盲速,(c) 中X 波段雷达的非模糊距离(海里)为多少?(e)如果需要第一盲速为(a )中盲速的雷达,你愿意选择VHF 雷达还是X 波段雷达?请解释你的回答(有可能没有唯一解)。 解答:(a )Hz R c f c R T un p un p 450010852.11802103223 8 =????==?=, (节)5950450010 22010397.097.0)()(97.0)(68 1=????=??==p p f f c Hz f m kt v λ (b )Hz f p 4500=,(节)1047450010 125010397.0)()(97.068 1=????==Hz f m v p λ (c )Hz f p 4500=,(节)140450010937510397.0)()(97.06 8 1=????==Hz f m v p λ (d )海里)公里(8.1)(33.34500 21032228 ==??===?=p p un un p f c cT R c R T (e )如果需要第一盲速为(节)5950)()(97.01==Hz f m v p λ,从上面的计算可以 看出,随着雷达工作频率的升高(波长的减小),要求p f 升高,则最大非模糊距

机械原理大作业

机械原理大作业 二、题目(平面机构的力分析) 在图示的正弦机构中,已知l AB =100 mm,h1=120 mm,h2 =80 mm,W1 =10 rad/s(常数),滑块2和构件3的重量分别为G2 =40 N和G3 =100 N,质心S2 和S3 的位置如图所示,加于构件3上的生产阻力Fr=400 N,构件1的重力和惯性力略去不计。试用解析法求机构在Φ1=60°、150°、220°位置时各运动副反力和需加于构件1上的平衡力偶M 。 b Array 二、受力分析图

三、算法 (1)运动分析 AB l l =1 滑块2 22112112/,/s m w l a s m w l v c c == 滑块3 21113113/cos ,sin s m l w v m l s ??== 212 113/sin s m w l a ?-= (2)确定惯性力 N w l g G a m F c 2 1122212)/(== N w l g G a m F 121133313sin )/(?-== (3)受力分析 i F F i F F x R D R x R C R 43434343,=-= j F j F F R R R 232323-==

j F i F j F i F F R x R y R x R R 2121121212--=+= j F F F y R x R R 414141+= 取移动副为首解副 ① 取构件3为分离体,并对C 点取矩 由0=∑y F 得 1323F F F r R -= 由0=∑x F 得 C R D R F F 4343= 由 ∑=0C M 得 2112343/cos h l F F R D R ?= ②取构件2为分离体 由0=∑x F 得 11212cos ?R x R F F = 由0 =∑y F 得 1123212sin ?F F F R y R -= ③取构件1为分离体,并对A 点取矩 由0=∑x F 得 x R x R F F 1241= 由0 =∑ y F 得 y R y R F F 1241= 由0=A M 得 1132cos ?l F M R b = 四、根据算法编写Matlab 程序如下: %--------------已知条件---------------------------------- G2=40; G3=100; g=9.8; fai=0; l1=0.1; w1=10; Fr=400; h2=0.8; %--------分布计算,也可将所有变量放在一个矩阵中求解------------------- for i=1:37 a2=l1*(w1^2); a3=-l1*(w1^2)*sin(fai); F12=(G2/g)*a2;

论雷达技术的发展与应用及未来展望

论雷达技术的发展与应用及 未来展望 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

论雷达技术的发展与应用及未来展望 摘要:雷达是用无线电的方法发现目标并测定它们的空间位置的装置。雷达的发展与使用过程,正是电子技术在军事中应用的缩影,而雷达的未来,更与电子技术息息相关。本文介绍了雷达的发展与应用的历史,重点介绍了相控阵雷达与激光孔径雷达两类雷达的原理与特点,并指出雷达的弱点及未来发展方向关键词:雷达;发展;实战应用;种类;弱点;未来

雷达主要用于对远距离物体的方位、距离、高度做精确检测,可以说是现代军事电子技术的代表。随着不断的发展,雷达在战区的警戒、各种新式武器威力的发挥、协同作战的指挥中的地位愈发重要。 1雷达的发展与应用 雷达的基本工作原理是靠发射探测脉冲和接受被照射目标的回波发现目标。百年的时间里,随着新技术的发展和应用,雷达也在不断发展。 1.1雷达的发展史 下面是雷达出现前夜相关理论的一系列突破: 1842年多普勒(Christian Andreas Doppler)率先提出利用多普勒效应的多普勒式雷达。 1864年马克斯威尔(James Clerk Maxwell)推导出可计算电磁波特性的公式。 1886年赫兹(Heinerich Hertz)展开研究无线电波的一系列实验。 1888年赫兹成功利用仪器产生无线电波。 1897年汤普森(JJ Thompson)展开对真空管内阴极射线的研究。 这些与电磁波相关的科技是雷达的最基本理论。1904年克里斯蒂安?豪斯梅耶(Christian Hulsmeyer)宣称他的“电动镜”可以传输音频,并能够接受到运动物体的回应。可以说,就是这位德国人奠定了这项技术。然而,在一战期间,德国军官们所注意的是无线电通讯。 接下来雷达的出现就显得顺理成章了。1933年,鲁道夫?昆德(Rudolf Kunhold)提出毫米波长可能可以探测出水面船只及飞船的位置。两年后,威廉?龙格(Wilhelm Runge)已经能够根据飞机自身所发出的信号计算出50公里以外的飞机位置所在,即使是在夜晚或者有雾的时候。 第二次世界大战中的不列颠战役成为雷达正式登场的舞台。法国的迅速陷落,使希特勒有理由相信只需通过空袭便能征服英国。在这一大规模的空战中,纳粹德国空军拥有的飞机数量远远超过了英国皇家空军——2670架对1475架。而英国在雷达方面有优势。1936年1月英国W.瓦特在索夫克海岸架起了英国第一个雷达站。1938年,为保卫英格兰,用七部雷达组成"Chain Home"雷达网,雷达频率30兆赫。雷达网使德国轰炸机还没到达英吉利海峡即被发现,英国也因此取得了英伦空战的胜利。这场胜利也是第二次世界大战中较大的转折点之一。 之后四十年人们更加意识到雷达的重要作用,雷达也因此得到了不断发展,也分出了不同种类。本节余下部分将有选择地概括各个年代的重大进展。 1.1.1四十年代 四十年代初期(在二次大战期间),由于英国发明了谐振腔式磁控管,从而在先驱的VHF雷达发展的同时,产生了微波雷达发展的可能性。它开拓了发展L波段(23q厘米波长)和S波段(10厘米波长)大型地面对空搜索雷达和X波段(3厘米波长)小型机载雷达的美好前景。1941年苏联最早在飞机上装备预警雷达。两年后美国麻省理工学院研制出机载雷达平面位置指示器,预警雷达。时至今日,雷达已成为各式飞机不可缺少的组成部分,是实施精确打击和自身防护的必要手段。 1.1.2五十年代

数字正交 雷达原理大作业

数字正交采样及实现 姓名:杨宁 学号:14020181051 专业:电子信息工程 学院:电子工程学院

一. 基本原理 带通信号: 以 采样,可得: 也就是说: (1)可直接由采样值交替得到信号的同相分量I (n )的偶数项和正交分量 Q (n )的奇数项,不过在符号上需要进行修正 (2)I、Q两路输出信号在时间上相差一个采样周期 。在信号处理中,要求得到的是同一时刻的I 和Q 之值,所以需要对其进行时域的插值或进行频域的滤波,二者是等效的。 ()()()()()000cos cos sin I Q x t a t t t x t t x t t ωφωω=+=-????041,2;B M 21s s s s s f f f f B t f M ?? =>= ?-? ? 其中为信号带宽,为整数,

二.实现方式 实现框图如图一。 图一数字正交采样系统实现框图 实现方法主要有3种,分别是:低通滤波法、Bessel插值法、多相滤波法。 2.1、低通滤波法 图二低通滤波法框图

将A/D采样放在混频之前,采用数字混频与低通滤波,提高了精度与稳定性。 以fs=4 f0/3=2 fs2=4 fs1 , f0=3 fs1 为例,采样后信号的频谱、数字混频后的信号频谱、输出信号的频谱分别如图三(a)、(b)、(c)。 图三(a) 图三(b) 图三(c) 这种做法的优点是:对双路信号同时作变换,所用的滤波器系数一这样两路信号通过低通滤波器时由于非理想滤波所引起的失真是一致的,对I、Q双路信号的幅度一致性和相位正交性没有影响,从而具有很好的负频谱对消功能,可以

机械原理大作业

Harbin Institute of Technology 机械原理大作业(一) 课程名称:机械原理 设计题目:连杆机构运动分析 院系:机电工程学院 班级: 设计者: 学号: 指导教师:

一、题目(13) 如图所示机构,已知各构件尺寸:Lab=150mm;Lbc=220mm;Lcd=250mm;Lad=300mm;Lef=60mm;Lbe=110mm;EF⊥BC。试研究各杆件长度变化对F点轨迹的影响。 二、机构运动分析数学模型 1.杆组拆分与坐标系选取 本机构通过杆组法拆分为: I级机构、II级杆组RRR两部分如下:

2.平面构件运动分析的数学模型 图3 平面运动构件(单杆)的运动分析 2.1数学模型 已知构件K 上的1N 点的位置1x P ,1y P ,速度为1x v ,1Y v ,加速度为1 x a ,1y a 及过点的1N 点的线段12N N 的位置角θ,构件的角速度ω,角加速度ε,求构件上点2N 和任意指定点3N (位置参数13N N =2R ,213N N N ∠=γ)的位置、 速度、加速度。 1N ,3N 点的位置为: 211cos x x P P R θ=+ 211sin y y P P R θ=+ 312cos()x x P P R θγ=++ 312sin()y y P P R θγ=++ 1N ,3N 点的速度,加速度为: 211211sin ()x x x y y v v R v P P ωθω=-=-- 211121sin (-) y y y x x v v R v P P ωθω=-=- 312131sin() () x x x y y v v R v P P ωθγω=-+=--312131cos()() y y y x x v v R v P P ωθγω=-+=-- 2 212121()()x x y y x x a a P P P P εω=---- 2 212121()() y y x x y y a a P P P P εω=+--- 2313131()()x x y y x x a a P P P P εω=---- 23133(1)(1) y y x x y y a a P P P P εω=+--- 2.2 运动分析子程序 根据上述表达式,编写用于计算构件上任意一点位置坐标、速度、加速度的子程序如下: 1>位置计算 function [s_Nx,s_Ny ] =s_crank(Ax,Ay,theta,phi,s) s_Nx=Ax+s*cos(theta+phi); s_Ny=Ay+s*sin(theta+phi); end 2>速度计算 function [ v_Nx,v_Ny ] =v_crank(s,v_Ax,v_Ay,omiga,theta,phi) v_Nx=v_Ax-s*omiga.*sin(theta+phi); v_Ny=v_Ay+s*omiga.*cos(theta+phi); end 3>加速度计算 function [ a_Nx,a_Ny ]=a_crank(s,a_Ax,a_Ay,alph,omiga,theta,phi) a_Nx=a_Ax-alph.*s.*sin(theta+phi)-omiga.^2.*s.*cos(theta+phi);

FURUNO雷达使用说明书

23’’高分辨率多彩液晶显示屏航海雷达(ARPA 和AIS功能于一体) 型号FAR-2817/2827/2837S 产品说明书 1、先进的信号处理,改进了在恶劣海况下探测的精度 2、液晶显示屏提供更清晰的雷达图像 3、设计符合SOLAS公约对所有运输船舶的要求 4、高达4台以上的雷达可以通过网络交换数据信息 5、自动绘制/跟踪100个自动或手动捕捉的物标 6、通过可定制的简易操作功能键,轨迹球/轮掌模块和旋转控制 7、低于磁控管会议ITU-R制定的多余排放标准 8、可以显示1000个配备AIS的船舶目标 FURUNO的用户良好的操作概念和领先的前沿技术相结合, 性能可靠,安装方便 控制面板由逻辑性控制组合按键和轨迹球相结合,并组织良好的菜单,确保所有操作可以通过轨迹球。 代替全键盘控制单元,实现远程操控

●IEC60936-1shipborneradar●IEC60936-2HSCradar ●IEC60872-1ARPA●IEC60872-2ATA ●IEC601993-2AIS●IEC60945Generalrequirements ●IEC61162-1ed2●IMOMSC.64(67)Annex4 ●IMOA.823(19)●IMOMSC.74(69)Annex3

静态数据 船舶移动识别码IMO编码呼号和船名 船长与船宽船舶类型天线固定的船舶位置 航行相关数据船舶吃水危险货物类型目的港与预计抵达时间动态数据

在世界时的精确船位对地航行对地航速船首向 航行状态(手动输入)转弯速率(可获得)速度和方向的更新率(2s–3min) 短的安全信息免费信息 警戒区 自动捕捉区 两个自动采集区可设置在一个量程或任何形式。他们还可以作为抑制区,避免不必要的超载的处理器和杂波禁用自动捕获和跟踪的以外。在一个自动采集区目标出现逆三角形。操作者可以手动获得的重要目标无限制的。 CPA报警区域 目标跟踪符号变为三角形时,其预测过程(矢量)违反操作者设置的 CPA/TCPA,操作者可以很容易地通过向量长度的改变来评估目标运动趋势。警戒区和锚泊值班报警区域 保护区产生视觉和声音报警时目标进入警戒区。一个保护区可作为一个锚泊位置,提醒值班人员本船或目标偏离设定区域的情况。 目标路径 目标轨迹特征产生单调或渐进的阴影,在屏幕上显示所有对象的余辉。遮光余辉显示,就像一个模拟的PPI,唯一的创新是指自己的船舶运动和他船有用在一个特定的捕捞作业轨迹。追踪时间可调15S,30S,1,3,6,15,30分钟或连续。目标路径用背景不同的颜色表示。该雷达独特的特征是可以选择真实的或相对模式相对运动(TM只有真正的)。 雷达地图

雷达操作与应用课程标准

《雷达操作与应用》课程标准 课程代码:13013101 课程类型:理实一体课 课程性质:(必修课、限选课、任选课) 适用专业:航海技术 总学时:20 一、课程性质与作用 《雷达操作与应用》课程是航海类专业的专项训练课程,是根据STCW 公约马尼拉修正案《中华人民共和国海船船员适任评估规范》关于“雷达操作与应用”而设立的。本课程的主要任务是培养学生掌握雷达操作方面的基本知识、雷达在船舶航行与避碰中的应用,使学生能够正确的使用雷达,判断局面从而实现避碰,使学生达到STCW公约马尼拉修正案和中华人民共和国海事局所规定的要求,能够满足船舶保安工作的需要。 二、课程目标 通过本课程的学习,使学生或学员达到能通过海事局组织的培训合格证考试,取得适任评估证书。 (一)知识目标 掌握雷达操作与应用的相关知识和技能; (二)能力目标 1、能够正确使用雷达; 2、能够雷达基本操作和设置、雷达定位、雷达导航、雷达人工标绘、雷达自 动标绘、AIS报告目标及试操项目的学习,有助于船舶航行的安全。(三)素质目标 1、培养学生的动手操作能力; 2、培养学生具备分析、判断和应变的能力; 3、培养学生的自主学习和沟通能力。 三、课程设计理念与思路 根据STCW公约马尼拉修正案及中华人民共和国海事局海船船员适任考

试评估的有关要求,进行雷达基本操作和设置、雷达定位、雷达导航、雷达人工标绘、雷达自动标绘、AIS报告目标及试操项目的学习,通过评估,使学生或学员掌握雷达操作与应用的相关知识和技能并能正确进行操作和应用的能力。 四、教学进程安排 学习项目学习任务课时 1 雷达基本操作和设置任务一保持清晰观测目标的雷达操作方法 1 任务二准确测量目标位置的操作方法 2 雷达定位任务一雷达目标识别与定位目标的选择 3 任务二雷达定位方法的选择 任务三雷达定位目标测量方法与保证雷达定 位的操作 3 雷达导航任务一雷达平行线导航操作 1 任务二雷达距离避险线导航操作 任务三雷达方位避险线导航操作 4 雷达人工标绘任务一转向避让措施 6 任务二变速避让措施 5 雷达自动标绘任务一目标捕获 6 任务二目标跟踪 6 AIS报告目标任务一AIS目标信息 1 任务二雷达跟踪目标与AIS报告目标关联 试操船任务一启动试操船的准备 2 任务二试操船操作 任务三获得有效的避碰方案 任务四利用试操船确定恢复原航向和/或航 速的时机 总计20

机械原理大作业

机械原理大作业三 课程名称: 机械原理 级: 者: 号: 指导教师: 设计时间: 1.2机械传动系统原始参数 设计题目: 系: 齿轮传动设计 1、设计题 目 1.1机构运动简图 - 11 7/7777777^77 3 UtH TH7T 8 'T "r 9 7TTTT 10 12 - 77777" 13 ///// u 2

电动机转速n 745r/min ,输出转速n01 12r/mi n , n02 17r /mi n , n°323r/min,带传动的最大传动比i pmax 2.5 ,滑移齿轮传动的最大传动比 i vmax 4,定轴齿轮传动的最大传动比i d max 4。 根据传动系统的原始参数可知,传动系统的总传动比为: 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实 现。设带传动的传动比为i pmax 2.5,滑移齿轮的传动比为9、心、「3,定轴齿轮传动的传动比为i f,则总传动比 i vi i vmax 则可得定轴齿轮传动部分的传动比为 滑移齿轮传动的传动比为 设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、 7、8 9和10为角度变位齿轮,其齿数: Z5 11,Z6 43,Z7 14,Z8 39,Z9 18,乙。35 ;它们的齿顶高系数0 1,径向间隙

系数c 0.25,分度圆压力角200,实际中心距a' 51mm。 根据定轴齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮11、12、13和14为角度变位齿轮,其齿数:Z11 z13 13,乙 2 z14 24。它们的齿顶高系数d 1,径向间隙系数c 0.25,分度圆压力角200,实际中心距 a' 46mm。圆锥齿轮15和16选择为标准齿轮令13,乙 6 24,齿顶高系数 h a 1,径向间隙系数c 0.20,分度圆压力角为200(等于啮合角’)。 4、滑移齿轮变速传动中每对齿轮几何尺寸及重合度的计算 4.1滑移齿轮5和齿轮6

气象多普勒雷达cinradpup操作手册

CINRAD PUP 操作手册 北京敏视达雷达有限公司 2000年4 月

目录 第一章概述 (4) CINRAD PUP的定义 (4) CINRAD PUP的功能 (4) CINRAD PUP的操作主界面 (4) 视窗 (4) 菜单 (7) 工具栏 (9) 状态栏 (10) 第二章产品的请求和控制 (11) 产品请求 (11) 一次性产品请求 (One time product) (11) 日常产品集请求 ( Routine product set ) (13) 天气警报请求 ( Alert ) (14) 产品接收 (15) 产品队列 (16) 产品保存 (16) 产品分发 (17) 第三章参数定义和说明 (19) 参数定义及说明 (19) 弱回波区(WER)产品仰角切面 (23) 第四章产品显示和图象控制 (25) 产品显示 (25) 检索产品 (25) 队列产品 (27) 用户产品集 (28) 重显产品 (29) 自动显示产品 (30) 动画显示 (31) 放大显示和重置中心 (33) 区分数据级 (34) 过滤功能 (34) 合并功能 (35) 闪烁功能 (35) 图象灰化功能 (35) 颜色恢复功能 (35) 迭加显示 (36) 光标位置 (37) 光标连接 (37) 地图 (38) 产品打印 (40) 保存图象 (40) 隐藏产品 (40) 第五章 CINRAD PUP 控制 (41) 连接 (41) 断接 (41) 重新启动 (41) 关机 (41)

第六章雷达状态和警报 (42) 6.1雷达系统状态监测 (42) 通讯状态监测 (44) 性能监测 (44) RPG可用产品 (44) 天气警报 (45) 第七章编辑功能 (46) 编辑工具 (46) 编辑状态 (46) Annotation —产品注释的编辑 (47) Cross Section —剖面位置的编辑 (48) Alert Area —报警区的定义 (48) Maps —地图的编辑 (49) 编辑功能的退出 (49) 第八章适配数据 (50) 日常产品集 (50) 警报 (51) 地图 (52) 迭加 (53) 彩色表 (53) 雷达站 (54) 定义专用符号 (56) 第九章帮助 (57) 帮助主题 (57) 按内容检索 (57) 按关键字查找 (58) 关于帮助 (59) 第十章视窗控制 (60) 最大化视窗 (60) 平铺全部视窗 (60) 关闭全部视窗 (60) 附录1雷达产品名、产品号中英文对照表 (61) 附录2 CINRAD PUP 系统配置 (62)

论雷达技术的发展与应用及未来展望

论雷达技术的发展与应用及未来展望 摘要:雷达是用无线电的方法发现目标并测定它们的空间位置的装置。雷达的发展与使用过程,正是电子技术在军事中应用的缩影,而雷达的未来,更与电子技术息息相关。本文介绍了雷达的发展与应用的历史,重点介绍了相控阵雷达与激光孔径雷达两类雷达的原理与特点,并指出雷达的弱点及未来发展方向 关键词:雷达;发展;实战应用;种类;弱点;未来

雷达主要用于对远距离物体的方位、距离、高度做精确检测,可以说是现代军事电子技术的代表。随着不断的发展,雷达在战区的警戒、各种新式武器威力的发挥、协同作战的指挥中的地位愈发重要。 1雷达的发展与应用 雷达的基本工作原理是靠发射探测脉冲和接受被照射目标的回波发现目标。百年的时间里,随着新技术的发展和应用,雷达也在不断发展。 1.1雷达的发展史 下面是雷达出现前夜相关理论的一系列突破: 1842年多普勒(Christian Andreas Doppler)率先提出利用多普勒效应的多普勒式雷达。1864年马克斯威尔(James Clerk Maxwell)推导出可计算电磁波特性的公式。 1886年赫兹(Heinerich Hertz)展开研究无线电波的一系列实验。 1888年赫兹成功利用仪器产生无线电波。 1897年汤普森(JJ Thompson)展开对真空管内阴极射线的研究。 这些与电磁波相关的科技是雷达的最基本理论。1904年克里斯蒂安?豪斯梅耶(Christian Hulsmeyer)宣称他的“电动镜”可以传输音频,并能够接受到运动物体的回应。可以说,就是这位德国人奠定了这项技术。然而,在一战期间,德国军官们所注意的是无线电通讯。接下来雷达的出现就显得顺理成章了。1933年,鲁道夫?昆德(Rudolf Kunhold)提出毫米波长可能可以探测出水面船只及飞船的位置。两年后,威廉?龙格(Wilhelm Runge)已经能够根据飞机自身所发出的信号计算出50公里以外的飞机位置所在,即使是在夜晚或者有雾的时候。 第二次世界大战中的不列颠战役成为雷达正式登场的舞台。法国的迅速陷落,使希特勒有理由相信只需通过空袭便能征服英国。在这一大规模的空战中,纳粹德国空军拥有的飞机数量远远超过了英国皇家空军——2670架对1475架。而英国在雷达方面有优势。1936年1月英国W.瓦特在索夫克海岸架起了英国第一个雷达站。1938年,为保卫英格兰,用七部雷达组成"Chain Home"雷达网,雷达频率30兆赫。雷达网使德国轰炸机还没到达英吉利海峡即被发现,英国也因此取得了英伦空战的胜利。这场胜利也是第二次世界大战中较大的转折点之一。 之后四十年人们更加意识到雷达的重要作用,雷达也因此得到了不断发展,也分出了不同种类。本节余下部分将有选择地概括各个年代的重大进展。 1.1.1四十年代 四十年代初期(在二次大战期间),由于英国发明了谐振腔式磁控管,从而在先驱的VHF雷达发展的同时,产生了微波雷达发展的可能性。它开拓了发展L波段(23q厘米波长)和S波段(10厘米波长)大型地面对空搜索雷达和X波段(3厘米波长)小型机载雷达的美好前景。1941年苏联最早在飞机上装备预警雷达。两年后美国麻省理工学院研制出机载雷达平面位置指示器,预警雷达。时至今日,雷达已成为各式飞机不可缺少的组成部分,是实施精确打击和自身防护的必要手段。 1.1.2五十年代 五十年代标志着雷达进入第二代。它在前两个十年发展的基础上扩展了工艺技术。雷达理论在此时也有了很大的进展。雷达理论的引入是雷达设计具有比以往更扎实的基础,使工程经验更具有信赖性。这个时期所发明的雷达理论概念如匹配滤波器、模糊函数、动目标显示理论已经被广大雷达工程师应用。 1.1.3六十年代 六十年代的标志是大型电控相控阵的出现以及六十年代后期开始的数字处理技术。相控阵雷达将在1.2.1中具体介绍。六十年代后期,数字技术的日益成熟引起了雷达信号处理的革命。

雷达作业

通信工程专业技术讲座结课论文(题目:雷达技术的发展历程和发展展望) 姓名: 院系: 2014年6月16日

目录 一、综述 (1) 二、工作原理 (1) 三、雷达的类型 (3) 四、雷达系统与技术的发展历程 (4) 五、雷达系统与技术发展的特点和现状 (6) 六、雷达系统与技术发展的展望 (7)

一、综述 雷达(RADAR),是英文“Radio Detection and Ranging”(无线电侦测和定距)的缩写及音译。将电磁能量以定向方式发射至空间之中,借由接收空间内存在物体所反射之电波,可以计算出该物体之方向,高度及速度,并且可以探测物体的形状。以地面为目标的雷达可以用于探测地面的精确形状。 自从雷达诞生至今,在70 多年的发展历程中,随着科技的不断发展、需求的不断变化,出现了多种体制的新功能雷达,雷达的技术哇能、体积和重量、可靠性、维修性、抗恶劣环境的生存能力等也发生了天翻地覆的变化。尤其是近年来,科学技术在飞速发展,各种新技术,新材料已经越来越快的应用到雷达系统中。特别是近年来,雷达在航电系统综合化的过程中变化非常大,如雷达作为独立系统,起初失去了显示分系统,接着又失去了信号和数据处理分系统,现在仅剩下接收、发射和天线等主要分系统。同时雷达作为一种有源传感器,与激光、红外、紫光和声学等不同传感器信息融合,增强了探测阵能和环境适应性。可见雷达已与电子系统打破了明显界限,雷达系统作为独立设备有逐步消亡的趋势。因此,有必要仔细研究雷达发展的历史,分析雷达系统与技术发展的特点,总结雷达发展的普遍规律,展望雷达系统发展的方向。 二、工作原理 雷达天线把发射机提供的电磁波能量射向空间某一方向,在此方向上的物体反射碰到的电磁波。这些反射波载有该物体的信息并被雷达天线接收,送至雷达接收设备进行处理,提取人们所需要的有用信息并滤除无用的信息,由此获得目标至雷达的距离、距离变化率(径向速度)、方位、高度等信息。 雷达可分为连续波雷达和脉冲雷达两大类。单一频率连续波雷达是一种最为简单的雷达形式,容易获得运动目标与雷达之间的距离变化率(即径向速度)。它的主要缺点是:①无法直接测知目标距离,如欲测知目标距离,则必须调频,但用调频连续波测得的目标距离远不及脉冲雷达精确;②在多目标的环境中容易混淆目标;③大多数连续波雷达的接收天线和发射天线必须分开,并要求有一定的隔离度。

相关文档
最新文档