信息光学导论第五章

信息光学导论第五章
信息光学导论第五章

第五章

傅里叶变换光学与相因子分析方法

5.1 衍射系统 波前变换

◆引言

现代光学的重大进展之一,是引入“光学变换”概念,由此发展而形成了光学领域的一个新分支——傅里叶变换光学,泛称为变换光学(transform optics),也简称为博里叶光学,它导致了光学信息处理技术的兴起.现代变换光学是以经典波动光学的基本原理为基础,是干涉、衍射理论的综合和提高,它与衍射、尤其与夫琅禾费衍射息息相关.对于熟悉经典波动光学的人们来说,由于他们有着较充分的概念储备和较充实的物理图像,因而具备更为有利的条件,去深刻而灵活地掌握现代变换光学.

◆衍射系统及其三个波前

如图所示,一个衍射系统以衍射屏为界被分为

前后两个空间.前场为照明空间,充满照明光波;

后场为衍射空间,充满衍射光波.照明光波比较简

单、常为球面波或平面波,这两种典型波的等幅面

与等相面是重合的,属于均匀波,其波场中没有因

光强起伏而出现的图样.衍射波较为复杂,它不是

单纯的一列球面波或一列平面波,其等幅面与等相

面—般地不重合,属于非均匀波,其波场中常有光

强起伏而形成的衍射图样.

在衍射系统的分析中,人们关注三个场分布:

其中,入射场),(~1y x U 是照明光波到达衍射屏的波前函数;出射场),(~2y x U 是衍射屏的透射场或反射场,它是衍射空间初端的波前函数,它决定了整个衍射空间的光场分布;而衍射场),(~y x U ''是纵向特定位置的波前函数。由此可见,整个衍射系统贯穿着波前变换:

波前),(~),(~21y x U y x U →这是衍射屏的作用:

波前),(~

),(~2y x U y x U ''→这是波的传播行为.

由一个波前导出前方任意处的另一个波前,这是波衍射问题的基本提法,亦即波传播问 题的基本提法.标量波的传播规律己由惠更斯—菲涅耳—基尔霍夫理论(HFK 理论)给出.在 常见的傍轴情形下,其表达式为

其积分核为ikr e ,这是一个球面波的相因子形式.换言之HFK 理论是—个关于衍射的球面波理论——衍射场是衍射屏上大量次波点源所发射的球面被的相干叠加.

◆衍射屏函数及其三种类型

我们已经同多种衍射屏有过交道,现在给山衍射屏函数的一般性定义,以定量地描述衍射屏的自身特征:

),(12),()

,(~),(~),(~y x i e y x t y x U y x U y x t ?== 即,屏函数(screen function)等于出射波前函数与入射波前函数之比.对于透射屏,t ~可称作复振幅透过率函数;对于反射屏,t ~

可称作复振幅反射率函数.无疑,屏函数通常也是复函 数,含模函数),(y x t 和辐角函数),(y x ?.唯象地看,实际上的衍射屏可分为三种类型,振幅型、相位型和相幅型.若),(y x ?为常数,仅有函数),(y x t ,则该衍射屏为振幅型,凡孔型衍射屏均系振幅型.若),(y x t 为常数,仅有函数),(y x ?,则该衍射屏为相位型,这在此之前似乎少见,其实,闪耀光栅不论其为透射的或反射的,均是一个相位型衍射屏,下一节即将研究的透镜相位衍射元件.当然,更为一般的情况是相幅型衍射屏,),(y x t 、),(y x ?皆为函数形式,即不仅出射场的振幅分布),(2y x A 有别于入射场的),(1y x A ,而且出射场的相位分布),(2y x ?也有别于入射场的),(1y x ?。

◆什么是衍射

引入屏函数以后,可以将衍射场积分表达式改写为

我们注意到,这不等式右边的积分式表达的正是无衍射屏存在时白由传播的光场,由于有了屏函数t ~的作用,改变了波前,从而改变了后场分布,遂即发生了衍射.

对于波衍射.我们曾有过几种不同深度的认识和表述.最初人们认为,当光在传播过程中遇到障碍物时,将发生偏离直线传播或偏离几何光学的传播行为,这种现象被称为衍射.在把惠更斯----菲涅耳原理应用于网孔、圆屏、单缝、多缝、矩孔等衍射问题时,人们又意识到,衍射的发生是由于光波在传播过程中其波面受到某种限制,即自由、完整的波面发生了破缺.现在我们可以这样表述,当光在传播过程中,由于某种原因而改变了波前的复振幅分布包括振幅分布或相位分布,则后场不再是自由传播时的光波场.这便是衍射.以上二种认识和表述都是可取的,反映了人们对衍射现象的认识在逐步深入.其中,第二种表述是对衍射现象因果关系的一种普遍和本质的概括.逐步深入而形成的对光波衍射的普遍认识,尤疑将对实际衍射问题的分析起到有效的指导作用.比如,一张含有字符形象或景物图像的灰度胶片置于光场中,则将发生衍射;一张浮雕型透明胶片置于光场中,也将发生衍射.这些事情现在看来都不足为怪了。

5.2 相位衍射元件一一透镜

◆透镜的相位变换函数

透镜是光学系统中常用的典型的光学元件,在光路或光场中,透镜可被看作一个改变波前函数的衍射屏.这里,我们将以波前光学的眼光分别导出它们的屏函数.

在光学系统中,透镜有两方面的作用,参见图***(a).一方面它是一个光瞳,起限制波前的作用.仅允许入射光波中央那一部分波前∑1,进入光学系统.另一万面它起变换波前的作用,比如,它将发散的球面波前,改变为会聚的球而波前∑2,当然,更为实际的情形是改变为偏离球而的像差波面∑;总之,透镜改变了波前的聚散性.以往的经典光

学,分别用有限孔径引起的光波衍射和透镜本身的几何成像及像差来撤述上述两种作用。其实,从波前光学的观点出发,可将透镜这两方面的性质,用一个复振幅透过率函数(屏函数)统一地给以反映.

如图 (b)所示,在透镜前后各取一平面(y x ,),设光场的入射波前函数和透射波前函数分别为

于是,透镜的屏函数表现为

这里,22y x r +=.D 是透镜孔径.设透镜材料对入射光是透明的,并忽略透镜对光的吸收、反射等因素造成的光强的损失,则0d 。这样,透镜就成为纯相位衍射元件,其孔径内的屏函数就成为

下面,我们在傍轴且薄透镜条件下导出透镜屏函数。

如图***(b)所示,由于透镜很薄,光线入射点与出射点的坐标相近,即光程可近似地沿透镜光轴方向来计算.于是,相位差函数

以光铀处透镜厚度0d 为参考值,改写

于是

这里0?是一个与(y x ,)无关的常数,它不影响波前相位分布,常可略去不写.在傍轴条件

下,透镜前后两小段气隙的几何厚度1?和2?,分别为

其中,21,r r 分别是透镜前后两个表面的曲率半径,按一般的正负号约定,它们可取正值或 负值.例如,对于双凸透镜01>r 而02

这里,F 目前仅是一个缩写符号,尚未显示其明确的物理意义.

最后,给出透镜作为相位衍射元件其相位变换函数为

由此可见,傍轴条件下薄透镜的相位变换函数其特点是一个二次型的相因子.如果是非傍轴或厚透镜情形,相因子就没有那么简单了。

5.3 波前相因子分析法

◆相因子分析法概述

原则上说,根据菲涅尔---基尔霍夫衍射积分公式,可由衍射屏的出射波前),(~2y x U ,导出前方接收平面上的衍射场),(~

y x U ''.然而.这种积分运算通常是很复杂的,总是需要在一定条件下作近似处理;即便如此,能定量地给出解析结果的情况也为数不多.不过,波衍射理论或波动理论为人们提供了一个更有价值的观念——二维波前决定二维波场,而波场的重要特征体现在波前函数的相位因子上.如果将复杂波前函数中的相位分布与平面波或球面波的相因子作一对比,而发现有所联系的活,那么这复杂波场就可以看成是一系列平面波成分或—系列球面波成分的叠加,因而这复杂波场也就成为人们在概念上容易想象掌握的—种波场了.另一方面,复杂波场所包含的各种基元成分一一不同方向的平面波和不同聚散中心的球面波.还可以被作为相位元件的透镜所分离,这就为人们对波前作进一步处理提供了途径.这两方面的结合和匹配,使波前的分解、合成和分离有了切实的物理寄托.

所渭波前相因子分析法,就是根据波前函数的相因子,来判断其波场的类型、分析其衍 射场的主要持征。不少场合,人们只需要掌握衍射场的主要特征就够用了,在全息术中尤其 如此。在这种场合,波前相因子分析法要比衍射积分运算显得更简捷.

其实,波前相因子分忻法对于我们并不陌生.在现代波动光学的理论体系中,早在第1章已经论及波前的描述和识别.这一节再作以上论述,旨在对波前相因子发给出一总结和提 高,以便进一步展开而跨入傅里叶光学领域.

◆波前相因子和变换相因子

为了熟练运用相因子分析法,我们应当熟悉两类典型相因子函数——一反映波场的波前相因子和反映元件作用的变换相因子.

(1)波前相因子

①平面波. 平面波之波前函数具有线性相因子,

其线性系数(21sin ,sin θθ)与平面波传播方向一一对应,(21,θθ)是波矢量k 的两个方向余弦角的余角。

②球面波. 傍轴球面波之波前函数具有二次相因子和交叉线性相因子,

指数上“土”与球面波聚散性一一对应一一“十”对应发散球面波,“一”对应会聚球面波;交叉线性相因子系数(00,y x )决定聚散中心的横坐标,相因子中分母z 决定了聚散中心Q 与观测平面(y x ,)的纵向距离,即聚散中心Q 的位置坐标为

(2)变换相因子

透镜. 薄透镜之变换函数具有二次相因子

其中F 值等于透镜焦距.F >0对应会聚透镜,F <0对应发散透镜.值得指出的是,在某种 波前变换的场合,如果出现了形同L t ~有二次相因子的变换函数,作用在波前),(~y x U 上,则其实际效果相当于),(~

y x U 波经历一个透镜的聚散,不管那场合是否具有实物透镜存在.简言之,变换函数中的二次相因子是一等效透镜.

下面,运用相因子分析法,再解决波前光学中一个重要实例.

◆余弦型环状波带片的衍射场

余弦型环状波带片的屏函数其标准形式为

它具有轴对称性.可以设计让一傍轴球面波与一平面波作相干叠加、再对曝光底片H 作线 性冲洗、而获得这样一张余弦型环状波带片,如图所示.

当用一束平面波照射这张波带片时,其透射波前函数为

其中,

运用波前相因子分析法,可以对以上三种波成分的类型和持征作出明确的判断:波前0~U 代表一列正出射的平面衍射波,称其为0级衍射波;波前1~+U 代表一列正出射的发散球面波,发散中心在轴上1+Q 点,与波带片P 离为0Z ,称其为十1级衍射波;波前1~

-U 代表一列正出射的会聚球面波,会聚中心在轴上1-Q 点,与波带片距离为0Z ,称其为一1级衍射波,如同所示.

这表明余弦型环状波带片的衍射场其主要成分有一个,其中、0级平面衍射波是照明波的直接透射波,而土级发散或会聚球面衍射波的出现,说明这波带片同时起一个发散透镜和一个会聚透镜的作用,虽然这场合并无实物透镜,仅有一张薄薄的波带片.追溯其源,在于制备时那傍轴球面波提供的二次相因子

这使我们又一次见识到,先一步的波前相因子,可以转化为后一步衍射场合中的光学元件.这一点正是现代波前光学中,全息光学元件的基本设计思想.

当然,考虑到波带片孔径有限,上述这三种波前受到窗函数的限制,以致聚散中心并不 是一个理想的点.但是运用相因子分析法,毕竟使人们掌提了余弦型环状波带片其衍射场 的主要持征.

鉴广余弦型环状波带片的衍射具有上述简单而鲜明的特征,以致以2r 为宗量的屏函数 简谐成分(*****)式,可以作为一切轴对称屏函数)(~

r t 的基圆成分.

5.4 余弦光栅的衍射场

◆余弦光栅的屏函数和制备

余弦光栅的透过率函数即其屏函数的典型表示式为

这是一个特殊走向的余弦光栅,仅沿x 轴方向呈现周期性,空间周期为f d d 1,=,f 为空间频率(mm -1),如图(a)所示.任意取向的余弦光栅,如图 (b)所示,

其屏函数的一般表达式为

它表明,该光栅沿两个正交方向),(y x 的空间频率为(y x f f ,),相应的空间周期为(y x d d ,)=y x f f 1,1。不难由(y x f f ,)导出直观上余弦光栅的若干几何特征:

值得注意的是,二维平面上的空间频率(y x f f ,)含有正负号.比如图***(b)显示的这张光栅.y x f f ,异号,0tan <θ。表明与栅条正交的方向N 沿二、四象限;若y x f f ,同号,则0tan >θ,这对应的是与栅条正交的方向N 沿一、三象限.以上关于θtan 公式可以由等值点方程C y f x f y x =+ 2 2ππ (常数)导出

可以看到,余弦光栅屏函数形式与双光束干涉场的光强分布函数相似。实际上,制备一块余弦光栅首先用一张乳胶干版H 记录两束平行光的干涉场,如图所示,其干涉强度分布函数为

然后,将这张曝光的干版在暗室中作化学处理即显影定影,要求满足线性条件,以获得冲洗后干版底片的透过率函数,

写成

其中,0<β,表示负片,0>β,表示正片;参数α俗称“雾底”,它表示即使曝光强度0=I 处,冲洗出来的底片在该处仍有一定程度的透过率.制成的这张光栅是否具有以上余弦型函数标准形式,这可通过“光密度计”予以鉴测。光栅制作过程中的关键环节是“线性冲洗”这一步.它与拍摄时的曝光强度、冲洗时的药液配方、时间、温度,以及记录介质的乳胶特性等诸多因素有关,深究起来乃系感光材料与光化学专业的问题。

◆余弦光栅的衍射特征

如图所示,让一束波长为λ的平行光照射这余弦光栅,而在透镜后焦面上接收衍射场.实验上显示出三个鲜明的衍射斑.我们知道,透镜后焦面上的一点,对应物空间的一个方向.目前,后焦面上三个衍射斑的出现,表明通过余弦光栅其后场存在三列平面衍射波.兹运用波前相因子分析法,对此作出理论说明如下.

平面波正入射,其入射波前为11~

A U =,经余弦光栅后的透射波前为

其中

鉴于它们均具有线性因子,故可以判定它们各自均代表一列平面波。波前0~U 代表一列正出 射的平面衍射波,称其为0级波;波前1~+U 代表一列向上斜出射衍射波,称其为+1级波,其倾角1+θ,满足λθf =+1sin 。波前1~

-U 代表一列向下斜出射衍射波,称其为-1级波,其倾角1-θ,满足λθf -=-1sin 。这三列平面衍射波交叠十后场而形成一个较为复杂的波场,可是经透镜分离它即凝聚于三个鲜明的衍射斑。这三个衍射斑集中了余弦光栅这一物结构的所有持征.其中,最至要的一个联系是,土1级衍射波(斑)的角方位与余弦光栅的空间频率一一对应,

考虑到实际光栅的宽度D 有限,这透射的三列平面衍射波的波前是受限的,故它们均 有一定的发散角,反映在后焦面那三个衍射斑均有一个半角宽度,分别为

如果余弦光栅取向任意,以空间频率(y x f f ,)标定之,其产生的那一对斜出射的土1级平面衍射波的角方位(21sin ,sin θθ),与(y x f f ,)的对应关系为

最后说明一点,余弦光栅屏函数中的那个原(点)相位0?,其数值是要反映到1±级衍射级中的。余弦光栅的平移,将导致衍射班的相移,即0?有不同的取值.不过,这一点目前并不重要,以后在研究空间滤波和光信息处理时,将要注意到0?值的影响.

◆余弦光栅的组合

利用上面的对应关系表,可以十分简捷地分析出,由几个不同频率或不同取向的余弦信 息的组合所产生的衍射场.

(1)平行密接. 如图所示,两张余弦光栅1G 和2G ,其栅纹平行地叠在一起.

它们的屏函数分别为

则其组合光栅21G G ?的屏函数为

x f f t t x f f t t x f t t x f t t t t x

f x f t t x f t t x f t t t t x t )(2cos 2

1)(2cos 212cos 2cos 2cos 2cos 2cos 2cos )(21212121110222010201212111022201020112-+++++=+++=ππππππππ由此可见,它含4个余弦光栅。再加1个直流成分.故其衍射场共含9列平面衍射波,在后焦面上将出现9个衍射班,分布于x '轴上,如图所示。其方向角分别为

定性上看.入射的平面波经光栅1G 衍射,生成3列平面衍射波,其中每列波再经2G 衍射又生成3列平面衍射波。这样一来,在21G G ?后场就交叠着9列平面波。

(2)正交密接. 如图所示,两张余弦光栅1G 和2G 叠在一起,其栅纹正交.1G 和2G 的屏函数分别为

则其组合光栅21G G ?的屏函数及屏函数个各项对应的衍射班为

这时共产生9个衍射班,其中4个斑在轴上,4个斑在轴外,还有1个斑在原点,它们方向角(21sin ,sin θθ)的数值由),()sin ,(sin 21y x f f λλθθ±=式确定。

(3)复合光栅. 一光栅其屏函数含两种频率成分,

这复合栅的衍射场含5列平面衍射波,显示于后焦面上是5个离散的衍射斑.基濒1f 成分产生的那一对斑的方向角为1±θ,三倍频2f 成分产生的那一对班的方向角为2±θ,它们由下式决定,

这类复合光栅,理论上来自周期屏函数的傅里叫级数展开,其中每个傅里叶成分便是一个余弦光栅;实验上可采取“二次曝光”程序以获得一张复合光栅,比如,在图6.11示意的装置中,先曝光一次,记录下某一频率的干涉条纹,然后变动反射镜倾角,再曝光一次,又在底片上记录下另一频率的干涉条纹.这种情形下,总曝光强度是两者之和,经线性冲洗后的透过率函数就包含了两种频率成分。运用这种实验方法可以获得两个相近的频率成分,即差额),2112f f f f f <<-=?.比如,1f 为50/mm ,2f 为52/mm .这种显示出空间拍频的复合光栅,可用作空间滤波器.以实现图像微分运算.

5.5 傅里叶光学与傅里叶变换

◆傅里叶光学的基本思想

数学上可以将一个复杂的周期函数作傅里叶级数展开,这一点在光学中体现为,一个复杂的图像可以被分解为一系列单频信息的合成,简言之,一个复杂的图像可以被看作一系列不同频率、不同取向的余弦光栅之和.如果事情仅限于此,那图像的傅里叶分解只停留在纯数学的纸面上.为了将这种博里叶分解在物理上付诸实现,必须找到相应的物理途径——物理效应、物理元件或物理装置.

上一节余弦光栅的衍射待征已经表明,当单色光入射于二维图像上,通过夫琅禾费衍射,使一定空间频率的光学信息由一对待定方向的平面衍射波传输出来;这些衍射波在近场区域彼此交织,到了远场区域彼此分离,从而达到分频的目的.常见的远场分频装置是利用透镜,将不同方向的平面衍射波会聚于后焦面的不同位置上,形成—个个衍射斑;衍射斑位置与图像空间频率一一对应,且集中了这一频率成分所有光学信息.

总之,在一夫琅禾费衍射系统中,输入图像的博里叶频谱直观地显示在透镜的后焦面上.换言之,这后焦面就是输入图像的傅里叶频谱面,简称傅氏面,因而那些夫琅禾费衍射斑,也常被称作谱斑,如图所示。从这个意义上看,夫琅禾费衍射装置就是一个图像的空间频谱分析器.这就是现代光学对经典光学中夫琅禾费衍射的一个重新评价——夫琅禾费衍射实现了屏函数的傅里叶变换.这种新认识或新联系,给光学和数学这两方面都带来了新进展;它为夫琅禾费衍射场的分析,提供了一种强有力的傅里叶数学手段,同时开创了光学空间滤

波与光学信息处理这一新技术.

综上所述,振兴于20世纪60年代的傅里叶光学,其基本思想和基本内容,可以概括为两条:对图像产生的复杂波前的傅里叶分析,这意味着将其复杂的衍射场分解为一系列不同方向、不同振幅的平面衍射波,故傅里叶光学就是一种平面波衍射理论;再者,特定方向的平面衍射波,作为一种载波,携带着特定空间频率的光学信息,并将其集中于夫琅禾费衍射场的相应位置.实现了分频,从而为选颇即空间滤波开辟了可行的技术途径,故傅里叶光学也是一种关于空间滤波和光学信息处理技术的理论基础.

◆透镜的傅里叶变换特性

透镜是光学系统最基本的元件,正是由于透镜在一定条件下能实现傅里叶变换,才使得傅里叶分析方法在光学中得到如此广泛的应用.前面我们已经看到,单位振幅平面波垂直照明衍射屏的夫琅禾费衍射,恰好是衍射屏透过率函数),(00y x t 的傅里叶变换(除一相位因子外)。

下面就衍射屏(物)放在透镜之前的情况进行讨论.

用单位振幅单色平面波垂直照明衍射屏,四个平面的复振幅关系为(四路)

①),(),(00000y x At y x U =

②),(000y x U 通过菲涅尔衍射→),(y x U l

③),(y x U l 通过透镜的二次相位变换→),(y x U l '

)

,('y x U l

④),(y x U l '通过菲涅尔衍射→),(f f f y x U

通过冗长的计算得),(f f f y x U 与),(00y x t 的关系为

??+-+--=000000221)](exp[),()(12exp(),(dy dx y y x x f

k i y x t y x f k i C y x U f f f f f f f μμ 这本身就是),(00y x t 的复里叶变换与一个二阶相位因子的乘积,其中:0./d f =μ。 当f d =0.时

??+-=0000001)](exp[),(),(dy dx y x i y x t C y x U f f f ηξ

其中:f ky f kx f f /,/==ηξ。二阶相位因子消失,只剩一个严格的复里叶变换。

这就是说夫朗和费衍射可以实现物的傅里叶变换,这为物信息的处理提供了巨大的方便。

◆透镜的成像特性

信息光学技术第五章习题

第五章 习题解答 5.1两束夹角为 θ = 450的平面波在记录平面上产生干涉,已知光波波长为632.8nm ,求对称情况下(两平面波的入射角相等)该平面上记录的全息光栅的空间频率。 答:已知:θ = 450,λ= 632.8nm ,根据平面波相干原理,干涉条纹的空间分布满足关系式 2 d sin (θ/2)= λ 其中d 是干涉条纹间隔。由于两平面波相对于全息干板是对称入射的,故记录 在干板上的全息光栅空间频率为 f x = (1/d )= (1/λ)·2 sin (θ/2)= 1209.5 l /mm 故全息光栅的空间频率为1209.5 l /mm 。 5.2 如图5.33所示,点光源A (0,-40,-150)和B (0,30,-100)发出的球面波在记录平面上产生干涉: x z 图5.33 (5.2题图) (1) 写出两个球面波在记录平面上复振幅分布的表达式; 答:设:点源A 、B 发出的球面波在记录平面上的复振幅分布分别为U A 和U B , 则有 ()[{]}2 2--22 )()()/(e x p e x p A A A A A A y y x x z jk jkz a U += ()[{]}22--22)()()/(exp exp B B B B B B y y x x z jk jkz a U += 其中: x A = x B = 0, y A = -40, z A = -150, y B = 30, z B = -100; a A 、a B 分别是球面波的振幅;k 为波数。 (2) 写出干涉条纹强度分布的表达式; I = |U A +U B |2 = U A ·U A * + U B ·U B * +U A *·U B + U A ·U B *

(整理)信息光学导论第二章.

第二章 信息光学的数学基础 ◆引言 在这一节,我们将以简明的格式,全面地罗列傅里叶变换和卷积、相关及其主要性质,着重从光学眼光看待那些公式和数学定理,给出相应的光学显示或光学模拟,这有助于生动地理解、掌握傅里叶变换和卷积、相关,其意义就不仅仅限于光学领域了。 2.1傅里叶变换 ◆傅里叶级数 首先.让我们回忆周期函数的傅里叶级数展开式, 这里,)(x g 称为原函数,n G 称为博里叶系数或频谱值,它是傅里叶分量n f x i e 2π的 幅值. ◆频谱的概念 频谱的概念,广义上讲就是求一个函数的傅立叶级数或一个函数的傅立叶变换。因此,傅立叶分析也称频谱分析。频谱分为振幅型频谱和相位型频谱。相位型频谱用的较少,通常提到的频谱大都指振幅型频谱。 为了更深刻的理解不同形式的频谱概念,以实例来进一步说明。对于光栅我们可以用透过率函数)(x g 来描述,一维透射光栅的透过率函数是一矩形波函数。为了讨论问题方便, 设光栅狭缝总数N 无限大 . )(x g 是周期性函数 则: 上式表明,图中表示的矩形波可以分解为不同频率的简谐波,这些简谐波的频率为 ), ()(md x g x g +=) ,2,1,( ±±=m ++-+=)52cos(52)32cos(32)2cos(221)(000x p x f x f x g ππππππ

这里f 称为空间频率. 0f 是f 的基频.。周期性函数的频谱都是分立的谱,各谱线的频率为基频整数倍.在f =0处有直流分量. 透过率函数也可用复数傅里叶级数表示: 再回到光栅装置.由光栅方程, 在近轴条件下 因此透镜后焦面上频率为 当单色光波入射到待分析的图象上时,通过夫琅和费衍射,一定空间频率的信息就被一定特定方向的平面衍射波输送出来. 这些衍射波在近场彼此交织在一起,到了远场它们彼此分开,从而达到分频的目的. 故傅立叶变换能达到分频的目的。 ◆傅里叶变换 在现实世界中,不存在严格意义下的周期函数,非周期变化是更为普遍的现象.从数学眼光看,非周期函数可看作周期∞→d 的函数.据此,可将上述傅里叶级数求和式过渡到积分表达式.结果如下, 上式(*******)称为傅里叶变换,下式******)称为博里叶逆变换.对于二维情形,傅里叶变换和逆变换的积分式为 简单地表示为 ,5 ,3,1, d d d f =x f i n x f i x f i x f i x p i x f i x f i n e G e e e e e e x g 25252323222 )(51)(31)(121)(000000ππππππππ ππ∑ =++++-++=--- ,sin λθn d =) ,2,1,0( ±±=n ,sin 0λλθnf d n f x =='≈λ f x nf f '==0

信息光学参考答案

名词解释 单色平面波 波函数E 取余弦或正弦形式,对应的光波等相面为平面,且等相面上个点的扰动大小时刻相等的光波称为单色平面波。 光学全息 利用光的干涉原理将物体发出的特定光波以干涉条纹形式记录下来,使物光波前的全部信息都贮存在记录介质中形成全息图,当用适当光波照射全息图时,由于光的衍射原理能重现原始物光波,从而形成与原物相同的三维像的过程称为光学全息。 色模糊 由于波长不同而产生的像的扩展的现象叫做像的色模糊。 范西泰特—策尼克定理 指研究一种由准单色(空间)非相干光源照明而产生的光场的互强度,特别指研究干涉条纹可冗度。 11222(,) exp()2(,;,)(,)exp ()()j J x y x y I j x y d d z z ψπαβαβαβλλ+∞-∞?? = -?+??????? 其中 22 2222221121[()()]()x y x y z z ππψρρλλ= +--=- 12ρρ分别是点11(,)x y 和点22(,)x y 离光轴的距离 基元全息图 指单一物点发出的光波与参考光波干涉所形成的全息图。 彩虹全息 只利用纪录时在光路的适当位置加一个夹缝,使再现的同时再现狭缝像,观察再现像将受到狭缝再现像的调制,当用白光照明再现时,对不同颜色的光波,狭缝和物体的再现像位于不同颜色的像,犹如彩虹一样的全息图。 判断 1.衍射受限系统是一个低通滤波器。 2.物 000(,)x y μ通过衍射受限系统后的像分布(,)i i i x y μ是000(,)x y μ的理想像和点扩散 (,)i i h x y 的卷积。 3.我们把(,)H ξη称为衍射受限系统的想干传递函数。 4.定义:()()f x h x 为一维函数,则无穷积分 ()()()()() g x f h x d f x h x ααα+∞ -∞ =-=*? 5.二维卷积 (,) (,)(,)(,)(,)(,) g x y f h x y d d f x y h x y αβαβαβ+∞-∞= --=*?? 6.1,()()() ,x x x x x a rect rect a a a a a o ?-≤?*==Λ???其他 7.透镜作用 成像;傅里叶变换;相位因子。

信息光学复习考点.doc

Rect函数物理意义:用来描述无限大不透明屏上矩形孔的透过率。 Sine函数:与矩形函数(单缝、矩孔的透过率)之间的这种紧密联系,致使他们在傅里叶光学中经常被用到。 阶跃函数:描述光学直边(或刀口)的透过率。 符号函数:描述孔径的复振幅透过率。 三角形函数:表示一个光瞳为矩形的非相干成像系统的光学传递函数。 高斯函数:在统计学领域内经常遇到。在光学领域小,描述激光器发出的高斯光束,有时也用于光学信息处理中的“切趾术”。 圆域函数:描述无限大不透明屏上圆孔的透过率。 §函数:在物理学和工程技术中常用来描述一个极限状态,描述脉冲状态这一类的物理现象。互相关是两个信号间存在多少相似性或关联性的量度。 自相关是两个相同函数图像重叠程度的量度。 位相调制作用:不改变振幅,只改变位相。 相干、非相干成像系统是广场复振幅变换的线性空间不变系统。

F(/v , f y ) = F{/(x, y)} = J L /(x, y)e~l27r(flX+f )y)dxdy 基尔霍夫积分定理: X ))= 士"咕云仏 +九).才{“ 3,x )} 5诂你唱-嚎心已 cos(n, &) 一 cos(〃, ?) 菲涅尔衍射积分公式: 夫琅禾费衍射公式:

卷积物理意义:光学系统像平面上的光强分布是物的光强分布与单位强度点光源对应的 像强度分布的卷积。几何意义:1、置换变量:将f(X)与h (x) >p的自变量X换成积分 变量; 2、折叠:将h ()绕轴旋转180度,构成对称于纵轴的镜像h (-); 3、位移:将曲线h (-) 移动距离x,得到h(X-); 4、相乘:将位移后的函数h (x-)乘以f (),得到f ()h(x-); 5、积分:f () h (x-)曲线下的面积即为给定于x值得卷积值。 线性系统:设函数于= 代表对系统的激励,函数 /=! 果在激励与响应之间成立关系匕(兀2,丿2)=必(坷」)}' &(%2,)‘2)= £纟心2』2)代表系统相应的响应,勺是任意复常数,(p{ }表示系统算符。如 /=! Y 4 gi (兀2,旳)=0{工a i fi (X1,X )卜则称此系统为线性系统o /=1 I Z=1 J 线性空间不变系统(LSI): 设线性系统对输入信号f^y )和f2(x)分别产生输出信号g低」)=0”;(无』)} 和g2& *)=0也(兀* )},若输入函数在空间发生了平移,切对任意复常数务和色,有 (p\ciJ x{x-x^.y-y^ + a2f2{x-x Q Xy-y^} = ci x g^-^y-y^^此系统为线性空间不变系统。 线性空间不变系统的特性:1、脉冲响应具有比较简单的形式2、叠加积分式具有特别形式,即g (兀,丁)=(匸/(&%(>2 -&丁2 -处切〃=/(兀2,丁2)*加>2,歹2)3、傅里叶变换形式特别简单。基尔霍夫积分定理意义:衍射光场中任意点P0的复振幅分布U (p0)可以用包围p0点的任意封闭曲而S上的各点的波动边界值U和du/dn求得。 两个衍射的联系:夫琅禾费衍射范围包含在菲涅尔衍射范围Z内,所以凡能用计算菲涅尔衍射的公式都能用来计算夫琅禾费衍射。但是夫琅禾费近似从形式上破坏了卷积关系,破坏了衍射过程“系统”的空间不变特性。 傅里叶成像:当用单色平面光波照明一个具有周期性透过率函数的透明物体(例如透射光栅) 时,将会在该物体后面某些特定距离上重现此周期结构物体的像。这种不用透镜而仅靠光的衍射就可以对周期性物体成像的方法. 薄透镜:是指透镜的最大厚度和透镜的表面曲率半径相比可以忽略的透镜?在傍轴条件下薄透镜的变换函数是纯相位的。通过透镜的相位变换作用,把一个发散球面波变成了会聚球面波。 用透镜来实现傅里叶变换的途径:1、采用平行光照明,在透镜的后焦面上观察到物的频谱。 2、点光源照明衍射屏时,在点光源的像平面上将得到衍射屏函数的傅里叶变换谱,且频谱的零频位置就在点光源的像点处。 相干成像与非相干成像系统的比较:截止频率、两个点物间的分辨、像强度的频谱、对锐边相应迥然不同。 第五章 全息照相:以干涉、衍射为基础的无透镜摄影,记录物体所发光波的振幅(频率)和位相(全部光信息)。优点:可以再现物体的立体形象。全息底片:没有物体的影像,而是记录了物体所发光波的全部信息的干涉条纹。 全息图的记录和重现:全息记录:在物波场引入一个参考光波,使其在物光波住纪录平面上发生

信息光学简介

信息光学是现代光学前沿阵地的一个重要组成部分。 信息光学采用信息学的研究方法来处理光学问题,采用信息传递的观点来研究光学系统,这之所以成为可能,是由于下述两方面的原因。 首先,物理上可以把一幅光学图象理解为一幅光学信息图。一幅光学图象,是一个两维的光场分布,它可以被看作是两维空间分布序列,信息寓于其中。而信息学处理的电信号可以看作是一个携带着信息的一维时间序列,因此,有可能采用信息学的观点和方法来处理光学系统。 然而,仅仅由于上述原因就把信息学的方法引入光学还是远远不够的。在光学中可以引入信息学方法的另一个重要原因是光学信号通过光学系统的行为及其数学描述与电信号通过信息网络的行为及其数学描述有着极高的相似性。在信息学中,给网络输入一个正弦信号,所得到的输出信号仍是一个正弦波,其频率与输入信号相同,只不过输出波形的幅度和位相(相对于输入信号而言)发生了变化,这个变化与、且仅与输入信号的性质以及网络特点有关。在光学中,一个非相干的光强按正弦分布的物场通过线性光学系统时,所得到的像的光强仍是同一频率的正弦分布,只不过相对于物光而言,像的可见度降低且位相发生了变化,而且这种变化亦由、且仅由物光的特性和光学系统的特点来决定。很显然,光学系统和网络系统有着极强的相似性,其数学描述亦有共同点。正因为如此,信息学的观点和方法才有可能被借鉴到光学中来。 信息学的方法被引入光学以后,在光学领域引起了一场革命,诞生了一些崭新的光学信息的处理方法,如模糊图象的改善,特征的识别,信息的抽取、编码、存贮及含有加、减、乘、除、微分等数学运算作用的数据处理,光学信息的全息记录和重现,用频谱改变的观点来处理相干成像系统中的光信息的评价像的质量等。这些方法给沉寂一时的光学注入了新的活力。 信息光学和网络系统理论的相似是以正弦信息为基础的,而实际的物光分布不一定是正弦分布,因此,在信息光学中自然必须引入傅里叶分析方法。用傅里叶分析法可以把一般光学信息分解成正弦信息,或者把一些正弦信息进行傅里叶叠加。把傅里叶分析法引入光学乃是信息光学的一大特征。在此基础上引入了空间频谱思想来分析光信息,构成了信息光学的基本特色。 信息光学的基本规律仍然没有超出经典波动理论的范围,它仍然以波动光学原理为基础。信息光学主要是在方法上有了进一步的发展,用新的方法来处理原来的光学问题,加深对光学的理解。当然如果这些发展只具有理论的意义,它就不会像现在这样受到人们的重视,它除了可以使人们从更新的高度来分析和综合光现象并获得新的概念之外,还由此产生了许多应用。例如,引入光学传递函数来进行像质评价,全息术的应用等。

信息光学导论第四章

第四章 标量衍射理论 如图所示,衍射理论所要解决的问题是:光场中任一点Q 的复振幅能否用光场中其它各点的复振幅表示出来,例如由孔径平面上的场分布计算孔径后面任一点处的复振幅.显然,这是一个根据边界值求解波动方程的问题. 4.1 标量衍射理论 ◆惠更斯—菲涅耳原理及其数学形式 历史上第一个给出求解衍射理论所要解决问题的学者,是法国物理学家菲涅耳(A .J .Fresnel ,1788—1827).他汲取了惠更斯原理中的次波概念,并以光波干涉的思想补充了惠更斯原理,提出了“次波相干叠加”的理念,据此成功地解释了衍射现象,它为衍射现象的分析确立了一个统一的理论框架,从此光波衍射研究进入了正确轨道.后人称之为惠更斯—菲涅耳原理的内容,可表述如下:波前上的每个面元可以看为次波源,它们向四周发射次波;波场中任一场点的扰动,是所有次波源所贡献的次级扰动的相干叠加,见下图 参见上图,设波前上任一面元dS 对场点P 贡献的次级扰动为)(p dU ,则场点的总扰动)(p U 按惠更斯—菲涅耳原理应当表达为 其中

上述积分称为菲涅耳衍射积分式,它可以作为惠更斯—菲涅耳原理的数学表达式。 ◆基尔霍夫衍射积分式 约六十年后的1880年,德国物理学家基尔霍夫,从定态波场的亥姆霍兹方程出发,利用矢量场论中的格林公式,在1>>kr ,即λ>>r 条件下,导出了无源空间边值定解的表达式, 与菲涅耳凭借朴素的物理思想所构造的衍射积分式(*****)比较,两者主体结构是相同的.基 尔霍夫的新贡献是: (1)明确了倾斜因子2/)cos (cos ),(00θθθθ+=f ,据此,那些2/πθ>的次波面元依然对场点扰动有贡献,即闭合波前面上的各次波源均对场点扰动有贡献. (2)给出了比例系数,λλπ//2 /i e i K -=-=. (3)指出波前面( ∑ )并不限丁等相面,凡是隔离实在的点光源与场点的任意闭合面,都 可以作为衍射积分式中的积分面,如图(a,b,c ) 所示.形象地说,立足于场点P 而环顾四周是看不见真实光源的,看到的只有边界面上的大量次波源,在这个被包围的空间中是无源的.积分面不限于等相面这一点.有重要理论价值.它为求解实际衍射场分行大开方便之门。 ◆亥姆霍兹方程 在自由空间中电磁场),(t r E ),(t r H 具有波动性,满足波动方程 若以标量场),(~ t r U 代表六个分量中的任一个,则波动方程表现为

信息光学导论第五章

第五章 傅里叶变换光学与相因子分析方法 5.1 衍射系统 波前变换 ◆引言 现代光学的重大进展之一,是引入“光学变换”概念,由此发展而形成了光学领域的一个新分支——傅里叶变换光学,泛称为变换光学(transform optics),也简称为博里叶光学,它导致了光学信息处理技术的兴起.现代变换光学是以经典波动光学的基本原理为基础,是干涉、衍射理论的综合和提高,它与衍射、尤其与夫琅禾费衍射息息相关.对于熟悉经典波动光学的人们来说,由于他们有着较充分的概念储备和较充实的物理图像,因而具备更为有利的条件,去深刻而灵活地掌握现代变换光学. ◆衍射系统及其三个波前 如图所示,一个衍射系统以衍射屏为界被分为 前后两个空间.前场为照明空间,充满照明光波; 后场为衍射空间,充满衍射光波.照明光波比较简 单、常为球面波或平面波,这两种典型波的等幅面 与等相面是重合的,属于均匀波,其波场中没有因 光强起伏而出现的图样.衍射波较为复杂,它不是 单纯的一列球面波或一列平面波,其等幅面与等相 面—般地不重合,属于非均匀波,其波场中常有光 强起伏而形成的衍射图样. 在衍射系统的分析中,人们关注三个场分布: 其中,入射场),(~1y x U 是照明光波到达衍射屏的波前函数;出射场),(~2y x U 是衍射屏的透射场或反射场,它是衍射空间初端的波前函数,它决定了整个衍射空间的光场分布;而衍射场),(~y x U ''是纵向特定位置的波前函数。由此可见,整个衍射系统贯穿着波前变换: 波前),(~),(~21y x U y x U →这是衍射屏的作用: 波前),(~ ),(~2y x U y x U ''→这是波的传播行为. 由一个波前导出前方任意处的另一个波前,这是波衍射问题的基本提法,亦即波传播问 题的基本提法.标量波的传播规律己由惠更斯—菲涅耳—基尔霍夫理论(HFK 理论)给出.在 常见的傍轴情形下,其表达式为 其积分核为ikr e ,这是一个球面波的相因子形式.换言之HFK 理论是—个关于衍射的球面波理论——衍射场是衍射屏上大量次波点源所发射的球面被的相干叠加. ◆衍射屏函数及其三种类型 我们已经同多种衍射屏有过交道,现在给山衍射屏函数的一般性定义,以定量地描述衍射屏的自身特征:

第五章 信息光学基础

第五章 光学信息处理基础 光学信息处理是在全息术、光学传递函数和激光的基础上,将数学中的傅里叶变换和通信中的线性系统理论引入到光学,用光学的方法实现傅立叶变换,在频域中描述和处理光学信息。傅立叶分析的方法早在十九世纪末、二十世纪初成功地应用于光学领域,具有代表性的是阿贝关于显微镜的两次成像理论和阿贝-波特实验。上个世纪三十年代泽尼克发明的相衬显微镜是光学信息处理的早期卓越成就。激光器的出现为人们提供了相干性非常好的光源,光学信息处理得到迅速发展,例如用光学的方法实现相关运算、特征识别微分运算等。本章主要内容:1波前变换;2阿贝成像原理和相衬显微镜;3傅里叶变换;4傅立叶变换光学及光学信息处理;5光学全息照相; §1 波前变换(Wave front transformation) 1.1 对衍射的再认识 前面我们把光经过障碍物后偏离传播的现象称为衍射。应用惠更斯-菲涅耳原理讨论了光的衍射问题后,我们意识到光的衍射是光在传播的过程中波面受到某种限制,即自由传播波面被破坏,这便是衍射。 按照惠更斯-菲涅耳原理,只要将波前()0 U Q 上每一面元看成次波中心,把它们对空间某一点的贡献相干叠加,就能求衍射场的分布()U P ,并且波前()U P 由()0 U Q )唯一的确定。上述意味着,在Σ上有障碍物存在,使得Σ上波前函数 ()0U Q )发生了与自由传播有所不同的变化,光波场就会产生重新分布,这就是衍射的实质。 1.2 衍射系统的屏函数(screen function) 按照前面我们对光的衍射认识,凡能改变波前上的复振幅的物体称为衍射屏(diffraction function )。衍射屏可以是透射物体,也可以示反射物体,有各种形状。光波经过衍射屏是光的传播问题,要用菲涅耳-基尔霍夫积分公式计算,把这种衍射看作是一种变换,衍射屏能 将输入波前()in U x,y %转化为波前()out U x,y %,衍射屏可用以下一个函数表征。 ()()(),,,out in U x y T x y U x y = 屏函数包括振幅和相位两部分,通常有以下三种 ① 相位型 ② 振幅型 ③ 振幅相位型 任何形状的孔或遮光屏是最简单的振幅型透射衍射屏,他们的函数具有如下形式

信息光学复习提纲--重点

信息光学复习提纲 信息光学的特点 Ch1. 线性系统分析 1.矩形函数:①定义②图像③作用④傅里叶变换谱函数 2.sinc函数:①定义②图像③作用④傅里叶变换谱函数 3.三角函数:①定义②图像③作用④傅里叶变换谱函数 4.符号函数:①定义②图像③作用④傅里叶变换谱函数 5.阶跃函数:①定义②图像③作用④傅里叶变换谱函数 6.余弦函数:①定义②图像③作用④傅里叶变换谱函数 7. 函数:①三种定义②四大性质③作用 8.; ②图像③作用④傅里叶变换谱函数 9.梳状函数:①定义 10.高斯函数:①定义②图像③作用④傅里叶变换谱函数 11.傅里叶变换(常用傅里叶变换对) 12.卷积:四大步骤,两大效应 13.互相关、自相关的定义、物理意义 14.傅里叶变换的基本性质和有关定理 15.线性系统理论 16.线性不变系统的输入输出关系,脉冲响应函数,传递函数 17.抽样定理求抽样间隔 ~

Ch2. 标量衍射理论 1. 标量衍射理论成立的两大条件 2.平面波及球面波表达式: exp[(cos cos cos )]A ik x y z αβγ++ (求平面波的空间频率) )](2exp[]exp[22y x z ik ikz z A + 3.惠更斯——菲涅耳原理: ()?? ∑ =ds r ikr K P U c Q U )exp()()(0θ ? 4.基尔霍夫衍射理论: ?? ∑ -= ds r ikr r n r n r ikr a j Q U ) exp(]2),cos(2),cos([)exp(1 )(0000 λ 令()()θλK r ikr j Q P h ) exp(1,= 所以()??∑ = ds Q P h P U Q U ,)()(0 当光源足够远,且入射光在孔径平面上各点的入射角都不大时, (),1,cos 0≈r n (),1,cos ≈r n ().1≈∴θK 故()z ikr j Q P h ) exp(1,λ=,]})()[(211{20020z y y z x x z r -+-+≈ 5. 菲涅耳衍射——近场衍射: 0000202000022)](2exp[)](2exp[ ),()](2exp[)exp(),(dy dx yy xx z j y x z jk y x U y x z jk z j jkz y x U +-++= ?? ∞ ∞ -λπ λ6. 夫琅禾费衍射——远场衍射:(根据屏函数求衍射光强分布)

《信息光学》期末复习要点

2011《信息光学》期末复习要点 第一章:概念和简答题: 什么是线性系统?什么是线性不变系统?分别在空间域和频率域写出线性不变系统中输出函数和输入函数之间的关系式。 计算题:习题1.4; 1.12;求sgn(x) 的傅里叶变换 第二章:概念和简答题: 简述惠更斯-菲涅耳原理,写出基尔霍夫衍射公式和叠加积分公式,阐述三者之间的关系;简述如何利用透镜(物在透镜前)实现“准确的傅里叶变换”以及“准傅里叶变换”,要求写出相应的变换公式并比较二者的差别。 计算题:习题2.2;2.3; 第三章:概念和简答题: 简述衍射受限系统、入射光瞳和出射光瞳的概念,画出简图,指出各区间适用的光学规律;写出相干照明衍射受限系统在空间域和频率域的成像规律,给出光学传递函数OTF、相干传递函数CTF和光瞳函数之间的关系。 分别写出透镜和衍射受限系统的点扩散函数,指出二者的区别; 计算题:习题3.2;例题3.3.1;例题3.3.2; 第四章:概念和简答题: 简述理想的完全相干光源和实际的部分相干光源之间的区别,说明如何判断实际部分相干光源的时间相干性与空间相干性; 简述如何构造一个多色实信号的解析表示(两种方式),写出其数学表述; 给出互相干函数的谱表示,复相干度的谱表示; 计算题:习题4.1;4.2;例题4.1.2; 第五章:概念和简答题: 简述全息技术的基本原理(包括波前记录与波前再现)以及如何实现各再现分量的分离;简述全息图有哪些基本类型; 简述利用像全息和彩虹全息实现“激光纪录”和“白光再现”的基本原理。 给出基元全息图的定义和分类(空间域、频率域、平面波、球面波) 计算题:习题5.2;5.3;5.6;5.8;5.10;例题5.4.1

信息光学习题课大纲

《信息光学》习题课提纲 2010年5月 第一章 傅里叶分析 1. )]([d )()(00x f x x f x x =-? ∞ ∞ -δ ( δ 函数的筛选性) 2. δ函数的坐标缩放性用公式表示为 。 A .()()y x ab by ax ,,δδ= B. ()()y x ab by ax ,1,δδ= C.()? ? ? ??=b y a x ab by ax , ,δδ D. ()??? ??=b y a x ab by ax ,1,δδ 3. 给出下式的傅立叶变换 (1) ??? ?≤≤-=others t t , 02 /12/1, 1)(rect [ )2/(sinc f ] (2) ?)2exp(0x f i π[ )(0f f -δ ] (3) =)})rect({rect(y x F ( ))s i n c (s i n c (Y X f f ) (4){}= x f FT a π2cos ()()[]a x a x f f f f ++-δδ2 1 4. 傅立叶变换性质 如果)()}({f G x g =F ,则 (1) )}({ax g F =[ )/(1a f G a ] 相似性定理 (2) )}({a x g -F =[)(2f G e fa j π-] 傅里叶变换的位移定理 5. 已知)()()(x g x h x f =*,证明若其中一个函数发生x 0的位移,有 )()()(00x x g x h x x f -=*- (卷积的平移不变性) 证:

因为 ? ∞ ∞ --= *t t x h t f x h x f d )()()()( --3 所以 ) (' d )'()'(' d )'()'(d )()()()(000'000 x x g t t x x h t f t x t x h t f t t x h x t f x h x x f x t t -=--= --=--= *-? ? ? ∞ ∞ -∞∞ --=∞∞ - 应用卷积定理求()()()x c x c x f 2sin sin =的傅立叶变换。 解: ()(){}(){}(){}()?? ? ??*= *=221 2sin sin 2sin sin ξξrect rect x c F x c F x c x c F 当2 123- <≤- ξ时, ()ξξξ+= = ?+ -2 11 2 32 1 du G 当2 12 1< ≤-ξ时, ()?+ - == 2 1 2 1121 ξξ ξdu G 当 2 32 1< ≤ξ时, ()ξξξ -= = ?-12 12 321 du G ()ξG 2的图形如图所示,由图可知, ??? ??∧-2/141ξ 1 -1 3/2 -3/2

信息光学习题R

信息光学习题解答 问答题 1. 傅里叶变换透镜和普通成像透镜的区别。 答: 普通透镜 要求共轭面无像差,为此要消除各种像差。由几何关系可计算平行光入射在透镜后焦面得到的像高u f h cos /ηλ=,因为 λ =ηλη==?=u u f u u f tgu f h sin ,cos cos sin 。 傅里叶变换透镜 频谱面上能够获得有线性特征的位置与空间频率关系ηλ=f h 。 普通透镜和傅里叶透镜对平行光输入在后焦面上光点的位置差 3 2 1sin 'fu u f ftgu y ≈ -=?称频谱畸变。 普通透镜只有在u 很小时才符合傅里叶变换透镜的要求。要专门设计消除球差和慧差,适当保留畸变以抵消频谱畸变。 2. 相干光光学处理和非相干光光学处理的优缺点。 答:非相干光处理系统是强度的线性系统,满足强度叠加原理。 相干光信息处理满足复振幅叠加原理。因为复振幅是复数,因此有可能完成加、减、乘、除、微分、积分等多种运算和傅里叶变换等。 在非相干光学系统中,光强只能取正值。信息处理手段要少。 相干光学信息处理的缺点: (1)相干噪声和散斑噪声。 相干噪声:来源于灰尘、气泡、擦痕、指印、霉斑的衍射。产生杂

乱条纹,对图像叠加噪声。 散斑噪声:激光照射漫反射物体时(生物样品,或表面粗糙样品),物体表面各点反射光在空间相遇发生干涉,由于表面的无规则性,这种干涉也是无规则的,物体表面显出麻麻点点。 (2)输入输出问题 相干光信息处理要求信息以复振幅形式在系统内传输,要制作透明片和激光照明。而现代电光转换设备中CRT ,液晶显示,LED 输出均为非相干信号。 (3)激光为单色光,原则上只能处理单色光,不能处理彩色图像。 非相干光处理最大优越性是能够抑制噪声。 3. 光学傅里叶变换可看成是函数到其频谱的变换,试回答 (1)这个系统是线性的吗? (2)这个系统具有线性不变性质吗?为什么? 答 傅里叶变换有线性性质。设 a , b 为常数,则 函数有空间位移时其频谱有相移,并不会产生频谱移动。因此傅里叶变换没有线性平移不变性。 {}(){} ),(η,ξ,),()η,ξ(y x g G y x f F F F =={}()() η,ξη,ξ),(),(gG aF y x bg y x af +=+F

信息光学课程大纲-2014年版

《信息光学》教学大纲 课程编号:PY5402 课程名称:信息光学英文名称:Information Optics 学分/学时:3/48 课程性质:必修 适用专业:应用物理学建议开设学期:第六学期 先修课程:光学、电动力学,信号与系统开课单位:物理与光电工程学院 一、课程的教学目标与任务 本课程为应用物理学专业的一门专业必修课。在经典光学基础上,利用线性系统理论和傅里叶分析方法分析光学问题,从光的物理本质电磁波出发,系统学习现代光学的基础理论,其中包括标量衍射理论,光学成像系统频率特性以及光学全息等;学习空间光调制器、光信息存储、光学信息处理等应用技术原理以及最新技术进展。 二、课程具体内容及基本要求 (一) 二维线性系统分析 (2学时) 线性系统,二维线性不变系统,二维傅里叶变换,抽样定理 1.基本要求 (1)掌握二维线性不变系统特点和分析方法。 (2)掌握傅里叶变换性质和常用函数的傅里叶变换。 2.重点、难点 重点:二维线性不变系统的定义、传递函数以及本征函数 难点:将线性系统理论应用于光学系统分析的条件 3.作业及课外学习要求:本章主要复习线性系统理论和傅里叶变换相关概念,初步了解线性系统理论研究光学系统相关理论和方法的条件和特点。 (二)标量衍射的角谱理论(8学时) 光波数学描述,复振幅分布的角谱及角谱传播,标量衍射的角谱理论,菲涅耳衍射和夫琅和费衍射 1.基本要求 (1)掌握平面波空间频率的概念和计算方法。 (2)掌握标量衍射的角谱理论(基尔霍夫衍射、菲涅耳衍射和夫琅和费衍射) (3)掌握夫琅和费衍射与傅里叶变换关系 (4)了解菲涅耳衍射与分数傅里叶变换关系 2.重点、难点 重点:平面波空间频率概念和标量衍射角谱理论 难点:(1)基尔霍夫衍射公式的光学物理意义 (2)复振幅分布和标量衍射理论的角谱理论物理意义 3.作业及课外学习要求:本章主要介绍光波传播过程中的空间域以及空间频域描述方法,是本课程理论基础,其研究方法、研究特点以及结论和公式是此后各章都要用到的,本

信息光学复习笔记.doc

矩形函形 rect =??? ??-a x x 0?? ?? ? ≤-其他 , 021 0, 1a x x 函数以x0为中心,宽度为a (a >0)高度为1的矩形,当x0=0,a =1时,矩形函数形式变成rect (x),它是以x=0为对称轴的,高度和宽度均为1的矩形。当x0=0, a =1时,矩形函数形式变成rect (x),它是以x=0 为对称轴的,高度和宽度均为1的矩形,二维矩形函数可表为一维矩形函数的乘积?? ? ??-??? ??-b y y a x x rect 00, a ,b>0 c sin 函数 ()()a x x a x x a x x c /0/0sin 0sin --= ?? ? ??-ππ a >0,函数在x=x0处有最大值1。零点位于()Λ2,10=±=-n na x x .对于x0=0,a =1,函数图像 三角函数 ?? ??? -=??? ??Λ, 0, 1a x a x a >0 符号函数 ()?? ? ??<-=>=0,10,00,1sgn x x x x 阶跃函数 ()???<>=0,00 ,1x x x step 圆柱函数 在直角坐标系内圆柱函数定义式 ? ????<+=???? ??+其它 ,0,1222 2a y x a y x circ 极坐标内的定义式为 ???><=??? ??a r a r a r circ ,,01

卷积的定义 函数()x f 和函数()x h 的一维卷积,有含参变量的无穷积分定义,即 ()()()()()x h x f d x h x f x g *=-= ?∞ ∞ -αα 定义()x f 和()x h 的二维卷积:()()()()()y x h y x f d d y x h f y x g ,*,,,,=--=??∞ ∞ -βαβαβα 卷积的基本性质 线性性质 交换律 平移不变性 ()()()()() *21 2 1 21?∞ ∞ ---=---=--x x x g d x x h x f x x h x x f ααα 结合律 坐标缩放性质 ()()()ax g a ax h ax f 1 *= 函数()y x f ,与δ函数的卷积()()()()()? ?∞ ∞ -=--=y x f d d y x f y x y x f ,,,,*,βαβαδβαδ 即任意函数()y x f ,与δ函数的卷积,得出函数()y x f ,本身,而()()()0000,,*,y y x x f y y x x y x f --=--δ 互相关 两个函数()y x f ,和()y x g ,的无相关定义为含参变量的无穷积分,即 ()()()()()y x g y x f d d g y x f y x R fg ,,,,,*☆=--=?? ∞ ∞-βαβαβα 或 ()()()()()y x g y x f d d y x g y x f y x R fg ,,,,,* ☆=++=? ?∞ ∞ -βαβα 互相关卷积表达式:()()()()y x g y x f y x g y x f ,*,,,*--=☆ 性质:(1)()()y x R y x R fg gf ,,≠,即互相关不具有交换性,而有()()y x R y x R fg gf --=,,* (2)()()()0,00,0,2 gg ff fg R R y x R ≤ 自相关 当()()y x g y x f ,,=时,即得到函数f 的自相关定义式 ()()()()()y x f y x f d d f y x f y x R ff ,,,,,*☆=--=? ? ∞ ∞ -βαβαβα 和 ()()()y x f y x f y x R ff ,*,,*--= 性质:(1)自相关函数具有厄密对称性()()y x R y x R ff ff --=,,* 当()y x f ,是实函数时,()y x R ff ,是偶函数 (2)()()0,0,ff ff R y x R ≤

中山大学信息光学复习要点

第二章: 2.7互相关定义: 互相关的意义: 自相关定义: 自相关意义: 自相关的作用: 归一化互相关的定义及范围: 归一化自相关的定义: 功率函数定义: 功率函数积分的意义: 有限功率函数定义: 有限功率函数的互相关定义式: 3.3 解析信号的定义: 单色光场的定义: 解析信号频谱和实信号频谱的关系:

3.4 定态光场定义: 复振幅的定义: 球面波的复振幅: 球面波的旁轴近似复振幅:(为什么相位项不能近似) 中心离轴的球面波波函数,相当于中心在轴上的球面波函数与一个倾斜平面波函数的乘积 3.5 空间频率定义: 平面波的复振幅: 平面波的复振幅(空间频率形式): 为什么球面波没有空间频率: 角谱定义: 平面波基元分析法和余弦基元分析法: 简单波和复杂波定义:

3.6 空间带宽积的定义及意义: 分辨率: 4.2 惠更斯-菲涅尔原理: 根据惠更斯-菲涅尔原理的得到的衍射公式(为什么不能用来处理复杂的衍射): 菲涅尔-基尔霍夫衍射公式及其物理意义: 球面波的衍射理论: 4.3 角谱在空间中的传递函数: 衍射孔径对光波的作用: 4.4衍射的菲涅尔近似和夫琅禾费近似 菲涅尔衍射的卷积积分表达式及其条件: 夫琅禾费衍射的卷积积分表达式及其条件:

用汇聚球面波照明衍射屏时:互补屏定义: 互补屏透射函数关系: 4.5菲涅尔衍射的计算 塔尔伯特效应: 塔尔伯特距离定义: 傅里叶成像意义: 一维余弦光栅的菲涅尔衍射: 矩形孔的菲涅尔衍射:

4.6夫琅禾费衍射的计算夫琅禾费衍射公式: 矩形孔的夫琅禾费衍射: 单狭缝的夫琅禾费衍射:

双狭缝的夫琅禾费衍射: 衍射光栅基于衍射效应工作 光栅光谱的定义: 光栅的分光作用: 线光栅定义: 光栅常数定义: 衍射效率: 分辨本领: 余弦型振幅光栅定义: 振幅光栅和相位光栅的区别: 闪耀光栅定义: 5.1成像系统概述 初级光源定义: 次级光源定义:

信息光学导论 第一章

第一章 信息光学的物理基础 1.1光是一种电磁波 ◆特定波段的电磁波 光的波动性由大量的光的干涉、衍射和偏振现象和实验所证实,这是19世纪上半叶的 事.到了19世纪下半叶,麦克斯韦电磁场理论建立以后,光的电磁理论便随之诞生.光是一种特定波段的电磁波.可见光的波长A 在380~760 nm ,相应的光频按λ/c f =计算约为 1414104~108??Hz 。虽然齐整个电磁波增中光波仅占有一很窄的波段,它却对人类的生 命和生存、人类生活的进程和发展,有着巨大的作用和影响,还由于光在发射、传播和接收方面具有独特的性质,以致很久以来光学作为物理学的一个工要分支—直持续地皮勃发展着. ◆主要的电磁性质 光的电磁理论全面地揭示了光波的主要性质.现扼要分列如下,在以后的章节中不免时 有引用这其中的某些性质. (1)光扰动是—种电磁扰动. 光扰动随时间变化和随空间分布的规律,遵从麦克斯韦电磁场方程组, 这是普遍的麦充斯卡韦方程组在介质分区均匀空间中的表现形式.这里没有自由电荷,也没有传导电流,人们称其为自内空间.其中,ε是介质的相对介电常数、μ是介质的相对磁导率;),(t r E 表水电场强度矢量, ),(t r H 表示磁场强度矢量。 (2)光波是一种电磁波. 由方程组(1.1)按矢量场论运算规则,推演出以下方程 这里,2 ?称为拉普拉斯算符,其运算功能在直角坐标系中表现为 由此可见,(1.2)式正是波动方程的标准形式,这表明白由空间中交变电磁场的运动和变化

具有波动形式,而形成电磁波.不论它是多么复杂的电磁波,具传播速度v 已被方程制约为 由此获得真空中的电磁波速度公式为 这里,00,με是两个可以由实验确定的常数,故真空电磁波速是一个恒定常数.按数据 22120/1085.8m N C ??=-ε,270/104A N -?=πμ,得真空电磁波速s m C /1038?=, 如此巨大约波速惟有光速可以相比且惊人地相近.莫非光就是一种电磁波。 (3)平面电磁波是自由空间电磁波的一基元成分. 平面电磁波函数 是满足被动方程(1.2)式的,其中k 称作波矢,其方向与平面等相面正交,即k 指向波法线方 向,其大小k 与平面波的空间周期即波长λ相对应, (4)光是横波. 将平面波函数代入散度为零的那两个方程0,0=??=??H E .可以 得到k H H E ⊥⊥,,这表明,电磁场振荡方向与波矢方向正交。沿等相面的切线方向,在与波矢正交的横平面个振动.换言之,自由空间中光波是横波. (5)电场与磁场之间的正交性相同步性 将平面波函数代入旋度方程 可以导出 进而得 E H H E E H 000,,εεμμ??==⊥ 这表明,振荡着的电场与磁场,彼此之间在方向上是时时正交的.k H E ,,三者方向构成一个右手螺旋,即k H E //)(?.如图1.1所示;相位是相等的.两者变化步调是一致的;振幅之间有一个简单的比例关系. (6)电磁波能流密度——坡印亭矢量. 伴随着波的传播必定有能量的传输.电磁波或光波也是如此,即光波携带能量离开光源而向外辐射.人们称这种有定向能流离源远行的电磁场或光场为辐射场或电磁辐射.经推导,电磁波能流密度矢量为 t H E ??-=??0 μμE k H ?= ω μμ1

光信息处理(信息光学)

光信息处理(信息光学)复习提纲 第一章线性系统分析 1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性?2.空间频率分量的定义及表达式? 3.平面波的表达式和球面波的表达式? 4.相干照明下物函数复振幅的表示式及物理意义? 5.非相干照明下物光强分布的表示式及物理意义? 6.线性系统的定义 7.线性系统的脉冲响应的表示式及其作用 8.何谓线性不变系统 9.卷积的物理意义 10.线性不变系统的传递函数及其意义 11.线性不变系统的本征函数 第二章标量衍射理论 1.衍射的定义 2.惠更斯-菲涅耳原理 3.衍射的基尔霍夫公式及其线性表示 4.菲涅耳衍射公式及其近似条件 5.菲涅耳衍射与傅立叶变换的关系 6.会聚球面波照明下的菲涅耳衍射 7.夫琅和费衍射公式 8.夫琅和费衍射的条件及范围 9.夫琅和费衍射与傅立叶变换的关系 10.矩形孔的夫琅和费衍射 11.圆孔的夫琅和费衍射(贝塞尔函数的计算方面不做要求)12.透镜的位相变换函数 13.透镜焦距的判别 14.物体位于透镜各个部位的变换作用 15.几种典型的傅立叶变换光路 第三章光学成象系统的传递函数 1.透镜的脉冲响应 2.相干传递函数与光瞳函数的关系 3.会求几种光瞳的截止频率 4.强度脉冲响应的定义 5.非相干照明系统的物象关系 6.光学传递函数的公式及求解方法 7.会求几种情况的光学传递函数及截止频率 第五章光学全息 1.试列出全息照相与普通照相的区别 2.简述全息照相的基本原理 3.试画出拍摄三维全息的光路图 4.基元全息图的分类

5.结合试验谈谈做全息实验应注意什么(没做过实验,只谈一些理论性的注意方面)6.全息照相为什么要防震,有那些防震措施,其依据是什么 7.如何检测全息系统是否合格 8.全息照相的基本公式 9.全息中的物像公式及解题(重点)

相关文档
最新文档