2-6复合函数的求导法则(链式法则)

2-6复合函数的求导法则(链式法则)
2-6复合函数的求导法则(链式法则)

模块基本信息

一级模块名称 微分学

二级模块名称 计算模块 三级模块名称 复合函数的求导法则(链式法则)

模块编号 2-6 先行知识

导数的四则运算 模块编号

2-4 复合函数 1-2 知识内容

教学要求 掌握程度

1、复合函数的求导法则的证明 1、了解复合函数的求导法则的证明 熟练掌握

2、复合函数的求导法则(链式法则) 2、掌握复合函数的求导法则(链式法则)

能力目标 1、培养学生的计算能力 2、知识拓展的能力 时间分配 45分钟

编撰

陈亮

校对

方玲玲

审核 危子青

修订

肖莉娜

二审

危子青

一、正文编写思路及特点

思路:先让学生犯错,目的的是让学生记忆深刻,然后解决错误,在解决错误的过程中使得学生理解复合函数求导法则,最后通过例题由浅到深逐步理解复合函数的求导法则。

特点:通过犯错让学生记忆深刻。

二、授课部分

(一)、预备知识 1、导数的四则运算 2、复合函数

简单介绍复合函数的定义(由多个初等函数复合而成的函数称为复合函数)

复合函数的分解,重点介绍复合函数的分解。

sin 2y x = 分解成 sin ;2y u u x == lnsin y x = 分解成 ln ;sin y u u x ==

ln cos x y e = 分解成 ln ;cos ;x y u u v v e === 1

sin x

y e

= 分解成 1;sin ;u

y e u v v x

===

2

arcsin 2x y ?

?= ??

? 分解成 2;sin ;2x y u u arc v v ===

课堂练习:

()

4

1

arctan 23arccos x

y e y x y x

==-=

lntan

ln ln ln 2

x y y x y x x x ===++

(二)、新课讲授 1、新课导入

提问: (sin 2)?x '=(目的是让学生犯错) 解决错误:()(sin 2)2sin cos x x x ''=?

()()()

222sin cos 2sin cos 2cos sin 2cos 2x x x x x x x

''

=+=-=

为什么?为什么不等于cos 2x 而是2cos 2x ? 解决问题:

先回顾一下求导公式,例如:()sin cos x x '= 即说明

sin sin sin 2cos cos cos 22d x d y d x

x y x dx dy d x

=?=?= 而()sin 2sin 2d x

x dx

'=,于是有:

()sin 22sin 2cos 222d x d x

x x d x dx

'=

?=? 类似()x

x e e '=,即说明333x y x x y

x de de de e e e dx dy d x

=?=?=

sin sin sin x

x de e d x ?=2

2

2x u x u de de e e dx du

?=?=? 等等,可以多列举几个例子说明。

例1. sin x y e =求y '(一级)

解:()()sin sin sin sin sin sin sin cos sin x x

x

x x de de d x e

e x e x dx d x dx ''==?=?=?

为了加深学生对这个概念的理解,可适当的多列举些例子。

2、复合函数求导及其相关性质

如果)(x g u =在点x 可导, 函数)(u g y =在点)(x g u =可导, 则复合函数))((x g f y =在点x 可导, 且其导数为

)()(x g u f dx dy

'?'=或dx

du du dy dx dy ?=.

(通过导数的定义证明复合函数的导数计算法则)

简要证明:

x u

u y x y dx dy x x ???

??=??=→?→?00lim lim )()(lim lim 00

x g u f x

u

u y x u ''=?????=→?→?.

注:复合函数的求导法则可以推广到多个中间变量的情形.

例如, 设y =f (u ), u =?(v ), v =ψ(x ), 则

dy dy du dy du dv dx du dx du dv dx

=?=?? 总结:复合函数求导,是先对u 求导,然后乘以u '.

(三)、典型例题 例2.sin 2y x =, 求dx

dy

. (一级) 解:sin ;2y u u x ==

()cos cos 222cos 2dy dy du

y u u x x x dx du dx

'''=

=?=?=?= 例3.ln sin y x =, 求dx

dy

. (一级) 解:ln ;sin y u u x ==

()11sin cot sin dy dy du y u x x dx du dx u x

'''=

=?=?=?= 例4.()arctan x y e =, 求dx

dy

. (一级) 解:arctan ;x y u u e ==

()

()22211111x x

x

x x x dy dy de e y u e dx de dx u e e '''==?=?=?=+++ 注:强调乘以u ',熟练之后,对学生进一步提高要求。 例5.3212y x =-, 求

dy

dx

. (一级) 解: 12

22

2331[(12)](12)(12)3

dy x x x dx -''=-=-?- 22

3

43(12)

x x -=

-.

例6.2

2sin

1x y x =+, 求dy

dx . (二级)

解: 222

2222

2222(1)(2)cos cos 111(1)dy x

x x x x dx x x x x '

+-??=?=? ?++++??

2222

2(1)2cos (1)1x x x x

-=?++. 例7.y =lncos(e x ), 求dx

dy

. (二级) 解:

1[ln cos()][cos()]cos()x x x dy e e dx e ''==? 1[sin()]()tan()cos()

x x x x

x

e e e e e '=

?-?=-. 例8.1sin x

y e =, 求

dy

dx

. (二级) 解: 111sin sin sin 111()(sin )cos ()x x x dy e e e dx x x x

'''==?=?? 1sin 211

cos x e x x

=-??.

例9.1tan

1sin

x

y e

x

=, 求dx dy

. (三级)

解: 11tan

tan 11

()sin (sin )x

x y e

e x x

'''=+

1

1tan

tan 22

21

1111

sin cos 1cos x

x e

e x x x x x

=-???-??

1tan

21111(sec tan cos )x

e

x x x x

=-?+ 如果例题太多,可以适当的把他们改成课堂练习,随情况而定.

三、能力反馈部分

(1))5sin(3x y =,y 求' (一级) (2)x y cos ln =,y 求' (一级) (3)x xe y cos sin =,y 求' (二级)

(4)2

)2(sin 3x e y =

,y 求' (二级)

(5))1

sin(ln x

x y -

=,y 求' (二级)

(6)x

y sin 2=,(x)y 求' (三级)

常用基本初等函数求导公式积分公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式:

复合函数的求导法则(导案)

当堂检测 1.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)4 x x y = ; (2)1ln 1ln x y x -=+. (3)2(251)x y x x e =-+?; (4)sin cos cos sin x x x y x x x -=+ 解: (1)''''224(4)144ln 41ln 4()4(4)(4)4 x x x x x x x x x x x x x y ?-??-?-====, '1ln 44x x y -=。 (2)''''221 1ln 212()(1)2()21ln 1ln 1ln (1ln )(1ln ) x x y x x x x x x -==-+==?=+++++ '2 2(1ln )y x x =+ (3)'2'2'(251)(251)()x x y x x e x x e =-+?+-+? 22(45)(251)(24)x x x x e x x e x x e =-?+-+?=--?, '2(24)x y x x e =--?。 (4)''sin cos ()cos sin x x x y x x x -=+ '' 2(sin cos )(cos sin )(sin cos )(cos sin )(cos sin ) x x x x x x x x x x x x x x x -?+--?+=+ 2 (cos cos sin )(cos sin )(sin cos )(sin sin s )(cos sin )x x x x x x x x x x x x xco x x x x -+?+--?-++= + 2 sin (cos sin )(sin cos )s (cos sin )x x x x x x x x xco x x x x ?+--?=+ 2 2 (cos sin )x x x x =+。 2 ' 2(cos sin )x y x x x =+

最新复合函数求导练习题

复合函数求导练习题 一.选择题(共26小题) 1.设,则f′(2)=() A.B.C.D. 2.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为() A.y=4x B.y=4x﹣8 C.y=2x+2 D. 3.下列式子不正确的是() A.(3x2+cosx)′=6x﹣sinx B.(lnx﹣2x)′=ln2 C.(2sin2x)′=2cos2x D.()′= 4.设f(x)=sin2x,则=() A.B.C.1 D.﹣1 5.函数y=cos(2x+1)的导数是() A.y′=sin(2x+1)B.y′=﹣2xsin(2x+1) C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1) 6.下列导数运算正确的是() A.(x+)′=1+B.(2x)′=x2x﹣1C.(cosx)′=sinx D.(xlnx)′=lnx+1 7.下列式子不正确的是() A.(3x2+xcosx)′=6x+cosx﹣xsinx B.(sin2x)′=2cos2x C.D. 8.已知函数f(x)=e2x+1﹣3x,则f′(0)=() A.0 B.﹣2 C.2e﹣3 D.e﹣3 9.函数的导数是() A. B. C.D. 10.已知函数f(x)=sin2x,则f′(x)等于() A.cos2x B.﹣cos2x C.sinxcosx D.2cos2x 11.y=e sinx cosx(sinx),则y′(0)等于() A.0 B.1 C.﹣1 D.2

12.下列求导运算正确的是() A. B. C.((2x+3)2)′=2(2x+3)D.(e2x)′=e2x 13.若,则函数f(x)可以是() A.B.C.D.lnx 14.设 ,则f2013(x)=() A.22012(cos2x﹣sin2x)B.22013(sin2x+cos2x) C.22012(cos2x+sin2x)D.22013(sin2x+cos2x) 15.设f(x)=cos22x,则=() A.2 B.C.﹣1 D.﹣2 16.函数的导数为() A.B. C.D. 17.函数y=cos(1+x2)的导数是() A.2xsin(1+x2) B.﹣sin(1+x2) C.﹣2xsin(1+x2)D.2cos(1+x2) 18.函数y=sin(﹣x)的导数为() A.﹣cos(+x)B.cos(﹣x)C.﹣sin(﹣x)D.﹣sin(x+) 19.已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是() A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<e a f(0)20.函数y=sin(2x2+x)导数是() A.y′=cos(2x2+x)B.y′=2xsin(2x2+x) C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x) 21.函数f(x)=sin2x的导数f′(x)=() A.2sinx B.2sin2x C.2cosx D.sin2x 22.函数的导函数是() A.f'(x)=2e2x B. C.D.

常用基本初等函数求导公式积分公式.doc

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) , (13) (14) (15) (16) 函数的和、差、积、商的求导法则 设,都可导,则 ( 1)( 2)(是常数) ( 3)( 4) 反函数求导法则 若函数在某区间内可导、单调且,则它的反函数在对应区间内也可导,且 或 复合函数求导法则 设,而且及都可导,则复合函数的导数为 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.

可以推出下表列出的公式: 常用积分公式表·例题和点评 ⑴kdx kx c ( k 为常数) ⑵x dx( 1) 1 x 1 c 1 特别, 1 dx 1 c , x d x 2 x23 c , 1 dx 2 x c x 2 x 3 x ⑶1 dx ln | x | c x ⑷ a x d x a x c , 特别,e x d x e x c ln a

⑸ sin x dx cos x c ⑹ cos x d x sin x c ⑺ 1 d x csc 2 x dx cot x c sin 2 x ⑻ 1 d x sec 2 x dx tan x c cos 2 x ⑼ 1 dx x c ( a 0) , 特别, a 2 x 2 arcsin a ⑽ 1 dx 1 x c (a 0) , 特别, a 2 x 2 arctan a a ⑾ 1 1 a x a 2 x 2 d x 2a ln a x c ( a 0) 或 1 1 x a x 2 a 2 dx 2a ln x a c ( a 0) ⑿ tan x dx ln cos x c ⒀ cot x dx ln sin x c 1 arcsin x c 1 d x x 2 1 1 x 2 dx arctan x c 1 ln csc x cot x c ⒁ csc x d x x dx ln tan c sin x 2 1 ln sec x tan x c ⒂ secx d x x dx c cos x ln tan 4 2 1 ( a 0) x 2 a 2 ⒃ a 2 dx ln x c x 2 ⒄ a 2 x 2 dx ( a 0) a 2 x x a 2 x 2 c arcsin 2 2 a ⒅ x 2 2 (a 0) x x 2 a 2 a 2 ln x x 2 a 2 c a d x 2 2

(完整版)【经典】常用的求导和定积分公式(完美)

一.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2 csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2 v v u v u v u '-'= ' ??? ?? 反函数求导法则 若函数 )(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应区间x I 内也可导,且

)(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则 设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx =g 或()()y f u x ?'''=g 二、基本积分表 (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+= ++? (1)u ≠- (3)1 ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+ (6)cos sin xdx x C =+? (7)sin cos xdx x C =-+? (8)21 tan cos dx x C x =+? (9)21 cot sin dx x C x =-+? (10)sec tan sec x xdx x C =+? (11)csc cot csc x xdx x C =-+?

复合函数求导法则及其应用

习 题 4.4 复合函数求导法则及其应用 ⒈ 求下列函数的导数: ⑴ y x x =-+()2122; ⑵ y x x =e sin 23; ⑶ y x = +1 13 ; ⑷ y x x = ln ; ⑸ y x =sin 3; ⑹ y x =cos ; ⑺ y x x x =+-++11ln(); ⑻ y x =-arcsin (e )2 ; ⑼ ??? ? ?-=221ln x x y ; ⑽ y x x =+1 222(sin ); ⑾ y x x x = +-1122 ln ; ⑿ y x x = +12 csc ; ⒀ y x x = -++2213 31 23 34; ⒁ y x =-e sin 2 ; ⒂ y x a x x a x =-+-2 2 22. 解 (1))14)(12(2)'12)(12(2'222-+-=+-+-=x x x x x x x y 。 (2))3sin 23cos 3(3sin )'()'3(sin '222x x e x e x e y x x x +=+=。 (3)23 32323 3)1(2 3 )'1()1(21'--+-=++-=x x x x y 。 (4)2 12 ' 2 1 ln 2ln 1ln ln 21'?? ? ??-=?? ? ????? ??=x x x x x x x x y 。 (5)3233cos 3)'(cos 'x x x x y ==。 (6)x x x x y 2sin )'(sin '- =-=。

(7 )1'2y = 。 (8 )2 2 'x x y --= = 1 22 2--x e x 。 (9)44 2 4(1)'1'[ln(1)ln(]'21x y x x x x -=--=--=4422 (1)x x x +-。 (10)2232(2sin )''(2sin )x x y x x -+=+=3 2) sin 2() cos 4(2x x x x ++-。 (11 )'y == 2 322222)1() 21)(ln 1(ln )1(2x x x x x x - -+--。 (12 )2 ' '1csc x x y x =+ = 2222 322 1csc csc cot (1csc ) x x x x x ++= +。 (13 )'y =+ 452323 4112()(21)(4)3()(31)(9)34x x x x --=--+-+ 45 223 34827(21)(31)34 x x x x --=---+。 (14)2sin 2'e (sin )'x y x -=-2 sin sin 2x x e -=-?。

复合函数求导方法和技巧

复合函数求导方法和技巧 毛涛 (理工学院数计学院数学与应用数学专业2011级1班, 723000) 指导老师:延军 [摘要]复合函数求导是数学分析中的一个难点,也是微积分中的一个重点和难点,因此本文先从复合函数的 定义以及性质入手,在全面了解复合函数后再探讨复合函数的求导方法,分析复合函数求导过程中容易出现 的问题,然后寻求能快速准确的对复合函数进行求导的方法,并进行归纳总结,最终进行推广,帮助学生的 有效学习。 [关键词] 复合函数,定义,分解,方法和技巧,数学应用 1引言 复合函数求导是数学分析中的一个难点,也是高等数学三大基本运算中的关键,是学生深入学习高等数学知识,提高基本运算技能的基础,对学生后继课程的学习和思维素质的培养起着至关重要的作用,在各学科和现实生活中也发挥着越来越重要的作用,从而必须解决复合函数的求导问题。同时,在教学过程中,许多学生在进行求导时也犯各种各样的错误,有的甚至在学习复合函数求导之后做题时仍然不会进行求导,或者只能求导对一部分,而对另外一部分比较复杂的复合函数则还停留在一知半解的程度上,不知该求导哪一部分,也不知要对哪一部分得进行分解求导。复合函数求导方法是求导的重中之重,而且也是函数求导、求积分时不可缺少的工具,这个问题解决的好坏直接影响到换元积分法甚至以后的数学学习是否能够顺利进行。求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,然后由外层向层逐层求导(或者也可以由层向外层逐层求导),直到关于自变量求导,同时还要注意不能漏掉求导环节并及时化简计算结果。因此本文先给出了复合函数的定义和性质,在充分了解并且掌握复合函数的概念之后,根据其定义和性质对各种复合函数进行求导,通过对链式求导法、对数求导法、反序求导法、多元复合函数的一元求导法以及反函数求导法的分析,加以对各种对应例题的详细分解,分析每一步的步骤,比较各种求导方法,明确并且能够掌握各种题型的最佳解决方法,最终寻求一种能够既简便又准确的解决复合函数求导问题的方法,并总结技巧,方便在以后学习生活中的使用。 2复合函数的定义 如果y 是a 的函数,a 又是x 的函数,即()y f a =,()a g x =,那么y 关于x 的函数[]()y f g x =叫做函数()y f x =和()a g x =的复合函数,其中a 是中间变量,自变量为x ,函数值为y 。 3导数的四则运算

多个积、商函数的导数

6.2.3 通过乘积法则求积函数的导数 2010-08-19 16:30 杨爽赵晓婷高璞译人民邮电出版社我要评论(0)字号:T | T 综合评级: 想读(0)在读(0)已读(7)品书斋鉴(2)已有7人发表书评 《普林斯顿微积分读本》阐述了求解微积分的技巧, 详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,第6章讲述如何求解微分问题。本节说的是通过乘积法则求积函数的导数。 AD: 6.2.3 通过乘积法则求积函数的导数 处理函数乘积的时候要更有技巧的, 你不能只是将两个导数乘在一起. 例如,不做展开 (那样将会太费时 间了),我们想要求 的导数. 我们设 f(x) = x5+2x?1及 g(x) = 3x8?2x7?x4?3x.函数 h 是 f和 g 的乘积. 我们可以很容易地写出 f 和 g 的导数, 它们是 f0(x) = 5x4+2及g0(x)=24x7?14x6?4x3?3.正如我说的,乘积h的导数是这两个导数的乘积,这是不正确的. 即h0(x)6=?5x4+2¢?24x7?14x6?4x3?3¢.说h0(x)不是什么是没有用的,我们需要说它是什么! 这表明你需要混合匹配. 这就是说,你取f 的导数并用它和g 相乘(不是g 的导数). 然后, 你也需要取 g 的导数并用它和 f 相乘. 最后, 将它们加在一起. 这就是法则: 因此, 对于我们例子中的 h(x) =?x5+2x?1¢?3x8?2x7?x4?3x¢,我们将h写成f 和g 的乘积并求它们的导数,就像我们上面做的一样. 将我们的发现总结一下,取每一列分别对应 f 和 g:

举例说明函数的积的求导法则

举例说明函数的积的求导法则 山东省临朐县第二中学 刘海涛 李本习 在导数这一章中,导数的运算是非常重要的内容,也是这一章中的重点,在这里我们讨论一下函数积的求导法则。 (一)、函数积的求导法则是: 设f(x)、g(x)是可导的,则 [()()]f x g x '=()()f x g x '+()()f x g x ' 即:两个函数的积的导数,等于第一个函数的导数乘上第二个函数加上第一个函数乘上第二个函数的导数。 例:(1)求y=x 2cosx 的导数 分析:此题就是简单的积的求导,在此过程中要注意x 2与cosx 这两个基本函数的导数公式。 解:y '=2(cos )x x ' =2()cos x x '+2(cos )x x ' =22cos sin x x x x - (2) 求y=(x 2 解:y ' =2[(x '+ =2(1)x + 2(x + =2 21x + =251x +

利用此法则需要注意:(1)必须是f(x)、g(x)可导的 (2)要正确掌握应用此公式,不要用错此法则, 如: [()()]()()()()f x g x f x g x f x g x '''=+ (3)此题的关键是要正确的掌握基本初等函数的导数公式。如:y=c y=x n y=a x y=sinx 等 (二)、要灵活的应用法则以简便的方法求解 例:求2311()y x x x x =++的导数 分析:直接应用积的求导法则时,中间有一个和的求导法则,若我们把此题的式子进行一下化简,那么此题将会是直接的和的求导法则。 解:法一:应用积的求导法则 22331111()()y x x x x x x x x '''=+++++ =3x 2 - 32x 法二:应用和的求导法则 3211y x x =++ 所以2323y x x '=- 显然法二相对来说比较简单明了。 (三)、若f(x)g(x)中,f(x)g(x)有一个为常数,则此求导法则为: 常数与函数之积的导数等于常数乘以函数的导数

2-6复合函数的求导法则(链式法则)

模块基本信息 一级模块名称 微分学 二级模块名称 计算模块 三级模块名称 复合函数的求导法则(链式法则) 模块编号 2-6 先行知识 导数的四则运算 模块编号 2-4 复合函数 1-2 知识内容 教学要求 掌握程度 1、复合函数的求导法则的证明 1、了解复合函数的求导法则的证明 熟练掌握 2、复合函数的求导法则(链式法则) 2、掌握复合函数的求导法则(链式法则) 能力目标 1、培养学生的计算能力 2、知识拓展的能力 时间分配 45分钟 编撰 陈亮 校对 方玲玲 审核 危子青 修订 肖莉娜 二审 危子青 一、正文编写思路及特点 思路:先让学生犯错,目的的是让学生记忆深刻,然后解决错误,在解决错误的过程中使得学生理解复合函数求导法则,最后通过例题由浅到深逐步理解复合函数的求导法则。 特点:通过犯错让学生记忆深刻。 二、授课部分 (一)、预备知识 1、导数的四则运算 2、复合函数 简单介绍复合函数的定义(由多个初等函数复合而成的函数称为复合函数) 复合函数的分解,重点介绍复合函数的分解。 sin 2y x = 分解成 sin ;2y u u x == lnsin y x = 分解成 ln ;sin y u u x == ln cos x y e = 分解成 ln ;cos ;x y u u v v e === 1 sin x y e = 分解成 1;sin ;u y e u v v x ===

2 arcsin 2x y ? ?= ?? ? 分解成 2;sin ;2x y u u arc v v === 课堂练习: () 4 1 arctan 23arccos x y e y x y x ==-= lntan ln ln ln 2 x y y x y x x x ===++ (二)、新课讲授 1、新课导入 提问: (sin 2)?x '=(目的是让学生犯错) 解决错误:()(sin 2)2sin cos x x x ''=? ()()() 222sin cos 2sin cos 2cos sin 2cos 2x x x x x x x '' =+=-= 为什么?为什么不等于cos 2x 而是2cos 2x ? 解决问题: 先回顾一下求导公式,例如:()sin cos x x '= 即说明 sin sin sin 2cos cos cos 22d x d y d x x y x dx dy d x =?=?= 而()sin 2sin 2d x x dx '=,于是有: ()sin 22sin 2cos 222d x d x x x d x dx '= ?=? 类似()x x e e '=,即说明333x y x x y x de de de e e e dx dy d x =?=?= sin sin sin x x de e d x ?=2 2 2x u x u de de e e dx du ?=?=? 等等,可以多列举几个例子说明。 例1. sin x y e =求y '(一级)

函数的求导法则解析

第二节 函数的求导法则 教学目的:1.使学生掌握函数的和、差、积、商的求导法则; 2使学生掌握反函数的导数法则、复合函数的求导法则; 3使学生熟练掌握初等函数的求导公式。 教学重点:初等函数的求导公式、复合函数的求导法则 教学过程: 一、函数的和、差、积、商的求导法则 定理 1:若函数)(x u 和)(x v 在点0x 都可导,则)()()(x v x u x f ±=在0x 点也可导,且 )()()(000x v x u x f '±'='。 证明:0 0000)] ()([)]()([lim )()(lim 00 x x x v x u x v x u x x x f x f x x x x -±-±=--→→ =0 000)()(lim )()(lim 00x x x v x v x x x u x u x x x x --±--→→=)()(00x v x u '±' 所以)()()(000x v x u x f '±'='。 注 1:本定理可推广到有限个可导函数上去。 2:本定理的结论也常简记为v u v u '±'='±)(。 定理2:若)(x u 和)(x v 在0x x =点可导,则)()()(x v x u x f =在0x 点可导,且有 )()()()()(00000'+'='x v x u x v x u x f 。 证明:0 0000) ()()()(lim )()(lim 00 x x x v x u x v x u x x x f x f x x x x --=--→→ =0 0000) ()()()()()()()(lim 0x x x v x u x v x u x v x u x v x u x x --+-→ =0 0000) ()()(lim )()()(lim 00x x x v x v x u x v x x x u x u x x x x --+--→→ =0 0000) ()(lim )()(lim )()(lim 000x x x v x v x u x v x x x u x u x x x x x x --+--→→→

高中数学复合函数的求导法则教案

§1.2.2复合函数的求导法则 教学目标 理解并掌握复合函数的求导法则. 教学重点 复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数之积. 教学难点 正确分解复合函数的复合过程,做到不漏,不重,熟练,正确. 一.创设情景 (一)基本初等函数的导数公式表 (2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数)

二.新课讲授 复合函数的概念 一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作()()y f g x =。 复合函数的导数 复合函数()()y f g x =的导数和函数()y f u =和()u g x =的导数间的关系为x u x y y u '''=?,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 若()()y f g x =,则()()()()()y f g x f g x g x ''''==????? 三.典例分析 例1求y =sin (tan x 2)的导数. 【点评】 求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能遗漏求导环节并及时化简计算结果. 例2求y =ax x a x 22--的导数. 【点评】本题练习商的导数和复合函数的导数.求导数后要予以化简整理. 例3求y =sin 4x +cos 4x 的导数. 【解法一】y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2cos 2x =1- 21sin 22 x =1-41(1-cos 4 x )=43+4 1cos 4 x .y ′=-sin 4 x . 【解法二】y ′=(sin 4 x )′+(cos 4 x )′=4 sin 3 x (sin x )′+4 cos 3x (cos x )′=4 sin 3 x cos x + 4 cos 3 x (-sin x )=4 sin x cos x (sin 2 x -cos 2 x )=-2 sin 2 x cos 2 x =-sin 4 x 【点评】 解法一是先化简变形,简化求导数运算,要注意变形准确.解法二是利用复合函数求导数,应注意不漏步. 例4曲线y =x (x +1)(2-x )有两条平行于直线y =x 的切线,求此二切线之间的距离. 【解】y =-x 3 +x 2 +2 x y ′=-3 x 2+2 x +2 令y ′=1即3 x 2-2 x -1=0,解得 x =- 31或x =1. 于是切点为P (1,2),Q (-31,-27 14), 过点P 的切线方程为,y -2=x -1即 x -y +1=0. 显然两切线间的距离等于点Q 到此切线的距离,故所求距离为2 |1271431|++-=22716.

复合函数求导公式,复合函数综合应用

相信自己,相信翔鹏,你是最棒的! 导数的运算法则及基本公式应用 一、常用的求导公式 二、复合函数的导数 若u=u(x),v=v(x)在x 处可导,则 2 )()()()(v v u v u v u u c cu v u v u v u v u v u '-'='' =''+'='?'±'='± 三、基础运用举例 1 y =e sin x cos(sin x ),则y ′(0)等于( ) A 0 B 1 C -1 D 2 2 经过原点且与曲线y = 5 9 ++x x 相切的方程是( ) A x +y =0或25x +y =0 B x -y =0或25x +y =0 C x +y =0或25x -y =0 D x -y =0或25 x -y =0 3 若f ′(x 0)=2,k x f k x f k 2) ()(lim 000--→ =_________ 4 设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=_________ 5 已知曲线C 1:y =x 2与C 2:y =-(x -2)2 ,直线l 与C 1、C 2都相切,求直线l 的方程 11.(),'()0;2.(),'();3.()sin ,'()cos ;4.()cos ,'()sin ;5.(),'()ln (0);6.(),'();1 7.()log ,'()(0,1); ln 8.n n x x x x a f x c f x f x x f x nx f x x f x x f x x f x x f x a f x a a a f x e f x e f x x f x a a x a -========-==>====>≠公式若则公式若则公式若则公式若则公式若则公式若则公式若则且公式若1()ln ,'();f x x f x x == 则

5.简单复合函数的求导法则导学案

主备人: 审核: 包科领导: 年级组长: 使用时间: §5简单复合函数的求导法则 【学习目标】 1、理解复合函数的概念,了解简单复合函数的求导法则; 2、会用简单复合函数的求导法则求一些复合函数的导数。 【重点、难点】 重点:简单复合函数的求导法则; 难点:复合函数的导数。 【使用说明与学法指导】 1、根据学习目标,自学课本内容,限时独立完成导学案; 1、用红笔勾画出疑难点,提交小组讨论; 【自主探究】 1.复合函数 对两个函数)(x f y =和)(x g y =,如果通过变量u ,y 表示成______的函数,我们称这个函数为函数)(x f y =和)(x g y =的复合函数,记作,_________其中为________变量. 2.复合函数的导数 如果函数)(x f 、)(x u 有导数,那么_____='x y 【合作探究】 求下列函数的导数 (1)82)21(x y += (2)33x x y += (3))(cos 2b ax y += (4) )12ln(+-=x y 1、 )ln 1(2x xe y x += (6)x x y -+=11ln 2、曲线x e y x 3cos 2=在)1,0(处的切线与直线l 的距离为5,求直线l 的方程。 3、已知函数2()(2)2x f x ln x a =--,a 为常数。(1)求(3)f '的值;(2)当3x =时,曲线() y f x =在点0(3)y ,处的切线经过点(11)--,,求a 的值。 【巩固提高】 1、求下列函数的导数

(1)y = 2)13(1-x (2)y =21sin2x +sin x (3)y =sin 3(3x +4π) (4)22cos 53sin x x y += 2、已知,)1()(102x x x f ++=求)0()0(f f ' 3、已知曲线23-+=x x y 在点0P 处的切线1l 平行直线014=--y x ,且点0P 在第三象限 (1)求点0P 的坐标 (2)若直线1l l ⊥,且l 也过切点0P ,求直线l 的方程。 【课堂小结】

复合函数的求导法则教案

§1.2.3复合函数的求导法则 教学目标 理解并掌握复合函数的求导法则. 教学重点 复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数之积. 教学难点 正确分解复合函数的复合过程,做到不漏,不重,熟练,正确. 一.创设情景 (一)基本初等函数的导数公式表 导数运算法则 1.[]' ''()()()()f x g x f x g x ±=± 2.[]' ''()()()()()()f x g x f x g x f x g x ?=± 3.[] ' ''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ??-=≠???? (2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数) 函数 导数 y c = '0y = *()()n y f x x n Q ==∈ '1n y nx -= sin y x = 'cos y x = cos y x = 'sin y x =- ()x y f x a == 'ln (0)x y a a a =?> ()x y f x e == 'x y e = ()log a f x x = '1()log ()(01)ln a f x xf x a a x a ==>≠且 ()ln f x x = '1()f x x =

二.新课讲授 复合函数的概念 一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作()()y f g x =。 复合函数的导数 复合函数()()y f g x =的导数和函数()y f u =和()u g x =的导数间的关系为x u x y y u '''=?,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 若()()y f g x =,则()()()()()y f g x f g x g x ''''==????? 三.典例分析 例1求y =sin (tan x 2)的导数. 【点评】 求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能遗漏求导环节并及时化简计算结果. 例2求y =ax x a x 22--的导数. 【点评】本题练习商的导数和复合函数的导数.求导数后要予以化简整理. 例3求y =sin 4x +cos 4x 的导数. 【解法一】y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2cos 2x =1- 21sin 22 x =1-41(1-cos 4 x )=43+4 1cos 4 x .y ′=-sin 4 x . 【解法二】y ′=(sin 4 x )′+(cos 4 x )′=4 sin 3 x (sin x )′+4 cos 3x (cos x )′=4 sin 3 x cos x + 4 cos 3 x (-sin x )=4 sin x cos x (sin 2 x -cos 2 x )=-2 sin 2 x cos 2 x =-sin 4 x 【点评】 解法一是先化简变形,简化求导数运算,要注意变形准确.解法二是利用复合函数求导数,应注意不漏步. 例4曲线y =x (x +1)(2-x )有两条平行于直线y =x 的切线,求此二切线之间的距离. 【解】y =-x 3 +x 2 +2 x y ′=-3 x 2+2 x +2 令y ′=1即3 x 2-2 x -1=0,解得 x =- 31或x =1. 于是切点为P (1,2),Q (-31,-27 14), 过点P 的切线方程为,y -2=x -1即 x -y +1=0. 显然两切线间的距离等于点Q 到此切线的距离,故所求距离为2 |1271431|++-=22716.

函数的和、差、积、商的求导法则

一、授课题目:函数的和、差、积、商的求导法则 二、目的要求 教学目的:介绍函数的和、差、积、商的求导法则。 教学要求:要求学生熟练掌握函数的求导法则,能运用求导法则进行函数导数的计算及解决实际问题。 三、重点、难点 教学重点:理解掌握函数的和、差、积、商的求导法则。 教学难点:函数的求导法则的证明。 四、授课内容 函数的和、差、积、商的求导法则 定理1. 如果函数()u u x =及()v v x =都在点x 具有导数,那么()u x 及()v x 的和、差、积、商(除分母为零的点外)都在点x 可导,且 (1)[()()]()()u x v x u x v x '''±=± (2)[()()]()()()()u x v x u x v x u x v x '''=+ (3)2()()()()()(()0)()()u x u x v x u x v x v x v x v x '''??-=≠???? 下面分三部分加以证明,并同时给出相应的推论和例题。 (1)[()()]()()u x v x u x v x '''±=± 证:设()()()f x u x v x =±,则 0()()()lim x f x x f x f x x ?→+?-'=? 0[()()][()()]lim x u x x v x x u x v x x ?→+?±+?-±=? 0[()()][()()]lim x u x x u x v x x v x x ?→+?-±+?-=? 00()()()()lim lim x x u x x u x v x x v x x x ?→?→+?-+?-=±??

复合函数求导练习题

复合函数求导练习题 1. 简单函数的定义求导的方法求函数的增量?y?f?f; ?yf?f?。 ?x?x f?f 取极限求导数f’?lim ?x?0?x 求平均变化率 2.导数与导函数的关系:特殊与一般的关系。函数在某一点f’的导数就是导函数f,当x?x0时的函数值。.常用的导数公式及求导法则:公式 ①C?0,③’??sinx ‘ ②’?cosx ④’?nxn?1 ⑥’?ex ⑤’?axlna ⑦? ‘ 11’ ⑧? xlnax11’’ cotx)??⑨? ⑩法则:[f?g]?[f]?[g], [fg]’?f’g?g’f f’f’g?g’f [ ]?2 gg 例:

32 y?xx?4y? ?? sinx x y?3cosx?4sinx y??2x?3? y?ln?x?2? 2 复合函数的导数 如果函数?在点x处可导,函数f 在点u=?处可导,则复合函数y= f =f [?]在点x处也可导,并且 ])ˊ= 或记作熟记链式法则 若y= f ,u=?? y= f [?],则 f?????? ??u?y?x=yux y?x=f??? 若y= f ,u=?,v=? ? y= f [?)],则 ?? y?x=f??? 复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成 的,且要求这些中间变量均为基本初等函数或经过四

则运算而成的初等函数。在求导时要由外到内,逐层求导。 例1函数y? 1 的导数. 4 解:y? 1?4 . ?4 ,u?1?3x,则 设y?u ?4 y’x?y’u?u’x?’u?’x ??4u ?5 ??12u?5?12?5? 12 . 例2求y?x 的导数. 1?x 15

求导法则和求导公式

§2.2 求导法则与导数的基本公式 教学目标与要求 1. 掌握并能运用函数的和、差、积、商的求导法则 2. 理解反函数的导数并能应用; 3. 理解复合函数的导数并会求复合函数的导数; 4. 熟记求导法则以及基本初等函数的导数公式。 教学重点与难度 1. 会用函数的和、差、积、商的求导法则求导; 2. 会求反函数的导数; 3. 会求复合函数的导数 前面,我们根据导数的定义,求出了一些简单函数的导数。但是,如果对每一个函数都用定义去求它的导数,有时候将是一件非常复杂或困难的事情。因此,本节介绍求导数的几个基本法则和基本初等函数的导数公式。鉴于初等函数的定义,有了这些法则和公式,就能比较方便地求出常见的函数——初等函数的导数。 一、函数的和、差、积、商求导法则 1.函数的和、差求导法则 定理1 函数()u x 与()v x 在点x 处可导,则函数()()y u x v x =±在点x 处也可导,且 [()()]()()y u x v x u x v x ''''=±=± 同理可证:' ' ' [()()]()()u x v x u x v x -=- 即证。 注意:这个法则可以推广到有限个函数的代数和,即 12''' ' 12[()()()]()()()n n u x u x u x u x u x u x ±± ±=±±±, 即有限个函数代数和的导数等于导数的代数和。

例1 求函数4 cos ln 2 y x x x π =+++ 的导数 解 4 c o s l n 2y x x x π'??'=+++ ?? ? ()()()4 cos ln 2x x x π'??'''=+++ ??? 3 1 4s i n x x x =-+ 2.函数积的求导公式 定理2 函数()u x 与()v x 在点x 处可导,则函数()()y u x v x =在点x 也可导,且 ''''[()()]()()()()y u x v x u x v x u x v x ==+。 注意:1)特别地,当u c =(c 为常数)时, '''[()]()y cv x cv x ==, 即常数因子可以从导数的符号中提出来。而且将其与和、差的求导法则结合,可得: ''''[()()]()()y au x bv x au x bv x =±=±。 2)函数积的求导法则,也可以推广到有限个函数乘积的情形,即 ''' '12 1212 12 ()n n n n u u u u u u u u u u u u =+++。 例2 求下列函数的导数。 1)32 3254sin y x x x x =+-+; 解 ()()()()3 2 3254sin y x x x x '''''=+-+

相关文档
最新文档