基于多体动力学的ESP控制系统联合仿真

基于多体动力学的ESP控制系统联合仿真
基于多体动力学的ESP控制系统联合仿真

第35卷第2期2011年4月

南京理工大学学报

Journal of Nanjing University of Science and Technology

Vol.35No.2Apr.2011

收稿日期:2010-05-20

修回日期:2010-06-28

基金项目:吉林大学汽车动态模拟国家重点实验室开放基金(20071101)

作者简介:王良模(1963-),男,博士,教授,主要研究方向:车辆系统动力学、车辆动态仿真、车辆测控技术,E-mail :liangmo@mail.njust.edu.cn 。

基于多体动力学的ESP 控制系统联合仿真

王良模1,2,安丽华1,吴志林1,马春卉1,3

,李

力1

(1.南京理工大学机械工程学院,江苏南京210094;2.汽车动态模拟国家重点实验室,吉林长春130025;

3.江苏海事职业技术学院船舶与港口工程系,江苏南京211170)

摘要:该文基于多体动力学软件MSC.ADAMS /Car ,建立了含有防抱死制动子系统的整车动

力学模型,根据汽车稳定性控制的基本原理,运用模糊控制和比例积分微分控制理论设计了电子稳定性程序(ESP )控制系统。在MATLAB /Simulink 环境下,建立了ESP 控制系统和车辆动力学模型的联合仿真模型,并进行多种工况下的汽车操纵稳定性仿真试验。结果表明,所设计的ESP 控制系统能有效地控制汽车的侧向加速度,且轨迹跟随性较好。关键词:电子稳定性程序;多体动力学;比例积分微分控制;模糊控制中图分类号:U467

文章编号:1005-9830(2011)02-0213-06

Joint Simulation for ESP Control System Based on Multibody Dynamics

WANG Liang-mo 1,2,AN Li-hua 1,WU Zhi-lin 1,MA Chun-hui 1,3

,LI Li 1

(1.School of Mechanical Engineering ,NUST ,Nanjing 210094,China ;

2.State Key Laboratory of Automobile Dynamics Simulation ,Changchun130025,China ;3.Department of Ships and Harbor Engineering ,Jiangsu Maritine Institute ,Nanjing 211170,China )Abstract :Based on the multi-body dynamics software MSC.ADAMS /Car ,a vehicle dynamic model with anti-locked braking system braking subsystem is established.According to the basic principles of the vehicle stability control ,the control system of electromc stability program (ESP )is designed by fuzzy control theory and proportion integral derivative control theory.In the MATLAB /Simulink envi-ronment ,the joint simulation model of the ESP control system and the dynamics model are estab-lished.Simulation of vehicle handling stability test in a variety of extreme working conditions is fin-ished.The result shows the designed ESP can effectively control the vehicle lateral acceleration and improve the vehicle handling stability significantly.

Key words :electronic stability program ;multibody dynamics ;proportion integral derivative control ;fuzzy control

电子稳定性程序(Electronic stability program ,ESP )是汽车主动安全的关键技术,国内外研究人员对ESP 控制开展了大量研究工作。Shibahata

等人使用滑模控制理论实现了直接横摆力矩控制,克服了一些不确定因素的影响,使得控制的鲁棒性大大改善[1]。Bo-Chiuan 和Peng 提出车辆动

南京理工大学学报第35卷第2期

力学控制(Vehicle dynamics control ,VDC )的控制算法,包括横摆角速度跟踪的算法、为路径跟踪而开发的侧偏角减小算法和侧翻防止算法,算法以侧向加速度作为侧翻控制的反馈信号,采用比例积分微分(Proportion integral derivative ,PID )控制。系统的直接横摆力偶矩包括控制横摆、侧偏和侧翻3部分[2]。Anton 总结了Bosch 公司ESP 开发的经验,说明侧偏角是汽车操纵稳定性的一个重要指标,通过预先设定的控制策略对单个车轮滑移的控制,可以控制车辆的侧偏角和横摆力矩[3]。Huiyi 运用Simulink 软件建立了十六自由度的汽车动力学模型,进行了ESP 控制策略的硬件在环仿真[4]。文献[

5,6]对防抱死制动系统(Anti-locked braking system ,ABS )电磁阀特性进行了深入研究,并对ESP 控制算法及控制策略进行了相关研究;李幼德等对ESP 控制算法和控制系统硬件在环仿真进行了相关研究[7]。

汽车是一个复杂的非线性系统,常用的二自由度、七自由度汽车动力学模型较为简单,无法全面表达汽车在各种极限工况下的运动情况。本文基于现代控制理论设计ESP 控制方法,在MAT-LAB /Simulink 和多体动力学软件MSC.ADAMS /Car 环境下,分别建立ESP 控制系统和整车多体动力学模型,将ESP 控制系统装配在多体动力学模型上,进行汽车操纵稳定性的仿真试验,验证所设计的ESP 控制系统的准确性和可靠性。

1

多体动力学模型建立

1.1

整车多体动力学模型

利用ADAMS /Car 模块和ADAMS 软件提供

的约束(constraint )库,分别建立车身系统、动力传动系统、前后悬架系统、制动系统、转向系统和轮胎系统模型,并引入路面等外部条件的约束建立轿车整车多体模型

[8]

轮胎采用Pacejka 魔术公式模型[9],制动系统采取ABS 四通道独立控制盘式制动器,其他子系统按照ADAMS /Car 根据实车数据建立。

车辆不同状况行驶由File Driven Events 和ADAMS /SmartDriver 模块仿真驾驶员操纵,可以开环或者闭环控制油门、方向盘、离合器和变速器等。1.2

ABS 制动子系统的建模

制动子系统是整个控制系统的执行机构,所

有的控制执行通过4个制动器实现,它是整车多

体动力学模型建立的关键。

ESP 制动力控制基于ABS 系统,由于需要精确控制每个车轮的制动力才能达到较好的控制效果,故本文采取ABS 四通道独立控制盘式制动器,如图1所示。

图1ABS 制动系统模板

制动钳通过输入通讯器与悬挂系统立柱连接,制动盘通过输入通讯器安装在车轮上。根据制动踏板力与前后制动管路压力传递的定量关系确定制动器上的正压力,由制动钳的位置等信息确定制动力矩的大小,将制动力矩施加到车轴上,并通过ABS 开关信号控制车轮滑移率。

盘式制动器相对于鼓式制动器受温度和速度的影响较小,制动力矩可由式(1)计算:T b =A ·n w ·μ·s ·η

·P b (1)

式中:A 为制动钳与制动盘的接触面积;n w 为单个车轮制动器中制动钳的数量;μ为制动钳和制

动盘之间的摩擦系数;s 为有效摩擦半径;η为制动效率;P b 为轮缸制动压力。

在MSC.ADAMS /Car 中建立制动系统模型,每个车轮系统上都有5个系统状态变量,分别为:实现ESP 系统功能而构造的变量add_brake (由滑移率增量产生的制动压强增量)和trigger_sig-nal (ABS 滑移率控制器开关信号),制动系统本身定义的变量line_pressure (制动软管压强)、brake_torque (制动力矩)和wheel _omega (车轮转速)。系统状态变量用来定义和构造联合仿真控制平台(control_plate ),通过MSC.ADAMS /Control 模块与MATLAB /Simulink 实现联合仿真。1.3

联合仿真输入输出变量的选取

ADAMS /Controls 是ADAMS 软件对带有控制系统的复杂机械系统进行建模和仿真分析的基本环节之一。利用ADAMS /Controls 模块进行设计和建模,以MATLAB 为基础建立控制模块,作为ADAMS 的插件使用。通过ADAMS /Controls 接口将ADAMS 中的汽车模型作为S-function 导入MATLAB /Simulink 控制系统,进行控制系统联合仿真分析。利用ADAMS /Controls 插件建立控制

4

12

总第177期王良模安丽华吴志林马春卉李力基于多体动力学的ESP 控制系统联合仿真

平台,通过plant Export 模板建立8个输入变量和9个输出变量,如图2

图2输入输出变量

2

ESP 控制系统设计

2.1

名义值确定

在轮胎侧偏刚度一定的情况下,对于普通驾驶

员来讲,汽车的转向响应与转向盘转角输入呈线性关系,故忽略转向系统的影响,直接以前轮转角作为输入;忽略悬架作用、轮胎的非线性特性和轮胎回正力矩的作用等因素,侧向力与其相应的侧偏角呈线性关系,此时车辆可进一步简化为线性二自由度车辆模型———只有沿Y 轴的侧向运动和绕Z 轴的横摆运动[10]。两自由度线性单轨模型可以反映驾驶员的转向输入以及侧向加速度与车辆横摆角

速度和质心侧偏角之间的线性关系。因此,采用两

自由度车辆模型作为计算ESP 控制算法中的横摆角速度和质心侧偏角名义值的依据。2.2

控制系统总体结构设计

所设计的ESP 控制算法总体结构如图3所示,ESP 控制算法采取分层结构设计。横摆力矩控制为第一控制层,是以整车姿态为控制对象;车轮滑移率控制器(制动压力)为第二控制层,是以车轮为控制对象,根据第一控制层计算的目标滑移率增量和实际车轮滑移率,确定每一车轮的制动力大小,从而可以确定每一车轮的制动压强和制动电磁阀的开关时间;第三控制层控制对象为电磁阀、泵等硬件

图3本文ESP 系统控制算法结构

5

12

南京理工大学学报第35卷第2期

控制系统中,可以由传感器直接得到的变量为:侧向加速度a y 、前轮转角δ、实际横摆角速度

ωr 和4个车轮的角速度ωi (i =1,

2,3,4)。通过估算得到的变量为:实时车速v x 、路面附着系数φ、实际质心侧偏角β。

(1)实时车速v x 采用ABS 车速估算方法中最大轮速与斜率法相结合的综合估算算法[11]。(2)路面附着系数φ的估算采用魔术公式[9]

算法。纵向附着系数与滑移率的关系用魔术公式表示为

φ(λ)=φ0+D 1sin {C 1arctan [

B 1λ-E 1(B 1λ-arctan B 1λ)]}(2)式中:φ0为车轮在纯滚动时的附着系数;D 1、

C 1、B 1和E 1是与路面有关的常数,通过改变这些常数,可以模拟不同的路面附着系数。

(3)实际质心侧偏角β的估算[12]。当汽车处于稳定状态时,通过观测器观察质心侧偏角数值;失稳时,通过公式计算: β=arctan (a y /v x )-ωr (3)

2.3

模糊化参数的PID 联合控制器设计分别设计2个模糊控制器,用来自动调节横摆角速度PID 控制器和质心侧偏角PID 控制器的参数K p 和K i ,PID 控制器选取自适应性PI 控制器。

下面以质心侧偏角PID 控制器(它与横摆角速度控制器原理是相同的)为例进行说明,如图4所示

图4

质心侧偏角的PID 控制原理图

(1)输入输出变量的选取

横摆角速度与名义横摆角速度的差作为模糊控制器的输入变量,汽车质心侧偏角与名义质心侧偏角的误差作为PID 控制器的输入变量。PID 的参数(K p 、K i )由模糊控制器实时调整。

(2)模糊规律确定

对误差E 、误差变化C E 及控制量U 的模糊集及其论域定义如下:

E 和C E 的模糊集为:{NB ,NM ,NS ,ZO ,PS ,PM ,PB };基本论域均为:[-1,1];U 的模糊集为:{Z ,PS ,PM ,PB };基本论域均为:[0,1];模糊规则表示为“if …then …”条件语句。更清楚的表示是,对多个变化条件的前提经推理产生一个决策结果。表1是模糊控制器的模糊规则表。

表1

模糊规则

E C E PB PM PS ZO NS NM NB PB

PB PB PB PB PB PB PB PM PB PB PM PM PM PB PB PS PB PM PM PM PM PM PB ZO PM PM PS Z PS PM PM NS PB PM PM PM PM PM PB NM PB PG PM PM PM PG PB NB

PB

PG

PB

PB

PG

PG

PB

2.4ESP 集成控制系统

本文将ESP 系统化简为VDC 和ABS 系统的

集成,

ESP 系统主控ECU 为VDC 系统的控制逻辑单元,根据采集到的四轮轮速信号、车身横摆角速度、质心侧偏角等,与二自由度名义值进行比较,计算得到需要产生的横摆力矩增量,用来平衡此时汽车的不足转向或者过度转向,并且按照控制逻辑选择被控车轮,将计算得到的滑移率增量直接传递给ABS 控制器,

而ABS 控制器对制动系统发出指令,对被控车轮施加制动压强增量,达到增加平衡横摆力矩保证整车操纵稳定性的作用。同时,ABS 系统通过触发信号不断开闭制动器,将轮胎滑移率控制在理想值附近。系统采用结构简单、可靠性高的逻辑门限值,门限值设定为0.15 0.2。

3

联合仿真

3.1

联合仿真模型

为进行多种极限工况下的汽车操纵稳定性仿

真试验研究,将ESP 控制系统装配在多体动力学模型上,联合仿真模型如图5所示。通过仿真试验,可观察ESP 控制效果,验证其在各种实验工况下的可靠性。3.2

仿真试验

本文依据汽车试验标准进行了角阶跃转向、

6

12

总第177期王良模安丽华吴志林马春卉李力基于多体动力学的ESP控制系统联合仿真

ISO紧急双移线和蛇形路面试验[13,14],考察了控制系统在汽车转向制动、连续转向、紧急换道、躲避障碍物等情况下的作用。通过阶跃转向仿真获得了汽车的实域过渡特性,下面以角阶跃转向为例进行分析。

假设初始车速为40m/s,路面附着系数为0.8,时间t=2s时驾驶员急打方向盘,开始阶跃至3s结束。方向盘转过100?,驾驶员开环控制

图5ESP系统联合仿真模型

当车速很高时,如果没有ESP,驾驶员猛打方

向盘突然急转会引起汽车摆尾甚至旋转等危险情

况(如图6(a)),汽车在3s左右时已经完全失去

控制。而加入ESP后,横摆角速度、质心侧偏角

都能很好地响应(如图6(b)、6(c));侧向加速度

的响应也很规则(如图6(d))。由于在附着系数

比较高的路面上行驶,每个车轮滑移率都在20%

以内(图6(e)),故ABS的滑移率控制触发信号

并没有作用,只是增加了右前轮的制动力。采取

ESP主动控制后,汽车能够稳定而正确地适应突

然的急转操作,主动防止汽车侧滑现象,将质心侧

偏角和横摆角速度都保持在较小的稳定区域,车

辆保持较好的稳定性

图6角阶跃转向试验(v

x

=40m/s,μ=0.8)

本文还进行了不同车速、不同附着系数的多

工况的紧急双移线仿真试验和蛇形路况试验,篇

幅所限,仅给出其中2个试验的汽车行驶轨迹的

仿真结果(见图7)。由图7(a)可知,在附着系数

为0.4的路面上的紧急双移线试验中,如果无控

制,在方向盘回正后车辆发生剧烈滑移,产生摆尾

现象,加入ESP控制后即使驾驶员突然猛打方

向,车辆依然能够稳定自如地前进。如图7(b)所

712

南京理工大学学报第35卷第2期

示,在附着系数为0.6的路面上的模拟蛇形试验中,无控制时,由于连续的转向和反转向的操作,汽车在第二次回正时跃出了道路。加入ESP 控制后,汽车质心侧偏角和横摆角速度都保持在较小的稳定区域,车辆保持较好的稳定性。

综合角阶跃转向、ISO 紧急双移线和蛇形路面试验仿真结果发现,危险时,ESP 能够保持汽车的操纵稳定性,不会给驾驶员带来不可控感觉;且能够响应驾驶员的操纵,保证行车安全。当地面附着系数为中等以上时,控制效果也比较稳定;当地面附着系数过低时(冰路面上),控制效果不如在中、高附着系数的路面上,轮胎出现侧滑现象。另外,车速对控制效果也有很大影响,过高车速时在中等附着路面上同样会出现控制不够理想的现象

图7汽车行驶轨迹

4结束语

本文设计了ESP 控制系统三层算法结构,通

过定义输入输出接口,在MATLAB /Simulink 环境下建立了ESP 控制系统模型;基于MSC.ADAMS /Car 建立了较精确的车辆多体动力学模型,将ESP 控制模型与整车多体动力学模型相结合,实现了系统的联合仿真。仿真结果表明,

本文所提出的动力学模型、ESP 控制系统的控制策略和联合仿真算法是正确有效的,所设计的控制器可有效控制车轮的制动,抑制汽车的不足或过多转向趋势,改善汽车操纵稳定性。

参考文献:

[1]Shibahata Y ,Shimada K ,Tomari T.Improvement of vehi-cle maneuverability by direct yaw moment control [J ].Vehicle System Dynamics ,1993,22(5):465-481.[2]Chen Chiuan ,Peng Huei.Design of Vehicle Dynamics

Con-trol with Rollover Prevention via UMTRI Preview Driver Model [A ].AVEC ’022*******:84-89.

[3]van Zanten A T ,Erhardt R ,Landesfeind K ,et al.VDC

systems development and perspective [A ].Proceedings of International Congress and Exposition [C ].Detroit ,Michi-gan ,USA :SAE Paper ,1998(980235):9-30.

[4]Wang Huiyi ,Xue Chunyu.Modelling and simulation of

electric stability program for the passenger car [A ].Proceedings of the 2004SAE Automotive Dynamics ,Stability and Controls Conference [C ].Detroit ,Michi-gan ,USA :SAE Paper ,2004-01-2090:1-9.[5]贾豫东,宋健,孙群.用于电子稳定性程序的汽车模

型和控制策略[J ].公路交通科技,2004,21(5):132-136.

[6]李亮,宋健.汽车动力学控制系统研究进展[J ].世

界科技研究与发展,2005(2):10-17.

[7]李幼德,刘巍,李静,等.汽车稳定性控制系统硬件

在环仿真[J ].吉林大学学报(工学版),2007,37(4):737-740.

[8]陈军.MSC.adams /car 技术与工程分析实例[M ].

北京:中国水利水电出版社,2008.

[9]瞿宏敏,程军.汽车动力学模拟中的轮胎模型述评

[J ].汽车技术,1996(7):1-8.

[10]余志生.汽车理论[M ].第3版.北京:机械工业出

版社,

2006.[11]奇志权,刘昭度,时开斌,等.基于汽车ABS /ASR /

ACC 集成化系统的ABS 参考车速确定方法的研究[J ].汽车工程,2003,25(6):617-620.

[12]刘威.轻型汽车转向稳定性控制算法及硬件在环试

验台研究[D ].长春:吉林大学汽车工程学院,2007.[13]QC /T480-1999.汽车操纵稳定性指标限制与评价

方法[S ].

[14]GB /T 6323-1994.汽车操纵稳定性试验方法[S ].

8

12

多体系统动力学基本理论

第2章多体系统动力学基本理论

本章主要介绍多体系统动力学的基本理论,包括多刚体系统动力学建模、多柔体系统动力学建模、多体系统动力学方程求解及多体系统动力学中的刚性(Stiff)问题。通过本章的学习可以对多体系统动力学的基本理论有较深入的了解,为具体软件的学习打下良好的理论基础。 2.1 多体系统动力学研究状况 多体系统动力学的核心问题是建模和求解问题,其系统研究开始于20世纪60年代。从60年代到80年代,侧重于多刚体系统的研究,主要是研究多刚体系统的自动建模和数值求解;到了80年代中期,多刚体系统动力学的研究已经取得一系列成果,尤其是建模理论趋于成熟,但更稳定、更有效的数值求解方法仍然是研究的热点;80年代之后,多体系统动力学的研究更偏重于多柔体系统动力学,这个领域也正式被称为计算多体系统动力学,它至今仍然是力学研究中最有活力的分支之一,但已经远远地超过一般力学的涵义。 本节将叙述多体系统动力学发展的历史和目前国内外研究的现状。 2.1.1 多体系统动力学研究的发展 机械系统动力学分析与仿真是随着计算机技术的发展而不断成熟的,多体系统动力学是其理论基础。计算机技术自其诞生以来,渗透到了科学计算和工程应用的几乎每一个领域。数值分析技术与传统力学的结合曾在结构力学领域取得了辉煌的成就,出现了以ANSYS、NASTRAN等为代表的应用极为广泛的结构有限元分析软件。计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS和DADS为代表的动力学分析软件。两者共同构成计算机辅助工程(CAE)技术的重要内容。 多体系统是指由多个物体通过运动副连接的复杂机械系统。多体系统动力学的根本目的是应用计算机技术进行复杂机械系统的动力学分析与仿真。它是在经典力学基础上产生的新学科分支,在经典刚体系统动力学上的基础上,经历了多刚体系统动力学和计算多体系统动力学两个发展阶段,目前已趋于成熟。 多刚体系统动力学是基于经典力学理论的,多体系统中最简单的情况——自由质点和一般简单的情况——少数多个刚体,是经典力学的研究内容。多刚体系统动力学就是为多个刚体组成的复杂系统的运动学和动力学分析建立适宜于计算机程序求解的数学模型,并寻求高效、稳定的数值求解方法。由经典力学逐步发展形成了多刚体系统动力学,在发展过程中形成了各具特色的多个流派。 早在1687年,牛顿就建立起牛顿方程解决了质点的运动学和动力学问题;刚体的概念最早由欧拉于1775年提出,他采用反作用力的概念隔离刚体以描述铰链等约束,并建立了

地下水动力学试题

地下水动力学 《邹力芝》部分试题姜太公编 一、名词解释 1.渗透 重力地下水在岩石空隙中的运动 2.渗流 不考虑骨架的存在,整个渗流区都被水充满,不考虑单个孔隙的地下水的运动状况,考虑地下水的整体运动方向,这是一个假想的水流。 3. 渗流量 单位时间通过的过水断面(空隙、骨架)的地下水的体积。 4. 渗流速度 单位通过过水断面(空隙、骨架)的渗流量。 5. 稳定流非稳定流 渗流要素不随时间的变化而变化。 渗流要素随时间而变化。 6. 均匀流非均匀流 渗流速度不随空间而变化。非均匀流分为缓变流和急变流 缓变流:过水断面近似平面满足静水压强方程。 急变流:流线弯曲程度大,流线不能近似看成直线过水断面不能近似平面。7.渗透系数 表征含水量的能力的参数。数值上等于水力梯度为1的流速的大小 8.导水系数 水力梯度为1时,通过整个含水层厚度的单宽流量。 9.弹性释水理论 含水层骨架压密和水的膨胀释放出来的地下水的现象为弹性释水现象,反之为含水层的贮水现象。 10.贮水系数《率》 当承压含水层水头下降(上升)一个单位时,从单位水平面积《体积》的含水层贮体积中,由于水体积的膨胀(压缩)和含水层骨架压密(回弹)所释放(贮存)的地下水的体积。 11.重力给水度 在潜水含水层中,当水位下降一个单位时,从单位水平面积的含水层贮体中,由于重力疏干而释放地下水的体积。 二、填空题 1.地下水动力学是研究地下水在孔隙岩石、裂隙岩石、和岩溶岩石中运动规律 的科学。通常把具有连通性的含水岩石称为多孔介质,而其中的岩石颗粒称为骨架。多孔介质的特点是多相性、孔隙性、连通性和压缩性。 2.地下水在多孔介质中存在的主要形式有吸着水、薄膜水、毛管水和重力水, 而地下水动力学主要研究重力水的运动规律。 3.假想水流的密度、粘滞性、运动时在含水层的中所受阻力以及流量和水头都 与真实的水流相同,假想水流充满整个含水层的空间。 4.在渗流中,水头一般是指测压水头,不同的数值的等水头面(线)永远不会 相交。 5.在渗流场中,把大小等于水头梯度值,方向沿着等水头面的法线指向水头降

多体动力学优化方法

多体动力学优化方法 3 李庆国1 ,曾庆良1 ,范文慧 2 (1.山东科技大学机电学院,青岛山东266510;2.清华大学国家C I M S 工程技术研究中心,北京100084) 摘 要: 介绍一种多体动力学优化设计方法,基于I SI GHT 软件集成Pr o /E 和Ada m s,建立优化设 计平台。夹紧装置优化设计实例,验证了该平台的有效性和合理性。关键词: 多体动力学优化;多学科设计优化(MDO );I SI GHT 中图分类号:O313.3 文献标识码:B 文章编号:1001-0874(2007)03-0089-02 A Me thod ofMulti 2body Dynam i c Op ti m i za ti o n L I Q ing 2guo 1 , ZEN G Q ing 2liang 1 , FAN W en 2hui 2 (1.College of Mechanical &Electric Engineering,,Shandong University of Science and Technol ogy,Q ingdao 266510,China; 2.Nati onal C I M S Engineering Research Center of Tsinghua University,Beijing 100084,China ) Ab s trac t: This paper intr oduces a method of multi 2body dyna m ic op ti m izati on design and builds an op ti m izati on design p latfor m based on I SI GHT s oft w are integrati on Pr o /E and Ada m s .The effectiveness and reliability of the p latfor m is validated by taking the op ti m izati on design of chucking fixture as exa mp le .Keywo rd s: multi 2body dyna m ic op ti m izati on;multidisci p linary design op ti m izati on;I SI GHT 3国家自然科学基金资助项目(编号:60474059) 1 多体动力学和MDO 多体系统是多个相互运动的物体通过运动副相联的多刚体系统和多柔体系统。上世纪80年代初,多刚体系统动力学计算机仿真已广泛应用于工程领域,通常用来研究系统的位移、速度、加速度与其受力之间的关系。随着计算机技术的飞速发展,仿真、优化技术已在多体系统设计中得到大量应用。为了解决不同学科间的协同设计问题,人们提出了多学科设计优化的思想。 多学科设计优化(Multidisci p linary Design Op ti 2m izati on 简称MDO )是一种设计复杂系统和子系统的方法论。通过充分利用各个学科(子系统)之间相互作用所产生的协同效应,获得系统的整体最优解[1] 。 多学科设计优化问题,在数学形式上可表达为:寻找:x 最小化:f =f (x,y ) 约束:h i (x,y )=0 (i =1,2,3,…,n ) g i (x,y )≤0 (j =1,2,3,…,m ) 其中f 为目标函数,x 为设计变量,y 是状态变量,h i (x,y )是等式约束,g i (x,y )是不等式约束。 MDO 的研究主要分为三个方面:面向设计的多 学科分析设计软件的集成;有效的MDO 算法,实现多学科并行设计,获得系统最优解;MDO 分布式计算的环境支持。目前,已经出现了较成熟的商业软件,I SI GHT 就是典型代表。2 多学科优化软件I SI GHT I SI GHT 是一个通过软件协同驱动产品设计优 化的软件。特色是融合了优化设计中需要的三大主要功能:自动化功能、集成化功能和最优化功能。 (1)自动化功能 I SI GHT 的过程集成(Pr ocess I ntegrati on )功能可 以对各种CAD 或CAE 软件进行自动化启动、监视和控制,文件解析(File Parser )功能可以自动地编辑、生成输入文件和自动处理输出文件及读取计算结果。 (2)集成化功能 ? 98?2007年第3期 煤 矿 机 电

多体动力学软件和有限元软件的区别(优.选)

有限元软件与多体动力学软件 数值分析技术与传统力学的结合在结构力学领域取得了辉煌的成就,出现了以ANSYS 、NASTRAN 等为代表的应用极为广泛的结构有限元分析软件。计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS 和DADS 为代表的动力学分析软件。两者共同构成计算机辅助工程(CAE )技术的重要内容。 商业通用软件的广泛应用给我们工程师带来了极大的便利,很多时候我们不需要精通工程问题中的力学原理,依然可以通过商业软件来解决问题,不过理论基础的缺失还是会给我们带来不少的困扰。随着动力有限元与柔性多体系统分析方法的成熟,有时候正确区分两者并不是很容易。 机械领域应用比较广泛的有两类软件,一类是有限元软件,代表的有:ANSYS, NASTRAN, ABAQUS, LS-DYNA, Dytran 等;另一类是多体动力学软件,代表的有ADAMS, Recurdyn , Simpack 等。在使用时,如何选用这两类软件并不难,但是如果深究这两类软件根本区别并不容易。例如,有限元软件可以分析静力学问题,也可以分析“动力学”问题,这里的“动力学”与多体动力学软件里面的动力学一样吗?有限元软件在分析动力学问题时,可以模拟物体的运动,它与多体动力学软件中模拟物体运动相同吗?多体动力学软件也可以分析柔性体的应力、应变等,这与有限元软件分析等价吗? 1 有限元软件 有限单元法是一种数学方法,不仅可以计算力学问题,还可以计算声学,热,磁等多种问题,我们这里只探讨有限元法在机械领域的应用。 计算结构应力、应变等的力学基础是弹性力学,弹性力学亦称为弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而为工程结构或构件的强度、刚度设计提供理论依据和计算方法。也就是说用有限元软件分析力学问题时,是用有限元法计算依据弹性力学列出的方程。 考虑下面这个问题,在()0t , 时间内给一个结构施加一个随时间变化的载荷()P t ,我们希望得到结构的应力分布,在刚刚施加载荷的时候,结构中的应力会有波动,应力场是变化的,但很久以后,应力场趋于稳定。 如果我们想得到载荷施加很久以后,稳定的应力场分布,那么应该用静力学分析方法分析

研究生《机械系统动力学》试卷及答案

太原理工大学研究生试题 姓名: 学号: 专业班级: 机械工程2014级 课程名称: 《机械系统动力学》 考试时间: 120分钟 考试日期: 题号 一 二 三 四 五 六 七 八 总分 分数 1 圆柱型仪表悬浮在液体中,如图1所示。仪表质量为m ,液体的比重为ρ,液体的粘性阻尼系数为r ,试导出仪表在液体中竖直方向自由振动方程式,并求固有频率。(10分) 2 系统如图2所示,试计算系统微幅摆动的固有频率,假定OA 是均质刚性杆,质量为m 。(10分) 3 图3所示的悬臂梁,单位长度质量为ρ,试用雷利法计算横向振动的周期。假定梁的 变形曲线为?? ? ?? -=x L y y M 2cos 1π(y M 为自由端的挠度)。(10分) 4 如图4所示的系统,试推导质量m 微幅振动的方程式并求解θ(t)。(10分) 5 一简支梁如图5所示,在跨中央有重量W 为4900N 电机,在W 的作用下,梁的静挠度δst=,粘性阻尼使自由振动10周后振幅减小为初始值的一半,电机n=600rpm 时,转子不平衡质量产生的离心惯性力Q=1960N ,梁的分布质量略去不计,试求系统稳态受迫振动的振幅。(15分) 6 如图6所示的扭转摆,弹簧杆的刚度系数为K ,圆盘的转动惯量为J ,试求系统的固有频率。(15分) 7如图7一提升机,通过刚度系数m N K /1057823?=的钢丝绳和天轮(定滑轮)提升货载。货载重量N W 147000=,以s m v /025.0=的速度等速下降。求提升机突然制动时的钢丝绳最大张力。(15分) 8某振动系统如图8所示,试用拉个朗日法写出动能、势能和能量散失函数。(15分) 太原理工大学研究生试题纸

基于RecurDyn的多体动力学仿真

图1 经简化的一对空链节模型 二、仿真分析 1.运动状态与干涉校验 首先必须考虑到链条柔度对运动的干涉影响,即考虑到在设计的平面柔度和扭转柔度范围内,长链条和最图2 链式输送机构的仿真模型图3 链式输送机构的运动仿真图4 链节的空间位移曲线 CAD/CAM与制造业信息化?www.icad.com.cn

图5 冲击动载荷分析 3.运动平稳性分析 由于链式输送模型中含有多种非线性因素,采用完全递归算法,对各链节的各自由度运动幅值的敛散性进行分析,来判定链式输送系统的运动平 图6 加速度响应 4.抱紧力分析 抱紧臂的抱紧力设计也十分重要, 该值越大,抱紧传输体越可靠,但装卸 传输体就困难了;另一方面,从链节中 脱出传输体将消耗过多的能量,对其 他的相关机构工作不利。若该值较低, 则容易使传输体在输送过程的剧烈抖 动中掉落,产生故障,因此需要进行抱 紧臂的抱紧力动态载荷分析,分析结 果如图7所示。 图7 动态载荷分析 三、结束语 本文应用RecurDyn多体动力学软 件,在导入原有实体模型的基础上,快 速构建仿真模型。根据RecurDyn提供 的多级子系统建模、空间多接触和完 全递归算法等特有功能,对复杂链式 输送机构的分析问题进行了动力学仿 真,得到了做为设计参考的动力学参 数,为链式输送机构的动力学设计提 供了很好的设计校验方法。仿真结果 可以检测输送系统工作的平稳性和可 靠性,并预测链式输送机构故障的发 携手济钢机制公司,WIT-CAPP续写业界辉煌 近日,华特软件与济钢集团机械设备制造公司 公司”)正式签订CAPP合同。 秉承“可遵、可信、共赢”的济钢机制公司是济南钢铁集团直属的子 CAD/CAM与制造业信息化?www.icad.com.cn

多体系统动力学综述

1. 绝对节点坐标法 传统有限元方法建立的单元为非等参数单元,其使用节点处的位移梯度来描述物体的无限小的转动,但在物体发生大变形时,节点处的位移梯度已不能准确描述物体的转动变形,从而极大影响到计算的精度。 Shabana [1]提出了绝对节点坐标法(Absolute nodal coordinate formulation, ANCF ),其理论基础主要是有限元和连续介质力学理论。该方法将物体的单元节点坐标定义在全局坐标系下,使用节点处的斜率(slope)矢量作为节点坐标而不是节点处的无限小转动[2],不需要另外计算刚体位移与柔性变形之间的耦合,能较精确地计算大变形的多体系统动力学问题。其最终推导出的多体系统的微分代数方程组(DAEs )中,质量矩阵是一个常数矩阵,但刚度矩阵将是一个非线性的时间函数。 1.1梁单元的绝对节点坐标法 Shabana 首先推导出一维梁单元的绝对节点坐标法模型[1][3]。在这种模型中,梁单元用中性轴来简化,如图1所示,其上面任意一点P 在全局坐标系下的坐标表达为: 23101232320123r =Se r a a x a x a x r b b x b x b x ??+++??==????+++???? 图1 其中,x 为沿轴线的单元局部坐标,[]0,x l ∈,l 为梁单元初始长度;S 为单元形函数;e 为含有8个单元节点坐标的广义坐标矢量。 123456781102205162e []|,|,|,|, T x x x l x l e e e e e e e e e r e r e r e r ========= 1 2 1 2 304078,,,x x x l x l r r r r e e e e x x x x ====????====????

2015年系统动力学A卷试题

南京农业大学试题纸 2014-2015学年 第二学期 课程类型:选修 试卷类型:A 课程 系统动力学 班级 学号 姓名 成绩 一 填空(每空2分,共20分) 1 系统阶次是根据系统的 决定。 2 系统动力学模型中变量可分为 、 、辅助变量和常量等。 3 反馈的类型有 和 。 4 因果关系图与存量流量图的区别在于 。 5 状态变量在回路中的作用是 。 6 典型的速率结构与方程有 、 、 等。 二 简答题(共35分) 1 为什么要学习系统动力学方法?(4分) 2 因果回路图中回路的极性的判断依据是什么?分别举一个回路为正和负的因果回路图,其中变量的个数不少于3个。(7分) 3 从反馈的类型来看,系统的基本结构包括哪几种?(6分) 4 绘制S 形增长系统的行为模式及结构。(8分) 5 简述一阶正反馈(指数增长)系统的时间常数T 和倍增时间Td 的含义,推导出它们之间的关系式,并给出LEV(a+k*T)与LEV(a)之间的关系。(10分) 三 绘图题(15分) 假设一个系统只有羚羊和狮子两种动物。羚羊数量(POPULATION OF ANTELOPE, PA )由其出生速率(BRA)和死亡速率(DRA)共同决定,羚羊出生速率(BRA)又与羚羊数量(PA )、羚羊生育比例(FBA )有关,羚羊死亡速率(DRA)与羚羊数量(PA )、羚羊平均寿命(ALA)以及狮子数量(POPULATION OF LION, PL)有关;狮子数量(PL)由狮子的出生速率(BRL)和死亡速率(DRL)共同决定,影响狮子出生速率(BRL)的因素除了狮子生育比例(FBL )和狮子数量(PL )外,羚羊数量(PA )对其也有影响,狮子死亡速率(DRL)和狮子数(PL)、狮子平均寿命(ALL)有关,试绘制该系统因果回路图和存量流量图。 本试卷适应范围 物流121-124

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

《机械动力学》——期末复习题及答案

《机械动力学》期末复习题及答案1、判断 1.机构平衡问题在本质上是一种以动态静力分析为基础的动力学综合,或动力学设计。 答案:正确 2.优化平衡就是采用优化的方法获得一个绝对最佳解。 答案:错误 3.惯性力的计算是建立在主动构件作理想运动的假定的基础上的。 答案:正确 4.等效质量和等效转动惯量与机械驱动构件的真实速度无关。 答案:正确 5.作用于等效构件上的等效力(或等效力矩)所作的功等于作用于系统上的外力所作的功。答案: 错误 6.两点动代换后的系统与原有系统在静力学上是完全等效的。 答案:错误 7.对于不存在多余约束和多个自由度的机构,动态静力分析是一个静定问题。 答案:错误 8.摆动力的完全平衡常常会导致机械结构的简单化。 答案:错误 9.机构摆动力完全平衡的条件是:机构运动时,其总质心作变速直线运动。 答案:错误 10.等效质量和等效转动惯量与质量有关。 答案:错误 11.平衡是在运动设计完成之前的一种动力学设计。 答案:错误 12.在动力分析中主要涉及的力是驱动力和生产阻力。 答案:正确 13.当取直线运动的构件作为等效构件时,作用于系统上的全部外力折算到该构件上得到等效力。答案:正确 14.摆动力的平衡一定会导致机械结构的复杂化。 答案:错误 15.机器人操作机是一个多自由度的闭环的空间机构。 答案:错误 16.质量代换是将构件的质量用若干集中质量来代换,使这些代换质量与原有质量在运动学上等效答案:正确 17.弹性动力分析考虑构件的弹性变形。 答案:正确 18.机构摆动力矩完全平衡的条件为机构的质量矩为常数。 答案:错误

19.拉格朗日方程是研究约束系统静力动力学问题的一个普遍的方法。 答案:正确 20.在不含有变速比传动而仅含定速比传动的系统中,传动比为常数。 答案:正确 21.平衡分析着眼于全部消除或部分消除引起震动的激振力。 答案:正确 22.通路定理是用来判断能否实现摆动力完全平衡的理论。 答案:错误 23.无论如何,等效力与机械驱动构件的真实速度无关。 答案:正确 24.综合平衡不仅考虑机构在机座上的平衡,同时也考虑运动副动压力的平衡和输入转矩的平衡。答案:正确 25.速度越快,系统的固有频率越大。 答案:错误 26.平衡的实质就是采用构件质量再分配等手段完全地或部分地消除惯性载荷。 答案:正确 27.优化综合平衡是一个多目标的优化问题,是一种部分平衡。 答案:正确 28.机构摆动力完全平衡的条件为机构的质量矩为常数。 答案:正确 29.当以电动机为原动机时,驱动力矩是速度的函数。 答案:错误 30.为了使得等效构件的运动与机构中该构件的运动一致,要将全部外力等效地折算到该机构上这 一折算是依据功能原理进行的。 答案:正确 2、单选 1.动力学反问题是已知机构的(),求解输入转矩和各运动副反力及其变化规律。 A.运动状态 B.运动状态和工作阻力 C.工作阻力 D.运动状态或工作阻力 答案:B 2.平衡的实质就是采用构件质量再分配等手段完全地或部分地消除()。 A.加速度 B.角加速度 C.惯性载荷 D.重力 答案: C 3.摆动力的完全平衡常常会导致机械结构的()。 A.简单化

机械动力学复习题

机械动力学复习试题 1、试求图1-1所示系统的等效弹簧常数,并导出其运动微分方程。 2、一无质量的刚性杆铰接于O ,如图2-1所示。试确定系统振动的固有频率,给出参数如下:k 1=2500磅/英寸(4.3782×105N/m ), K 2=900磅/英寸(1.5761×105N/m ), m=1磅*秒2/英寸(175.13kg ), a=80英寸 (2.03m), b=100英寸(2.54m )。 3、试求出图3-1所示系统的固有频率。弹簧是线性的,滑轮对中心0的转动惯量为I 。设R=2500磅/英寸(4.3782×105N/m ), I=600磅*英寸*秒2(67.79N*m*s 2), m=2.5磅*秒2/英寸(437.82kg ), R=20英寸(0.5/m ) 4、一台质量为M 的机器静止地置于无质量的弹性地板上,如图4-1所示。当一单位载荷作用于中心点时的挠度为x st 。今在机器上放有一总质量为ms并带有两个旋转的不平衡质量的振动器提供一铅垂的谐波力mlw 2sinwt ,这里,转动的频率w 是可以改变的。试说明怎样用此振动器来测定系统弯曲振动的固有频率。 2 k 图3-1 图2-1

5,、图5-1中所示的系统模拟一在粗糙道路上运动的车辆,速度为均匀,即V=常数。试计算其响应Z(t)和传给车辆的力。 图5-1 6,、试导出如图6-1所示系统的运动微分方程,并求解位移X1(t)。

7、转动惯量分别为I 1和I 2的两个圆盘安装在扭转刚度分别为GJ 1和GJ 2的圆轴上如图7-1。导出这两个圆盘的转动微分方程。 8、导出图8-1所示系统当θ为微小角时的运动微分方程。 图 6-1 GJ 1 GJ 2 1() t θ2()t θ M 2(t) M 1(t) I 1 I 2

机器人复习题及参考答案

课程考试复习题及参考答案 机器人学导论 一、名词解释题: 1.自由度: 2.机器人工作载荷: 3.柔性手: 4.制动器失效抱闸: 5.机器人运动学: 6.机器人动力学: 7.虚功原理: 驱动: 9.电机无自转: 10.直流伺服电机的调节特性: 11.直流伺服电机的调速精度: 控制: 13.压电元件: 14.图像锐化: 15.隶属函数: 网络: 17.脱机编程: : 二、简答题: 1.机器人学主要包含哪些研究内容 2.机器人常用的机身和臂部的配置型式有哪些 3.拉格朗日运动方程式的一般表示形式与各变量含义 4.机器人控制系统的基本单元有哪些 5.直流电机的额定值有哪些 6.常见的机器人外部传感器有哪些 7.简述脉冲回波式超声波传感器的工作原理。 8.机器人视觉的硬件系统由哪些部分组成 9.为什么要做图像的预处理机器视觉常用的预处理步骤有哪些 10.请简述模糊控制器的组成及各组成部分的用途。 11.从描述操作命令的角度看,机器人编程语言可分为哪几类 12.仿人机器人的关键技术有哪些 三、论述题: 1.试论述机器人技术的发展趋势。 2.试论述精度、重复精度与分辨率之间的关系。 3.试论述轮式行走机构和足式行走机构的特点和各自适用的场合。 4.试论述机器人静力学、动力学、运动学的关系。 5.机器人单关节伺服控制中,位置反馈增益和速度反馈增益是如何确定的 6.试论述工业机器人的应用准则。 四、计算题:(需写出计算步骤,无计算步骤不能得分): 1.已知点u的坐标为[7,3,2]T,对点u依次进行如下的变换:(1)绕z轴旋转90°得到点v;(2)绕y 轴旋转90°得到点w;(3)沿x轴平移4个单位,再沿y轴平移-3个单位,最后沿z轴平移7个单位得到点t。求u, v, w, t各点的齐次坐标。

机械系统动力学试题

机械系统动力学试题 一、 简答题: 1.机械振动系统的固有频率与哪些因素有关?关系如何? 2.简述机械振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。 3.简述无阻尼单自由度系统共振的能量集聚过程。 4. 简述线性多自由度系统动力响应分析方法。 5. 如何设计参数,使减振器效果最佳? 二、 计算题: 1、 单自由度系统质量Kg m 10=, m s N c /20?=, m N k /4000=, m x 01.00=, 00=? x ,根据下列条件求系统的总响应。 (a ) 作用在系统的外激励为t F t F ωcos )(0=,其中N F 1000=, s rad /10=ω。 (b ) 0)(=t F 时的自由振动。 2、 质量为m 的发电转子,它的转动惯量J 0的确定采用试验方法:在转子径向R 1的地方附加一小质量m 1。试验装置如图2所示,记录其振动周期。 a )求发电机转子J 0。 b )并证明R 的微小变化在R 1=(m/m 1+1)·R 时有最小影响。 3、 如图3所示扭转振动系统,忽略阻尼的影响 J J J J ===321,K K K ==21 (1)写出其刚度矩阵; (2)写出系统自由振动运动微分方程; (2)求出系统的固有频率; (3)在图示运动平面上,绘出与固有频率对应的振型图。 1 θ(图2)

(图3) 4、求汽车俯仰振动(角运动)和跳振(上下垂直振动)的频率以及振 动中心(节点)的位置(如图4)。参数如下:质量m=1000kg,回转半径r=0.9m,前轴距重心的距离l1=0.1m,后轴距重心的距离l2=1.5m,前弹簧刚度k1=18kN/m,后弹簧刚度k2=22kN/m (图4) 5、如5图所示锻锤作用在工件上的冲击力可以近似为矩形脉冲。已知 工件,铁锤与框架的质量为m1=200 Mg,基础质量为m2=250Mg,弹簧垫的刚度为k1=150MN/m,土壤的刚度为k2=75MN/m.假定各质量的初始位移与速度均为零,求系统的振动规律。

ADAMS多体动力学仿真多种速度曲线函数

1、梯形速度曲线 A=0.5,V=2 if(time-2:0,0,if(time-6:0.5,0.5,if(time-14:0,0,if(time-18:-0.5,-0.5,0)))) A=181.891d,V=2 if(time-2:0,0,if(time-6:-181.891d,-181.891d,if(time-14:0,0,if(time-18:181 .891d,181.891d,0)))) A=181.891d,V=2 if(time-2:0,0,if(time-6:-181.891d,-181.891d,if(time-14:0,0,if(time-18:181 .891d,181.891d,0)))) 2、简化5段S型速度曲线 A=0.5,V=1 if(time-2:0,0,if(time-4:-0.25*time+0.5,0.5,if(time-6:-1.5+0.25*time,0,if(ti me-14:0,0,if(time-16:-3.5+0.25*time,-0.5,if(time-18:-0.25*time+4.5,0,0)) )))) A=0.5=181.891d,V=1 if(time-2:0,0,if(time-4:-181.891d/2*time+181.891d,-181.891d,if(time-6:-3*181.891d+181.891d/2*time,0,if(time-14:0,0,if(time-16:-7*181.891d+1 81.891d/2*time,-181.891d,if(time-18:-181.891d/2*time+9*181.891d,0, 0)))))) A=1,V=2 if(time-2:0,0,if(time-4:-0.5*time+1,1,if(time-6:-3+0.5*time,0,if(time-14:0 ,0,if(time-16:-7+0.5*time,-0.5,if(time-18:-0.5*time+9,0,0))))))

机械动力学期末复习题及答案

机械动力学期末复习题及 答案 Prepared on 22 November 2020

《机械动力学》期末复习题及答案1、判断 1.机构平衡问题在本质上是一种以动态静力分析为基础的动力学综合,或动力学设计。 答案:正确 2.优化平衡就是采用优化的方法获得一个绝对最佳解。 答案:错误 3.惯性力的计算是建立在主动构件作理想运动的假定的基础上的。 答案:正确 4.等效质量和等效转动惯量与机械驱动构件的真实速度无关。 答案:正确 5.作用于等效构件上的等效力(或等效力矩)所作的功等于作用于系统上的外力所 作的功。答案:错误 6.两点动代换后的系统与原有系统在静力学上是完全等效的。 答案:错误 7.对于不存在多余约束和多个自由度的机构,动态静力分析是一个静定问题。 答案:错误 8.摆动力的完全平衡常常会导致机械结构的简单化。 答案:错误 9.机构摆动力完全平衡的条件是:机构运动时,其总质心作变速直线运动。

答案:错误 10.等效质量和等效转动惯量与质量有关。 答案:错误 11.平衡是在运动设计完成之前的一种动力学设计。 答案:错误 12.在动力分析中主要涉及的力是驱动力和生产阻力。 答案:正确 13.当取直线运动的构件作为等效构件时,作用于系统上的全部外力折算到该构件上得到等效力。 答案:正确 14.摆动力的平衡一定会导致机械结构的复杂化。 答案:错误 15.机器人操作机是一个多自由度的闭环的空间机构。 答案:错误 16.质量代换是将构件的质量用若干集中质量来代换,使这些代换质量与原有质量在运动学上等效 答案:正确 17.弹性动力分析考虑构件的弹性变形。 答案:正确 18.机构摆动力矩完全平衡的条件为机构的质量矩为常数。 答案:错误 19.拉格朗日方程是研究约束系统静力动力学问题的一个普遍的方法。

多体系统动力学简介20081202

多体系统动力学简介

多体系统动力学研究对象——机构 工程中的对象是由大量零部件构成的系统。在对它们进行设计优化与性态分析时可以分成两大类 一类为结构 ——正常工况下构件间没有相对运动(房屋建筑,桥梁等) ——关心的是这些结构在受到载荷时的强度、刚度与稳定 一类为机构 ——系统在运动过程中这些部件间存在相对运动(汽车,飞机起落架。机器人等)——力学模型为多个物体通过运动副连接的系统,称为多体系统 多体系统动力学俄研究的对象——机构(复杂机械系统)

不考虑系统运动起因的情况下研究各部件的位置与姿态及其变化速度和加速度的关系 典型案例:平面和空间机构的运动分析 系统各部件间通过运动副与驱动装置连接在一起 数学模型:各部件的位置与姿态坐标的非线性代数方程,以及速度与加速度的线性代数方程

当系统受到静载荷时,确定在运动副制约下的系统平衡位置以及运动副静反力 典型案例:机车或汽车中安装有大量的弹簧阻尼器,整车设计中必须考虑系统在静止状态下车身的位置与姿态,为平稳性与操纵稳定性的研究打下基础 数学模型:非线性微分代数方程组

讨论载荷和系统运动的关系 研究复杂机械系统在载荷作用下各部件的动力学响应是工程设计中的重要问题 动力学正问题——已知外力求系统运动的问题 动力学逆问题——已知系统运动确定运动副的动反力,是系统各部件强度分析的基础 动力学正逆混合问题——系统的某部分构件受控,当它们按照某已知规律运动时,讨论在外载荷作用下系统其他构件如何运动 数学模型:非线性微分代数方程组

机械系统的多体系统力学模型 在对复杂机械系统进行运动学与动力学分析前需要建立它的多体系统力学模型。对系统如下四要素进行定义: ?物体 ?铰链 ?外力(偶) ?力元 实际工程中的机械系统多体系统力学模型的定义取决于研究的目的 模型定义的要点是以能揭示系统运动学与动力学性态的最简模型为优 性态分析的求解规模与力学模型的物体与铰的个数有关

车辆系统动力学试卷

1、系统动力学有哪三个研究内容? (1)优化:已知输入和设计系统的特性,使得它的输出满足一定的要求,可称为系统的设计,即所谓优化。就是把一定的输入通过选择系统的特性成为最优化的输出。 (2)系统识别:已知输入和输出来研究系统的特性。 (3)环境预测。已知系统的特性和输出来研究输入则称为环境预测。 例如对一振动已知的汽车,测定它在某一路面上行驶时所得的振动响应值(如车身上的振动加速度),则可以判断路面对汽车的输入特性,从而了解到路面的不平特性。 车辆系统动力学研究的内容是什么? (1)路面特性分析、环境分析及环境与路面对车辆的作用;(2)车辆系统及其部件的运动学和动力学;车辆内各子系统的相互作用; (3)车辆系统最佳控制和最佳使用; (4)车辆-人系统的相互匹配和模型研究、驾驶员模型、人机工程等。 2、车辆建模的目的是什么? (1)描述车辆的动力学特性; (2)预测车辆性能并由此产生一个最佳设计方案; (3)解释现有设计中存在的问题,并找出解决方案。 车辆系统动力学涉及哪些理论基础? (1)汽车构造 (2)汽车理论

(3)汽车动力学 (4)信号与系统 在“时间域”及“频率域”下研究时间函数x(t)及离散序列 x(n)及系统特性的各种描述方式,并研究激励信号通过系统 时所获得的响应。 (5)自动控制理论 (6)系统辨识 (7)随机振动分析 研究随机振动中物理量的描述方法(相关函数、功率谱密度), 讨论受随机激励的振动系统的激励、系统特性、响应三者统 计规律性之间的关系。 (8)多体系统动力学 建立车辆系统动态模型的方法主要有哪几种? 数学模型 (1)各种数学方程式:微分方程式,差分方程,状态方程,传递函数等。 (2)用数字和逻辑符号建立符号模型—方框图。 3、路面不平度功率谱密度的表达式有几种?各有何特点?试举出2 种以上路面随机激励方法,并说明其特点。(10分) 路面功率谱密度的表达形式分为幂函数和有理函数两种 (1)路面不平度的幂函数功率谱密度 ISO/DIS8608和国家标准GB7031-1987《车辆振动输入路

柔性多体动力学建模

柔性多体动力学建模 、仿真与控制 近二十年来,柔性多体系统多力学(the dynamics of the flexible multibody systems)的研究受到了很大的关注。多体系统正越来越多地用来作为诸如机器人、机构、链系、缆系、空间结构和生物动力学系统等实际系统的模型。huston认为: “多体动力学是目前应用力学方面最活跃的领域之一,如同任何发展中的领域一样,多体动力学正在扩展到许多子领域。最活跃的一些子领域是: 模拟、控制方程的表述法、计算机计算方法、图解表示法以及实际应用。这些领域里的每一个都充满着研究机遇。”多柔体系统动力学近年来快速发展的主要推动力是传统的机械、车辆、军械、机器人、航空以及航天工业现代化和高速化。传统的机械装置通常比较粗重,且*作速度较慢,因此可以视为由刚体组成的系统。而新一代的高速、轻型机械装置,要在负载/自重比很大,*作速度较高的情况下实现准确的定位和运动,这是其部件的变形,特别是变形的动力学效应就不能不加以考虑了。在学术和理论上也很有意义。 关于多柔体动力学方面已有不少优秀的综述性文章。 在多体系统动力学系统中,刚体部分: 无论是建模、数值计算、模拟前人都已做得相当完善,并已形成了相应的软件。但对柔性多体系统的研究才开始不久,并且柔性体完全不同于刚性体,出现了很多多刚体动力学中不呈遇到的问题,如: 复杂多体系统动力学建模方法的研究,复杂多体系统动力学建模程式化与计算效率的研究,大变形及大晃动的复杂多体系统动力学研究,方程求解的stiff数值稳定性的研究,刚柔耦合高度非线性问题的研究,刚-弹-液-控制组合的复杂多体系统的运动稳定性理论研究,变拓扑结构的多体系统动力学与控,复杂多体系统动力学中的离散化与控制中的模态阶段的研究等等。柔性多体动力学而且柔性多体动力学的发展又是与当代计算机和计算技术的蓬勃发展密切相关的,高性能的计算机使复杂多体动力学的仿真成为可能,特别是计算机的功

最新铁道车辆系统动力学作业及试题答案

作业题 1、车辆动力学的具体内容是研究车辆及其主要零部件在各种运用情况下,特别是在高速运行时的位移、加速度和由此而产生的动作用力。 2、车辆系统动力学目的在于解决下列主要问题: ①确定车辆在线路上安全运行的条件; ②研究车辆悬挂装置和牵引缓冲装置的结构、参数和性能对振动及 动载荷传递的影响,并为这些装置提供设计依据,以保证车辆高速、安全和平稳地运行; ③确定动载荷的特征,为计算车辆动作用力提供依据。 3、铁路车辆在线路上运行时,构成一个极其复杂的具有多自由度的振动系统。 4、动力学性能归根结底都是车辆运行过程中的振动性能。 5、线路不平顺不是一个确定量,它因时因地而有不同值,它的变化规律是随机的,具有统计规律,因而称为随机不平顺。 (1)水平不平顺; (2)轨距不平顺; (3)高低不平顺; (4)方向不平顺。 6、车轮半径越大、踏面斜度越小,蛇行运动的波长越长,即蛇行运动越平缓。 7、自由振动的振幅,振幅大小取决于车辆振动的初始条件:初始位移和初始速度(振动频率)。 8、转向架设计中,往往把车辆悬挂的静挠度大小作为一项重要技术指标。 9、具有变摩擦减振器的车辆,当振动停止时车体的停止位置不是一个点,而是一个停滞区。 10、在无阻尼的情况下共振时振幅随着时间增加,共振时间越长,车辆的振幅也越来越大,一直到弹簧全压缩和产生刚性冲击。 11、出现共振时的车辆运行速度称为共振临界速度 12、在车辆设计时一定要尽可能避免激振频率与自振频率接近,避免出现共振。 13、弹簧簧条之间要留较大的间距以避免在振动过程中簧条接触而出现刚性冲击 14、两线完全重叠时,摩擦阻力功与激振力功在任何振幅条件下均相等。 15、在机车车辆动力学研究中,把车体、转向架构架(侧架)、轮对等基本部件近似地视为刚性体,只有在研究车辆各部件的结构弹性振动时,才把他们视

多体动力学和非线性有限元联合仿真

A New Solution For Coupled Simulation Of Multi-Body Systems And Nonlinear Finite Element Models Giancarlo CONTI, Tanguy MERTENS, Tariq SINOKROT (LMS, A Siemens Business) Hiromichi AKAMATSU, Hitoshi KYOGOKU, Koji HATTORI (NISSAN Motor Co., Ltd.) 1 Introduction One of the most common challenges for flexible multi-body systems is the ability to properly take into account the nonlinear effects that are present in many applications. One particular case where these effects play an important role is the dynamic modeling of twist beam axles in car suspensions: these components, connecting left and right trailing arms and designed in a way that allows for large torsional deformations, cannot be modeled as rigid bodies and represent a critical factor for the correct prediction of the full-vehicle dynamic behavior. The most common methods to represent the flexibility of any part in a multi-body mechanism are based on modal reduction techniques, usually referred to as Component Mode Synthesis (CMS) methods, which predict the deformation of a body starting from a preliminary modal analysis of the corresponding FE mesh. Several different methods have been developed and verified, but most of them can be considered as variations of the same approach based on a limited set of modes of the structure, calculated with the correct boundary conditions at each interface node with the rest of the mechanism, allowing to greatly reduce the size of system’s degrees of freedom from a large number of nodes to a small set of modal participation factors. By properly selecting the number and frequency range of the modes, as well as the boundary conditions at each interface node [1], it is possible to accurately predict the static and dynamic deformation of the flexible body with remarkable improvements in terms of CPU time: this makes these methods the standard approach to reproduce the flexibility of components in a multi-body environment. Still, an important limitation inherently lies in their own foundation: since displacements based on modal representation are by definition linear, any nonlinear phenomena cannot be correctly simulated. For example, large deformations like twist beam torsion during high lateral acceleration cornering maneuvers typically lead to geometric nonlinearities, preventing any linear solution from accurately predicting most of the suspension’s elasto-kinematic characteristics like toe angle variation, wheel center position, vertical stiffness. One possible solution to overcome these limitations while still working with linear modal reduction methods is the sub-structuring technique [2]: the whole flexible body is divided into sub-structures, which are connected by compatibility constraints preventing the relative motion of the nodes that lie between two adjacent sub-structures. Standard component mode synthesis methods are used in formulating the equations of motion, which are written in terms of generalized coordinates and modal participation factors of each sub-structure. The idea behind it is that each sub-portion of the whole flexible structure will undergo smaller deformations, hence remaining in the linear flexibility range. By properly selecting the cutting sections it is usually possible to improve the accuracy of results (at least in terms of nodal displacements: less accuracy can be expected for stress and strain distribution). Another limitation of these methods is the preliminary work needed to re-arrange the FE mesh, although some CAE products already offer automatic processes enabling the user to skip most of the re-meshing tasks and hence reducing the modeling efforts. An alternative approach to simulate the behavior of nonlinear flexible bodies is based on a co-simulation technique that uses a Multi-body System (MBS) solver and an external nonlinear Finite Element Analysis (FEA) solver. Using this technique one can model the flexible body in the external nonlinear FEA code and the rest of the car suspension system in the MBS environment. The loads due to the deformation of the body are calculated externally by the FEA solver and communicated to the MBS solver at designated points where the flexible body connects to the rest of the multi-body system. The MBS solver, on the other hand, calculates displacements and velocities of these points and communicates them to the nonlinear FEA solver to advance the simulation. This approach doesn’t suffer from the limitations that arise from the linear modeling of the flexibility of a body. This leads to more accurate results, albeit at the price of much larger CPU time. In fact, simulation results are strongly affected by the size of the communication time step between the two solvers: a better accuracy (and more stable solver convergence) can be generally obtained by using smaller time steps which require larger calculation times, as shown also in [3].

相关文档
最新文档