第三章高分子溶液

第三章高分子溶液
第三章高分子溶液

第三章高分子溶液

第四章聚合物的分子量和分子量分布

一、 基本概念

1、溶胀;无限溶胀;有限溶胀

2、数量分数;重量分数

3、数均分子量;粘均分子量;重均分子量;Z均分子量

4、多分散性指数;分子量分布宽度指数;分子量分布

5、哈金斯参数;第二维列系数;溶度参数

6、混合熵;混合热;混合自由能

7、凝胶;冻胶

8、级分;校正曲线;普适校正曲线

9、θ溶剂;θ温度;θ溶液

10、特性粘数;溶胀度

11、粘度;爱因斯坦粘度定律

12、物理交联和化学交联

13、散射;瑞利散射;瑞利因子

14、过量化学位

15、临界共溶温度;上临界共溶温度;下临界共溶温度

16、体积排斥理论

17、柱效;分辩率

18、Zimm作图法

19、数量微分分布,重量微分分布,积分分布

20、内干涉,外干涉

21,凝胶渗透色谱法

二、选择题

1、下列四种聚合物在各自的良溶剂中,常温下不能溶解的为()。

A、聚乙烯,

B、聚甲基丙烯酸甲酯,

C、无规立构聚丙烯,

D、聚氯乙烯

2、高分子溶液与小分子理想溶液比较,说法正确的是()。

A、高分子溶液在浓度很小时,是理想溶液。

B、高分子溶液在θ温度时,△μ1E=0,说明高分子溶液是一种真的理想溶液。

C、高分子溶液在θ条件时,△H

M 和△S

M

都不是理想值,不是理想溶液。

D、高分子溶液在θ条件时,高分子链段间与高分子链段和溶剂分子间相互作用不等。

3、聚合物溶度参数一般与其()无关。

A、分子量

B、极性大小

C、分子间力

D、内聚能密度

4、Huggins参数χ1在θ温度下的数值等于()

A、0.0,

B、0.5 ,

C、1.0,

D、2.0

5、溶剂对聚合物溶解能力的判定原则,说法错误的是()。

A、“极性相近”原则

B、“高分子溶剂相互作用参数χ1大于0.5”原则

C、“内聚能密度或溶度参数相近”原则

D、“第二维修系数A2大于0”原则

6、下列哪种高聚物是单分散的为()

A、HDPE

B、PVC

C、DNA

7、渗透压法测得的平均分子量,其物理意义为()

A、数均分子量

B、粘均分子量

C、重均分子量

8、多人散性指数d 的取值为( )

A 、≥1

B 、>1

C 、≥0

9、GPC 测定高聚物分子量时,淋洗体积和分子量存在如下关系( )

A 、logM=A-

B Ve ; B 、M=A-BVe ;

C 、logM=A-BlogVe

10、多分散性聚合物,四种统计平均分子量的关系为( )

A 、M n =N w =N η=M z

B 、M z >M w >M η>M n

C 、M z >M η>M w >M n

11、将高聚物在一定条件下(θ溶剂、θ温度)配成θ溶液,此时( )

A 大分子之间作用力<小分子之间作用力<大分子与小分子之间作用力.

B 大分子之间作用力>小分子之间作用力>大分子与小分子之间作用力

C 大分子之间作用力=小分子之间作用力=大分子与小分子之间作用力

D 大分子之间作用力<大分子与小分子之间作用力<小分子之间作用力

12、下列四种溶剂(室温下Huggings 相互作用参数)中,室温能溶解聚氯乙烯的为( )。

A 、 四氢呋喃(χ1=0.14)

B 、二氧六环(0.52)

C 、丙酮(0.63),

D 、丁酮(1.74)

13、下列四种溶剂中,对PVC 树脂溶解性最好的是( )。

A 环己酮,

B 苯,

C 氯仿,

D 二氯乙烷

14、( )可以快速、自动测定聚合物的平均分子量和分子量分布。

A 粘度法,

B 滲透压法,

C 光散射法,

D 凝胶渗透色谱(GPC)法

15、下列四种方法中,( )可以测定聚合物的重均分子量。

A 、粘度法,

B 、滲透压法,

C 、光散射法,

D 、沸点升高法

16、特性粘度[η]的表达式正确的是( )。

A 、c sp /η

B 、c /ln γη

C 、 c sp o c /lim η→

D 、c o

c /lim γη→ 三、判断正误题(在括号内写出判断的正确或错误)

1、 强极性的结晶高聚物可以在室温下溶解,而非极性的结晶高聚物,只有加热到Tm 附近,才能溶解( )

2、对于混合熵的贡献, 一个大分子相当于许多小分子,但又不等于这许多小分子( )

四、填空题

1、 和 都表征了高分子“链段”与溶剂分子间之间的相互作用。

2、判定溶剂对聚合物溶解力的原则有(1)极性相近原则、(2) 和

(3) 。

3、凝胶渗透色谱法是按分子的( )将大小不同的分子分开的。这种方法可以得到( )和( )等分子量以及( )的数据。

4、在高分子溶液中可以由( )和 判断高聚物在溶液中形态,可以由 和 表征分子的尺寸。

5、凝胶与冻胶的本质区别在于( )。

6、高分子平均分子量的定义有四种,其数学表达式分别是( )、( )、( )和( )。

7、渗透压法测得的是( ),粘度法测得的是( )

8、多分散高聚物四种统计平均分子量的大小次序为( );而单分散高聚物,四种统计平均分子量的大小次序为( );另外当Mark-Houwink 指数α=1时( );α=-1时( )。

9、凝胶与冻胶的本质区别在于前者的交联键为( );而后者的交联键为( )。

10、高聚物的溶解一般分( )和( )两个阶段。

11、在高分子的θ溶液中,Huggins 参数χ1= ,第二维列系数A 2= ,此时高分子链段间的相互作用力等于高分子链段与溶剂分子间的作用力。

12、高分子常用的统计平均分子量有数均分子量、重均分子量、Z 均分子量和 ,它们之间的关系

M n≥M w≥≥M z。

13、测定聚合物分子量的方法很多,如端基分析法可测分子量,光散射法可测重均分子量,稀溶液粘度法可测分子量。

14、凝胶渗透色谱GPC可用来测定聚合物的和。溶质分子体积越小,其淋出体积越大。

五、简答题(论述题)

1、溶度参数的物理含义

2、Huggins参数的物理意义

3、第二维利系列的物理意义

4、Mark─Houwink方程的物理意义,常数K,α值与哪些因素有关

5、溶胀平衡方程的物理意义及其作用

6、高分子的溶解与低分子有什么不同?

7、简述Flory─Huggins格子模型的基本思想。

8、简述Flory─Krigbaum的稀溶液理论。

9、高分子溶液有什么特征,试与胶体或低分子真溶液作一比较,如何证明它是一种真溶液。

10、溶度参数如何测定?根据热力学原理解释非极性聚合物为什么能够溶解在与其溶度参数相近的溶剂中。

11、通常在定向聚合的聚丙烯中含有95%的规整立构体,熔点约在438─449K之间,现欲选择它的适当溶剂,试举例并指出应该注意的条件,另外聚氟乙烯、聚四氟乙烯很难找到合适的溶剂,从分子结构上如何解释?

12、习惯法累积重量分布函数I(M)=?;董履和重量分布函数I(M)=?

13、渗透压法测定的分子量为什么是数均分子量?其理论依据是什么?

13、高聚物溶液与理想溶液的行为有较大偏差,试说明理由

14、试述GPC测定分子量分布的实验装置及理论根据,并举出一种分子量的计算方法?

15、用Flory─Huggins的渗透压方程和范德华非理想气体方程,分别画出π- φ和P-V 示意曲线,并对照讨论与温度的关系,指出曲线的合理部分及不合理部分(φ溶剂的体积分数,V气体体积)

16、溶液的粘度随着温度的升高而下降,高分子溶液的特性粘数在不良溶剂中随温度的升高而升高,怎样理解?

17、由查表得溶度参数的数据如下:二氯甲烷δ1= 19.8,环已酮δ1 =20.2, PVCδ2=19.2,很明显二氯乙烷的δ1比环已酮的δ1更接近于PVC的δ2,但实际上前者对PVC的溶解性能并不好,而后者则是PVC的良溶液,为什么?

18、有一聚甲基丙烯酸早酯试样,今欲对其进行GPC测定,选择何类溶剂,并写出计算Mn,、Mw、[η]的步骤。

△-

Flory─Huggins用统计热力学方法推导出高分子溶液的混合熵Sm=

19、

K(N1lnφ1+N2lnφ2)与理想溶液混合熵Sm

△i=-K(N1lnφ1+N2lnφ2)的过程中,有何不够合理的情况?

20、Vanthoff方程RTc/M适用于无限稀的溶液中求取分子量,但对于实际有一定浓度的溶液上式则有一定偏差,问如何考虑校正这一偏差?

21、根据Flory─Huggins格子模型处理高分子溶液,得出溶液的化学位为:

△1=RT[ln(1-φ2)+(1-1/χ1)φ2+χ1φ22

μ

试从该式推导出第二维列系数A2=(1/2-χ1)/V1ρ2(V1溶剂的偏克分子体积)

22、什么是θ温度?对于一定的溶液体系,θ温度是如何由实验测定的?试讨论高分子的液在高于、等于、低于θ温度时,其热力学性质如何?高分子在溶液的尺寸形态又如何?

23、高分子溶液混合熵与哪些因素有关? 试比较它与理想溶液的混合熵的表达式有何差别?混合熵对高分子的溶解过程起着怎样的作用?在何种情况下熵值的变化可以忽略而高分子溶解过程只取决于热焓的变化?

24、有两种苯溶液,一种是苯乙烯──苯;另一种是聚苯乙烯一苯,若两种溶液含有相同百分数的溶质,试预计哪一种溶液具有较大的①蒸汽压②凝固点③渗透压④粘度

25、解释下列实验现象

(1)苯乙烯和甲基丙烯酸甲酯可以相互混溶,但聚苯乙烯和聚甲基丙烯酸甲酯却不能混溶。

(2)乙酸纤维能分别溶于冰醋酸或苯胺中 ,但却又不能溶于冰醋酸与苯胶的混合液中。

26、分极性和非极性两种情况解释增塑剂为什么能起到增塑作用,并举例说明高聚物和增塑剂后物理机械性能的变化。

25、分子尺寸分布的一种实用表达式为 n/N=(1/c)e-x/c此处c为常数。a、根

(w/W)的表达式据此分布函数求数均聚合度Xn;重均聚合度Xw;以及分散指数Xw/Xn;b、求出重量分布

28、用溶解度参数判断聚合物与聚合物、聚合物与溶剂的相溶性是否适用于任何情况,为什么?

29、指出溶液的溶解能力对下列问题的影响a、溶剂聚合中搅拌器的设计b、在特定温度下某一聚合物试样的特性粘度,c、渗透计测得的某一聚合物试样的分子量

30、高分子的溶质在溶剂中的溶解度除与溶质的溶剂的性质有关外,还与温度和溶质分子量有关,试解释。31,写出高分子与小分子混合熵的表达式, 讨论二者的异同点。

32、比较晶态高聚物与非晶态高聚物溶解过程的异同点?

33、写出多分散性聚合物几种统计分子量的表达式

34、用分子间作用关系讨论高分子溶液的 (a) 溶度参数 (b)θ溶液 (c) 第二维利系数及 (d) 粘度行为。

35、与一般高分子溶液相比较,高分子电解质溶液粘度更易受到何种因素影响?

36、在Flory温度下高分子溶液具有哪些特征?

37、有一聚合物样品Mn=Mη =1×106 ,求其Mz=?

38、为何高聚物数均分子量Mn对试样中低分子量级分敏感,而重均分子量Mw对试样中高分子量级分敏感?39,用聚乙酸乙烯酯醇解制取聚乙烯醇时,为何仅具有适当醇解度的聚乙烯醇,其水溶性最好 ?为何聚丙烯酸钠水溶液经高速搅拌或在其中加入氯化钠,溶液的粘度将下降,通过高聚物稀溶液的渗透压和光散射测定可以得到哪些有关高聚物结构的信息。

40、写出下列有关公式,并指出公式中有常数的意义。

(1)粘度法测定分子量中,特性粘数与分子量的关系式。

(2)凝胶渗透色谱法测定分子量中,分子量与淋洗体积的关系式。

(3)渗透压法测定分子量中,渗透压与分子量的关系式。

(4)聚合物熔体粘度与剪切速率关系的指数定律。

41、试述用渗透压法测定高聚物分子量的原理和具体的方法、步骤。

42、采用GPC技术能否将分子量相同的线形PE和支化PE分开? 为什么?

43、写出高分子和小分子混合熵的表达式,讨论二者的异同点

44、高聚物溶解过程与低分子溶解过程有何不同,晶态与非晶态聚合物的溶解又有什么区别?

45、渗透压法测定的分子量为什么是数均分子量,其理论依据是什么?

46、聚合物溶液与理想溶液的行为有较大偏差,试说明理由

47、溶液的粘度随着温度的升高而下降,高分子溶液的特性粘数在不良溶剂中随温度的升高而升高,怎样理解。

六、计算题

1、计算下列三种情况下溶液的混合熵,讨论所得结果的意义。

(1)99×1012个小分子A与108个小分子B相混合(假设为理想溶液);

(2)99×1012个小分子A与108个大分子B(设每个大分子“链段”数x=104)相混合(假设符合均匀场理论);

(3)99×1012个小分子A与1012个小分子B相混合(假设为理想溶液)。

2、一种聚合物的溶液由分子量M2=1×106的溶质(聚合度Xn=104)和分子量M1=1×102的溶剂组成,构成溶液的浓度为1%(质量分数),试计算:

(1) 此聚合物溶液的混合熵Sm

△i m

(2) 依照理想溶液计算的混合熵S

(3) 若把聚合物切成104个单体小分子,并假定此小分子与溶剂构成理想溶液的混合熵S

△i m (4) 由上述三种混合熵的计算结果可得出什么结论?为什么?

3、在20℃将1×10-5mol的聚甲基丙烯酸甲酯(Mn=1×105,ρ=1.20g/cm3)溶于氯仿(ρ=1.49g/cm3)中,试计算混合熵、混合焓、混合自由能。已知:χ1=0.377。

4、用平衡溶胀法测定硫化天然橡胶的交联度得到如下实验数据,橡胶试样重为Wp=2.034×10-3 kg;在恒温水浴中于苯中浸泡7—8d达到溶胀平衡后,Wp+Ws=10.023×10-3 kg,从手册查得298K苯的密度ρs=0.868×103kg/m3,摩尔体积Vs=39.3×10-6m3 /mol,天然橡胶密度ρp=0.9971×103kg/m3,,天然橡胶与苯的相互作用参数χ1=0.437,由以上数据求交联聚合物网链平均分子量(Mc)。

5、某种高分子溶剂体系Mark--Houwink参数k和α分别是3.0×10-3和0.70,假定一试样的浓度为2.5×10-3 g/ml,在粘度计中的流过时间为145.4s,溶剂的流过时间为100s,试估计该试样的分子量,并说明其含义。

6、有一个二聚的蛋白质,它是一个有20%解离成单体的平衡体系,当此体系的数均分子量为80000时,求它的单体分子量(M o)和平衡体系的重均分子量(M w)各为多少?

7、根据溶剂选择的几个原则,试判断下列聚合物——溶剂体系在常温下哪些可以溶解?哪些难溶或不溶?

(1)有机玻璃(18.8)~苯(18.8)

(2)涤纶树脂(21.8)~二氧六环(20.8)

(3)聚氯乙烯(19.4)~氯仿(19.2)

(4)聚四氟乙烯(12.6)~正癸烷(13.1)

(5)聚碳酸酯(19.4)~环已酮(20.2)

(6)聚乙酸乙烯酯(19.2)~丙酮(20.2)

8、如果将分子量为1000,000的2克聚苯乙烯与分子量为10,000的2克聚苯乙烯相混,其Mn和Mw各应为多少?

9、已知聚合物的特性粘度与分子量符合[η]=0.03M0.5式,并有M1=104和

M2=105两种单分散级分,现将这两种级分混合,欲分别获得M n=55000和M w=55000及Mη=55000的三种试样。试求每种试样中两个级分的重量分数各应取多少?

10、某聚苯乙烯样品在甲苯中测得特性粘数[η]为0.405dl/g,已知在甲苯中

聚苯乙稀的[η]与分子量M有如下关系 (浓度以g/ml表示),试求此样品的分子量,如果将分子量为100000的

2g聚苯乙烯与分子量为10000的2g聚苯乙烯相混,求Mn和Mw各应为多少?(已知[η]=1.28x10-2M0.7 )

11、某种高分子溶剂体系Mark─Houw参数K和α分别是3.0×10-2和0.70.假如一试样的浓度为2.5×10-3

g/ml,在

100.0s,试估计该试样的分子量,并说明其含义.

粘度计中的流过时间为145.4s,溶剂的流过时间为

12、假定GPC谱图符合正态分布,证明:(1)当以v为横坐标时,峰值分子量Mp=(Mn.Mw)1/2;(2)当以M为横

Mmax=Mpexp(-β2/2).

坐标时 ,峰值分子量

13、Hi是GPC谱图的纵坐标读数 ,在计算级分的重量分数时通常可以用Wi= Hi/∑Hi采用此式的充分必要条件是什么?并证明Mn=∑Hi/∑(Hi/Mi);Mw=∑HiMi/∑Hi。

34,假定于

Ⅱ的θ温度低于℃

14、已知聚苯乙烯─环己烷体系()

℃聚苯乙稀一甲苯体系()

Ⅰ的θ温度为34,

40在此两种溶剂中测定同一聚苯乙稀试样的渗透压与粘度,问两种体系的(π/C)C→0;A2;χ1和[η];h2;

?并问两种体系两种方法所得的试样的分子量之间有什么关系.

A;α的大小顺序如何

15、已知下列各基因吸引常数分别为

-CH2 271 〉CH 57 -COO 310

-CH3 436

求聚乙酸乙稀酯的溶度参数,并与文献值相比较。

16、用磷酸三苯酯(δ1=19.6)做PVC(δp =19.4)的增塑剂,为了加强它们的相容性,尚须加入一种稀释剂,(δ1’=16.3分子量为350)试问这种稀释剂加入最适量为多少?

17、由高分子的混合自由能(Gm

△1)并说明在什么条件下高分子溶液

△)导出其中溶剂的化学位变化(μ

中溶剂的化学位变化,等于理想溶液中溶液的化学位变化。

18、Huggins参数χ1的物理意义如何?在一定温溶度下χ1值与溶剂性质(良.不良.非)的关系如何?一定溶剂中χ1值与混合热及温度关系如何。

19、在308KPS-环已烷的θ溶剂中,溶液浓度为c=7.36×10- 3Kg.L-1测得其渗透压为24.3Pa,试根据

Huggins溶液理论求此溶液的A2,χ1和PS的δ2和Mn

Hory-

20、写出三个判别溶剂优劣的参数,并讨论它们分别取何值时,该溶剂分别为聚合物的良溶剂、不良溶剂、θ溶剂,高分子在上述三种溶液中的热力学特征以及形态又如何?

21、已知聚苯乙稀分子量M2,在环已烷中的热力学参数为φ1(熵参数)和θ(温度),试根据Hory-

Huggims 理论和热力学的相平衡条件,经过怎样的运算,(指出运算步骤和所根据的方程)可以得出PS-环已烷体系的相图.

22、聚合物浓溶液的粘度常用落球法测定,用下列公式计算: η=2r2(D-d)g/9(dh/dt)

式中g为重力加速度,D为钢球比重,d为粘液比重,r为钢球半径,h为钢球在七钞钟下落的高度,设钢球直

25s,

0.2cm比重为7.86,在一种比重为1.50的粘度性溶液中 ,通过计时刻度的距离是0.1m,所需时间为 径为

求此粘度在该条件下的绝对粘度.

23、今有下列四种聚合物试样

(1)分子量2×103的环氧树脂

(2)分子量2×104的聚丙稀腈

(3)分子量2×105的聚苯乙稀

(4)分子量2×106的天然橡胶

,试分别指出每种试样可采用的最适当的方法(至少两种)和所得平均分子量的统计意欲测其平均分子量

义.

24、今有A、B两种尼龙试样,用端基滴定法测其分子量,两种试样的重量均为0.3g,以0.0259mol.dm-3KOH 标准溶液滴定时,耗用碱的体积均为0.38ml。(1)若A试样结构为:H-[NH-(CH2)6-NH-CO-(CH2)4]-OH。则其数均分子量为多少? (2)若测知试样B的数均分子量为6.38×104,则B试样的分子结构特征如何? (3)推测两种尼龙试样的合成条件有何不同?

25、已知高分子的溶液渗透压

π=-RT/V。[ln(1-φ2)+(1-1/x) φ2+χ1φ22]

式中V。---溶剂摩尔体积

φ2---高分子的体积分数

χ1---哈金斯参数

x---大分子的链段数

当实验时浓度单位为c(g/ml)时请证明: π/c=RT[1/M+ A2 C+ A3 C2]

式中M为高聚物分子量,A2、A3分别为第二、三维列系数,说明:

(1)为什么A2>0时高聚物可溶 ?(2)M2 为何种分子量,为什么? (3)为什么求分子量时要外推到c=0 ?

26、用以THF为淋洗液的GPC仪测定PVC的分子量分布。若已知该仪器是以PS为标样的校正曲线,如何得到PVC的分子量分布?

27、在20℃将10-5mol的聚甲基丙烯酸甲酯(M n=105,ρ=1.20g/cm3)溶于179g氯仿(=1.49g/cm3)中,试计算溶液的混合熵、混合热和混合自由能。(已知χ1=0.377)

28、35℃时,环己烷为聚苯乙烯(无规立构)的θ溶剂。现将300mg聚苯乙烯(ρ=1.05 g/cm3,Mn=1.5×105)于35℃溶于150ml环己烷中,试计算:(1)第二维利系数A2;(2)溶液的渗透压。

29、粘度法测定PS试样的分子量,已知25ml苯溶液溶解PS为0.2035g,30℃恒温下测溶液的流出时间为148.5秒,而溶剂苯的流出时间为102.0秒,试计算该试样的粘均分子量。(30℃,k=0.99×10-2ml/g,α=0.74)30、在25℃的θ溶剂中,测得的浓度为7.36×10-3g/ml的聚氯乙稀溶液的渗透压为0.248g/(cm)2,求此试样的分子量及溶液的第二维利系数,得到的是何种平均分子量?

高分子课后习题答案

▲为08年6月考试题目 第一章概述 说出10种您在日常生活中遇到的高分子的名称。 答:涤纶、聚四氟乙烯、聚乙烯、聚丙烯、PET、蛋白质、核酸、涂料、塑料、合成纤维 写出下列高分子的重复单元的结构式:(1)PE;(2)PS;(3)PVC;(4)POM;(5)尼龙;(6)涤纶答:(1)PE——聚乙烯-CH2-CH2- (2)PS——聚苯乙烯 (3)PVC——聚氯乙烯 (4)POM——聚甲醛-O-CH2- (5)尼龙——聚酰胺-NH(CH2)5CO- (6)涤纶——聚对苯二甲酸乙二醇酯P7 名称结构单元单体单元 H2 C C CH3 H3COOC 聚甲基丙烯酸甲酯一样一样 H2 C H C H3COOC 聚丙烯酸甲酯一样一样 —NH(CH2)6NHCO(CH)4CO—尼龙-66 —NH(CH2)6NH— —CO(CH)4CO— 无 H2 C C H3C H C C H2 聚异戊二烯一样一样 ▲ (1)高分子;(2)链节;(3)聚合度;(4)多分散度;(5)网状结构;(6)共聚物 答:(1)高分子也叫聚合物分子或大分子,具有高的相对分子量,其结构必须就是由多个重复单元所组成,并且这些重复单元实际就是或概念上就是由相应的小分子衍生而来的。 (2)链节就是指结构重复单元,重复组成高分子分子结构的最小结构单元。 (3)聚合度就是单个聚合物分子所含单体单元的数目。 (4)多分散性:除了蛋白质、DNA等外,高分子化合物的相对分子质量都就是不均一的 (5)网状结构就是交联高分子的分子构造。 (6)共聚物:由一种以上单体聚合而成的聚合物。 14、平均相对分子质量为100万的超高相对分子质量PE的平均聚合度就是多少? P=100×10000/28=35700

高分子化学 第三章

第三章参考答案 2.下列烯类单体适于何种机理聚合自由基聚合,阳离子聚合或阴离子聚合 并说明理由。 解: ①.氯乙烯,适于自由基聚合。Cl -是吸电子基团,有共轭效应,但均较弱 ②.偏二氯乙烯,适于自由基聚合,但也可进行阴离子聚合。两个Cl -原子的共同作用使其可进行两种聚合。 ③.丙稀腈,适于自由基聚合和阴离子聚合。CN -基是强吸电子基团,并有共轭效应。

④. 2-腈基丙稀腈,适于阴离子聚合。两个CN -基的吸电子基团倾向 过强,只能阴离子聚合。 ⑤. 丙稀,由于烯丙基效应,使其易向单体转移,不能进行自由基聚 合。一般采取配位聚合的方式合成聚合物。 ⑥. 异丁烯,适于阳离子聚合。3CH -是供电子基团,且与双键有超共 轭效应,而且两个3CH -的共同作用,使其可以阳离子聚合。 ⑦. 苯乙烯,适于自由基聚合,阳离子和阴离子聚合。因为共轭体系π 电子容易极化并易流动。 ⑧. 四氟乙烯,适于自由基聚合。F -原子体积小,结构对称。 ⑨. 2-腈基丙烯酸酯,适于阴离子聚合和自由基聚合。CN -基和 COOR -两个吸电子基团使其易于阴离子聚合,同时又具有共轭效应, 可进行自由基聚合。 ⑩. 异戊二烯,适于自由基聚合,阳离子和阴离子聚合。因为共轭体 系π电子容易极化并易流动。 3. 判断下列烯类能否进行自由基聚合,并说明理由。 解: ①. CH 2=C(C 6H 5)2 偏二苯乙烯,不能。因为二苯基的空间位阻过大,只能 形成二聚体。

②. ClHC=CHCl 1,2-二氯乙烯,不能。因为单体结构对称,1,2-二取代又 具有较大的空间位阻。 ③. CH 2=C(CH 3)C 2H 5 2-甲基丁烯,不能。由于双键上的电荷密度过大, 不利于自由基的进攻,且易转移生成稳定的烯丙基自由基。 ④. CH 3CH=CHCH 3 2-丁烯,不能。因为单体结构对称,空间位阻较大, 且易生成烯丙基自由基。 ⑤. CH 2=CHOCOCH 3 丙烯酸甲酯,能。酯基有弱的吸电子效应及共轭效 应。 ⑥. CH 2=C(CH 3)COOCH 3 甲基丙烯酸甲酯,能。1,1-二取代空间位阻小, 且酯基有共轭效应。 ⑦. CH 3CH==CHCOOCH 3 2-丁烯酸甲酯,不能。由于 1,2-二取代具有较 大的空间位阻。 ⑧. CF 2=CFCl 三氟氯乙烯,能。由于氟的原子半径小,位阻效应可以忽略。 5. 是否所有的自由基都可以用来引发烯类单体聚合试举活性不等自由基3~4例,说明应用结果。() 不是。过于活波和过于稳定的自由基都不能引发烯类单体聚合。只有活性适中的自由基才能引发单体聚合。例如:??3 CH H 和过于活波,易引起爆聚,很少在自由基聚合中应用;??256 RCH H C 和自由基都可以用来引发烯类单体聚合;而()?C H C 356有三个苯环与P 独电子共轭,非常稳定,无引发能力,而成为阻聚剂。

高分子物理第三章习题及解答.docx

第三章 3.1 高分子的溶解 3.1.1 溶解与溶胀 例3-1 简述聚合物的溶解过程,并解释为什么大多聚合物的溶解速度很慢? 解:因为聚合物分子与溶剂分子的大小相差悬殊,两者的分子运动速度差别很大,溶剂分子能比较快地渗透进入高聚物,而高分子向溶剂地扩散却非常慢。这样,高聚物地溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”,然后才是高分子均匀分散在溶剂中,形成完全溶解地分子分散的均相体系。整个过程往往需要较长的时间。 高聚物的聚集态又有非晶态和晶态之分。非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因而溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难,因此晶态高聚物的溶解要困难得多。非极性的晶态高聚物(如PE)在室温很难溶解,往往要升温至其熔点附近,待晶态转变为非晶态后才可溶;而极性的晶态高聚物在室温就能溶解在极性溶剂中。 例3-2.用热力学原理解释溶解和溶胀。 解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合: 上式表明溶解的可能性取决于两个因素:焓的因素()和熵的因素()。焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。但一般来说,高聚物的溶解过程都是增加的,即>0。显然,要使<0,则要求越小越好,最好为负值或较小的正值。极性高聚物溶于极性溶剂,常因溶剂化作用而放热。因此,总小于零,即<0,溶解过程自发进行。根据晶格理论得 =(3-1) 式中称为Huggins参数,它反映高分子与溶剂混合时相互作用能的变化。的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为)。而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即),其的计算可用Hildebrand的溶度公式: =(3-2) 式中是体积分数,是溶度参数,下标1和2分别表示溶剂和溶质,是溶液的总体积。从式中可知总是正的,当 时,。一般要求与的差不超过1.7~2。综上所述,便知选择溶剂时要求越小或和 相差越小越好的道理。 注意: ①Hildebrand公式中仅适用于非晶态、非极性的聚合物,仅考虑结构单元之间的色散力,因此用相近原则选择溶剂时有例外。相近原则只是必要条件,充分条件还应有溶剂与溶质的极性和形成的氢键程度要大致相等,即当考虑结构单元间除有色散力外,还有偶极力和氢键作用时,则有

导电高分子

导电高分子 常州轻工职业技术学院常州1013263211 摘要:通过对导电高分子的学习,让我对导电高分子的类型、掺杂、导电机理、导电高分子材料的应用、发展有了近以步的了解。此文章是我对这些内容的概括。 关键词:类型、掺杂、导电机理、导电高分子材料的应用。 一、概括: 一类具有导电功能(包括半导电性、金属导电性和超导电性)、电导率在10S/m以上的聚合物材料。高分子导电材料具有密度小、易加工、耐腐蚀、可大面积成膜以及电导率可在十多个数量级的范围内进行调节等特点,不仅可作为多种金属材料和无机导电材料的代用品,而且已成为许多先进工业部门和尖端技术领域不可缺少的一类材料。高分子材料长期以来被作为优良的电绝缘体,直至1977年,日本白川英树等人才发现用五氟化砷或碘掺杂的聚乙炔薄膜具有金属导电的性质,电导率达到10S/m。这是第一个导电的高分子材料。以后,相继开发出了聚吡咯、聚苯硫醚、聚酞菁类化合物、聚苯胺、聚噻吩等能导电的高分子材料。 二、导电高分子的导电机理[1] 1.载流子是由孤立子、极化子、双极化子等自由基离子构成的 2.极化子和孤立子的存在和跃迁使高分子链具有了导电性 三、导电高分子的领军人物: 导电聚合物(聚乙炔)由日本科学家白川英树最先发现,美国科学家 Heeger 和MacDiarmid 也是这一研究领域的先驱。这三位科学家由于在导电聚合物研究中的突出贡献,共同获得了2000年的诺贝尔化学奖。

美国物理学家美国化学家日本化学家 Heeger MacDiarmid Shirakawa 四、导电高分子的主要类型 除了最早的聚乙炔(PA)外,主要有聚吡咯(PPY)、聚噻吩(PTH)、聚对苯乙烯(PPV)、聚苯胺(PANI)以及他们的衍生物,其中聚苯胺结构多样、掺杂机制独特、稳定性高技术应用前景广泛,在目前的研究中备受重视,其中聚乙炔的所能达到的电导率在已发现的导电聚合物中是最高的,达到了105S/cm量级,接近Pt和Fe的室温电导率 五、电高分子的掺杂 1.什么是导电高分子的掺杂呢? 纯净的导电聚合物本身并不导电,必须经过掺杂才具备导电性 掺杂是将部分电子从聚合物分子链中迁移出来从而使得电导率由绝缘体级别跃迁至导体级别的一种处理过程 导电聚合物的掺杂与无机半导体的掺杂完全不同 2.导电高分子的掺杂与无机半导体的掺杂的对比 3.目前掺杂的方式主要有两种: 3.1氧化还原掺杂:可通过化学或电化学手段来实现。化学掺杂会受到磁场的影响,遗 憾的是目前为止还没有发现外加磁场对聚合物的室温电导率有明显的影响 3.2质子酸掺杂:一般通过化学反应来完成,近年发现也可通过光诱导施放质子的方 法来完成 3.3还有掺杂—脱掺杂—再掺杂的反复处理方法,这种掺杂方法可以得到比一般方法更 高的电导率和聚合物稳定性 六、导电高分子材料的应用 导电聚合物特殊的结构以及优异的物理化学性能,使得其在能源(二次电池、太阳能电池、固体电池),光电器件,晶体管,镇流器,发光二极管(LED),传感器(气体和生物),电磁屏蔽,隐身技术以及生命科学等方面都有诱人的应用前景 高分子材料在很长一段时期都被用作电绝缘材料.随着不同应用领域的需要以及为进一步拓宽高分子材料的应用范围,一些高分子材料被赋予某种程度的导电性以致成为导电高分子材料.第一个高导电性的高分子材料是经碘掺杂处理的聚乙炔,其后又相继开发了聚吡咯、聚对苯撑、聚苯硫醚、聚苯胺等导电高分子材料

高分子物理第三章习题及解答

高分子的溶解 溶解与溶胀 例3-1 简述聚合物的溶解过程,并解释为什么大多聚合物的溶解速度很慢 解:因为聚合物分子与溶剂分子的大小相差悬殊,两者的分子运动速度差别很大,溶剂分子能比较快地渗透进入高聚物,而高分子向溶剂地扩散却非常慢。这样,高聚物地溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”,然后才是高分子均匀分散在溶剂中,形成完全溶解地分子分散的均相体系。整个过程往往需要较长的时间。 高聚物的聚集态又有非晶态和晶态之分。非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因而溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难,因此晶态高聚物的溶解要困难得多。非极性的晶态高聚物(如PE)在室温很难溶解,往往要升温至其熔点附近,待晶态转变为非晶态后才可溶;而极性的晶态高聚物在室温就能溶解在极性溶剂中。

例3-2.用热力学原理解释溶解和溶胀。 解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合: 上式表明溶解的可能性取决于两个因素:焓的因素()和熵的因素()。焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。但一般来说,高聚物的溶解过程都是增加的,即>0。显然,要使<0,则要求越小越好,最好为负值或较小的正值。极性高聚物溶于极性溶剂,常因溶剂化作用而放热。因此,总小于零,即<0,溶解过程自发进行。根据晶格理论得 =(3-1) 式中称为Huggins参数,它反映高分子与溶剂混合时相互作用能的变化。的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为)。而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即),其的计算可用Hildebrand的溶度公式:=(3-2) 式中是体积分数,是溶度参数,下标1和2分别表示溶剂和

高分子第三章习题.

第三章自由基聚合 2、60℃过氧化二碳酸二乙基己酯在某溶剂中分解,用碘量法测定不同时间的残留引发剂浓度,数据如下,计算分解速率速率常数和半衰期。 解:引发剂分解属于一级反应,故-d[I]/dt=kd[I] 积分得ln[I]/[I]0=-kdt,以ln[I]/[I]0对t作图,所得直线的斜率为-kd。 3、在甲苯中不同浓度下测定偶氮二异丁腈的分解速率常数,数据如下,求分解活化能。再求40℃和80℃下的半衰期,判断在这两温度下聚合是否有效。 解:引发剂分解速率常数与温度的关系遵守Arrhenius 经验式: kd=Ade-Ed/RT ln kd=lnAd-Ed/RT 在不同温度下,测定一引发剂的分解速率常数,作ln kd—1/T图,呈一直线。由截距可求得指前因子Ad,而根据斜率可求出分解活化能Ed。

ln kd=34.175-15191/T 斜率K=-Ed/R 则 Ed=-K×R = -(-15191)×8.314 =126298J lnAd=34.175 当T=313K时, kd=5.8×10-7s-1 t1/2=0.693/kd=1.2×106s =331h 当T=353K时 t1/2=1.35h 4、引发剂半衰期与温度的关系式中的常数A、B与指前因子、活化能有什么关系?文献经常报道半衰期为1h和10h的温度,这有什么方便之处?过氧化二碳酸二异丙酯半衰期为1h和10h的温度分别为61℃和45℃,试求A、B值和56℃的半衰期。

列方程组容易解此题 5.过氧化二乙基的一级分解速率常数为1.0×1014exp(-14 6.5kJ/RT),在什么温度范围使用才有效? 解:引发剂的半衰期在1-10h内使用时,引发剂较为有效 由于kd=ln2/t1/2,根据题意kd= 1.0×1014exp(-146.5kJ/RT), 6、苯乙烯溶液浓度为0.20mol·L-1,过氧类引发剂浓度为4.0×10-3 mol·L-1,在60℃下聚合,如引发剂半衰期为44h,引发剂效率f=0.80,kp=145L·mol-1·s-1,kt=7.0×107L·mol-1·s-1,欲达到50%转化率,需多长时间? 解:不考虑[I]变化时,引发剂的半衰期为t1/2=44h,则 用引发剂引发时,聚合速率方程为:积分得:(绿色的)

第三章 高分子溶液(2).

π 渗透压的产生是由于溶液的蒸汽压的降低 由于: 故:

溶剂可从良溶剂转变为劣溶剂,或从劣溶剂转变为良溶剂,从而导致高分子在溶剂中的溶解能力的变化。 G ?<聚合物与溶剂在任意比例下完全互溶?'?'' a ? b ?下变化时可能发生相分离,称为亚稳态。 ?'?'' a ? b ?当: 相分离的临界条件即为: 211C ?= +21C ?= 当 有: 1x 111 C χ=+熵的贡献

14 二、相分离的动力学 1、旋节线机理 体系的总组成位于两拐点之间,相分离按照旋节线机理进行。相分离自发缓慢进行,两相组成随时间逐渐变化,接近平衡组成。 分散相微区有一定的连接 最终形成双连续结构 相畴(即微区)尺寸的增长: 扩散 液体流动16 2、成核与生长机理 体系的总组成位于极小值和拐点之间,相分离按成核和生长机理进行。相分离必须克服热力学位垒,形成两分散相的核,然后不断生长。 分散相一般不会相互连接。 所需的界面能有关,即依赖于界面张力系数和核的表面积。 形态结构为:珠滴/基体型(海岛结构) 18 ★处于均相的共混物,当因温度的改变而进入旋节线和双节线之间的区域时,体系在热力学上处于亚稳态,不会进行相分离,但“相核”一旦形成,相分离便按成核和生长机理进行。★当体系随温度变化进入旋节线内的区域时,体系在热力学上是不稳定的,会自动产生相分离,相分离按照旋节线机理进行。

20含结晶性聚合物共混物的相分离过程(了解) Phase diagram of Polycaproloactone/Polystyrene (PCL/PS, 聚己内酯/聚苯乙烯) blends A :旋节相分离和结晶同时进行 B :双节线相分离和结晶同时进行 C :结晶诱导相分离 D :相分离诱导结晶 E :共混物淬冷到玻璃态,随后加 热过程中发生旋节相分离,同时诱导聚合物结晶。 凝胶和冻胶高分子溶液失去流动性

高分子化学 第三章教学教材

高分子化学第三章

第三章参考答案 2.下列烯类单体适于何种机理聚合?自由基聚合,阳离子聚合或阴离子聚 合?并说明理由。 解: ①.氯乙烯,适于自由基聚合。Cl -是吸电子基团,有共轭效应,但均较弱 ②.偏二氯乙烯,适于自由基聚合,但也可进行阴离子聚合。两个Cl -原子的共同作用使其可进行两种聚合。 ③.丙稀腈,适于自由基聚合和阴离子聚合。CN -基是强吸电子基团,并有共轭效应。

④. 2-腈基丙稀腈,适于阴离子聚合。两个CN -基的吸电子基团倾向过 强,只能阴离子聚合。 ⑤. 丙稀,由于烯丙基效应,使其易向单体转移,不能进行自由基聚 合。一般采取配位聚合的方式合成聚合物。 ⑥. 异丁烯,适于阳离子聚合。3CH -是供电子基团,且与双键有超共轭 效应,而且两个3CH -的共同作用,使其可以阳离子聚合。 ⑦. 苯乙烯,适于自由基聚合,阳离子和阴离子聚合。因为共轭体系π电 子容易极化并易流动。 ⑧. 四氟乙烯,适于自由基聚合。F -原子体积小,结构对称。 ⑨. 2-腈基丙烯酸酯,适于阴离子聚合和自由基聚合。CN -基和COOR -两个吸电子基团使其易于阴离子聚合,同时又具有共轭效应,可进行自由基聚合。 ⑩. 异戊二烯,适于自由基聚合,阳离子和阴离子聚合。因为共轭体系π 电子容易极化并易流动。 3. 判断下列烯类能否进行自由基聚合,并说明理由。 解: ①. CH 2=C(C 6H 5)2 偏二苯乙烯,不能。因为二苯基的空间位阻过大,只 能形成二聚体。

②. ClHC=CHCl 1,2-二氯乙烯,不能。因为单体结构对称,1,2-二取 代又具有较大的空间位阻。 ③. CH 2=C(CH 3)C 2H 5 2-甲基丁烯,不能。由于双键上的电荷密度过大, 不利于自由基的进攻,且易转移生成稳定的烯丙基自由基。 ④. CH 3CH=CHCH 3 2-丁烯,不能。因为单体结构对称,空间位阻较 大,且易生成烯丙基自由基。 ⑤. CH 2=CHOCOCH 3 丙烯酸甲酯,能。酯基有弱的吸电子效应及共轭效 应。 ⑥. CH 2=C(CH 3)COOCH 3 甲基丙烯酸甲酯,能。1,1-二取代空间位阻 小,且酯基有共轭效应。 ⑦. CH 3CH==CHCOOCH 3 2-丁烯酸甲酯,不能。由于 1,2-二取代具有 较大的空间位阻。 ⑧. CF 2=CFCl 三氟氯乙烯,能。由于氟的原子半径小,位阻效应可以忽 略。 5. 是否所有的自由基都可以用来引发烯类单体聚合?试举活性不等自由基 3~4例,说明应用结果。(P.67) 不是。过于活波和过于稳定的自由基都不能引发烯类单体聚合。 只有活性适中的自由基才能引发单体聚合。例如:??3 CH H 和过于活波,易引起爆聚,很少在自由基聚合中应用;??256 RCH H C 和自由基都可

第三章 高分子溶液课后习题

第3章高分子溶液 一、思考题 1.与高分子稀溶液相比,高聚物的浓溶液有何特性? 2.为高聚物选择溶剂时可采用哪几个原则?对某一具体高分子—溶剂体系,这几个原则都适用吗? 3.非晶态高聚物溶解与结晶高聚物溶解有何特点?为何说结晶高聚物比非晶高聚物的抗溶剂性好?结晶高聚物分别为极性和非极性时溶解机理有何不同? 4.什么叫高分子的θ溶液,它与理想溶液有何区别? 5.什么是溶剂化?结晶度、交联度和对聚合物的溶解度有怎样的影响? 6.高分子溶液晶格模型与小分子溶液晶格模型有何不同?写出Flory-Huggins 理论中M S ?、M H ?、M G ?的表达式,该理论的假设有哪些不合理之处?Huggins 参数的物理意义是什么? 7.何谓高聚物的溶胀比?如何测定它的数值?它与交联高聚物的网链平均分子量有何关系? 8.增塑剂对高聚物的增塑机理有哪两种较极端的情况?实际高聚物中的增塑机理如何? 9.什么是凝胶和冻胶?它们的结构区别是什么?何者能被加热溶解? 二、选择题 1.下列哪个溶剂是θ溶剂? ( ) ①1χ=0.1 ② 1χ=0.5 ③ 1χ=0.9 2.以下哪种溶剂是良溶剂? ( ) ①1χ=1 ② 2A =1 ③α=1 3.对于给定相对分子质量的某一聚合物,在何时溶液黏度最大? ( ) ①线型分子链溶于良溶剂中 ②支化分子链溶于良溶剂中 ③线型分子链溶于不良溶剂中 4.高分子良溶液的超额化学位变化 ( ) ①小于零 ②等于零 ③ 大于零 13.PVC 的沉淀剂是 ( ) ①环已酮 ② 氯仿 ③四氢呋喃 5.在高分子—良溶剂的稀溶液中,第二维利系数是 ( ) ①负数 ②正数 ③零 6.对于Flory-Huggins 的高分子溶液似晶格模型,符合其假定的是 ( ) ①V ?=0 ② H ?=0 ③ S ?=0 7.将高聚物在一定条件下(θ溶剂、θ温度)配成θ溶液,此时 ( ) ①大分子之间作用力=小分子之间作用力=大分子与小分子之间作用力 ②大分子之间作用力>大分子与小分子之间作用力 ③大分子之间作用力<大分子与小分子之间作用力 8.对非极性高聚物,选择溶剂应采用哪一原则较为合适? ( ) ①极性相似原则 ②溶剂化原则 ③溶度参数相近原则

第三章高分子溶液

第三章高分子溶液 第四章聚合物的分子量和分子量分布 一、 基本概念 1、溶胀;无限溶胀;有限溶胀 2、数量分数;重量分数 3、数均分子量;粘均分子量;重均分子量;Z均分子量 4、多分散性指数;分子量分布宽度指数;分子量分布 5、哈金斯参数;第二维列系数;溶度参数 6、混合熵;混合热;混合自由能 7、凝胶;冻胶 8、级分;校正曲线;普适校正曲线 9、θ溶剂;θ温度;θ溶液 10、特性粘数;溶胀度 11、粘度;爱因斯坦粘度定律 12、物理交联和化学交联 13、散射;瑞利散射;瑞利因子 14、过量化学位 15、临界共溶温度;上临界共溶温度;下临界共溶温度 16、体积排斥理论 17、柱效;分辩率 18、Zimm作图法 19、数量微分分布,重量微分分布,积分分布 20、内干涉,外干涉 21,凝胶渗透色谱法 二、选择题 1、下列四种聚合物在各自的良溶剂中,常温下不能溶解的为()。 A、聚乙烯, B、聚甲基丙烯酸甲酯, C、无规立构聚丙烯, D、聚氯乙烯 2、高分子溶液与小分子理想溶液比较,说法正确的是()。 A、高分子溶液在浓度很小时,是理想溶液。 B、高分子溶液在θ温度时,△μ1E=0,说明高分子溶液是一种真的理想溶液。 C、高分子溶液在θ条件时,△H M 和△S M 都不是理想值,不是理想溶液。 D、高分子溶液在θ条件时,高分子链段间与高分子链段和溶剂分子间相互作用不等。 3、聚合物溶度参数一般与其()无关。 A、分子量 B、极性大小 C、分子间力 D、内聚能密度 4、Huggins参数χ1在θ温度下的数值等于() A、0.0, B、0.5 , C、1.0, D、2.0 5、溶剂对聚合物溶解能力的判定原则,说法错误的是()。 A、“极性相近”原则 B、“高分子溶剂相互作用参数χ1大于0.5”原则 C、“内聚能密度或溶度参数相近”原则 D、“第二维修系数A2大于0”原则 6、下列哪种高聚物是单分散的为() A、HDPE B、PVC C、DNA 7、渗透压法测得的平均分子量,其物理意义为() A、数均分子量 B、粘均分子量 C、重均分子量

关于高分子物理习题答案

高分子物理习题答案 第一章高分子链的结构 3.高分子科学发展中有二位科学家在高分子物理领域作出了重大贡献并获得诺贝尔奖,他们是谁?请列举他们的主要贡献。 答:(1)H. Staudinger(德国):“论聚合”首次提出高分子长链结构模型,论证高分子由小分子以共价键结合。1953年获诺贝尔化学奖。 贡献:(1)大分子概念:线性链结构 (2)初探[?]=KM?关系 (3)高分子多分散性 (4)创刊《die 》1943年 (2)P. J. Flory(美国),1974年获诺贝尔化学奖 贡献:(1)缩聚和加聚反应机理 (2)高分子溶液理论 (3)热力学和流体力学结合 (4)非晶态结构模型 6.何谓高聚物的近程(一级)结构、远程(二级)结构和聚集态结构?试分别举例说明用什么方法表征这些结构和性能,并预计可得到哪些结构参数和性能指标。 答:高聚物的一级结构即高聚物的近程结构,属于化学结构,它主要包括链节、键接方式、构型、支化和交联结构等,其表征方法主要有:NMR, GC, MS, IR, EA, HPLC, UV等。而高聚物的二级结构即高聚物的远程结构,主要包括高分子链的分子量、分子尺寸、分子形态、链的柔顺性及分子链在各种环境中所采取的构象,其表征方法主要有:静态、动态光散射、粘度法、膜渗透压、尺寸排除色谱、中子散射、端基分析、沸点升高、冰点降低法等。高聚物的聚集态结构主要指高分子链间相互作用使其堆积在一起形成晶态、非晶态、取向态等结构。其表征方法主要有:x-射线衍射、膨胀计法、光学解偏振法、偏光显微镜法、光学双折射法、声波传播法、扫描电镜、透射电镜、原子力显微镜、核磁共振,热分析、力学分析等。 8.什么叫做高分子的构型?试讨论线型聚异戊二烯可能有哪些不同的构型。 答:由化学键所固定的原子或基团在空间的几何排布。 1,2:头-头,全同、间同、无规;头-尾,全同、间同、无规 3,4:头-头,全同、间同、无规;头-尾,全同、间同、无规 1,4:头-头,顺、反;头-尾,顺、反 9.什么叫做高分子构象?假若聚丙烯的等规度不高,能不能用改变构象的办法提高其等规度?说明理由。答:由于单键内旋转而产生的分子在空间的不同形态(内旋转异构体)称为构象。不能用改变构象的办法提高其更规度。等规度是指高聚物中含有全同和间同异构体的总的百分数,涉及的是构型问题,要改变等规度,即要改变构型。而构型是由化学键所固定的原子或基团在空间的几何排布,改变构型必须通过化学键的断裂和重组。 11.假定聚丙烯主链上的键长为纳米,键角为°,根据下表所列数据,求其等效自由结合链的链段长度l e及极限特征比C?。 聚合物溶剂温度(℃)A×104(nm)? 聚丙烯(无规)环已烷、甲苯30 835 答:

第三章高分子溶液

第三章习题 一、概念 1.溶度参数: 2. Huggins参数: 3.第二维利系数: 4. θ溶液: 二、选择答案 1、下列四种聚合物在各自的良溶剂中,常温下不能溶解的为( A )。 A、聚乙烯, B、聚甲基丙烯酸甲酯, C、无规立构聚丙烯, D、聚氯乙烯 2、高分子溶液与小分子理想溶液比较,说法正确的是(C )。 A、高分子溶液在浓度很小时,是理想溶液。 B、高分子溶液在θ温度时,△μ1E=0,说明高分子溶液是一种真的理想溶液。 C、高分子溶液在θ条件时,△H M 和△S M 都不是理想值,不是理想溶液。 D、高分子溶液在θ条件时,高分子链段间与高分子链段和溶剂分子间相互作用不等。 3、聚合物溶度参数一般与其(A )无关。 A、分子量 B、极性大小 C、分子间力 D、内聚能密度 4、Huggins参数χ1在θ温度下的数值等于(B ) A、0.0, B、0.5, C、1.0, D、2.0 5、溶剂对聚合物溶解能力的判定原则,说法错误的是(B )。 A、“极性相近”原则 B、“高分子溶剂相互作用参数χ1大于0.5”原则 C、“内聚能密度或溶度参数相近”原则 D、“第二维修系数A2大于0”原则 6、下列四种溶剂(室温下Huggings相互作用参数)中,室温能溶解聚氯乙烯的为( A )。 A、四氢呋喃(χ1=0.14) B、二氧六环(0.52) C、丙酮(0.63), D、丁酮(1.74) 7、下列四种溶剂中,对PVC树脂溶解性最好的是( A )。 A 环己酮, B 苯, C 氯仿, D 二氯乙烷 8、同一种聚合物在( A )中,其分子链的均方末端距最大。 A、良溶剂, B、浓溶液, C、熔体, D、θ溶液 三、填空题 1、Huggins参数和第二维利系数都表征了高分子“链段”与溶剂分子间之间的相互作用。 2、判定溶剂对聚合物溶解力的原则有(1)极性相近原则、(2) 溶度参数相近原则 和(3) 。 3、在高分子的θ溶液中,Huggins参数χ1=1/2 ,第二维列系数A2=0 ,此时高分子链段间的相互作用力等于高分子链段与溶剂分子间的作用力。 四、回答下列问题 1、为何称高分子链在其θ溶液中处于无扰状态?θ溶液与理想溶液有何本质区别?

北京化工大学高分子基础理论习题附标准答案

第一章 1写出下列聚合物的英文缩写及结构式,并按主链结构进行分类 聚乙烯聚丙烯聚氯乙烯聚苯乙烯 聚甲基丙烯酸甲酯尼龙66聚对苯二甲酸乙二醇酯聚碳酸酯聚异戊二烯聚丁二烯 1简述自由基聚合的基元反应及自由基聚合的特征。 自由基聚合的基元反应:链引发、链增长和链终止。 自由基聚合的特征:慢引发、快增长、速终止。在自由基聚合的三步基元反应中,链引发是控制整个聚合速率的关键,链增长和链终止是一对竞争反应,受反应速率常数和反应物浓度的影响。矚慫润厲钐瘗睞枥庑赖。 2简述聚合度增大的高分子化学反应主要有哪些?并分别举例说明其在工业上的应用。 聚合度增大的高分子化学反应主要有:交联反应、接枝反应、扩链反应

交联反应是指:聚合物分子链间通过化学键连接成一个整体网络结构的过程,如:用硫或硫化物使橡胶交联硫化;用过氧化物使聚乙烯交联提高聚乙烯管材的耐压等级及耐热性。聞創沟燴鐺險爱氇谴净。 接枝反应是指:在高分子主链上接上结构、组成不同支链的化学反应,如将马来酸酐接枝聚丙烯用作PA/PP共混物的相容剂。残骛楼諍锩瀨濟溆塹籟。 扩链反应是指:通过链末端功能基反应形成聚合度增大了的线形高分子链的过 程。如将回收PET树脂经扩链反应制备高粘度PET。酽锕极額閉镇桧猪訣锥。 第三章 1根据链结构,将下列聚合物按柔顺性大小排序并说明原因: (1)PE, PP, PS,聚二甲基硅氧烷 柔顺性从大到小顺序为:聚二甲基硅氧烷>聚乙烯〉聚丙烯>聚苯乙烯原因:聚乙烯、聚丙烯、聚苯乙烯均为碳链聚合物,而聚二甲基硅氧烷为杂链高分子,Si-0键键长、键角比C-C大,且0原子上没有取代基,因此单键内旋转受到的阻碍少,分子链柔顺性最高,另外聚乙烯、聚丙烯、聚苯乙烯三种碳链聚合物相比,取代基(或侧基)体积依次增大,对C-C单键内选择阻碍增加, 大分子链柔顺性依次降低。彈贸摄尔霁毙攬砖卤庑。 (2)PP,PVC,PAN 柔顺性从大到小依次为:PP> PVC > PAN 原因:以上三种聚合物均为碳链聚合物,取代基的极性-CH3,-Cl,-CN依次增强,取代基极性增大,大分子链之间相互作用力增强,对主链C-C单键内旋转阻碍增大,因此,大分子链柔顺性依次降低謀养抟箧飆鐸怼类蒋薔。 (3)PE,POM,PS 柔顺性从大到小依次为:POM > PE> PS 原因:POM (-O-CH2-)为杂链聚合物,0原子上没有其他取代基,且0-C单键的键长、键角均大于C-C键,所以POM大分子链柔顺性最好,PE和PS相比,PS含有苯环取代基,体积大,造成与之相连的PS大分子主链上的C-C内旋转受到阻碍较大,因此PS大分子链的柔顺性最差。厦礴恳蹒骈時盡继價骚。 2从结构观点分析,比较下列高聚物中结晶能力的强弱并进行排序,并说明理由HDPE,等规PP,无规PP,等规PS

有机导电高分子材料的导电机制

有机导电高分子材料的导电机制 摘要: 探讨了结构型导电高分子的导电机制,分别从电子型导电和离子型导电的基本概念及载流子的运动等方面对两种不同的导电方式进行了详细地分析。并展望其发展前景。 关键词: 导电高分子; 电子电导; 离子电导; 导电机制 “导电高分子”已不再是一个陌生的名词, 各国科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究, 已使其成为一门相对独立的学科[1~4]。 高分子材料由于具有良好的机械性能,作为结构材料得到了广泛的应用。目前有机高分子材料基本上已覆盖了绝缘体、半导体、金属和超导体的范围。有机化合物中电子种类主有R电子和P电子。R电子是成键电子,键能较高,离域性很小,被称为定域电子; P电子是两个成键原子中p电子相互重叠后产生的。当P电子孤立存在时具有有限离域性,电子可以在两个原子核周围运行。在电场作用下P电子可以在局部做定向移动,随着P电子共轭体系的增大,离域性显著增加[5]。导电原理: 电子导电聚合物的特征是分子内含有大的共轭P电子体系。随着P电子共轭体系的增大,离域性增强,当共轭结构达到足够大时,化合物才可提供电子或空穴等载流子,然后在电场的作用下,载流子可以沿聚合物链作定向运动,从而使高分子材料导电。所以说有机高分子材料成为导体的必要条件是: 应有能使其内部某些电子或空穴具有跨键离域移动能力的大P键共轭结构。 一、P电子与能带理论 但事实上,根据电导率的大小,仅具有大P键共轭结构的聚合物还不能称为导电体,只能算作半导体材料,原因在于聚合物分子中各P键分子轨道之间还存在着一定的能级差。在电场力作用下,电子在聚合物内部的迁移必须跨越这个能级差才能导电,能级差的存在使得P电子不能在聚合物中完全自由地跨键移动,因而其导电能力受到影响,导电率不高。 有机化学和半导体科学分别利用分子轨道理论和半导体能带理论来解释能级差。在聚合物链状结构中,每一个结构单元(-CH-)中的C原子外层有4个价电子,其中有3个电子构成3个sp3杂化轨道,分别与H或相邻的C原子形成R键,剩下一个p电子。即每-CH-结构单元p电子轨道中只有一个电子,互相重叠形成一个成键轨道P和一个空轨道P3,由于它们的能级不同,使原有p电子能带分裂为一个全充满带和一个空带。两个能带之间存在较大的能隙,p电子只有越过这个能级差才能进行导电,能级差的大小决定了共轭型聚合物的导电能力高低,正是这个能级差的存在决定了聚合物不是一个良导体而是半导体。现代结构分析证明相邻的两个键的键长和键能是存在差别的,即有能带分裂。相邻的CH基团彼此相向移动,形成了长、短键交替排列的结构,称为Peierls畸变。 在半导体理论中,主要考虑电子与晶格之间的相互作用,绝缘体中电子能量表现为连续的分布,形成价带(填充轨道) 和导带(空轨道),价带和导带之间存在能隙Eg。Eg表示激发一个电子从价带到导带的P→P3跃迁必需的能量。所以基态中的电子只有取得≥Eg的能量才能跃迁到导带,成为可迁移的自由电子,从而发生电导。而金属中价带仅被电子填充一半,Fermi能量位于其顶部,在高于绝对零度的温度下,Fermi能级的电子非常容易进入空轨道,从而进行导电。(Fermi能是金属基态中的最高被填充轨道的能量。) 二、掺杂与导电 通过上述分析我们知道,提高电子导电聚合物的主要途径就是减少能级差,而实现手段就是对聚合物实行掺杂来改变能带中电子的占有情况,压制Peierls过程,减小能级差。“掺杂”就是在共轭结构高分子上发生电荷转移或氧化还原反应,目的是为了在聚合物的空轨道中加入电子,或从占有轨道中拉出电子,进而改变现有P电子能带的能级,出现能量居中的半充满能带,减小能带间的能量差,使电子或空穴迁移时的阻碍减小。掺杂主要有两种方式: p-型掺杂和n-型掺杂。p-型掺杂使载流子多数为空穴,掺杂剂主要有:碘、溴、三氯化铁、五

药用高分子材料习题(答案)

《绪论》 一、名词解释 药用辅料:广义上指的是能将药理活性物质制备成药物制剂的各种添加剂 药用高分子辅料:具有高分子特征的药用辅料 二.填空题 1 .药用辅料广义上指的是能将药理活性物质制备成药物制剂的各种添加剂,其中具有高分子特征的辅料,一般被称为药用高分子辅料。 2 .辅料有可能改变药物从制剂中释放的速度或稳定性,从而影响其生物利用度。 3 .高分子材料学的目的是使学生了解高分子材料学的①最基本理论和药剂学中常用的高分子材料的②结构,③物理化学性质,④性能及用途,⑤并能初步应用这些基本知识来理解和研究高分子材料在一般药物制剂、控释制剂及缓释制剂中的应用。 4.药用高分子辅料在药用辅料中占有很大的比重,现代的制剂工业,从包装到复杂的药物传递系统的制备,都离不开高分子材料,其品种规格的多样化和应用的广泛性表明它的重要性。 三.选择题 1 .下面哪项不是有关药用高分子材料的法规(D) A .《中华人民共和国药品管理法》 B .《关于新药审批管理的若干补充规定》 C .《药品包装用材料容器管理办法(暂行)》 D .《药品生产质量管理办法》 2 .依据用途分,下列哪项不属于药用高分子材料(C) A .在传统剂型中应用的高分子材料 B .控释、缓释制剂和靶向制剂中应用的高分子材料 C .前体制剂中应用的高分子材料 D 包装用的材料 四.简答题 1 .药用高分子材料学研究的任务是什么? 答:( 1 )高分子材料的一般知识,如命名、分类、化学结构;高分子的合成反应及化学反应(缩聚、加聚、共聚、聚合物的改性与老化);高分子材料的化学特性和物理、力学性能。 2 .药用辅料是在药物制剂中经过合理的安全评价的不包括生理有效成分或前体的组分,它的作用有哪些? 答:( 1 )在药物制剂制备过程中有利于成品的加工 ( 2 )加强药物制剂稳定性,提高生物利用度或病人的顺应性。 ( 3 )有助于从外观鉴别药物制剂。 ( 4 )增强药物制剂在贮藏或应用时的安全和有效。 3 高分子材料作为药物载体的先决条件是什么? 答(1 )适宜的载药能力; ( 2 )载药后有适宜的释药能力; ( 3 )无毒、无抗原性,并具有良好的生物相容性。 ( 4 )为适应制剂加工成型的要求,还需具备适宜的分子量和物理化学性质。

导电高分子材料

导电高分子材料的应用与发展 材料化学3班 【摘要】:主要论述了导电高分子材料的种类、发展概况及其应用,对新近开发的复合型导电高分子材料产品进行了介绍,介绍了导电高分子材料的分类、导电机制、在各领域中的应用及研究进展并对导电高分子材料的发展进行了展望。 【关键词】:导电高分子材料;复合型导电高分子;结构型导电高分子材料;制备;应用传统的高分子材料为绝缘材料,在使用时存在静电积累、电磁波干扰等危害,如用其制造的传送带,在传送煤炭的过程中易发生火灾和爆炸;油船因静电引起火灾;塑料薄膜在生产过程中常因静电发生事故。随着大规模集成电路的迅速发展,静电及电磁波公害更加突出。随着电子线路集成化水平的提高,电磁波的影响将会引起误动等危害。这些问题的出现已严重阻碍了高分子材料的发展,因此,必须研制开发导电高分子材料来解决上述问题。 1.导电高分子材料的种类 按照材料的结构与组成,可将导电高分子材料分为两大类。一类是复合型导电高分子材料,另一类是结构型(或本征型)导电高分子材料。 1.1复合型导电高分子材料 复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的材料。几乎所有的聚合物都可制成复合型导电高分子材料。其一般的制备方法是填充高效导电粒子或导电纤维,如填充各类金属粉末、金属化玻璃纤维、碳纤维、铝纤维、不锈钢纤维及锰、镍、铬、镁等金属纤维,填充纤维的最佳直径为7um。 复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势,用量最大最为普及的是炭黑填充型和金属填充型。 1.2结构型导电高分子材料 结构型(又称作本征型)导电高分子是指那些高分子材料本身或经过掺杂后具有导电功能的聚合物。这种高分子材料本身具有“固有”的导电性,由其结构提供导电载流子,一旦经掺杂后,电导率可大幅度提高,甚至可达到金属的导电水平。 从导电时载流子的种类来看,结构型导电高分子材料又被分为离子型和电子型两类。离子型导电高分子通常又称为高分子固体电解质,它们导电时的载流子主要是离子。电子型导电高分子指的是以共轭高分子为主体的导电高分子材料。导电时的载流子是电子(或空穴),这类材料是目前世界导电高分子中研究开发的重点[1]。 2.导电高分子材料的导电方式以及特性 2.1复合型导电高分子材料 复合型导电高分子材料是指经物理改性后具有导电性的材料一般是指将导电性填料经

第三章 高分子的溶液性质.

第三章高分子的溶液性质 高聚物以分子状态分散在溶剂中所形成的均相混合物称为高分子溶液,它是人们在生产实践和科学研究中经常碰到的对象。高分子溶液的性质随浓度的不同有很大的变化。就以溶液的粘性和稳定性而言,浓度在1%以下的稀溶液,粘度很小而且很稳定,在没有化学变化的条件下其性质不随时间而变。纺丝所用的溶液一般在15%以上,属于浓溶液范畴,其粘度较大,稳定性也较差,油漆或胶浆的浓度高达60%,粘度更大。当溶液浓度变大时高分子链相互接近甚至相互贯穿而使链与链之间产生物理交联点,使体系产生冻胶或凝胶,呈半固体状态而不能流动。如果在高聚物中加入增塑剂,则是一种更浓的溶液,呈固体状,而且有—定的机械强度。此外能相容的高聚物共混体系也可看作是一种高分子溶液。 高分子的溶液性质包括很多内容: 热力学性质:溶解过程中体系的焓、熵、体积的变化,高分子溶液的渗透压,高分子在溶液中的分子形态与尺寸,高分子与溶剂的相互作用,高分子溶液的相分离等; 流体力学性质:高分子溶液的粘度、高分子在溶液中的扩散和沉降等;光学和电学性质:高分子溶液的光散射,折光指数,透明性,偶极矩,

介电常数等。 本章将着重讨论高分子溶液的热力学性质和流体力学性质。 第一节高聚物的溶解 3.1.1高聚物溶解过程的特点 ※高聚物的溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”;然后才是高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。对于交联的高聚,只能停留在溶胀阶段,不会溶解。 ※溶解度与高聚物的分子量有关,分子量大的溶解度小,对交联高聚物来说,交联度大的溶胀度小,交联度小的溶胀度大。 ※晶态高聚物的溶解比非晶态高聚物要困难得多:非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因此溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难。 3.1.2 高聚物溶解过程的热力学解释 溶解过程是溶质分子和溶剂分子互相混合的过程,在恒温恒压下,这种过程能自发进行的必要条件是Gibbs自由能的变化△F<0。

《高分子化学教程》习题答案(第三版)王槐三-科学出版社(DOC)

《高分子化学教程》习题答案(王槐三第三版) 第1章 1、解释下列概念 (1) 高分子化合物:由众多原子或原子团主要以共价键结合而成的相对分子质量在1万以上的化合物。 (2) 重复结构单元:将大分子链上化学组成和结构可重复的最小单位称为重复结构单元(在高分子物理里也称为链节)。 (3) 结构单元:由1个单体分子通过聚合反应而进入聚合物重复单元的那一部分叫结构单元。 (4) 平均相对分子质量:高分子化合物中同系物相对分子质量的统计平均值。 (5) 平均聚合度:所有大分子链上所含重复结构单元数量的统计平均值。 (6) 多分散性和分散指数: 多分散性是指聚合物材料中所含大分子同系物的相对分子质量不相等的这一特性。 分散指数是指重均相对分子质量与数均相对分子质量的比值。 2、写出合成下列聚合物的聚合反应方程式并标出结构单元 (1) 涤纶 n HOOC COOH n HO(CH 2)2OH (2n -1)H 2O HO[OC COO(CH 2)2O]n H += +结构 结构单元 单元

(2) 尼龙-610 n HOOC COOH n H 2N(CH 2)6NH 2(2n -1)H 2O HO [ OC(CH 2)8COHN(CH 2)6NH ]+= +(CH 2)8n H 结构单元 结构单元 (3) 有机玻璃 n CH 2CH 3 COOCH 3 C CH 2 CH 3C 3 =[]n CH 2 CH 3C 3结构单元: (4) 聚乙烯醇 n CH 2 = CHOCOCH 3 CH 2 CH []OCOCH 3 n 水解 聚合 []CH 2 CH OH n (5) 环氧树脂 (见P8) (6) 聚碳酸酯 HO CH 3 CH 3 C Cl C O Cl H O C 3 CH 3 O C Cl + (2n - 1)HCl = +n n []OH n O (7) 聚己二氨基甲酸丁二酯 n OCN(CH 2)6NCO + n HO(CH 2)2OH = []OCNH(CH 2)6NHCOO(CH 2)4O n (8) 维尼纶 []CH 2 CH OH n + CH 2O CH 2CH CH 2CH CH 2CH O CH 2 O OH (9) 丁腈橡胶

相关文档
最新文档