第5讲节点电压法

第5讲节点电压法
第5讲节点电压法

第5讲节点电压法

第二章第5节

教学目的和目标

(1)掌握节点电压法和计算电路的方法

(2)明确节点电压法的前提条件、未知量、方程基本结构、方程的列写规则、

典型应用及特殊情况。

教学重点与难点

教学重点:应用节点电压法分析计算电路。

教学难点: 列写节点电压方程。

教学方法和手段

1、以讲授法,启发式指导和师生互动法为主。

2、科学合理地使用电子教室多媒体手段进行教学。

教学课时:2课时

教学过程及详细内容

前面我们学

1)节点:电路中三条或三条以上支路的交点称为节点。

2)基尔霍夫第一定律(节点电流定律)KCL ∑I=0.

它描述了连接在同一节点上,各支路电流之间的约束关系,反映了电流的连续性,可缩写为KVL。即在任一瞬间,流入某一节点的电流之和等于流出该节点

........................

的电流之和

.....。数学关系式为:∑I入=∑I出或∑I = 0

节点电压法是用来分析电路的另一种重要方法,它是以电路的节点电压为变量列写方程. 节点电压法不仅适用于平面电路,同时也适用于非平面电路.

一、内容1

2.5 节点电压法

2.5.1 节点电压方程的一般形式

一、节点电压

在电路中任意选择某一节点为参考节点,则其它节点为独立节点。各独立节点与参考节点之间的电压称为节点电压,其参考方向是由独立节点指向参考节点。显然,对于具有n个节点的电路,就有(n-1)个节点电压。由于任一支路都连接在两个节点上,所以支路电压等于

节点电压或相关两个节点电压之差。

例如图2.5.1所示电路,电路的节点数为3,支路数为6。以0为参考节点,则1、2为独立节点。节点电压分别用u Nl 、u N2 表示, 支路电压分别为:

u 1= u 4=u N1

u 2= u 5 = u N2 u 3= u 6= u N1- u N2。

因此,在求出各节点电压后就可 以求得各支路电压,进而

根据元 件的VAR 可求得各支路电流。任 一回路中各支路电压若用节点电 压表示,其代数和恒等于零,因此 节点电压对所有回路均自动满足KVL ,

所以,用节点电压作为电路变量时,只需按KCL 列出电流方程。

二、节点电压法

以节点电压为求解变量,根据KCL 和元件VAR 对独立节点列KCL 方程。

在图2-5-1所示电路中,根据KCL 列写节点1、2的电流方程, 得 i 1+i 3-i s1+i s3=0

i 2-i 3 -i s2-i s3=0

据元件VAR ,有

G 1u N1+G 3(u N1-u N2) -i s1+i s3 =0

G 2u N2-G 3(u N1-u N 2)-i s2-i s3=0

上述方程组简称为节点方程。为了便于求解方程,将求解变量按顺序排列

图2.5.1

并加以整理得

(G1+G3)u N1-G3u N2=i s1-i s3

-G 3u N1 + (G2+G3)u N2=i s2 + i s3 2-5-3

对于上式可令G11=G l+G3,G22=G2+G3,分别称为节点1、2的自导,它等

于联接于该节点的各支路的电导之和;令G12=-G3,称为1、2节点

间的互导,它等于联接于两节点间的各支路电导之和的负值。自导恒

为正值,互导恒为负值。这是由于设定的节点电压的参考方向均由独

立节点指向参考节点,所以各节点电压在自导中所引起的电流总是流

出该节点,故在该节点电流方程中,这些电流前取“+”号,因而自导

恒为正值。但是,另一个节点电压通过互导所引起的电流总是流入本

节点的,所以在本节点的电流方程中,这些电流前应取负号,因而互

导恒为负值。在本电路中互导G12=G21=-G3,但对于含受控源的电路,

有些互导G j k≠G kj。

式(2-5-3)右方的(i s1-i s3)、(i s2 +i s3)分别表示流入节点1、2的电流

电流的代数和,流入取“+”号,流出取“—”号,可分别计为i s11、i s22,

i s11= i s1-i s3

i s22= i s2+i s3

与网孔电流法相似,为便于写出节点方程,将方程组(2-5-3)写成

G11u N1 +G12u N2 =i s11

G21u N1 + G22u N2=i s22

这就是具有两个独立节路的节点方程的一般形式。

对于具有(n-1)个节点的电路,仿照上式可得出节点电压方程的一般形式

G11u N1 +G12u N2 +…+G1n u N(n-1) =i s11

G21u N1 + G22u N2 +…+G2n u N(n-1) =i s22

……

G(n-1)1u N1 +G(n-1)2u N2 +…+G(n-1) (n-1)u N(n-1) =i s(n-1) (n-1) 2-5-5

二、内容2

2.5.2 节点电压法的分析步骤

(1)选定参考节点,标出节点电压,其参考方向通常是独立节点指向参考节点;

(2)按照式(2-5-5)节点方程的一般形式,列写节点方程,而不必写出推导过程。

注意:自导恒为正值,互导恒为负值;并注意方程式右边项取代数和时各有关电流

源电流前面的“+”、“-”符号;联立求解节点方程,解得各节点电压;

(3)选定各支路电流的参考方向,求解支路电流;根据需要求出其它待求量。

例试用节点电压法求图所示电路中的各支电路电流。

解取节点0为参考节点,节点电压u N1,u N2为求解变量,列出节点方程为

解上述方程得

u N1 =6V u N2=12V

所以i1 =6A i2=-3A i3=4A

三、 内容3

2.5.3 含有理想电压源支路时的分析方法

当电路中含有伴电压源时,可以将其等效变换为有伴电流源,然后列节点方程。

当电路中含无伴电压源时:

1.尽量取电压源支路的负极性端为参考节点,这时电压源端电压成为已知的节点电压,故不必再对该节点列写节点方程;

2.若电压源两端均不能成为参考节点,在列写节点方程时,把电压源视同为电流等于i 的电流源,由于i 是未知量,故必须增补一个独立的辅助方程,一般把电压源的电压表示为两节点电压之差。 四、 内容4

2.5.4 弥尔曼定理

例 试用节点电压法,求图所示电路的节点电压。 解 图所示电路中含有三个有伴电压源,分别等效为有伴电流源如图(b)所示,选取节点0为参考节点,1为独立节点。对节点1列出节点方程

所以,对于只有一个独立节点的电路,计算节点电压

用如下公式

(a )

此公式也称为弥尔曼定理。

例 试列出图(a)所示电路的节点方程。

解 将图(a)所示电路的U s2、G 2串联组合的有伴电压源等效为有伴电流源,其I s2=G 2U s2;U s1为无伴电压源,设其电流为I ,如图(b)所示。选取节点0为参考节点,则1、2、

3为独立节点。

对节点1、2、3列出节点方程

(G 1+G 2)U N1=I s2-I (G 3

+G 4)U N2-G 4U N3=I -G 4U N2+(G 4+G 5)U N 3=I s5

辅助方程 U N2-U N1= U s1

I s2= G 2U s2

注意,在列写节点方程中,没有计入 与I s5电流源相串联的电导G 6,其原因是因

为节点方程实质上是以节点电压为未知量,对节点所列的KCL 电流方程,对于与电

流源串联的电导(或电阻),不论其值为多少,均不影响该支路电流的大小,故不应

计入自导和互导之中。 五、本课小结

(a )

(b)

六、布置课后任务及作业习题

2.4.2

2.5.1

网孔电流法和节点电压法例题分析

课题8:支路电流法、网孔电流法和节点电压法 课型:讲授 教学目的: (1)利用支路电流法求解复杂直流电路 (2)利用网孔电流法求解支路数目较多的电路。 (3)利用节点电压法求解节点较少而网孔较多的电路 重点、难点: 重点:支路电流法、网孔电流法、节点电压法求解复杂直流电路 难点:列方程过程中电压、电流参考方向及符号的确定。 教学分析: 本节主要还是在巩固基尔霍夫定律的基础上,利用实例分析支路电流法、网孔电流法、 节点电压法并将其用于实践案例中。 复习、提问: (1)节点的概念和判别? (2)网孔的概念和判别? 教学过程: 导入:求解复杂电路的方法有多种,我们可以根据不同电路特点,选用不同的方法去求解。其中最基本、最直观、手工求解最常用的就是支路电流法。 一、支路电流法 利用支路电流法解题的步骤: (1)任意标定各支路电流的参考方向和网孔绕行方向。 (2)用基尔霍夫电流定律列出节点电流方程。有n个节点,就可以列出n-1个独立电流方程。 (3)用基尔霍夫电压定律列出L=b-(n-1)个网孔方程。 说明:L指的是网孔数,b指是支路数,n指的是节点数。 (4)代入已知数据求解方程组,确定各支路电流及方向。 例1试用支路电流法求图1中的两台直流发电机并联电路中的负载电流I及每台发电机的输出电流I1、和I2。已知:R1=1Ω,R2=0.6Ω,R=24Ω,E1=130V,E2=117V。 解:(1)假设各支路电流的参考方向和网孔绕行方向如图示。

图1 (2)根据KCL,列节点电流方程 该电路有A、B两个节点,故只能列一个节点电流方程。对于节点A有: I1+I2=I ① (3)列网孔电压方程 该电路中共有二个网孔,分别对左、右两个网孔列电压方程: I1R1-I2R2+E2-E1=0 ②(沿回路循行方向的电压降之和为零,如果在 I R+I2R2-E2=0 ③该循行方向上电压升高则取负号) (4)联立方程①②③,代入已知条件,可得: -I1-I2+I=0 I1-0.6I2=130-117 0.6I2+24I=117 解得各支路电流为: I1=10A I2=-5A I=5A 从计算结果,可以看出发电机E1输出10A的电流,发电机E2输出-5A的电流,负载电流为5A。由此可以知道: 结论:两个电源并联时,并不都是向负载供给电流和功率的,当两电源的电动势相差较大时,就会发生某电源不但不输出功率,反而吸收功率成为负载。因此,在实际供电系统中,直流电源并联时,应使两电源的电动势相等,内阻应相近。 所以当具有并联电池的设备换电池的时候,要全部同时换新的,而不要一新一旧。 思考:若将例1中的电动势E2、I2极性互换,列出用支路电流法求解I、I1、和I2所需的方程。 从前面的例子可以看出:支路电流法就是通过联立n-1个节点电流方程,L个网孔电压方程(n为节点数,L为网孔数)。但所需方程的数量取决于需要解决的未知量的多少。原则上,要求B条支路电流就设B个未知数。那么有没有特例呢?

节点电压法

§ 3-3 节点电压法 一 节点电压 任意选择电路中某一节点作为参考节点,其余节点与此参考节点间的电压分别称为对应的节点电压,节点电压的参考极性均以所对应节点为正极性端,以参考节点为负极性端。如图3-7所示的电路,选节点4为参考节点,则其余三个节点电压分别为U n1、U n2、U n3。节点电压有两个特点: 独立性:节点电压自动满足KVL ,而且相互独立。 完备性:电路中所有支路电压都可以用节点电压表示。 二 节点电压法 以独立节点的节点电压作为独立变量,根据KCL 列出关于节点电压的电路方程,进行求解的过程。 建立方程的过程(如图3-7) 图3-7 第一步,适当选取参考点。 第二步,根据KCL 列出关于节点电压的电路方程。 节点1:0)()(315211=--+-s n n n n I U U G U U G 节点2:0)()(32322211=-++--n n n n n U U G U G U U G 节点3:0)()(31534323=--+--n n n n n U U G U G U U G ?? ?? ??????=????????????????????++---++---+003215433 5 3 3 2115 1 51s n n n I U U U G G G G G G G G G G G G G G 第三步,具有三个独立节点的电路的节点电压方程的一般形式

???? ? ?????=????????????????????332211321333231232221131211s s s n n n I I I U U U G G G G G G G G G 式中,)(j i G ij =称为自由导,为连接到第i 个节点各支路电导之和,值恒正。 )(j i G ij ≠称为互电导,为连接于节点i 与j 之间支路上的电导之和,值恒为负。 sii I 流入第i 个节点的各支路电流源电流值代数和,流入取正,流出取负。 三 仅含电流源时的节点法 第一步,适当选取参考点; 第二步,利用直接观察法形成方程; 第三步,求解。 四 含电压源的节点法 第一类情况:含实际电压源:作一次等效变换。 第二类情况:含理想电压源。 ① 仅含一条理想电压源支路,如图3-8。 图3-8 a.取电压源负极性端为参考点:则s n U U =1 b.对不含有电压源支路的节点利用直接观察法列方程: )(0)(3543231533232111=+++--=-+++-n n n n n n U G G G U G U G U G U G G G U G c.求解 ② 含多条不具有公共端点的理想电压源支路,如图3-9。 U

节点电压法matlab

%利用matlab编写的节点电压法解电路电压NUM=5; %the number of the nodes R=ones(NUM,NUM);%存储电阻的矩阵 I=zeros(NUM,1);%存储电流源的矩阵 for a=1:NUM for b=1:NUM R(a,b)=realmax;%令矩阵中的值等于浮点数最大值end end para=1; while para==1%选择输入 type=menu('要输入的选项','电阻','电流源','结束'); switch type case 1 node1=input('元件的第一个节点: '); node2=input('元件的第二个节点: '); parameter=input('输入电阻/欧姆: '); R(node1,node2)=parameter; R(node2,node1)=parameter; case 2 node1=input('元件的第一个节点: '); node2=input('元件的第二个节点: '); parameter=input('电流源/毫安: '); I(node1,1)=parameter; I(node2,1)=-parameter; case 3 para=0; %退出 end end A=zeros(NUM,NUM); %电导矩阵 B=zeros(NUM,1); %电流源矩阵 tracer=1; for a=1:NUM for b=1:NUM if a~=b A(a,a)=A(a,a)+1/R(a,b); %节点的总跨导 end if b~=a A(a,b)=-1/R(a,b); %互导 end end end for a=1:NUM if I(a,1)~=0

节点电压分析法

3.2.2 节点电压法 这种方法是在具有N 个节点的电路中,选取一个节点为参考点,其余各节点到参考点的电压(电位)称为该节点的节点电压,以节点电压为未知量列写除参考点外的N -1个节点的KCL 方程,连立求解该方程组求出节点电压,进而求出各支路电流。 1.节点电压法 现通过图3-22 所示电路求解各支路电流来阐述节点电压法。 在图3-22所示电路中,选0节点为参考点,1、2节点的节点电压分别为Un 1、Un 2,则各条支路的电流分别用节点电压表示为 11111n n U G R U I == 22222n n U G R U I == )(2133 213n n n n U U G R U U I -=-= )(2144214n n n n U U G R U U I -=-= )(2155215n S n S U U G R U U I -=-= 根据KCL 列1、2节点的电流方程: 节点1: 03211=---I I I I S 5S1图3-22 节点电压法

节点2: 022543=--++S I I I I I (3-24) 将支路电流用对应的节点电压代入上面的两节点1、2的电流方程式式(3-24),整理得: 11 2254321431 2431431)()()()(R U I U G G G G U G G I U G G U G G G S S n n S n n +-=+++++-=+-++ (3-25) 解式(3-25)方程组,求出节点电压21,n n U U ,便求出各支路电流。 观察与分析上题有如下特点: 1)式(3-25)中节点1的电流方程中,1n U 前面的系数是431G G G ++是连到节点1的所有电导之和,称为节点1的自电导,用11G 表示,即。43111G G G G ++=;同理在节点2的方程中2n U 前面的系数是5432G G G G +++,是连到节点2所有电导之和,称为节点的自电导,可用22G 表示,即543222G G G G G +++=,自电导总取正值。 2)在式(3-25)中,节点1的电流方程中2n U 前面的系数是)(31G G +-;在节点2的方程中,1n U 前面的系数 也是)(31G G +-,它们是节点1和节点2之间相连接的各支路的所有电导之和,称为互电导,互电导总取负值。 3)式(3-25)等式右边分别为流入节点1和节点2的电流源电流的代数和(流入为正,流出为负);若是电压源与电阻相串联的支路,则相当于变换成电流源与电导相并联的支路,分别用21,Sn Sn I I 表示,则 11S Sn I I =,1122R U I I S S Sn + -= 这样,式(3-25)可写成: ∑∑=+-=-22221121 212111Sn n n Sn n n I U G U G I U G U G (3-26) 这就是具有两个独立节点电路的节点电压方程得一般形式。 将式(3-26 )推广,对具有n -1个独立节点的电路,若将第n 个节点指定

节点电压法

节点电压法的计算机编程实现 学院: 专业: 班级: 学号:

目录 1.问题与假设 (2) 1.1课题研究价值 (2) 1.2问题的简化与假设 (2) 1.3节点电压法求解过程 (2) 2.建模过程 (2) 2.1节点电压法的简介 (2) 2.2模型的建立 (3) 2.3节点电压法线性方程组的原理与求解 (3) 3.算法实现 (4) 3.1MATLAB源代码 (4) 3.2实例演示 (6) 4.心得体会 (7) 5.参考文献 (8)

1.问题与假设 1.1课题研究价值 节点电压是一种求解对象的电路计算方法。节点电压是在为电路任选一个节点作为参考点(此点通常编号为“0”),并令其电位为零后,其余节点对该参考点的电位。在一个拥有多个电子元器件且物理拓扑结构确定的电路中,当电路中各处的电压电流均处于稳定状态时,如何求出加载在各个元器件上的电压?实际生活中,比较复杂的电路运用电脑程序求解为解决问题提供了方便。 1.2问题的简化与假设 假设电路属于集总电路,即电路中电压电流的效应不受电路线度的影响并且在接通瞬间完成。同时电路中的电子元器件仪限于电阻,电容,电感以及容性和感性器件。电路中只有独立的稳定电压源,不含受控电压源或电流源。 1.3节点电压法求解过程 第一步:把电压源与阻抗的串联形式化为电流源与阻抗的并联形式 第二步:标出结点,并把其中一个结点选为参考结点(一般为0电位点) 第三步:列出结点电压方程。 列方程方法:自电导乘以该结点电压+∑与该结点相邻的互电导乘以相邻结点的电压=流入该结点的电流源的电流-流出该结点电流源的电流 [注:这里的“+”是考虑了互导纳是电导的相反数,如果不考虑相反数的话,这个“+”就得写为“-”] 第四步:联立求解出上面所有的结点电压方程。 2.建模过程 2.1节点电压法的简介 电路中各个器件两端接入电路并且与其他器件相连接,相连接处构成了节点,因此加载在电路元件上的电压即为元器件两端的电势差,因此我们可以将把求器件上的电势差的问题化为求元器件两端的电势。这种方法称为节点电压法,是电路分析中最常用的方法。使用节点电压法首先选择一个结点作为参考结点,其余结点与参考结点之间的电压称为结点电压。结点电压的方向均由结点指向参考结点。 2.2模型的建立

[电路分析]节点电压法

节点电压法 .一、节点电压方程出发点 进一步减少方程数,用未知的节点电压代替未知的支路电压来建立方程。 图3.2-1电路共有4个节点、 6条支路(把电流源和电导并联的电路看成是一条支路)。用支路电流法计算,需列写6个独立的方程 选取节点d为参考点,d点的电位为,则节点a、b、c为独立的节点,它们与d 点之间的电压称为各节点的节点电压(node voltage),实际上就是各点的电位。这样 a、b、c的节点电压是。 各电导支路的支路电流也就可用节点电压来表示 结论:用3个节点电压表示了6个支路电压。进一步减少了方程数。 1、节点电压方程 根据KCL,可得图3.2-1电路的节点电压方程

节点电压方程的一般形式 自电导×本节点电压-Σ(互电导×相邻节点电压)= 流入本节点的所有电流源的电流的代数和 自电导(self conductance)是指与每个节点相连的所有电导之和,互电导(mutual conductance)是指连接两个节点之间的支路电导。 节点电压法分析电路的一般步骤 确定参考节点,并给其他独立节点编号。列写节点电压方程,并求解方程,求得各节点电压。由求得的节点电压,再求其他的电路变量,如支路电流、电压等。 例3.2-1 图3.2-1所示电路中,G1=G2=G3=2S,G4=G5=G6=1S,, ,求各支路电流。 解:1. 电路共有4个节点,选取d为参考点,。其他三个独立节点的节点电压分别为。 2. 列写节点电压方程 节点a: 节点b: 节点c: 代入参数,并整理,得到 解方程,得

3. 求各支路电流 特别注意:节点电压方程的本质是KCL,即Σ(流出电流) =Σ(流入电流),在节点电压方程中,方程的左边是与节点相连的电导上流出的电流之和,方程的右边则是与节点相连的电流源流入该节点的电流之和。如果某个电流源上还串联有一个电导,那么该电导就不应再计入自电导和互电导之中,因为该电导上的电流(与它串联的电流源的电流)已经计入方程右边了。 例3.2-2 图3.2-2所示电路,试列出它的节点电压方程。 解:对于节点a,流入的电流源的支路上还串联了一个电阻R1,在计算a点的自电导时,不应再把R1计算进去,所以a点的节点电压方程为 b点的节点电压方程为 2、弥尔曼定理 当电路只有两个节点时,这种电路称为单节偶电路(single node-pair circuit)。对于单节偶电路,有弥尔曼定理。 弥尔曼定理:对于只有两个节点的单节偶电路,节偶电压等于流入独立节点的所有电流源电流的代数和除以节偶中所有电导之和。

第2节 节点电压法

第2节节点电压法 一、节点电压方程出发点 进一步减少方程数, 用未知的节点电压代替未知的支路电压来建立方程。 图3.2-1电路共有4个节点、 6条支路(把电流源和电导并联的电路看成是一条支路)。用支路电流法计算,需列写6个独立的方程 选取节点d为参考点,d点的电位为,则节点a、b、c为独立的节点,它们与d点之间的电压称为各节点的节点电压(node voltage),实际上就是各点的电位。这样a、b、c的节点 电压是。 各电导支路的支路电流也就可用节点电压来表示 结论 用3个节点电压表示了6个支路电压。进一步减少了方程数。 1、节点电压方程

根据KCL,可得图3.2-1电路的节点电压方程 节点电压方程的一般形式 自电导×本节点电压-Σ(互电导×相邻节点电压) = 流入本节点的所有电流源的电流的代数和 自电导(self conductance)是指与每个节点相连的所有电导之和, 互电导(mutual conductance)是指连接两个节点之间的支路电导。 节点电压法分析电路的一般步骤 确定参考节点,并给其他独立节点编号。 列写节点电压方程,并求解方程,求得各节点电压。 3、由求得的节点电压,再求其他的电路变量,如支路电流、电压等。 例3.2-1 图3.2-1所示电路中,G1=G2=G3=2S,G4=G5=G6=1S,,,求各支路电流。 解:1. 电路共有4个节点,选取d为参考点,。其他三个独立节点的节点电压分别为 。 2. 列写节点电压方程 节点a: 节点b: 节点c: 代入参数,并整理,得到 解方程,得

3. 求各支路电流 特别注意 节点电压方程的本质是KCL,即Σ(流出电流) =Σ(流入电流) 在节点电压方程中,方程的左边是与节点相连的电导上流出的电流之和,方程的右边则是与节点相连的电流源流入该节点的电流之和。如果某个电流源上还串联有一个电导,那么该电导就不应再计入自电导和互电导之中,因为该电导上的电流(与它串联的电流源的电流)已经计入方程右边了。 例3.2-2 图3.2-2所示电路,试列出它的节点电压方程。 解:对于节点a,流入的电流源的支路上还串联了一个电阻R1,在计算a点的自电导时,不应再把R1计算进去,所以a点的节点电压方程为 b点的节点电压方程为 2、弥尔曼定理 当电路只有两个节点时,这种电路称为单节偶电路(single node-pair circuit)。对于单节偶电路,有弥尔曼定理。 弥尔曼定理 对于只有两个节点的单节偶电路,节偶电压等于流入独立节点的所有电流源电流的代数和除以节

关于节点电压法几种方法的讨论

关于节点电压法几种方法的讨论 许胜虎 <摘要>讨论在电路分析中常用的节点电压法的几种处理方法,可以看出处理无伴电压源电路时简化的节点电压法具有诱人的优越性。 关键词:电路分析、节点电压、无伴电压源 :在中央电大电气专业的<<电路及磁路>>教材中,节点电压法是电路分析的重点[1]它是分析处理线性电路的基本方法和常用手段,得到广泛的应用。 节点电压法是电路中任一节点对参考节点的电位为独立的变量的一种分析方法,若电路中有几个节点利用KCL方程列出(n-1)个独立方程求出相应节点对参考节点的电位,然后求出各支路元件的电压及电流等电量。 在电路中常有一个或多个无伴电压源和无伴受控源时,又如何应用节点电压法呢?本文利用文献[1][2]可以把节点电压法进行简化处理。 1.含有无伴电压源的电路情况: a.在一个电路中含有一个无伴电压源或虽有多个无伴电压源但它们的一端接在同一节点上,那末常选择电压源的一端(公共端)为参考节点,则另一端的节点电压为电压源的电压,则不必再对该节点列出节点方程,方程数目为(n-1)节点数减少无伴电压源的数目。 b.无伴电压源接在两个非参数接节点之间情况如图1。可以把无伴电压源接在两个非参考节点看作广义节点[3],他们看作一个包含电压源及其两个节点的一个封闭区,对含有广义节点的电路分析也可以用两种常见方法进行处理: 1)通常的节点电压法:即把无伴电压源中的电流作为未知量列入节点方程,同 时增加一个节点电压与该无伴电压源之间的约束关系,列出一个补充方程,使未知量个数仍然与方程数相等,可解出所有的未知量[1] 2)在广义节点处作为一个闭合区列出KCL方程同时再对含电压源的回路列出 KCL方程,如此处理独立方程数与未知量仍为相等,同样可解出未知量[1][3] 对图(1)

节点电压(电流)法

电路中的节点法网址:https://www.360docs.net/doc/5c2933023.html,/question/161705921.h tml?qbl=relate_question_1&word=%BD%DA%B5%E3%B5%E7%C1%F7%B7%A8 提问:这个方法,也就是电路作图题技巧,我们初二老师讲的,他说节点法就是导线上若没有用电器,可看作一个点,缩成一个点。但是我不明白,可以详细跟我讲一下吗? 提问者采纳 我详细地讲一下吧。 节点法是最基本的电路分析法之一,另一个是网孔分析,一般的电路书籍都会讲到(初中电路为什么没讲到我就不知道了)。应该将这是一个最基本方法,不是技巧(我们的教材往往喜欢故弄玄虚,讲这技巧那技巧的)。 应用此法,可以很方便地直接求出各元件的端电压,进而就出各支路电流。 节点法,全称节点电压法,此法的应用本身是十分简单的,但要先知道一个定律,就是基尔霍夫电流定律(英文KCL),即对于电路中的任何节点,流入其中的总电流等于流出它的总电流。这个都是简单的代数关系,不用害怕,就是A+B=C+D这么简单,要轻松地接受它。至于什么是节点,也很简单,就是两个和两个以上的元件相连接的点(看图,a,b,c,d点)。 有了这些知识,应用节点法就很简单,其步骤如下(看图): 1)找出公共节点,设其电压为0。公共节点的选取一般选连接的元件最多的那个点,初中的话,一般就是电源负极了,如图中的d点。2)选了公共节点后,就设其他的节点电压依次为v1,v2,v3,...。

3)标出电路中各个元件的电流方向。这个是可以任意去标的,想怎么标就怎么标,但是要注意了,标了之后,如果最后计算的结果是正值,那么实际电流方向就是你标的那个方向;如果是负值,那就是反方向。所以,一般习惯性的是从电源正极往负极方向标箭头(你不这样标,也没关系的,反正要看最后的计算结果)。图中我按习惯标了I1,I2,I3,I4,I5 4)标了电流方向,就用KCL定律了,对每一个节点应用KCL,图中有三个节点a,b,c要用,d点不用,它是公共节点。 对节点a:V1=12V 对节点b:(v1-v2)/2=(v2-v3)/2+v2/2 对节点c: (v2-v3)/2+(v1-v3)/2=v3/2 三个方程,三个未知数,正好可以解出v1,v2,v3。 解出来之后,你就可以计算各个电流了,这个根据需要了,但你直接得出的是各个节点的电压值。 数学上是很简单的,但要真正理解这种方法,是需要花点心思想一想的。这种方法应付初中的任何电路难题,都搓搓有余了。 PS-关于公共点:公共点设的电压为0,这并不意味着其实际电压为0,只是为了计算方便。聪明的你,也许看出了,解出来的各个点的电压值是相对于公共节点d的差值,是个相对值,这是数学上的处理方法。假如你解出来v2=6V(我没有去解方程,只是假设),而公共节点实际电压为10V,那么b点实际电压就是16V,明白了吧(这种情况是可能的,因为这个电路可能是一个大电路的一部分,而d点可能是大电路

结点电压法

第五节结点电压法 一、学习目的: 1 .掌握参考结点的概念 2 .掌握运用结点电压法解题方法 二、教学重点: 1 .自电导和互电导的概念 2 .结点电压法解题方法 3 .弥尔曼定理 三、教学难点:结点电压法解题方法 四、课时:1 五、教学过程 (一)、定义及应用范围: ?定义:以电路中各个结点对参考点电压 ( 结点电压 ) 为未知量,根据 KCL 对结点列结点电流方程,根据求解出各结点电压,从而求出各元件上的电压、电流。 ?适用范围:电路中的独立结点数少于独立回路数时,用结点电压法比较方便、方程个数较少。 ?验证:如下图所示电路

?选定一个参考结点,记为 0 , 则各结点参考点之间的电压、、为未知量。 ?列结点电流方程: ?对结点①有:; 对结点②有:; 对结点③有: ?利用欧姆定律和 KVL 列写支路电流与结点电压关系式:

?将第( 4 )步中各支路电流代入方程①②③ 中,得: (二)、解题步骤及注意事项: ?选取独立结点和参考结点,则独立结点到参考结点间的电压为结点电压 ?对 n 个结点的电路,能列 (n-1) 个结点电压方程。 ?以结点电压为独立变量根据 KCL 列写独立结点的结点电流方程,方程的左边是无源元件电流的代数和,自导上的电流恒为“ + ” ,互导上的电流为“ - ” ;方程右边为独立电流源的代数和,当电流源的正方向指向该结点时取“+” ,反之取“ -” 。结点电压方程的一般表达形式为: 自导×本结点电压 + = 流入该结点的所有电源的电流之和。 ①自导: ( 自电导 ) ,其值总为正的,是指与某结点相连的所有电导之和;※理想电流源串联的电导不能计算在内。 ②互导:指相邻两结点之间的公共电导之和,互导总为负;与理想电流串联的电导不能计算在内。 ③ 流入结点的所有电源电流之和,包括两层含义: a 是电源电流流入结点的取“ + ”,流出结点的取“-”; b 是该电流必

相关文档
最新文档