动态规划源码

动态规划源码
动态规划源码

package leetcode;

import java.util.Scanner;

public class DP {

static int N =100;

static int dp[][]=new int[N][N]; //动态规划矩阵

static char result[]=new char[N];

static int index;

//Section 1[求解最长公共子序列]:不需要子序列连续

public static void initDPfromBeginToEnd(int lena,int lenb)

{

int i,j;

for(i=0;i<=lena;i++)

dp[i][0]=0;

for(j=0;j<=lenb;j++)

dp[0][j]=0;

}

//从前往后构造dp矩阵

public static void changeDPfromBeginToEnd(char []s1,int lena,char []s2,int lenb) {

int i,j;

for(i=1;i<=lena;i++)

{

for(j=1;j<=lenb;j++)

{

if(s1[i-1]==s2[j-1]) //从第一个[index=0]字符开始

{

dp[i][j]=dp[i-1][j-1]+1;

}

else

{

dp[i][j]=Math.max(dp[i-1][j],dp[i][j-1]);

}

}

}

}

public static void initDPfromEndToBegin(int lena,int lenb)

{

int i,j;

for(i=0;i<=lena;i++)

dp[i][lenb]=0;

for(j=0;j<=lenb;j++)

dp[lena][j]=0;

}

//从后往前构造dp矩阵

public static void changeDPfromEndToBegin(char []s1,int lena,char []s2,int lenb) {

int i,j;

for(i=lena-1;i>=0;i--)

{

for(j=lenb-1;j>=0;j--)

{

if(s1[i]==s2[j])

{

dp[i][j]=dp[i+1][j+1]+1;

}

else

{

dp[i][j]=Math.max(dp[i+1][j],dp[i][j+1]);

}

}

}

}

public static void printDP(int n,int m)

{

int i,j;

for(i=0;i<=n;i++)

{

for(j=0;j<=m;j++)

{

System.out.print(dp[i][j]+" ");

}

System.out.println();

}

}

//Section 2[求解最长公共子串]:需要子串连续

public static String getLCSLength(String s, String t)

{

int p = s.length();

int q = t.length();

String [][]num = new String [p][];

for(int i=0;i

{

num[i] = new String[q];

}

char char1 = '\0';

char char2 = '\0';

int len = 0;

String lcs = "" ;

for(int i=0; i

{

for (int j=0; j

{

char1 = s.charAt(i);

char2 = t.charAt(j);

if(char1!=char2)

{

num[i][j] = "" ;

}

else

{

if (i==0||j==0)

{

num[i][j]=String.valueOf(char1);

}

else

{

num[i][j]=num[i-1][j-1]+char1;

}

if(num[i][j].length()>len)

{

len = num[i][j].length() ;

lcs = num[i][j];

}

else if(num[i][j].length()==len)

{

lcs = lcs + "," + num[i][j];

}

}

}

}

return lcs;

}

//Section 3[求解字符串的编辑距离]

public static int min3(int x,int y ,int z)

{

int tmp=Math.min(x,y);

return Math.min(tmp,z);

}

//从前往后

public static void initDPToEnd(int lena,int lenb)

{

int i,j;

for(i=0;i<=lena;i++)

dp[i][0]=i;

for(j=0;j<=lenb;j++)

dp[0][j]=j;

}

public static void changeDPToEnd(char []s1,int lena,char []s2,int lenb) {

int i,j;

index=0;

for(i=1;i<=lena;i++)

{

for(j=1;j<=lenb;j++)

{

if(s1[i-1]==s2[j-1]) //从第一个[index=0]字符开始

{

dp[i][j]=dp[i-1][j-1];

}

else

{

dp[i][j]=min3(dp[i-1][j-1]+1,dp[i-1][j]+1,dp[i][j-1]+1);

}

}

}

}

//从后往前

public static void initDPToBegin(int lena,int lenb)

{

int i,j;

for(i=lena;i>=0;i--)

dp[i][lenb]=lena-i;

for(j=lenb;j>=0;j--)

dp[lena][j]=lenb-j;

}

public static void changeDPToBegin(char []s1,int lena,char []s2,int lenb) {

int i,j;

index=0;

for(i=lena-1;i>=0;i--)

{

for(j=lenb-1;j>=0;j--)

{

if(s1[i]==s2[j])

{

dp[i][j]=dp[i+1][j+1];

}

else

{

dp[i][j]=min3(dp[i+1][j+1]+1,dp[i+1][j]+1,dp[i][j+1]+1);

}

}

}

}

//Section 4[求解字符串里面的最长回文子串]

//使用【暴力1】法求解

public static boolean IsPalindrome(char []str,int start ,int end)

{

while(start

{

if(str[start]!=str[end])

break;

else

{

start++;

end--;

}

}

if(start==end)

return true;

else

return false;

}

public static char[]getString(char[]str,int start,int end)

{

char []result=new char[end-start+1]; //不需要设置串尾'0'

int index,i;

index=0;

for(i=start;i<=end;i++)

result[index++]=str[i];

//result[index+1]='\0'; //注意java中没有字符串的串尾的说法return result;

}

//时间复杂度0(n^2)

public static void getLongestPalindromeString(char[]str)

{

int i,j,len,maxlen,start,end;

len=str.length;

maxlen=0;

start=end=0;

for(i=0;i

{

for(j=i+1;j

{

if(IsPalindrome(str,i,j))

{

int currlen=j-i+1;

if(currlen>maxlen)

{

maxlen=currlen;

start=i;

end=j;

}

}

}

}

char[]resultString=getString(str,start,end);

System.out.println(resultString);

}

//使用【暴力2】法求解

//以某一字符为中心[左右对称]的方法

//以abccba为例

public static void getLongestPalindromeString_1(char []str)

{

int i,j,len,maxlen,start,end;

len=str.length;

maxlen=0;

start=end=0;

j=0;

for(i=0;i

{

//实现对称中心化

if(i-j>=0 && i+j

{

if(maxlen<2*j+1)

{

maxlen=2*j+1;

start=i-j;

end=i+j;

}

j++;

}

else

{

i++;

j=0;

}

}

char[]resultString=getString(str,start,end);

System.out.println(resultString);

}

///使用【动态规划3】法求解

public static void getLongestPalindromeString_2(char[]str) {

int len=str.length;

for (int i=len-1;i>=0;i--)

{

dp[i][i]=1;

for (int j=i+1;j

if (str[i]==str[j])

dp[i][j]=dp[i+1][j-1]+2;

else

dp[i][j]=Math.max(dp[i][j-1],dp[i+1][j]);

}

System.out.println(dp[0][len-1]);

}

public static void main(String []args)

{

char s1[]="abcd".toCharArray();

char s2[]="cxbydz".toCharArray();

int lena,lenb;

lena=s1.length;

lenb=s2.length;

//1)最长公共子序列

//使用从前往后的构造法initDPfromBeginToEnd(lena,lenb); changeDPfromBeginToEnd(s1,lena,s2,lenb); printDP(lena,lenb);

System.out.println(dp[lena][lenb]);

System.out.println();

//使用从后往前的构造法initDPfromEndToBegin(lena,lenb); changeDPfromEndToBegin(s1,lena,s2,lenb); printDP(lena,lenb);

System.out.println(dp[0][0]);

System.out.println();

//3)字符串的编辑距离

//使用从前往后的构造法

initDPToEnd(lena,lenb);

changeDPToEnd(s1,lena,s2,lenb);

printDP(lena,lenb);

System.out.println(dp[lena][lenb]);

System.out.println();

//使用从后往前的构造法

initDPToBegin(lena,lenb);

changeDPToBegin(s1,lena,s2,lenb);

printDP(lena,lenb);

System.out.println(dp[0][0]);

System.out.println();

//4)字符串的最长回文子串

char test[]="abcdcba1".toCharArray();

System.out.println(IsPalindrome(test,0,test.length-1)); System.out.println(getString(test,0,1)); getLongestPalindromeString(test); getLongestPalindromeString_1(test); getLongestPalindromeString_2(test);

//2)最长公共子串

Scanner input=new Scanner(System.in);

String s,t;

System.out.println("请输入字符串s:");

s=input.next();

System.out.println("请输入字符串t:");

t=input.next();

System.out.println("最长公共子串为:");

System.out.println(getLCSLength(s,t));

}

}

动态规划基本原理

动态规划基本原理 动态规划基本原理 近年来,涉及动态规划的各种竞赛题越来越多,每一年的NOI几乎都至少有一道题目 需要用动态规划的方法来解决;而竞赛对选手运用动态规划知识的要求也越来越高,已经 不再停留于简单的递推和建模上了。 要了解动态规划的概念,首先要知道什么是多阶段决策问题。 一、多阶段决策问题 如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采 取措施),一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了 一个过程的活动路线,则称它为多阶段决策问题。 各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供 选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可 以用数量来确定。策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策 略中间,选取一个最优策略,使在预定的标准下达到最好的效果. 让我们先来看下面的例子:如图所示的是一个带权有向的多段图,要求从A到D的最 短 图4-1 带权有向多段图 路径的长度(下面简称最短距离)。 我们可以搜索,枚举图中的每条路径,但当图的规模大起来时,搜索的效率显然不可 能尽人意。让我们来试用动态规划的思路分析这道题:从图中可以看到,A点要到达D点 必然要经过B1和B2中的一个,所以A到D的最短距离必然等于B1到D的最短距离加上5,或是B2到D的最短距离加上2。同样的,B1到D的最短距离必然等于C1到D的最短距离 加上3或是C2到D的最短距离加上2,……。 我们设G[i]为点i到点D的距离,显然G[C1]=4,G[C2]=3,G[C3]=5,根据上面的分析, 有: G[B1]=min{G[C1]+3,G[C2]+2}=5, G[B2]=min{G[C2]+7,G[C3]+4}=9, 再就有G[A]=min{G[B1]+5,G[B2]+2}=10,

经典算法——动态规划教程

动态规划是对最优化问题的一种新的算法设计方法。由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。不存在一种万能的动态规划算法。但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。 多阶段决策过程最优化问题 ——动态规划的基本模型 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。 【例题1】最短路径问题。图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少? 【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。具体计算过程如下: S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3 S2: K=3,有: F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8 F3(C2)=d3(C2,D1)+f4(D1)=5+3=8 F3(C3)=d3(C3,D3)+f4(D3)=8+3=11 F3(C4)=d3(C4,D3)+f4(D3)=3+3=6

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

动态规划讲解大全(含例题及答案)

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么

动态规划习题答案

2.某公司有资金4百万元向A,B和C3个项目追加投资,各个项目可以有不同的投资额(百万元计),相应的效益如表所示。问怎样分配 资金,使总效益值最大?## 表8-47 解:设S-A,B,C项目的总投资额,S-B、C项目的总投资额21S-C 项目的投资额;3X-k项目的投资额;k(X-A项目的投资额,X -B项目的投资额,X-C项目的投资额)312W(S,X)-对K项目投资X后的收益:W(S,X)=W (X) kkkkkkkkk T (S,X)-S=S-X k k+1kkkk f (S)-当K至第3项目允许的投资额为S时所能获得的最大收益。kkk为获得最大利润,必须将4百万全部投资,假设有4阶段存在,有S=0,建立递归方程4f(S)=0 k4

f (S)=max{ W (X)+f(S)} k=3,2,1 k+1kk +1kkk X∈D(S) kkk第一步,K=3 f(S)=0 44 f (S)=max{W (X)+f (S)} 434333X∈D(S) 333S=S-X3 34 第二步:)} f (S (X (S)=max{W)+f K=2 322322) X ∈D(S 222-X =S S232 W (X)+f (S-X) 22322

第三步:)} (S (X) =max f (S {W)+ f K=1 211121) D X∈(S111- X S= S 1 21 ) (X- X)+ f (SW1 12 11 S=4 →S=1 →S=1 312↓↓ ↓ X*=3 X*=0 X*=1 312百万。1投资C 不投资B 百万,3投资A. 总收益164百万元。 3.(最优分配问题)有一个仪表公司打算向它的3个营业区设立6家销售店。每个营业区至少设一家,所获利润如表。问设立的6家销售店数应如何分配,可使总利润最大?

动态规划练习试题和解答

动态规划练习题 [题1] 多米诺骨牌(DOMINO) 问题描述:有一种多米诺骨牌是平面的,其正面被分成上下两部分,每一部分的表面或者为空,或者被标上1至6个点。现有一行排列在桌面上:顶行骨牌的点数之和为6+1+1+1=9;底行骨牌点数之和为1+5+3+2=11。顶行和底行的差值是2。这个差值是两行点数之和的差的绝对值。每个多米诺骨牌都可以上下倒置转换,即上部变为下部,下部变为上部。 现在的任务是,以最少的翻转次数,使得顶行和底行之间的差值最小。对于上面这个例子,我们只需翻转最后一个骨牌,就可以使得顶行和底行的差值为0,所以例子的答案为1。 输入格式: 文件的第一行是一个整数n(1〈=n〈=1000〉,表示有n个多米诺骨牌在桌面上排成一行。接下来共有n行,每行包含两个整数a、b(0〈=a、b〈=6,中间用空格分开〉。第I+1行的a、b分别表示第I个多米诺骨牌的上部与下部的点数(0表示空)。 输出格式: 只有一个整数在文件的第一行。这个整数表示翻动骨牌的最少次数,从而使得顶行和底行的差值最小。 [题2] Perform巡回演出 题目描述: Flute市的Phlharmoniker乐团2000年准备到Harp市做一次大型演出,本着普及古典音乐的目的,乐团指挥L.Y.M准备在到达Harp市之前先在周围一些小城市作一段时间的巡回演出,此后的几天里,音乐家们将每天搭乘一个航班从一个城市飞到另一个城市,最后才到达目的地Harp市(乐团可多次在同一城市演出). 由于航线的费用和班次每天都在变,城市和城市之间都有一份循环的航班表,每一时间,每一方向,航班表循环的周期都可能不同.现要求寻找一张花费费用最小的演出表. 输入: 输入文件包括若干个场景.每个场景的描述由一对整数n(2<=n<=10)和k(1<=k<=1000)开始,音乐家们要在这n个城市作巡回演出,城市用1..n标号,其中1是起点Flute市,n是终点Harp市,接下来有n*(n-1)份航班表,一份航班表一行,描述每对城市之间的航线和价格,第一组n-1份航班表对应从城市1到其他城市(2,3,...n)的航班,接下的n-1行是从城市2到其他城市(1,3,4...n)的航班,如此下去. 每份航班又一个整数d(1<=d<=30)开始,表示航班表循环的周期,接下来的d个非负整数表示1,2...d天对应的两个城市的航班的价格,价格为零表示那天两个城市之间没有航班.例如"3 75 0 80"表示第一天机票价格是75KOI,第二天没有航班,第三天的机票是80KOI,然后循环:第四天又是75KOI,第五天没有航班,如此循环.输入文件由n=k=0的场景结束. 输出: 对每个场景如果乐团可能从城市1出发,每天都要飞往另一个城市,最后(经过k天)抵达城市n,则输出这k个航班价格之和的最小值.如果不可能存在这样的巡回演出路线,输出0. 样例输入: 样例输出:

动态规划经典教程

动态规划经典教程 引言:本人在做过一些题目后对DP有些感想,就写了这个总结: 第一节动态规划基本概念 一,动态规划三要素:阶段,状态,决策。 他们的概念到处都是,我就不多说了,我只说说我对他们的理解: 如果把动态规划的求解过程看成一个工厂的生产线,阶段就是生产某个商品的不同的环节,状态就是工件当前的形态,决策就是对工件的操作。显然不同阶段是对产品的一个前面各个状态的小结,有一个个的小结构成了最终的整个生产线。每个状态间又有关联(下一个状态是由上一个状态做了某个决策后产生的)。 下面举个例子: 要生产一批雪糕,在这个过程中要分好多环节:购买牛奶,对牛奶提纯处理,放入工厂加工,加工后的商品要包装,包装后就去销售……,这样没个环节就可以看做是一个阶段;产品在不同的时候有不同的状态,刚开始时只是白白的牛奶,进入生产后做成了各种造型,从冷冻库拿出来后就变成雪糕(由液态变成固态=_=||)。每个形态就是一个状态,那从液态变成固态经过了冰冻这一操作,这个操作就是一个决策。 一个状态经过一个决策变成了另外一个状态,这个过程就是状态转移,用来描述状态转移的方程就是状态转移方程。 经过这个例子相信大家对动态规划有所了解了吧。 下面在说说我对动态规划的另外一个理解: 用图论知识理解动态规划:把动态规划中的状态抽象成一个点,在有直接关联的状态间连一条有向边,状态转移的代价就是边上的权。这样就形成了一个有向无环图AOE网(为什么无环呢?往下看)。对这个图进行拓扑排序,删除一个边后同时出现入度为0的状态在同一阶段。这样对图求最优路径就是动态规划问题的求解。 二,动态规划的适用范围 动态规划用于解决多阶段决策最优化问题,但是不是所有的最优化问题都可以用动态规划解答呢? 一般在题目中出现求最优解的问题就要考虑动态规划了,但是否可以用还要满足两个条件: 最优子结构(最优化原理) 无后效性 最优化原理在下面的最短路径问题中有详细的解答; 什么是无后效性呢? 就是说在状态i求解时用到状态j而状态j就解有用到状态k…..状态N。 而求状态N时有用到了状态i这样求解状态的过程形成了环就没法用动态规划解答了,这也是上面用图论理解动态规划中形成的图无环的原因。 也就是说当前状态是前面状态的完美总结,现在与过去无关。。。 当然,有是换一个划分状态或阶段的方法就满足无后效性了,这样的问题仍然可以用动态规划解。 三,动态规划解决问题的一般思路。 拿到多阶段决策最优化问题后,第一步要判断这个问题是否可以用动态规划解决,如果不能就要考虑搜索或贪心了。当却定问题可以用动态规划后,就要用下面介绍的方法解决问题了:(1)模型匹配法: 最先考虑的就是这个方法了。挖掘问题的本质,如果发现问题是自己熟悉的某个基本的模型,就直接套用,但要小心其中的一些小的变动,现在考题办都是基本模型的变形套用时要小心条件,三思而后行。这些基本模型在先面的分类中将一一介绍。 (2)三要素法 仔细分析问题尝试着确定动态规划的三要素,不同问题的却定方向不同: 先确定阶段的问题:数塔问题,和走路问题(详见解题报告) 先确定状态的问题:大多数都是先确定状态的。 先确定决策的问题:背包问题。(详见解题报告) 一般都是先从比较明显的地方入手,至于怎么知道哪个明显就是经验问题了,多做题就会发现。 (3)寻找规律法: 这个方法很简单,耐心推几组数据后,看他们的规律,总结规律间的共性,有点贪心的意思。 (4)边界条件法 找到问题的边界条件,然后考虑边界条件与它的领接状态之间的关系。这个方法也很起效。 (5)放宽约束和增加约束 这个思想是在陈启锋的论文里看到的,具体内容就是给问题增加一些条件或删除一些条件使问题变的清晰。 第二节动态规划分类讨论

01背包问题动态规划详解及C++代码

0/1背包问题动态规划详解及C++代码 1. 问题描述 给定一个载重量为C的背包 有n个物品 其重量为wi 价值为vi 1<=i<=n 要求:把物品装入背包 并使包内物品价值最大2. 问题分析 在0/1背包问题中 物体或者被装入背包 或者不被装入背包 只有两种选择。循环变量i j意义 前i个物品能够装入载重量为j的背包中 数组c意义 c[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值 若w[i]>j 第i个物品不装入背包 否则 若w[i]<=j且第i个物品装入背包后的价值>c[i-1][j] 则记录当前最大价值 替换为第i个物品装入背包后的价值 其c++代码如下 #include using namespace std; void KANPSACK_DP(int c[50][50], int w[50], int v[50], int n, int C) { for(int i = 0; i <= C; i ++) { c[0][i] = 0; } for(int i = 1; i <= n; i ++) { c[i][0] = 0; for(int j = 1; j <= C; j ++) { if(w[i] <= j) { if(v[i] + c[i - 1][j - w[i]] > c[i - 1][j]) c[i][j] = v[i] + c[i - 1][j - w[i]]; else c[i][j] = c[i - 1][j]; } else c[i][j] = c[i - 1][j]; } } } void OUTPUT_SACK(int c[50][50], int x[50], int w[50], int n, int C) { for(int k = n; k >= 2; k --) { if(c[k][C] == c[k-1][C]) x[k] = 0; else { x[k] = 1; C = C - w[k];

动态规划习题精讲

信息学竞赛中的动态规划专题 哈尔滨工业大学周谷越 【关键字】 动态规划动机状态典型题目辅助方法优化方法 【摘要】 本文针对信息学竞赛(面向中学生的Noi以及面向大学生的ACM/ICPC)中的动态规划算法,从动机入手,讨论了动态规划的基本思想和常见应用方法。通过一些常见的经典题目来归纳动态规划的一般作法并从理论上加以分析和说明。并介绍了一些解决动态规划问题时的一些辅助技巧和优化方法。纵观全文可知,动态规划的关键在于把握本质思想的基础上灵活运用。 【目录】 1.动态规划的动机和基本思想 1.1.解决重复子问题 1.2.解决复杂贪心问题 2.动态规划状态的划分方法 2.1.一维状态划分 2.2.二维状态划分 2.3.树型状态划分 3.动态规划的辅助与优化方法 3.1.常见辅助方法 3.2.常见优化方法 4.近年来Noi动态规划题目分析 4.1 Noi2005瑰丽华尔兹 4.2 Noi2005聪聪与可可 4.3 Noi2006网络收费 4.4 Noi2006千年虫 附录参考书籍与相关材料

1.动态规划的动机和基本思想 首先声明,这里所说的动态规划的动机是从竞赛角度出发的动机。 1.1 解决重复子问题 对于很多问题,我们利用分治的思想,可以把大问题分解成若干小问题,然后再把各个小问题的答案组合起来,得到大问题的解答。这类问题的共同点是小问题和大问题的本质相同。很多分治法可以解决的问题(如quick_sort,hanoi_tower等)都是把大问题化成2个以内的不相重复的小问题,解决的问题数量即为∑(log2n / k)。而考虑下面这个问题: USACO 1.4.3 Number Triangles http://122.139.62.222/problem.php?id=1417 【题目描述】 考虑在下面被显示的数字金字塔。 写一个程序来计算从最高点开始在底部任意处结束的路径经过数字的和的最大。每一步可以走到左下方的点也可以到达右下方的点。 7 3 8 8 1 0 2 7 4 4 4 5 2 6 1 在上面的样例中,从7到3到8到7到5的路径产生了最大和:30。 【输入格式】 第一个行包含R(1<= R<=1000) ,表示行的数目。后面每行为这个数字金字塔特定行包含的整数。所有的被供应的整数是非负的且不大于100。 【输出格式】 单独的一行包含那个可能得到的最大的和。 【样例输入】 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 1 【样例输出】 30 显然,我们同样可以把大问题化成小问题来解决。如样例中最底层的6就可以从次底层

动态规划习题

第七章动态规划 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划(dynamic programming)同前面介绍过的各种优化方法不同,它不是一种算法,而是考察问题的一种途径。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。当然,由于动态规划不是一种特定的算法,因而它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,动态规划必须对具体问题进行具体的分析处理。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。1961年贝尔曼出版了他的第二部著作,并于1962年同杜瑞佛思(Dreyfus)合作出版了第三部著作。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数学性质做出了巨大的贡献。 动态规划在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。在经济管理方面,动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。 动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。本教材主要介绍动态规划的基本概念、理论和方法,并通过典型的案例说明这些理论和方法的应用。 §7.1 动态规划的基本理论 1.1多阶段决策过程的数学描述 有这样一类活动过程,其整个过程可分为若干相互联系的阶段,每一阶段都要作出相应的决策,以使整个过程达到最佳的活动效果。任何一个阶段(stage,即决策点)都是由输入(input)、决策(decision)、状态转移律(transformation function)和输出(output)构成的,如图7-1(a)所示。其中输入和输出也称为状态(state),输入称为输入状态,输出称为输出状态。

动态规划经典案例详解(背包问题)

动态规划经典案例详解之背包问题 【摘要】本文主要从动态规划经典案例——背包问题的动态规划设计思路出发,结合具体实例,对动态规划在程序设计中的典型应用以及衍生拓展进行详细分析。 【关键字】动态规划信息学奥赛0/1背包问题 动态规划并非一个算法,而是一种解题的思路,其核心思想是通过使用大量的存储空间把中间结果记录下来,大大减少重复计算的时间,从而提高的程序的执行效率,因为信息学奥林匹克复赛题目的解决程序一般是有时间限制的,对于某些用搜索必然耗费大量时间的题目,动态规划几乎是唯一的选择。但是动态规划并没有一个简单的模型可以套用,对于每个不同的题目都有对应的不同规划思路,我们只能通过对一些动态规划经典案例的学习来训练自己的动态规划思维能力,从而以不变应万变,应付各种复杂的程序设计,本文通过对动态规划经典案例之一的背包问题进行详细阐述,旨在让学生了解动态规划和搜索的不同设计思路以及动态规划的优越性。 【原型例题】 从n个物品中选取装入背包的物品,每件物品i的重量为wi,价值为pi。求使物品价值最高的选取方法。 【输入文件】 第一行一个数c,为背包容量。 第二行一个数n,为物品数量 第三行n个数,以空格间隔,为n个物品的重量 第四行n个数,以空格间隔,为n个物品的价值 【输出文件】 能取得的最大价值。 【分析】 初看这类问题,第一个想到的会是贪心,但是贪心法却无法保证一定能得到最优解,看以下实例: 贪心准则1:从剩余的物品中,选出可以装入背包的价值最大的物品,利用这种规则,价值最大的物品首先被装入(假设有足够容量),然后是下一个价值最大的物品,如此继续下去。这种策略不能保证得到最优解。例如,考虑n=2,w=[100,10,10],p=[20,15,15],c=105。当利用价值贪婪准则时,获得的解为x=[1,0,0],这种方案的总价值为20。而最优解为[0,1,1],其总价值为30。 贪心准则2:从剩下的物品中选择可装入背包的重量最小的物品。虽然这种规则对于前面的例子能产生最优解,但在一般情况下则不一定能得到最优解。考虑n=2,w=[10,20], p=[5,100],c=25。当利用重量贪婪策略时,获得的解为x=[1,0],比最优解[0,1]要差。

动态规划典型例题

1、单调递增最长子序列 描述 求一个字符串的最长递增子序列的长度 如:dabdbf最长递增子序列就是abdf,长度为4 输入 第一行一个整数0

2、最长公共子序列 描述 如题,需要写一个程序,得出最长公共子序列。 tip:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS(Longest Common Subsequence)。其定义是,一个序列S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则S 称为已知序列的最长公共子序列。 输入 第一行给出一个整数N(0

3、括号匹配 时间限制:1000 ms | 内存限制:65535 KB 描述 给你一个字符串,里面只包含"(",")","[","]"四种符号,请问你需要至少添加多少个括号才能使这些括号匹配起来。 如: []是匹配的 ([])[]是匹配的 ((]是不匹配的 ([)]是不匹配的 输入 第一行输入一个正整数N,表示测试数据组数(N<=10) 每组测试数据都只有一行,是一个字符串S,S中只包含以上所说的四种字符, S的长度不超过100 输出 对于每组测试数据都输出一个正整数,表示最少需要添加的括号的数量。每组 测试输出占一行 样例输入 4 [] ([])[] ((] ([)] 样例输出 3 2

0-1背包问题动态规划详解及代码

0/1背包问题动态规划详解及C代码 动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 /*一个旅行者有一个最多能用M公斤的背包,现在有N件物品, 它们的重量分别是W1,W2,...,Wn, 它们的价值分别为P1,P2,...,Pn. 若每种物品只有一件求旅行者能获得最大总价值。 输入格式: M,N W1,P1 W2,P2 ...... 输出格式: X*/ 因为背包最大容量M未知。所以,我们的程序要从1到M一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4

4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放 4."这样,这一排背包容量为4,5,6,....10的时候,最佳方案都是放 4."假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为 4."而背包容量为5的时候,则最佳方案为自己的重量 5."背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是 4."所以。总的最佳方案是5+4为 9."这样.一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的 6."而是上一排的 9."说明这时候3号物品没有被选.选的是1,2号物品.所以得 9.") 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗? 下面是实际程序(在VC 6."0环境下通过): #include

动态规划入门(论文)

动态规划思想入门 作者:陈喻(2008年10月7日)关键字:动态规划,最优子结构,记忆化搜索 引言 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decisionprocess)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划的基本思想 动态规划是:将待求的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;对于重复出现的子问题,只在第一次遇到的时候对它直接求解,并把答案保存起来,让以后再次遇到是直接引用答案,不必从新求解,其实质是分治思想和解决冗余。

例1:求A—>B的最短路径 图1 这是一个利用动态规划思想的经典问题,通过直接观察图1我们可以枚举出20多条路径,并可以计算出其中最短的路径长度为16

经典的动态规划入门练习题

动态规划入门练习题 1.石子合并 在一个圆形操场的四周摆放着N堆石子(N<= 100),现要将石子有次序地合并成一堆.规定每次只能选取相邻的两堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.编一程序,由文件读入堆栈数N及每堆栈的石子数(<=20). (1)选择一种合并石子的方案,使用权得做N-1次合并,得分的总和最小; (2)选择一种合并石子的方案,使用权得做N-1次合并,得分的总和最大; 输入数据: 第一行为石子堆数N; 第二行为每堆的石子数,每两个数之间用一个空格分隔. 输出数据: 从第一至第N行为得分最小的合并方案.第N+1行是空行.从第N+2行到第2N+1行是得分最大合并方案.每种合并方案用N行表示,其中第i行(1<=i<=N)表示第i次合并前各堆的石子数(依顺时针次序输出,哪一堆先输出均可).要求将待合并的两堆石子数以相应的负数表示. 输入输出范例: 输入: 4 4 5 9 4 输出: -459-4 -8-59 -13-9 224-5-94 4-14-4 -4-18 22 最小代价子母树设有一排数,共n个,例如:22 14 7 13 26 15 11.任意2个相邻的数可以进行归并,归并的代价为该两个数的和,经过不断的归并,最后归为一堆,而全部归并代价的和称为总代价,给出一种归并算法,使总代价为最小. 输入、输出数据格式与“石子合并”相同。 输入样例: 4 12 5 16 4 输出样例: -12-5164 17-16-4 -17-20 37

2.背包问题 设有n种物品,每种物品有一个重量及一个价值。但每种物品的数量是无限的,同时有一个背包,最大载重量为XK,今从n种物品中选取若干件(同一种物品可以多次选取),使其重量的和小于等于XK,而价值的和为最大。 输入数据: 第一行两个数:物品总数N,背包载重量XK;两个数用空格分隔; 第二行N个数,为N种物品重量;两个数用空格分隔; 第三行N个数,为N种物品价值; 两个数用空格分隔; 输出数据: 第一行总价值; 以下N行,每行两个数,分别为选取物品的编号及数量; 输入样例: 4 10 2 3 4 7 1 3 5 9 输出样例: 12 2 1 4 1 3.商店购物 某商店中每种商品都有一个价格。例如,一朵花的价格是2 ICU(ICU 是信息学竞赛的货币的单位);一个花瓶的价格是5 ICU。为了吸引更多的顾客,商店提供了特殊优惠价。特殊优惠商品是把一种或几种商品分成一组。并降价销售。例如:3朵花的价格不是6而是5 ICU ;2个花瓶加1朵花是10 ICU不是12 ICU。 编一个程序,计算某个顾客所购商品应付的费用。要充分利用优惠价以使顾客付款最小。请注意,你不能变更顾客所购商品的种类及数量,即使增加某些商品会使付款总数减小也不允许你作出任何变更。假定各种商品价格用优惠价如上所述,并且某顾客购买物品为:3朵花和2个花瓶。那么顾客应付款为14 ICU 因为: 1朵花加2个花瓶: 优惠价:10 ICU 2朵花正常价: 4 ICU 输入数据 用两个文件表示输入数据。第一个文件INPUT.TXT描述顾客所购物品(放在购物筐中);第二个文件描述商店提供的优惠商品及价格(文件名为OFF ER.TXT)。两个文件中都只用整数。 第一个文件INPUT.TXT的格式为:第一行是一个数字B(0≤B≤5),表示所购商品种类数。下面共B行,每行中含3个数C,K,P。 C 代表商品的编码(每种商品有一个唯一的编码),1≤C≤999。K代表该种商品购买总数,1≤K≤5。P 是该种商品的正常单价(每件商品的价格),1≤P≤999。请注意,购物筐中最多可放5*5=25件商品。 第二个文件OFFER.TXT的格式为:第一行是一个数字S(0≤S≤9 9),表示共有S 种优惠。下面共S行,每一行描述一种优惠商品的组合中商品的种类。下面接着是几个数字对(C,K),其中C代表商品编码,1≤C≤9 99。K代表该种商品在此组合中的数量,1≤K≤5。本行最后一个数字P(1≤ P≤9999)代表此商品组合的优惠价。当然,优惠价要低于该组合中商品正常价之总和。 输出数据 在输出文件OUTPUT.TXT中写一个数字(占一行),该数字表示顾客所购商品(输入文件指明所购商品)

动规-背包九讲完整版

背包问题九讲 v1.0 目录 第一讲 01背包问题 第二讲完全背包问题 第三讲多重背包问题 第四讲混合三种背包问题 第五讲二维费用的背包问题 第六讲分组的背包问题 第七讲有依赖的背包问题 第八讲泛化物品 第九讲背包问题问法的变化 附:USACO中的背包问题 前言 本篇文章是我(dd_engi)正在进行中的一个雄心勃勃的写作计划的一部分,这个计划的内容是写作一份较为完善的NOIP难度的动态规划总结,名为《解动态规划题的基本思考方式》。现在你看到的是这个写作计划最先发布的一部分。 背包问题是一个经典的动态规划模型。它既简单形象容易理解,又在某种程度上能够揭示动态规划的本质,故不少教材都把它作为动态规划部分的第一道例题,我也将它放在我的写作计划的第一部分。 读本文最重要的是思考。因为我的语言和写作方式向来不以易于理解为长,思路也偶有跳跃的地方,后面更有需要大量思考才能理解的比较抽象的内容。更重要的是:不大量思考,绝对不可能学好动态规划这一信息学奥赛中最精致的部分。 你现在看到的是本文的1.0正式版。我会长期维护这份文本,把大家的意见和建议融入其中,也会不断加入我在OI学习以及将来可能的ACM-ICPC的征程中得到的新的心得。但目前本文还没有一个固定的发布页面,想了解本文是否有更新版本发布,可以在OIBH论坛中以“背包问题九讲”为关键字搜索贴子,每次比较重大的版本更新都会在这里发贴公布。 目录 第一讲 01背包问题 这是最基本的背包问题,每个物品最多只能放一次。 第二讲完全背包问题 第二个基本的背包问题模型,每种物品可以放无限多次。

第三讲多重背包问题 每种物品有一个固定的次数上限。 第四讲混合三种背包问题 将前面三种简单的问题叠加成较复杂的问题。 第五讲二维费用的背包问题 一个简单的常见扩展。 第六讲分组的背包问题 一种题目类型,也是一个有用的模型。后两节的基础。 第七讲有依赖的背包问题 另一种给物品的选取加上限制的方法。 第八讲泛化物品 我自己关于背包问题的思考成果,有一点抽象。 第九讲背包问题问法的变化 试图触类旁通、举一反三。 附:USACO中的背包问题 给出 USACO Training 上可供练习的背包问题列表,及简单的解答。 联系方式 如果有任何意见和建议,特别是文章的错误和不足,或者希望为文章添加新的材料,可以通过https://www.360docs.net/doc/5a2960577.html,/user/tianyi/这个网页联系我。 致谢 感谢以下名单: ?阿坦 ?jason911 ?donglixp

动态规划例1求解下列整数规划的最优解

例1 求解下列整数规划的最优解: ()123 123max 45634510..01,2,3,j j Z x x x x x x s t x j x =++++???=??≤≥为整数. 解 (1)建立动态规划模型: 阶段变量:将给每一个变量j x 赋值看成一个阶段,划分为3个阶段,且阶段变量k=1,2,3. 设状态变量k s 表示从第k 阶段到第3阶段约束右端最大值,则10.j s = 设决策变量k x 表示第k 阶段赋给变量k x 的值(1,2,3)k =. 状态转移方程:2113223,4.s s x s s x =-=- 阶段指标:111122223333(,)4,(,)5,(,)6.u s x x u s x x u s x x === 基本方程; ()(){}()3113,2,1044 ()max ,()0.s k k k k k k k k k k x a f s u s x f s f s ++??=????? ??=+???=?≤≤ 其中1233,4, 5.a a a === (1) 用逆序法求解: 当3k =时, ()(){}{}33333443330055max 6max 6,s s x x f s x f s x ???? ?? ?? ?????? ?? =+=≤≤≤ 而{}[]30,1,2,3,4,5,6,7,8,9,10.s x ∈表示不超过x 的最大整数。因此,当30,1,2,3,4s =时, 30x =;当35,6,7,8,9s =时,3x 可取0或1;当310s =时,3x 可取0,1,2,由此确定()33. f s 现将有关数据列入表中 表中.

动态规划练习题合集(Dp-合集)

一、关键子工程(project.c/cpp/pas) 在大型工程的施工前,我们把整个工程划分为若干个子工程,并把这些子工程编号为1、2、……、N;这样划分之后,子工程之间就会有一些依赖关系,即一些子工程必须在某些子工程完成之后才能施工。由于子工程之间有相互依赖关系,因此有两个任务需要我们去完成:首先,我们需要计算整个工程最少的完成时间;同时,由于一些不可预测的客观因素会使某些子工程延期,因此我们必须知道哪些子工程的延期会影响整个工程的延期,我们把有这种特征的子工程称为关键子工程,因此第二个任务就是找出所有的关键子工程,以便集中精力管理好这些子工程,尽量避免这些子工程延期,达到用最快的速度完成整个工程。为了便于编程,现在我们假设: (1)根据预算,每一个子工程都有一个完成时间。 (2)子工程之间的依赖关系是:部分子工程必须在一些子工程完成之后才开工。 (3)只要满足子工程间的依赖关系,在任何时刻可以有任何多个子工程同时在施工,也既同时施工的子工程个数不受限制。 (4)整个工程的完成是指:所有子工程的完成。 其中,表格中第I+1行J+2列的值如为0表示“子工程I”可以在“子工程J”没完成前施工,为1表示“子工程I”必须在“子工程J”完成后才能施工。上述工程最快完成时间为14天,其中子工程1、3、4、5为关键子工程。 又例如,有五个子工程的工程规划表: 上述的子工程划分不合理,因为无法安排子工程1,3,4的施工。 输入数据: 第1行为N,N是子工程的总个数,N≤200。 第2行为N个正整数,分别代表子工程1、2、……、N的完成时间。 第3行到N+2行,每行有N-1个0或1。其中的第I+2行的这些0,1,分别表示“子工程I”与子工程1、2、…、I-1、I+1、…N的依赖关系,(I=1、2、……、N)。每行数据之间均用一个空格分开。 输出数据:

相关文档
最新文档