正交矩阵和酉矩阵对比

正交矩阵和酉矩阵对比

在矩阵理论中,经常利用矩阵来描述变换.在实空间中正交变换保持度量不变,而正交变换中对应的变换矩阵就是正交矩阵,所以对正交矩阵的研究就显得格外重要.同样道理,想要得到复空间中保持度量不变的线性变换,就应该对正交变换进行推广,将其推广到复数域上,那对应的正交矩阵相应的也推广到复数域上就是酉矩阵.本文通过矩阵理论的研究,对正交矩阵与酉矩阵进行比较,得到了酉矩阵的若干结果.

正交矩阵是一类重要的实矩阵,由于它的一些特殊性质,使得它在不同的领域都有着广泛的作用,也推动了其它学科的发展.本文从矩阵理论的角度,探讨正交矩阵的常用性质以及正交矩阵在数学方面的一些应用。

以酉矩阵的定义为基础,对酉矩阵的性质等进行研究,通过对这些问题的研讨,为酉矩阵的构造奠定了基础.在实际应用方面,若要应用酉矩阵解决实际问题,快速地构造一个酉矩阵就显得及其重要.

本文对酉矩阵的性质及构造展开研究. 根据矩阵理论, 通过查阅图书、电子书库, 以及对以前的知识进行归纳总结, 深入理解, 进行深入的研究, 从而对酉矩阵有了新的认识, 总结一些结论. 在代数性质方面包括:酉矩阵的特征根、对角化、判断方法及酉矩阵的等价条件等. 在运算性质方面包括:酉矩阵的逆、转置矩阵、方幂、数乘、矩阵乘、伴随矩阵等是否仍为酉矩阵. 在酉矩阵的构造方面:以酉矩阵的定义为基础, 对酉矩阵的性质等进行研究, 通过对这些问题的探讨, 为酉矩阵的构造奠定了基础. 在实际应用方面, 若要应用酉矩阵解决实际问题, 快速地构造出一个酉矩阵就显得极其重要, 本文给出了构建酉矩阵的五种方法, 并对应相应的构造方法给出证明. 通过本文的研究对酉矩阵的构造有了进一步的认识.

酉矩阵

正交矩阵、正规矩阵和酉矩阵 在数学中,正规矩阵是与自己的共轭转置交换的复系数方块矩阵,也就是说,满足 其中是的共轭转置。 如果是实系数矩阵,那么条件简化为其中是的转置矩阵。 矩阵的正规性是检验矩阵是否可对角化的一个简便方法:任意正规矩阵都可在经过一个酉变换后变为对角矩阵,反过来所有可在经过一个酉变换后变为对角矩阵的矩阵都是正规矩阵。 在复系数矩阵中,所有的酉矩阵、埃尔米特矩阵和斜埃尔米特矩阵都是正规的。同理,在实系数矩阵中,所有的正交矩阵、对称矩阵和斜对称矩阵都是正规的。两个正规矩阵的乘积也不一定是正规矩阵 酉矩阵 n阶复方阵U的n个列向量是U空间的一个标准正交基,则U是酉矩阵(Unitary Matrix)。 一个简单的充分必要判别准则是: 方阵U的共扼转置乘以U等于单位阵,则U是酉矩阵。即酉矩阵的逆矩阵与其伴随矩阵相等。 酉方阵在量子力学中有着重要的应用。酉等价是标准正交基到标准正交基的特殊基变换。

若一 n 行 n 列的复矩阵U满足 其中为n阶单位矩阵,为U的共轭转置,为酉矩阵或译幺正矩阵。即,矩阵U为酉矩阵,当且仅当其共轭转置为其逆矩阵: 。 若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实向量的内积类似, 幺正矩阵U不改变两个复向量的内积: 若为n阶方阵,则下列条件等价: 1.是酉矩阵 2.是酉矩阵 3.的列向量构成内积空间C n上的一组正交基 4.的行向量构成内积空间C n上的一组正交基 酉矩阵的特征值都是绝对值为1的复数,即分布在复平面的单位圆上,因此酉矩阵行列式的值也为1。 酉矩阵是正规矩阵,由谱定理知,幺正酉矩阵U可被分解为 其中V是酉矩阵,Σ是主对角线上元素绝对值为1的对角阵。 对任意n,所有n阶酉矩阵的集合关于矩阵乘法构成一个群。

酉矩阵和正交矩阵的性质和应用

正交矩阵与酉矩阵的性质和应用 0 前言 (1) 1 欧式空间和正交矩阵 (2) 1.1 欧式空间 (2) 1.2 正交矩阵的定义和性质 (2) 1.2.1 正交矩阵的定义和判定 (2) 1.2.2 正交矩阵的性质 (3) 2正交变换的定义和性质 (12) 2.1正交变换定义的探讨 (12) 2.2正交变换的判定 (14) 2.3正交变换的性质 (15) 3正交矩阵的应用 (17) 3.1正交矩阵在线性代数中的应用 (17) 3.2利用正交矩阵化二次型为标准形 (22) 3.2.1 对称矩阵可对角化的相关理论证明 (22) 3.2.2 对称矩阵对角化的具体方法及应用举例 (23) 3.2.3利用正交矩阵化简直角坐标系下的二次曲面方程 (25) 3.3正交矩阵在矩阵分解中的作用 (26) 3.4正交矩阵在方程组的求解中的应用 (35) 4 酉空间和酉矩阵 (38) 4.1 酉空间 (38) 4.1.1 酉空间的定义 (38) 4.1.2 酉空间的重要结论 (38) 4.2 酉矩阵 (40) 4.2.1 酉矩阵的定义 (40) 4.2.2 酉矩阵的性质 (40) 5酉矩阵的应用 (48) 5.1酉矩阵在矩阵的分解中的应用 (48) 5.2 利用酉矩阵化正规矩阵为对角形矩阵 (54) 6 正交矩阵与酉矩阵 (57) 7结论 (60) 参考文献 (62) 致谢 (63)

0前言 正交矩阵是一类特殊的实方阵,酉矩阵是一类重要的复矩阵,它们的一些特殊性质,使得它在不同的领域都有着广泛的应用,也推动了其它学科的发展. 随着科学技术的迅速发展,特别是计算机的广泛应用,矩阵问题特别是特殊矩阵的性质及其构造越来越受到科学工作者以及工程人员的重视.它不仅局限于一个数学分支,而且许多理工方法和技术的发展就是矩阵理论的创造的应用与推广的结果. 在矩阵理论的研究中,正交矩阵与酉矩阵在线性代数、优化理论、计算方法等方法都占有重要的地位.戴立辉等(2002)对正交矩阵进行了详细的研究,得到了正交矩阵的若干性质;2005年,雷纪刚在《矩阵理论与应用》中给出了正交矩阵和酉矩阵的关系并证明了酉矩阵就是等距变换;2006年,苏育才在《矩阵理论》中介绍了酉矩阵的概念的推广和酉矩阵的一系列性质;2008年,吴险峰在《正交矩阵的进一步探究》中给出了正交矩阵和酉矩阵的一些性质定理,这些都为正交矩阵和酉矩阵的应用奠定了基础. 在矩阵理论中,经常利用矩阵来描述变换.在实空间中正交变换保持度量不变,而正交变换中对应的变换矩阵就是正交矩阵,所以对正交矩阵的研究就显得格外重要.同样道理,想要得到复空间中保持度量不变的线性变换,就应该对正交变换进行推广,将其推广到复数域上,那对应的正交矩阵相应的也推广到复数域──酉矩阵.下面将通过矩阵理论的深入研究,对正交矩阵与酉矩阵进行比较,得到了酉矩阵的若干结果.

正交矩阵和酉矩阵对比

在矩阵理论中,经常利用矩阵来描述变换.在实空间中正交变换保持度量不变,而正交变换中对应的变换矩阵就是正交矩阵,所以对正交矩阵的研究就显得格外重要.同样道理,想要得到复空间中保持度量不变的线性变换,就应该对正交变换进行推广,将其推广到复数域上,那对应的正交矩阵相应的也推广到复数域上就是酉矩阵.本文通过矩阵理论的研究,对正交矩阵与酉矩阵进行比较,得到了酉矩阵的若干结果. 正交矩阵是一类重要的实矩阵,由于它的一些特殊性质,使得它在不同的领域都有着广泛的作用,也推动了其它学科的发展.本文从矩阵理论的角度,探讨正交矩阵的常用性质以及正交矩阵在数学方面的一些应用。 以酉矩阵的定义为基础,对酉矩阵的性质等进行研究,通过对这些问题的研讨,为酉矩阵的构造奠定了基础.在实际应用方面,若要应用酉矩阵解决实际问题,快速地构造一个酉矩阵就显得及其重要. 本文对酉矩阵的性质及构造展开研究. 根据矩阵理论, 通过查阅图书、电子书库, 以及对以前的知识进行归纳总结, 深入理解, 进行深入的研究, 从而对酉矩阵有了新的认识, 总结一些结论. 在代数性质方面包括:酉矩阵的特征根、对角化、判断方法及酉矩阵的等价条件等. 在运算性质方面包括:酉矩阵的逆、转置矩阵、方幂、数乘、矩阵乘、伴随矩阵等是否仍为酉矩阵. 在酉矩阵的构造方面:以酉矩阵的定义为基础, 对酉矩阵的性质等进行研究, 通过对这些问题的探讨, 为酉矩阵的构造奠定了基础. 在实际应用方面, 若要应用酉矩阵解决实际问题, 快速地构造出一个酉矩阵就显得极其重要, 本文给出了构建酉矩阵的五种方法, 并对应相应的构造方法给出证明. 通过本文的研究对酉矩阵的构造有了进一步的认识.

正交矩阵的性质及其应用 2

学号 20090501050227 密级 兰州城市学院本科毕业论文正交矩阵的性质及应用 学院名称:数学学院 专业名称:数学与应用数学 学生姓名:苏志升 指导教师:宋雪梅 二○一三年五月

BACHELOR’S DEGREE THESIS OF LANZHOU CITY UNIVERSITY Properties and Applications of Orthogonal Matrix College :Mathematics College Subject :Mathematics and Applied Mathematics Name :Su Zhisheng Directed by :S ong Xuemei May 2013

郑重声明 本人呈交的学位论文,是在导师的指导下,独立进行研究工作所取得的成果,所有数据、资料真实可靠。尽我所知,除文中已经注明引用的内容外,本学位论文的研究成果不包含他人享有著作权的内容对本论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确的方式标明。本学位论文的知识产权归属于培养单位。 本人签名:日期:

摘要 本文给出了正交矩阵的性质并列举了正交矩阵的多个性质。研究正交矩阵在空间坐标旋转中的作用。 关键词:正交矩阵;性质;标准正交基;特征多项式;应用

ABSTRACT Orthogonal matrix is made up of inner product lead. This paper illustrates several properties of orthogonal matrix and to give the proof. Study the role of orthogonal matrix in space coordinate rotation, and the matrix analysis of typical cases, and illustrates the application of matrix. Key words:orthogonal matrix; Rotation matrix; Orthonormal basis; Characteristic value; The application.

矩阵分析

I. QUESTION I Summarize the known constructions of orthogonal matrices and unitary matrices. Give some numerical examples for each construction. 1》正交矩阵:是实数特殊化的酉矩阵,因此总是正规矩阵。尽管我们在这 里只考虑实数矩阵,这个定义可用于其元素来自任何域的矩阵。正交矩阵不一定是实矩阵。实正交矩阵可以看做是一种特殊的酉矩阵,但存在一种复正交矩阵,复正交矩阵不是酉矩阵。 正交矩阵有以下几种等价定义及其判定 (满足的结构性质) 定义1.1 A 为n 阶实矩阵,若E AA =',则称A 为正交矩阵. 定义1.2 A 为n 阶实矩阵,若E A A =',则称A 为正交矩阵. 定义1.3 A 为n 阶实矩阵,若1-=A A ,则称A 为正交矩阵. 定义1.4 A 为n 阶实矩阵,若A 的n 个行(列)向量是两两正交的单位向量,则称A 为正交矩阵. 实例: ??? ???-θθθθ c o s s i n s i n c o s ?? ????1001 2》酉矩阵:n 阶复方阵U 的n 个列向量是U 空间的一个标准正交基, 则U 是酉矩阵。酉矩阵是正交矩阵往复数域上的推广。 酉矩阵的相关性质: 设有矩阵 ,则 (1)若是酉矩阵,则的逆矩阵也是酉矩阵; (2)若是酉矩阵,则也是酉矩阵; (3)是酉矩阵的充分必要条件是,它的个列向量是两两正交的单位向量。

一个简单的充分必要判别准则是: 酉矩阵的共轭转置和它的逆矩阵相等 酉矩阵基本性质:(A 是酉矩阵) 1.A 的行列式的模等于1 2.H A A =-1,11)()(--=H H A A 3.1-A 也是酉矩阵,两个n 阶酉矩阵的乘积也是酉矩阵 4.A 的每个(列)行向量(看作酉空间n C 的向量)是单位向量;不同的两个(列)行向量是酉矩阵正交的。 实例: ?? ? ? ??++ββαα s i n c o s 00s i n c o s i i (βα,为任意角度) II. QUESTION II A Hadamard matrix of order n is an n n ?matrix with elements in {}1,1+- such that T n n HH nE ?=where T H is the transpose of H and n E is the identity matrix of order n .This class of matrices are useful in many practical applications. Q1 Does Hadamard matrix exist for any order? Please list a Hadarmard matrix of order n with 20n ≤ if such a matrix exists. Q2 Design two Hadamard matrices []12 ;;; n H h h h =and 12; ; [; ]n G g g g = of order 2m n = (where m is odd) such that: 12/2; ;{}; n h h h is orthogonal to 12/2 ; ;{}; n g g g ;and

03 矩阵的对角化与Jordan标准形

第三讲矩阵的对角化与Jordan标准形 对任何线性空间,给定基后,我们对元素进行线性变换或线性运算时,只需用元素的坐标向量以及线性变换的矩阵即可,因此,在后面的内容中着重研究矩阵和向量。 对角矩阵的形式比较简单,处理起来较方便,比如求解矩阵方程=时,将矩阵A对角化后很容易得到方程的解。对角化的过程实Ax b 际上是一个去耦的过程。以前我们学习过相似变化对角化。那么,一个方阵是否总可以通过相似变化将其对角化呢?或者对角化需要什么样的条件呢?如果不能对角化,我们还可以做哪些处理使问题变得简单呢? 一、特征值与特征向量 1. 定义:对m阶方阵A,若存在数λ,及非零向量(列向量)x,使 =λ,则称λ为A的特征值,x为A的属于特征值λ的得Ax x 特征向量。 ?特征向量不唯一 ?特征向量非零

?(I A)x 0λ-=有非零解,则det(I A)0λ-=,称det(I A)λ-为A 的多项式。 [例1]122A 212221?? ??=??????,求其特征值和特征向量。 [解] 122 det(I A)2120221 λ---λ-=-λ--=--λ- 2(1)(5)0λ+λ-= 121λ=λ=- 35λ= 属于特征值1λ=-的特征向量 (I A)x 0--= 1232222220222ξ???? ????ξ=???? ξ???????? 1230ξ+ξ+ξ= 11 223 12ξ=ξ?? ξ=ξ??ξ=-ξ-ξ ? 可取基础解系为 11x 01????=??-???? 20x 11?? ??=??-???? 属于5λ=的特征向量 (5I A)x 0-= 1234222420224--ξ???? ????--ξ=???? --ξ???????? 123ξ=ξ=ξ 可取基础解系为 31x 11????=?????? 2. 矩阵的迹与行列式

正交矩阵的性质和应用

目录 摘要(关键词) (1) Abstract(Key words) (1) 1前言 (1) 2正交矩阵的性质 (1) 3正交矩阵的相关命题 (3) 4 正交矩阵的应用 (5) 4.1 正交矩阵在解析几何上的应用 (6) 4.2正交矩阵在拓扑学和近似代数中的应用 (7) 4.3 正交矩阵在物理学中的应用 (9) 5后记 (10) 参考文献 (10) 致谢 (11)

关于正交矩阵的性质及应用研究 摘要:正交矩阵是数学中一类特殊的矩阵,同时它还具有一些非常特殊的性质和广泛的应用.目前也有很多关于正交矩阵文献,但是其中大部分都是研究关于正交矩阵性质,而关于正交矩阵的应用很少提及.本文的主要任务就是利用正交矩阵的定义,并以矩阵性质,行列式性质为主要工具,归纳正交矩阵的性质,并探讨正交矩阵在解析几何、拓扑学、近似代数及物理学上的应用. 关键词:正交矩阵;行列式;性质;应用 Abstract: Orthogonal matrix is a kind of special matrix in mathematics. Meanwhile, it also has some very special properties and it is widely used. At present, there are many literatures about orthogonal matrix, but most of them are about the properties of orthogonal matrix. However, the application of orthogonal matrix is seldom mentioned. The main task of this paper is to induce the properties of orthogonal matrix and explore the applications of it in analytic geometry, topology, approximate algebra and physics by using the definition of orthogonal matrix and utilizing the properties of matrix and determinant as the main tool. Key words: Orthogonal matrix; determinant; property; application 1前言 我们在讨论标准正交基的求法后,由于标准正交基在欧氏空间中占有特殊的地位,从而讨论一组标准正交基到另一组标准正交基的基变换公式。那么由一组标准正交基到另一组标准正交基的过渡矩阵是什么样的,它有什么性质呢? 我们由上面的问题引出了关于正交矩阵的定义。正交矩阵是一种特殊的矩阵,因此对于正交矩阵的性质及分类的探讨具有非常重要的意义。而这篇文章就是针对正交矩阵所具有的一系列性质,以及正交矩阵在数学领域,结构化学基础及力学领域的一系列应用。 2正交矩阵的性质 本文在探讨正交矩阵的性质时除特殊强调外都是指数域P 上的矩阵,用n n P ?表示数域P 上n 阶方阵的集合,用E 表示单位矩阵,用A 、1-A 、*A 、'A 分别表示矩阵A 的行列式、逆矩阵(当A 可逆时)、伴随矩阵、转置矩阵. 定义2.1 n 阶实矩阵A ,若有 E A A =' ,则称A 为正交矩阵. 等价定义1: n 阶实矩阵A ,若有 E A A =',则称A 为正交矩阵; 等价定义2: n 阶实矩阵A ,若有 1-='A A ,则称A 为正交矩阵; 等价定义3: n 阶实矩阵A 的n 个行(列)向量是两两正交的单位向量 ,则称A 为正交矩阵. 性质2.1 A 为正交矩阵,则其行列式的值为1或1-. 证明: 由正交矩阵的定义知,E A A =' 两边同取行列式,得1=='E A A ,又由于 A A =',则12 =A , 即1±=A 性质2.2 A 为正交矩阵,A 的任一行(列)乘以1-得到的矩阵仍为正交矩阵. 证明: 设()n j i A ββββ ,,,,1=,其中n j i ββββ,,,,,,1 是A 的单位正交向量组.显然()n j i ββββ,,,,,,1 -也是A 的单位正交矩阵,则由正交矩阵的等价定义3知成立. 性质2.3 A 为正交矩阵,A 的任两行(列)互换得到的矩阵仍为正交矩阵.

酉矩阵与HERMITE矩阵性质总结

酉矩阵与Hermite矩阵的浅谈 韦龙 201131402 摘要 科学在发展,社会在进步,人们对于数学的理解越来越深刻,数学应用于日常生活生产越来越广泛。在数学的很多分支和工程实际应用中, 都涉及到一些特殊的矩阵的性质及构造. 本文讨论两类特殊的矩阵——酉矩阵和Hermite矩阵. 酉矩阵和Hermite矩阵作为两类特殊的矩阵, 有很多良好的性质, 在矩阵理论中具有举足轻重的作用。本文通过对正交矩阵和酉矩阵关系的概述、酉矩阵的性质和酉矩阵的构造来初步认识酉矩阵,为以后的深入学习奠定基础。本文主要从Hermite矩阵的性质,判定定理,正定性和Hermite矩阵不等式四个方面讨论Hermite矩阵。 关键词: 酉矩阵;Hermite矩阵;正交矩阵;特征值。

The study of Unitary matrix and Hermite matrix Wei Long 201131402 Abstract With the development of science and society, people get a deeper understanding of math , and the use of math becomes more and more widely. In many branches of mathematics and engineering applications, are related to some special nature and structure matrix. This paper discusses a special kind of matrix - unitary matrix and Hermite matrix. The two kinds of matrix as two specials kind of matrix, there are many good properties. In the matrix theory plays an important role in the study of this topic could be more perfect matrix theory. In this paper , we use the knowledge of the unitary matrix and Orthogonal matrix ,the nature of the unitary matrix, the construction of the unitary matrix to get a first impression of the unitary matrix, and make a basement to farther study. And we study the Hermite matrix by the knowledge of the nature of Hermite matrix,determined theorem ,positive definite matrix and the Hermite matrix inequality. Key words: unitary matrix ;Hermite matrix ;Orthogonal matrix;

正交矩阵与正交变换的性质及应用

正交矩阵与正交变换的性质及应用 程祥 河南大学数学与信息科学学院 开封 475004 摘要 矩阵是数学中的重要概念,是代数学重要研究对象之一,也是数学与其他领域研究与应用的一个重要工具,而正交矩阵作为一类特殊且常用的矩阵,在矩阵论中占有重要地位,且应用非常广泛,因此对正交矩阵的探讨具有十分重要的意义.本文主要对正交矩阵的性质及结论进行归纳总结,并对相关性质进行推广. 关键词:正交矩阵;正交变换;性质 1.1 正交矩阵的的定义及其判定 定义1 n 阶实矩阵A , 若满足E A A =', 则称A 为正交矩阵. 性质1 A 为正交矩阵1'-=?A A . 性质2 A 为正交矩阵?'1,,,1,2,,0,, i j i j i j n i j αα=?==? ≠? .的列向量为A i α. 性质 3 A 为正交矩阵?' 1,,1,2,...0,, i j i j i j n i j ββ=?===?≠?.的行向量为A i β. 1.2 正交矩阵的性质 性质1]3[ 若A 为正交矩阵则*'1,,A A A -均为正交矩阵. 证明 有E A A A A E A A A A ====---1''11''''')()(,)()(, E A A A A ==* ' ' * * )()(, 可得 * ' 1 ,,A A A -均为正交矩阵. 性质2 若A 为正交矩阵则11)det(-=或A 证明 对E A A ='两边同取行列式,

可得 1))(det(2 =A , 故 11)det(-=或A . 性质3]4[ 若B A ,为正交矩阵,则AB 也为正交矩阵. 证明 有E AA A ABB AB AB ===''''))((, 可得 AB 为正交矩阵. 性质4 正交矩阵的特征值的模为1. 证明 设A 为正交矩阵,复数λ为其任一特征值X 为其对应的特 征向量,即X AX λ=,0≠X 两边取转置 ' ' ' X A X λ=, 由此得 X X AX A X λλ' ' ' =, 有E A A ='可得 X X X X ' 2 ' λ=, 从而1=λ. 性质5 正交矩阵的实特征值为1±. 性质6]5[ 行列式为1的奇数阶正交矩阵必有特征值1. 证明 设A 为n 阶正交矩阵且1)det(=A ,n 为奇数 则 ' ' ' ) ()1()1(A E A E A A A A E n n --=--=-=- A E n --=)1(A E --=, 故

酉矩阵与HERMITE矩阵性质总结

酉矩阵与Hermite矩阵的浅谈 韦龙201131402 摘要 科学在发展,社会在进步,人们对于数学的理解越来越深刻,数学应用于日常生活生产越来越广泛。在数学的很多分支和工程实际应用中, 都涉及到一些特殊的矩阵的性质及构造. 本文讨论两类特殊的矩阵——酉矩阵和Hermite 矩阵. 酉矩阵和Hermite矩阵作为两类特殊的矩阵, 有很多良好的性质, 在矩阵理论中具有举足轻重的作用。本文通过对正交矩阵和酉矩阵关系的概述、酉矩阵的性质和酉矩阵的构造来初步认识酉矩阵,为以后的深入学习奠定基础。本文主要从Hermite矩阵的性质,判定定理,正定性和Hermite 矩阵不等式四个方面讨论Hermite矩阵。 关键词: 酉矩阵;Hermite矩阵;正交矩阵;特征值。

The study of Unitary matrix and Hermite matrix Wei Long 201131402 Abstract With the development of science and society, people get a deeper understanding of math , and the use of math becomes more and more widely. In many branches of mathematics and engineering applications, are related to some special nature and structure matrix. This paper discusses a special kind of matrix - unitary matrix and Hermite matrix. The two kinds of matrix as two specials kind of matrix, there are many good properties. In the matrix theory plays an important role in the study of this topic could be more perfect matrix theory. In this paper , we use the knowledge of the unitary matrix and Orthogonal matrix ,the nature of the unitary matrix, the construction of the unitary matrix to get a first impression of the unitary matrix, and make a basement to farther study. And we study the Hermite matrix by the knowledge of the nature of Hermite matrix,determined theorem ,positive definite matrix and the Hermite matrix inequality. Key words: unitary matrix ;Hermite matrix ;Orthogonal

欧式空间和正交矩阵的相关性质

第一章 欧式空间和正交矩阵 欧氏空间和酉空间 1.向量空间中向量的内积、长度、夹角的定义及性质,规范正交基,Schmidt 正交化方法; 2.正交变换与正交矩阵的定义和性质; 3.对称变换与实对称矩阵,实对称矩阵的正交相似对角化; 4.酉空间的定义及其基本性质,酉变换和酉矩阵. &1 欧式空间 定义: 设V 是实数域上一个线性空间,在V 上定义了一个二元实函数,称为内积,记作),(βα,它具有以下性质: 1) (,)(,)αββα=; 2) ),(),(βαβαk k =; 3) ),(),(),(γβγαγβα+=+; 4) ),(αα是非负实数,且),(αα当且仅当0=α 这里,,αβγ是V 中任意的向量, k 是任意实数,这样的线性空间称为欧式空间. &2 正交矩阵的定义和性质 由标准正交基到标准正交基的过渡矩阵是正交矩阵;反过来,如果第一组基是标准正交基,同时过渡矩阵是正交矩阵,那么第二组基一定也是标准正交基 2.1 正交矩阵有以下几种等价定义及其判定: 定义1 A 为n 阶实矩阵,若A A E '=,则称A 为正交矩阵. 定义2 A 为n 阶实矩阵,若AA E '=,则称A 为正交矩阵. 定义3 A 为n 阶实矩阵,若1 A A -'=,则称A 为正交矩阵. 定义4 A 为n 阶实矩阵,若A 的n 个行(列)向量是两两正交的单位向 量,则称A 为正交矩阵. 判定1 A 为正交矩阵1'-=?A A .

判定2 A 为正交矩阵?'1,, ,1,2,,0,,i j i j i j n i j αα=?==?≠? . 判定3 A 为正交矩阵?'1,, 1,2,...0,,i j i j i j n i j ββ=?===?≠? 2.2 正交矩阵的性质 性质1 设为A 正交矩阵,则 )11A =±; )2A 可逆,即1A -存在,其逆1A -也是正交矩阵; )3A ',*A 也是正交矩阵. 并且当A 为(2)n n >阶正交矩阵时, 当1A =时, *A A '=, 即ij ij a A =; 当1A =-时, *A A '=-, 即ij ij a A =- 证:)1由AA E '=,可知2 1A =,或者1A =±. 对正交矩阵A , 当1A =时,我们称A 为第一类正交矩阵; 当1A =时,则称A 为第二类正交矩阵. )2由AA E '=,可知A 可逆,且1A A -'=,又 ()()() 1 1 1A A A A E ---'''==== 故1 A -是正交矩阵. )3由)2知1A A -'=,A '是正交矩阵. 而*11A A A A --==±,有 ()()()1 * 1*A A A A --''=±=±=, 故* A 是正交矩阵.

酉矩阵和正交矩阵

网卡驱动网站 https://www.360docs.net/doc/583171323.html,/link/44/435505.shtml 对称变换且σ的特征根均为±1. 证明必要性:因正交变换σ可对角化,所以由引理1可知:σ的特征根均为±1,再由 定理1的必要性可知:σ为对称变换. 充分性:因对称变换σ的特征根均为±1,所以由文[1]定理8.4.5知:存在V的一个标准正交基,使σ在此基下的矩阵为对称阵 A =diag(-1,…,-1,1,…,1),于是A2= I,由 文[1]定理7.3.3知:σ2= l,再由引理3知:σ为正交变换,故σ是一个可对角化的正交变换. 例1 设V是一个n维欧氏空间,η是V中的一个单位向量,定义V的变换σ如下: σ(α) =α-2〈η,α〉η, (α∈V). 试证:σ2= l且σ是一个可对角化的正交变换. 证法1 易证:σ2= l且α,β∈V均有〈σ(α),β〉=〈α,σ(β)〉,所以由定理3可知: σ是一个可对角化的正交变换. 证法2 易证σ2= l且α,β∈V均有〈σ(α),σ(β)〉=〈α,β〉,于是由定理4可知: σ是一个可对角化的正交变换. 证法3 易证α,β∈V均有〈σ(α),σ(β)〉=〈α,β〉且〈σ(α),

β〉=〈α,σ(β)〉,于是 由定理5可知:σ是一个可对角化的正交变换,再由定理2知:σ2= l. 证法4 易证α,β∈V均有〈σ(α),σ(β)〉=〈α,β〉且〈σ(α),β〉=〈α,σ(β)〉,于是 由引理3与定理5可知:σ2= l且σ是一个可对角化的正交变换. 证法5 易证α,β∈V均有〈σ(α),β〉=〈α,σ(β)〉.于是由文[5]中定理1可知:σ 为V的对称变换,又由σ的定义易知:σ的特征根均为±1,所以由定理6可知:σ为一个可对角化的正交变换,再由定理2可知:σ2= l. 相应地,关于正交矩阵可对角化的判定条件有: 引理4 若n阶正交矩阵A的特征根均为实数±1,则存在n阶正交矩阵T使 T’AT = T-1AT =diag(-1,…,-1,1,…,1). 证明参见文[2]380~381页此处从略. 定理7 设A为n阶正交矩阵,则A可对角化的充要条件是:A的特征根均为实数±1. 证明必要性:因为A可对角化,所以由文[1]推论7.6.6知:A的特征根均为实数,又 A为正交变矩阵,所以由引理1可知:A的实特征根只能为±1. 充分性:由引理4知显然成立. 定理8 设A为n阶实矩阵,则A是一个可对角化的正交矩阵的充要条件为:存在n阶

第四章正规矩阵与矩阵的分解

第一节 正规矩阵 【Schur 三角化定理】设n n A ?∈ ,则存在酉矩阵U ,使*U AU B =,其中B 为一 个上三角矩阵. 【酉矩阵】n 阶复方阵U 的n 个列向量是U 空间的一个标准正交基. 1H H H n U U UU E U U -==?= 性质:设有矩阵A ,B ,则 (1)若A 是酉矩阵,则1A -也是酉矩阵; (2)若A ,B 是酉矩阵,则AB 及BA 也是酉矩阵; (3)若A 是酉矩阵,则|det()|1A =; (4)A 是酉矩阵?A 的n 个列向量是两两正交的单位向量. 【定理】矩阵A 可以酉对角化?**AA A A =. *U AU T =是上三角矩阵,*********()()AA UTU UTU UTU UT U UTT U === *********()()A A UTU UTU UT U UTU UT TU ===,故****A A AA T T TT =?= A 可以酉对角化,则?酉矩阵U 使*U AU D = ***************()()()()AA U DU U DU U DUU D U U DD U U D DU U DU U DU A A ====== 【定义】设n n A ?∈ ,若**AA A A =,则称A 是正规矩阵. 【引理】设A 为正规矩阵,若A 又为三角矩阵,则A 为对角矩阵. 【定理】设n n A ?∈ ,则A 为正规矩阵?A 有n 个两两正交的单位特征向量. 【推论】正规矩阵属于不同特征值的特征向量是两两正交的. 【定理】设()i j n n A a ?=是复矩阵,1λ,2λ,……,n λ为A 的n 个特征值,则 (1)(Schur 不等式) 221 ,1||||n n i i j i i j a λ==≤∑∑ (2)A 为正规矩阵?2 21 ,1 |||| n n i i j i i j a λ===∑∑ (3)* 2,,1 tr()||n i j i j AA a == ∑ 【推论】设A 为正规矩阵且幂零,则0A =. 【定义】设a 与b 是实数,且0b ≠,则称二阶实矩阵 a b b a ?? ?-??

正交矩阵的性质及其正交相似标准型

正交矩阵的性质及其正交相似标准型 数学学院数学与应用数学(师范)专业2008级张亮 指导教师刘学文 摘要:正交矩阵作为一种特殊的矩阵,在整个矩阵理论中具有十分重要的作用。正交矩阵的正交相似标准型在欧几里得空间、正交变换及正交矩阵的有关分解问题中都有很重要的地位。一方面,它是实对称矩阵的正交相似标准型的自然联想;另一方面,它在欧几里得空间中的地位相当于对称矩阵在二次型中的地位。本文利用正交矩阵、旋转、正交相似等相关概念,对正交矩阵的一些常用的性质以及正交矩阵的正交相似标准型进行研究和整理。 关键词:正交矩阵;正交相似;正交相似标准型;特征向量 Abstract: Orthogonal matrix as a special matrix, a very important role in the entire matrix theory. Orthogonal matrix orthogonal similar standard in the Euclidean space, orthogonal transformation and orthogonal matrix decomposition problem has a very important position. On the one hand, it is a real symmetric matrix orthogonal similar to the standard natural association; the other hand, it's position in the Euclidean space is equivalent to a symmetric matrix in the quadratic. In this paper, orthogonal matrix, rotation, and orthogonal similarity related concepts, conduct research and organize some common nature of the orthogonal matrix and orthogonal matrix orthogonal similar standard. Keywords:Orthogonal matrix; Orthogonal similarity;;Orthogonal similar standard; eigenvectors 正交矩阵作为一种特殊的矩阵,在整个矩阵理论体系中具有十分重要的地位和作用。在我们教材中,正交矩阵是在研究欧几里得空间时提出的,它是刻划欧几里得空间中标准正交基与标准正交基间的过渡矩阵,同时它在实对称矩阵的标准型定理中起到了很重要的作用。正交矩阵是矩阵论中比较重要的概念,它在数

矩阵分析 酉矩阵

第一题 正交矩阵定义:满足的方阵称为正交矩阵(orthogonal matrix)。 n阶正交矩阵的集合记为。 1.正交矩阵与运算的关系 1.1.和:正交矩阵的和不一定是正交矩阵。 如:取,则,但,所以 。 但若又取,; 则=。 1.2.伴随:矩阵的伴随矩阵是正交矩阵的充分必要条件是它本身是正交矩阵。 (充分性) 若是正交矩阵,则可逆,且也是正交矩阵,而,又因为 ,所以是正交矩阵。 (必要性) 反之若是实矩阵且是正交矩阵,则可逆,于是可逆。由于, 故,又由于,故,由得 ,所以也是正交矩阵。 1.3对角化:若为正交矩阵且有n 个特征值,则正交相似于对角矩阵 因为由3(3)的推论,对任意的正交矩阵,有正交矩阵为上三角矩

阵,由于都是正交矩阵,所以也是正交矩阵,而 ,所以 ,是上三角的,而是下三角的,所以为对角矩阵;又因为这个根据3(2)的证明,这个正交矩阵一定是对称的,所以再根据3(5)1的证明且正交矩阵的特 征值为,可得正交相似于 不过在附录中正交矩阵与(反)对称矩阵关系的讨论中我们可以发现一个正交矩阵可找到另一 个正交矩阵,使这个正交矩阵化为准对角形式,而且这个命题的逆方向也是正确的,即若能找到另一个正交矩阵,使某个矩阵化为准对角形式,则这个矩阵是正交矩阵! 1.4.与对称矩阵:设, 则的充分必要条件是, 是一个对角矩阵。 (充分性) 。(必要性)由3(3)的推论,是上三角矩阵,在两边加转置,可得 , 是下三角矩阵,所以是对角的,不仅对角化,还可以化到以特征值为对角元的对角矩阵,因为对称变换中不同特征值对应的特征向量必正交。 酉矩阵定义:若一行列的复数矩阵满足:其中,为的共轭转置,为阶单位矩阵,则称为酉矩阵。 2 A Hadamard matrix of order n is an n×n matrix with elements in {+1,?1} such that HHT = nIn where HT is the transpose of H and In is the identity matrix of order n. This class of matrices are useful in many practical applications. Q1 Does Hadamard matrix exist for any

正交矩阵

正交矩阵 正交矩阵是实数特殊化的酉矩阵,因此总是正规矩阵。尽管我们在这里只考虑实数矩阵,这个定义可用于其元素来自任何域的矩阵。正交矩阵毕竟是从内积自然引出的,对于复数的矩阵这导致了归一要求。 目录 定义 1 n阶实矩阵 A称为正交矩阵,如果:A×A′=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”。)若A为正交阵,则下列诸条件是等价的: 1) A 是正交矩阵 2) A×A′=E(E为单位矩阵) 3) A′是正交矩阵 4) A的各行是单位向量且两两正交 5) A的各列是单位向量且两两正交 6) (Ax,Ay)=(x,y) x,y∈R 正交矩阵通常用字母Q表示。 举例:A=[r11 r12 r13;r21 r22 r23;r31 r32 r33]

下面是一些小正交矩阵的例子和可能的解释。 恒等变换。旋转16.26°。针对x轴反射。旋转反演(rotoinversion): 轴 (0,-3/5,4/5),角度90°。置换坐标轴。 编辑本段 基本构造 低维度 最简单的正交矩阵是1×1 矩阵 [1] 和 [?1],它们可分别解释为恒等和实数线针对原点的反射。 如下形式的2×2 矩阵 它的正交性要求满足三个方程

矩阵性质 实数方块矩阵是正交的,当且仅当它的列形成了带有普通欧几里得点积的欧几里得空间R的正交规范基,它为真当且仅当它的行形成R的正交基。假设带有正交(非正交规范)列的矩阵叫正交矩阵可能是诱人的,但是这种矩阵没有特殊价值而没有特殊名字;他们只是MM = D,D是对角矩阵。 任何正交矩阵的行列式是 +1 或?1。这可从关于行列式的如下基本事实得出: 反过来不是真的;有 +1 行列式不保证正交性,即使带有正交列,可由下列反例证实。 对于置换矩阵,行列式是 +1 还是?1 匹配置换是偶还是奇的标志,行列式是行的交替函数。 比行列式限制更强的是正交矩阵总可以是在复数上可对角化来展示特征值的完全的集合,它们全都必须有(复数)绝对值 1。 群性质 正交矩阵的逆是正交的,两个正交矩阵的积是正交的。事实上,所有 n×n正交矩阵的集合满足群的所有公理。它是n(n?1)/2 维的紧致李群,叫做正交群并指示为O(n)。 行列式为 +1 的正交矩阵形成了路径连通的子群指标为 2 的O(n) 正规子群,叫做旋转的特殊正交群SO(n)。商群O(n)/SO(n) 同构于O(1),带有依据行列式选择 [+1] 或 [?1] 的投影映射。带有行列式?1 的正交矩阵不包括单位矩阵,所以不形成子群而只是陪集;它也是(分离的)连通的。所以每个正交群被分为两个部分;因为投影映射分裂,O(n) 是SO(n) 与O(1)的半直积。用实用术语说,一个相当的陈述是任何正交矩阵可以通过采用一个旋转矩阵并可能取负它的一列来生成,如我们在2×2 矩阵中看到的。如果n是奇数,则半直积实际上是直积,任何正交矩阵可以通过采用一个旋转矩阵并可能取负它的所有列来生成。 现在考虑 (n+1)×(n+1) 右底元素等于 1 的正交矩阵。最后一列(和最后一行)的余下元素必须是零,而任何两个这种矩阵的积有同样的形式。余下的矩阵是n×n正交矩阵;因此O(n) 是O(n+1) (和所有更高维群)的子群。 因为 Householder 正交矩阵形式的基本反射可把任何正交矩阵简约 成这种约束形式,一系列的这种反射可以把任何正交矩阵变回单位矩阵;

相关文档
最新文档