opencv自己训练分类器进行物体识别

opencv自己训练分类器进行物体识别
opencv自己训练分类器进行物体识别

从SVM的那几张图可以看出来,SVM是一种典型的两类分类器,即它只回答属于正类还是负类的问题。而现实中要解决的问题,往往是多类的问题(少部分例外,例如垃圾邮件过滤,就只需要确定“是”还是“不是”垃圾邮件),比如文本分类,比如数字识别。如何由两类分类器得到多类分类器,就是一个值得研究的问题。

还以文本分类为例,现成的方法有很多,其中一种一劳永逸的方法,就是真的一次性考虑所有样本,并求解一个多目标函数的优化问题,一次性得到多个分类面,就像下图这样:

多个超平面把空间划分为多个区域,每个区域对应一个类别,给一篇文章,看它落在哪个区域就知道了它的分类。

看起来很美对不对?只可惜这种算法还基本停留在纸面上,因为一次性求解的方法计算量实在太大,大到无法实用的地步。

稍稍退一步,我们就会想到所谓“一类对其余”的方法,就是每次仍然解一个两类分类的问题。比如我们有5个类别,第一次就把类别1的样本定为正样本,其余2,3,4,5的样本合起来定为负样本,这样得到一个两类分类器,它能够指出一篇文章是还是不是第1类的;第二次我们把类别2 的样本定为正样本,把1,3,4,5的样本合起来定为负样本,得到一个分类器,如此下去,我们可以得到5个这样的两类分类器(总是和类别的数目一致)。到了有文章需要分类的时候,我们就拿着这篇文章挨个分类器的问:是属于你的么?是属于你的

么?哪个分类器点头说是了,文章的类别就确定了。这种方法的好处是每个优化问题的规模比较小,而且分类的时候速度很快(只需要调用5个分类器就知道了结果)。但有时也会出现两种很尴尬的情况,例如拿一篇文章问了一圈,每一个分类器都说它是属于它那一类的,或者每一个分类器都说它不是它那一类的,前者叫分类重叠现象,后者叫不可分类现象。分类重叠倒还好办,随便选一个结果都不至于太离谱,或者看看这篇文章到各个超平面的距离,哪个远就判给哪个。不可分类现象就着实难办了,只能把它分给第6个类别了……更要命的是,本来各个类别的样本数目是差不多的,但“其余”的那一类样本数总是要数倍于正类(因为它是除正类以外其他类别的样本之和嘛),这就人为的造成了上一节所说的“数据集偏斜”问题。

因此我们还得再退一步,还是解两类分类问题,还是每次选一个类的样本作正类样本,而负类样本则变成只选一个类(称为“一对一单挑”的方法,哦,不对,没有单挑,就是“一对一”的方法,呵呵),这就避免了偏斜。因此过程就是算出这样一些分类器,第一个只回答“是第1类还是第2类”,第二个只回答“是第1类还是第3类”,第三个只回答“是第1类还是第4类”,如此下去,你也可以马上得出,这样的分类器应该有5 X 4/2=10个(通式是,如果有k个类别,则总的两类分类器数目为k(k-1)/2)。虽然分类器的数目多了,但是在训练阶段(也就是算出这些分类器的分类平面时)所用的总时间却比“一类对其余”方法少很多,在真正用来分类的时候,把一篇文章扔给所有分类器,第一个分类器会投票说它是“1”或者“2”,第二个会说它是“1”或者“3”,让每一个都投上自己的一票,最后统计票数,如果类别“1”得票最多,就判这篇文章属于第1类。这种方法显然也会有分类重叠的现象,但不会有不可分类现象,因为总不可能所有类别的票数都是0。看起来够好么?其实不然,想想分类一篇文章,我们调用了多少个分类器?10个,这还是类别数为5的时候,类别数如果是1000,要调用的分类器数目会上升至约500,000个(类别数的平方量级)。这如何是好?

看来我们必须再退一步,在分类的时候下功夫,我们还是像一对一方法那样来训练,只是在对一篇文章进行分类之前,我们先按照下面图的样子来组织分类器(如你所见,这是一个有向无环图,因此这种方法也叫做DAG SVM)

这样在分类时,我们就可以先问分类器“1对5”(意思是它能够回答“是第1类还是第5类”),如果它回答5,我们就往左走,再问“2对5”这个分类器,如果它还说是“5”,我们就继续往左走,这样一直问下去,就可以得到分类结果。好处在哪?我们其实只调用了4个分类器(如果类别数是k,则只调用k-1个),分类速度飞快,且没有分类重叠和不可分类现象!缺点在哪?假如最一开始的分类器回答错误(明明是类别1的文章,它说成了5),那么后面的分类器是无论如何也无法纠正它的错误的(因为后面的分类器压根没有出现“1”这个类别标签),其实对下面每一层的分类器都存在这种错误向下累积的现象。。

不过不要被DAG方法的错误累积吓倒,错误累积在一对其余和一对一方法中也都存在,DAG方法好于它们的地方就在于,累积的上限,不管是大是小,总是有定论的,有理论证明。而一对其余和一对一方法中,尽管每一个两类分类器的泛化误差限是知道的,但是合起来做多类分类的时候,误差上界是多少,没人知道,这意味着准确率低到0也是有可能的,这多让人郁闷。

而且现在DAG方法根节点的选取(也就是如何选第一个参与分类的分类器),也有一些方法可以改善整体效果,我们总希望根节点少犯错误为好,因此参与第一次分类的两个类别,最好是差别特别特别大,大到以至于不太可能把他们分错;或者我们就总取在两类分类中正确率最高的那个分类器作根节点,或者我们让两类分类器在分类的时候,不光输出类别的标签,还输出一个类似“置信度”的东东,当它对自己的结果不太自信的时候,我们就不光按照它的输出走,把它旁边的那条路也走一走,等等。

大Tips:SVM的计算复杂度

使用SVM进行分类的时候,实际上是训练和分类两个完全不同的过程,因而讨论复杂度就

不能一概而论,我们这里所说的主要是训练阶段的复杂度,即解那个二次规划问题的复杂度。对这个问题的解,基本上要划分为两大块,解析解和数值解。

解析解就是理论上的解,它的形式是表达式,因此它是精确的,一个问题只要有解(无解的问题还跟着掺和什么呀,哈哈),那它的解析解是一定存在的。当然存在是一回事,能够解出来,或者可以在可以承受的时间范围内解出来,就是另一回事了。对SVM来说,求得解析解的时间复杂度最坏可以达到O(N sv3),其中N sv是支持向量的个数,而虽然没有固定的比例,但支持向量的个数多少也和训练集的大小有关。

数值解就是可以使用的解,是一个一个的数,往往都是近似解。求数值解的过程非常像穷举法,从一个数开始,试一试它当解效果怎样,不满足一定条件(叫做停机条件,就是满足这个以后就认为解足够精确了,不需要继续算下去了)就试下一个,当然下一个数不是乱选的,也有一定章法可循。有的算法,每次只尝试一个数,有的就尝试多个,而且找下一个数字(或下一组数)的方法也各不相同,停机条件也各不相同,最终得到的解精度也各不相同,可见对求数值解的复杂度的讨论不能脱开具体的算法。

一个具体的算法,Bunch-Kaufman训练算法,典型的时间复杂度在O(N sv3+LN sv2+dLN sv)

和O(dL2)之间,其中N sv是支持向量的个数,L是训练集样本的个数,d是每个样本的维数(原始的维数,没有经过向高维空间映射之前的维数)。复杂度会有变化,是因为它不光跟输入问题的规模有关(不光和样本的数量,维数有关),也和问题最终的解有关(即支持向量有关),如果支持向量比较少,过程会快很多,如果支持向量很多,接近于样本的数量,就会产生O(dL2)这个十分糟糕的结果(给10,000个样本,每个样本1000维,基本就不用算了,算不出来,呵呵,而这种输入规模对文本分类来说太正常了)。

这样再回头看就会明白为什么一对一方法尽管要训练的两类分类器数量多,但总时间实际上比一对其余方法要少了,因为一对其余方法每次训练都考虑了所有样本(只是每次把不同的部分划分为正类或者负类而已),自然慢上很多。

分类器训练

一、简介 目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为:首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。 分类器中的"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器,这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。 分类器训练完以后,就可以应用于输入图像中的感兴趣区域(与训练样本相同的尺寸)的检测。检测到目标区域(汽车或人脸)分类器输出为1,否则输出为0。为了检测整副图像,可以在图像中移动搜索窗口,检测每一个位置来确定可能的目标。为了搜索不同大小的目标物体,分类器被设计为可以进行尺寸改变,这样比改变待检图像的尺寸大小更为有效。所以,为了在图像中检测未知大小的目标物体,扫描程序通常需要用不同比例大小的搜索窗口对图片进行几次扫描。 目前支持这种分类器的boosting技术有四种: Discrete Adaboost, Real Adaboost, Gentle Adaboost and Logitboost。 "boosted" 即指级联分类器的每一层都可以从中选取一个boosting算法(权重投票),并利用基础分类器的自我训练得到。 根据上面的分析,目标检测分为三个步骤: 1、样本的创建 2、训练分类器 3、利用训练好的分类器进行目标检测。 二、样本创建 训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本(例如人脸或汽车等),反例样本指其它任意图片,所有的样本图片都被归一化为同样的尺寸大小(例如,20x20)。 负样本 负样本可以来自于任意的图片,但这些图片不能包含目标特征。负样本由背景描述文件来描述。背景描述文件是一个文本文件,每一行包含了一个负样本图片的文件名(基于描述文件的相对路径)。该文件必须手工创建。 e.g: 负样本描述文件的一个例子: 假定目录结构如下: /img img1.jpg img2.jpg bg.txt 则背景描述文件bg.txt的内容为: img/img1.jpg img/img2.jpg 正样本 正样本由程序createsample程序来创建。该程序的源代码由OpenCV给出,并且在bin目录下包含了这个可执行的程序。 正样本可以由单个的目标图片或者一系列的事先标记好的图片来创建。 Createsamples程序的命令行参数:

基于OpenCV识别库的面部图像识别系统的设计

基于OpenCV识别库的面部图像识别系统的设计 本系统采用J2EE技术并以OpenCV开源计算机视觉库技术为基础,实现一套具有身份验证功能的面部图像识别信息管理系统。系统使用MySQL数据库提供数据支撑,依托于J2EE的稳定性和Java平台的可移植性使得本系统可以在各个操作系统平台中运行,同时提供在互联网中使用面部识别技术的一套较为完备的解决方案。 标签:OpenCV;人脸识别;生物学特征 引言 随着信息技术的飞速发展以及互联网的深入普及,越来越多的行业和领域使用信息技术产品以提高工作效率和管理水平。但是由于人们隐私信息的保护意识薄弱,出现了许多信息安全的问题。在人们对于信息安全越来越重视的情况下,许多技术被应用到信息安全领域中来。较为先进的技术有虹膜识别技术、遗传基因识别技术以及指纹识别技术等。而论文采用的是当前热点的面部图像识别技术。 1 系统实现算法及功能分析 1.1 面部图像的生物学特征模型的建立 本系统是利用面部图形的生物学特征来识别不同的人。由于每个人的面部图像都有各自的特征但又具有一定的通性,需要应用生物学中相关知识加以解决。可以利用已有的生物学测量手段以及现有的算法构建人的面部图像生物学特征模型(简称:面部模型),并应用于系统中,面部模型的建立为面部图像识别的功能提供实现依据。 1.2 知识特征库及面部识别引擎的建立 在前述面部模型建立完成后,需要建立相应的知识库以及面部识别引擎方可进行身份的识别。可经过大量数据的采集和分析后建立知识库,并根据知识库的特点建立相应的识别引擎。此识别引擎对外开放,在本系统中提供其它外来程序的调用接口,其它系统能够通过本接口实现识别引擎的调用实现对于面部图形的识别,从而达到识别引擎的可复用性。在技术条件允许的情况下,提供知识库的智能训练以及半自动构建支持。 1.3 面部图像的采集与预处理 本系统中采用了预留API接口,利用USB图形捕获设备采集数据图像。经过USB设备的捕获,使用JMF(Java Media Framework)来处理已捕获的图像数据,对捕获的图像进行面部图行检测和实时定位跟踪。

如何训练分类器

如何用OpenCV训练自己的分类器 另:英文说明http://se.cs.ait.ac.th/cvwiki/opencv:tutorial:haartraining 最近要做一个性别识别的项目,在人脸检测与五官定位上我采用OPENCV的haartraining 进行定位,这里介绍下这两天我学习的如何用opencv训练自己的分类器。在这两天的学习里,我遇到了不少问题,不过我遇到了几个好心的大侠帮我解决了不少问题,特别是无忌,在这里我再次感谢他的帮助。 一、简介 目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为:首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。 分类器中的"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器,这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。 分类器训练完以后,就可以应用于输入图像中的感兴趣区域的检测。检测到目标区域分类器输出为1,否则输出为0。为了检测整副图像,可以在图像中移动搜索窗口,检测每一个位置来确定可能的目标。为了搜索不同大小的目标物体,分类器被设计为可以进行尺寸改变,这样比改变待检图像的尺寸大小更为有效。所以,为了在图像中检测未知大小的目标物体,扫描程序通常需要用不同比例大小的搜索窗口对图片进行几次扫描。 目前支持这种分类器的boosting技术有四种:Discrete Adaboost, Real Adaboost, Gentle Adaboost and Logitboost。 "boosted" 即指级联分类器的每一层都可以从中选取一个boosting算法(权重投票),并利用基础分类器的自我训练得到。 根据上面的分析,目标检测分为三个步骤: 1、样本的创建 2、训练分类器 3、利用训练好的分类器进行目标检测。 二、样本创建 训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本,反例样本指其它任意图片。 负样本 负样本可以来自于任意的图片,但这些图片不能包含目标特征。负样本由背景描述文件来描述。背景描述文件是一个文本文件,每一行包含了一个负样本图片的文件名(基于描述文件的相对路径)。该文件创建方法如下: 采用Dos命令生成样本描述文件。具体方法是在Dos下的进入你的图片目录,比如我的图片放在D:\face\posdata下,则: 按Ctrl+R打开Windows运行程序,输入cmd打开DOS命令窗口,输入d:回车,再输入cd D:\face\negdata进入图片路径,再次输入dir /b > negdata.dat,则会图片路径下生成一个negdata.dat文件,打开该文件将最后一行的negdata.dat删除,这样就生成了负样本描述文件。dos命令窗口结果如下图:

基于OpenCv的图像识别

基于2DPCA的人脸识别算法研究 摘要 人脸识别技术是对图像和视频中的人脸进行检测和定位的一门模式识别技术,包含位置、大小、个数和形态等人脸图像的所有信息。由于近年来计算机技术的飞速发展,为人脸识别技术的广泛应用提供了可能,所以图像处理技术被广泛应用了各种领域。该技术具有广阔的前景,如今已有大量的研究人员专注于人脸识别技术的开发。本文的主要工作内容如下: 1)介绍了人脸识别技术的基础知识,包括该技术的应用、背景、研究方向以及 目前研究该技术的困难,并对人脸识别系统的运行过程以及运行平台作了简单的介绍。 2)预处理工作是在原始0RL人脸库上进行的。在图像的预处理阶段,经过了图 象的颜色处理,图像的几何归一化,图像的均衡化和图象的灰度归一化四个过程。所有人脸图像通过上述处理后,就可以在一定程度上减小光照、背景等一些外在因素的不利影响。 3)介绍了目前主流的一些人脸检测算法,本文采用并详细叙述了Adaboost人脸 检测算法。Adaboost算法首先需要创建人脸图像的训练样本,再通过对样本的训练,得到的级联分类器就可以对人脸进行检测。 4)本文介绍了基于PCA算法的人脸特征点提取,并在PCA算法的基础上应用了 改进型的2DPCA算法,对两者的性能进行了对比,得出后者的准确度和实时性均大于前者,最后将Adaboost人脸检测算法和2DPCA算法结合,不仅能大幅度降低识别时间,而且还相互补充,有效的提高了识别率。 关键词:人脸识别 2DPCA 特征提取人脸检测

2DPCA Face Recognition Algorithm Based on The Research Abstract:Face recognition is a technology to detect and locate human face in an image or video streams,Including location, size, shape, number and other information of human face in an image or video streams.Due to the rapid development of computer operation speed makes the image processing technology has been widely applied in many fields in recent years. This paper's work has the following several aspects: 1)Explained the background, research scope and method of face recognition,and introduced the theoretical method of face recognition field in general. 2)The pretreatments work is based on the original ORL face database. In the image preprocessing stage, there are the color of the image processing, image geometric normalization, image equalization and image gray scale normalization four parts. After united processing, the face image is standard, which can eliminate the adverse effects of some external factors. 3)All kinds of face detection algorithm is introduced, and detailed describing the Adaboost algorithm for face detection. Through the Adaboost algorithm to create a training sample,then Training the samples of face image,and obtaining the cascade classifier to detect human face. 4)This paper introduces the facial feature points extraction based on PCA ,and 2DPCA is used on the basis of the PCA as a improved algorithm.Performance is compared between the two, it is concluds that the real time and accuracy of the latter is greater than the former.Finally the Adaboost face detection algorithm and 2DPCA are combined, which not only can greatly reduce the recognition time, but also complement each other, effectively improve the recognition rate. Key words:Face recognition 2DPCA Feature extraction Face detection

简单分类器的MATLAB实现

简单分类器的MATLAB实现 摘要:本实验运用最小距离法、Fisher线形判别法、朴素贝叶斯法、K近邻法四种模式识别中最简单的方法处理两维两类别的识别问题,最后对实验结果进行了比较。 关键字:MATLAB 最小距离Fisher线形判别朴素贝叶斯K近邻法 一.M atlab语言简介 Matlab 语言(即Matrix 和Laboratory) 的前三位字母组合,意为“矩阵实验室”,Matlab 语言是一种具有面向对象程序设计特征的高级语言,以矩阵和阵列为基本编程单位。Matlab 可以被高度“向量化”,而且用户易写易读。传统的高级语言开发程序不仅仅需要掌握所用语言的语法,还需要对有关算法进行深入的分析。与其他高级程序设计语言相比,Matlab 在编程的效率、可读性以及可移植性等方面都要高于其他高级语言,但是执行效率要低于高级语言,对计算机系统的要求比较高。例如,某数据集是m*n的二维数据组,对一般的高级计算机语言来说,必须采用两层循环才能得到结果,不但循环费时费力,而且程序复杂;而用Matlab 处理这样的问题就快得多,只需要一小段程序就可完成该功能,虽然指令简单,但其计算的快速性、准确性和稳定性是一般高级语言程序所远远不及的。严格地说,Matlab 语言所开发的程序不能脱离其解释性执行环境而运行。 二.样本预处理 实验样本来源于1996年UCI的Abalone data,原始样本格式如下: 1 2 3 4 5 6 7 8 9 其中第一行是属性代码:1.sex 2.length 3.diameter 4.height 5.whole_weight 6.shucked_weight 7 .viscera weight 8. shell weight 9.age 原始样本是一个8维20类的样本集,就是根据Abalone的第一至第八个特征来预测第九个特征,即Abalone的年龄。为简单其见,首先将原始样本处理成两维两类别问题的样本。选取length和weiht作为两个特征向量,来预测第三个特征向量age.(age=6或者age=9),我们将age=6的样本做为第一类,age=12的样本做为第二类。 处理后的样本: length weight age

基于opencv对图像的预处理

基于opencv 对图像的预处理 1.问题描述 本次设计是基于opencv 结合c++语言实现的对图像的预处理,opencv 是用于开发实时的图像处理、计算机视觉及模式识别程序;其中图像的预处理也就是利用opencv 对图像进行简单的编辑操作;例如对图像的对比度、亮度、饱和度进行调节,同时还可以对图像进行缩放和旋转,这些都是图像预处理简单的处理方法;首先通过opencv 加载一幅原型图像,显示出来;设置五个滑动控制按钮,当拖动按钮时,对比度、亮度、饱和度的大小也会随之改变,也可以通过同样的方式调节缩放的比例和旋转的角度,来控制图像,对图像进行处理,显示出符合调节要求的图像,进行对比观察他们的之间的变化。 2.模块划分 此次设计的模块分为五个模块,滑动控制模块、对比度和亮度调节模块、饱和度调节模块、缩放调节模块、旋转调节模块,他们之间的关系如下所示: 图一、各个模块关系图 调用 调用 调用 调用 滑动控制模块 对比度和亮度调节模块 饱和度调节模块 缩放调节模块 旋转调节模块

滑动控制模块处于主函数之中,是整个设计的核心部分,通过createTrackbar创建五个滑动控制按钮并且调用每个模块实现对图像相应的调节。 3.算法设计 (1)滑动控制: 滑动控制是整个设计的核心部分,通过创建滑动控制按钮调节大小来改变相应的数据,进行调用函数实现对图像的编辑,滑动控制是利用createTrackbar(),函数中包括了滑动控制的名称,滑动控制显示在什么窗口上,滑动变量的地址和它调节的最大围,以及每个控制按钮应该调用什么函数实现什么功能; (2)对比度和亮度的调节: 对比度和亮度的调节的原理是依照线性理论,它的公式如下所示:g(x)=a* f(x) +b,其中f(x)表示源图像的像素,g(x)表示输出图像的像素,参数a(需要满足a>0)被称为增益(gain),常常被用来控制图像的对比度,参数b通常被称为偏置(bias),常常被用来控制图像的亮度; (3)饱和度的调节: 饱和度调节利用cvCvtColor( src_image, dst_image, CV_BGR2HSV )将RGB 颜色空间转换为HSV颜色空间,其中“H=Hue”表示色调,“S=Saturation”表示饱和度,“V=Value ”表示纯度;所以饱和度的调节只需要调节S的大小,H 和V的值不需要做任何的改变; (4)旋转的调节: 旋转是以某参考点为圆心,将图像的个点(x,y)围绕圆心转动一个逆时针角度θ,变为新的坐标(x1,y1),x1=rcos(α+θ),y1=rsin(α+θ),其中r是图像的极径,α是图像与水平的坐标的角度的大小; (5)缩放的调节: 首先得到源图像的宽度x和高度y,变换后新的图像的宽度和高度分别为x1和y1,x1=x*f,y1=y*f,其中f是缩放因子; 4.函数功能描述 (1)主函数main()用来设置滑动控制按钮,当鼠标拖动按钮可以得到相应的数据大小,实现手动控制的功能,当鼠标拖动对比度和亮度调节是,主函数调用

opencv自己训练分类器进行物体识别

从SVM的那几张图可以看出来,SVM是一种典型的两类分类器,即它只回答属于正类还是负类的问题。而现实中要解决的问题,往往是多类的问题(少部分例外,例如垃圾邮件过滤,就只需要确定“是”还是“不是”垃圾邮件),比如文本分类,比如数字识别。如何由两类分类器得到多类分类器,就是一个值得研究的问题。 还以文本分类为例,现成的方法有很多,其中一种一劳永逸的方法,就是真的一次性考虑所有样本,并求解一个多目标函数的优化问题,一次性得到多个分类面,就像下图这样: 多个超平面把空间划分为多个区域,每个区域对应一个类别,给一篇文章,看它落在哪个区域就知道了它的分类。 看起来很美对不对?只可惜这种算法还基本停留在纸面上,因为一次性求解的方法计算量实在太大,大到无法实用的地步。 稍稍退一步,我们就会想到所谓“一类对其余”的方法,就是每次仍然解一个两类分类的问题。比如我们有5个类别,第一次就把类别1的样本定为正样本,其余2,3,4,5的样本合起来定为负样本,这样得到一个两类分类器,它能够指出一篇文章是还是不是第1类的;第二次我们把类别2 的样本定为正样本,把1,3,4,5的样本合起来定为负样本,得到一个分类器,如此下去,我们可以得到5个这样的两类分类器(总是和类别的数目一致)。到了有文章需要分类的时候,我们就拿着这篇文章挨个分类器的问:是属于你的么?是属于你的

么?哪个分类器点头说是了,文章的类别就确定了。这种方法的好处是每个优化问题的规模比较小,而且分类的时候速度很快(只需要调用5个分类器就知道了结果)。但有时也会出现两种很尴尬的情况,例如拿一篇文章问了一圈,每一个分类器都说它是属于它那一类的,或者每一个分类器都说它不是它那一类的,前者叫分类重叠现象,后者叫不可分类现象。分类重叠倒还好办,随便选一个结果都不至于太离谱,或者看看这篇文章到各个超平面的距离,哪个远就判给哪个。不可分类现象就着实难办了,只能把它分给第6个类别了……更要命的是,本来各个类别的样本数目是差不多的,但“其余”的那一类样本数总是要数倍于正类(因为它是除正类以外其他类别的样本之和嘛),这就人为的造成了上一节所说的“数据集偏斜”问题。 因此我们还得再退一步,还是解两类分类问题,还是每次选一个类的样本作正类样本,而负类样本则变成只选一个类(称为“一对一单挑”的方法,哦,不对,没有单挑,就是“一对一”的方法,呵呵),这就避免了偏斜。因此过程就是算出这样一些分类器,第一个只回答“是第1类还是第2类”,第二个只回答“是第1类还是第3类”,第三个只回答“是第1类还是第4类”,如此下去,你也可以马上得出,这样的分类器应该有5 X 4/2=10个(通式是,如果有k个类别,则总的两类分类器数目为k(k-1)/2)。虽然分类器的数目多了,但是在训练阶段(也就是算出这些分类器的分类平面时)所用的总时间却比“一类对其余”方法少很多,在真正用来分类的时候,把一篇文章扔给所有分类器,第一个分类器会投票说它是“1”或者“2”,第二个会说它是“1”或者“3”,让每一个都投上自己的一票,最后统计票数,如果类别“1”得票最多,就判这篇文章属于第1类。这种方法显然也会有分类重叠的现象,但不会有不可分类现象,因为总不可能所有类别的票数都是0。看起来够好么?其实不然,想想分类一篇文章,我们调用了多少个分类器?10个,这还是类别数为5的时候,类别数如果是1000,要调用的分类器数目会上升至约500,000个(类别数的平方量级)。这如何是好? 看来我们必须再退一步,在分类的时候下功夫,我们还是像一对一方法那样来训练,只是在对一篇文章进行分类之前,我们先按照下面图的样子来组织分类器(如你所见,这是一个有向无环图,因此这种方法也叫做DAG SVM)

xml分类器训练

分类:数据库/DB2/文章 第一步采集样本 1、将正负样本分别放在两个不同的文件夹下面 分别取名pos和neg,其中pos用来存放正样本图像,neg用来存放负样本 注意事项:1、正样本要统一切成24*24像素(或者其他)的格式,建议保存成灰度图,节省空间 2、正样本的数目越多,训练的时间也将越长,训练出来的效果也就越好 3、负样本的数量想对于正样本一定要足够的多,很多朋友在训练的时候,往往出现了CPU占用率达到了100%,但是训练只是停留在一个分类器长达几小时没有相应,问题出现在取负样本的那个函数icvGetHaarTrainingDataFromBG中; 当剩下所有的negtive样本在临时的cascade Classifier中,evaluate的结果都是0(也就是拒绝了),随机取样本的数目到几百万都是找不到误检测的neg样本了,因而没法跳出循环 2、建立正负样本的说明文件 这里我们假定根目录在D:\boost下面。

在cmd下面进入pos目录,输入dir /b > pos.txt 这个时候会在pos文件加下面生成一个pos.txt文件,打开pos.txt

我们对它进行如下编辑: (1)、将BMP 替换成为BMP 1 0 0 24 24 注意:1代表此图片出现的目标个数后面的0 0 24 24代表目标矩形框(0,0)到(24,24),用户可以根据自身需要调整数值(2)、删除文本中最后一行的“pos.txt”

2、对负样本进行编辑 在CMD下输入dir /b > neg.txt 同理,打开neg目录下的neg.txt文件,只需要删除最后一行的neg.txt这一句 注意:1、负样本说明文件不能含有目标物体 2、负样本图像尺寸不受到限制,但是尺寸越大,训练所用的时间越长, 3、负样本图像可以是灰度图,也可以不是,笔者建议使用灰度图,这样处理起来可能更有效率 4、负样本图像一定不要重复,增大负样本图像的差异性,可以增加分类器的使用范围,笔者建议可以使用网上的素材库,将1000多张不含目标的图片灰度处理后用来训练,效果更佳 二、使用opencv_createsamples.exe创立样本VEC文件 1、首先我们将要用的的2个程序opencv_createsamples.exe和opencv_haartraining.exe拷到根目录下 在CMD下输入如下命令: opencv_createsamples.exe -vec pos.vec -info pos\pos.txt -bg neg\neg.txt -w 40 -h 40 -num 142 以上参数的含义如下:

如何用OPENCV训练自己的分类器

如何用OpenCV训练自己的分类器 最近要做一个性别识别的项目,在人脸检测与五官定位上我采用OPENCV的haartraining进行定位,这里介绍下这两天我学习的如何用opencv训练自己的分类器。在这两天的学习里,我遇到了不少问题,不过我遇到了几个好心的大侠帮我解决了不少问题,特别是无忌,在这里我再次感谢他的帮助。 一、简介 目标检测方法最初由Paul Viola[Viola01]提出,并由Rainer Lienhart[Lienhart02]对这一方法进行了改善。该方法的基本步骤为:首先,利用样本(大约几百幅样本图片)的harr特征进行分类器训练,得到一个级联的boosted分类器。分类器中的"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器,这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。 分类器训练完以后,就可以应用于输入图像中的感兴趣区域的检测。检测到目标区域分类器输出为1,否则输出为0。为了检测整副图像,可以在图像中移动搜索窗口,检测每一个位置来确定可能的目标。为了搜索不同大小的目标物体,分类器被设计为可以进行尺寸改变,这样比改变待检图像的尺寸大小更为有效。所以,为了在图像中检测未知大小的目标物体,扫描程序通常需要用不同比例大小的搜索窗口对图片进行几次扫描。 目前支持这种分类器的boosting技术有四种:Discrete Adaboost,Real Adaboost,Gentle Adaboost and Logitboost。"boosted"即指级联分类器的每一层都可以从中选取一个boosting算法(权重投票),并利用基础分类器的自我训练得到。 根据上面的分析,目标检测分为三个步骤: 1、样本的创建 2、训练分类器 3、利用训练好的分类器进行目标检测。 二、样本创建 训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本,反例样本指其它任意图片。 负样本 负样本可以来自于任意的图片,但这些图片不能包含目标特征。负样本由背景描述文件来描述。背景描述文件是一个文本文件,每一行包含了一个负样本图片的文件名(基于描述文件的相对路径)。该文件创建方法如下: 采用Dos命令生成样本描述文件。具体方法是在Dos下的进入你的图片目录,比如我的图片放在D:\face\posdata 下,则: 按Ctrl+R打开Windows运行程序,输入cmd打开DOS命令窗口,输入d:回车,再输入cd D:\face\negdata进入图片路径,再次输入dir/b>negdata.dat,则会图片路径下生成一个negdata.dat文件,打开该文件将最后一行的negdata.dat删除,这样就生成了负样本描述文件。dos命令窗口结果如下图: 正样本 对于正样本,通常的做法是先把所有正样本裁切好,并对尺寸做规整(即缩放至指定大小),如上图所示: 由于HaarTraining训练时输入的正样本是vec文件,所以需要使用OpenCV自带的CreateSamples程序(在你所按照的opencv\bin下,如果没有需要编译opencv\apps\HaarTraining\make下的.dsw文件,注意要编译release版的)将准备好的正样本转换为vec文件。转换的步骤如下: 1)制作一个正样本描述文件,用于描述正样本文件名(包括绝对路径或相对路径),正样本数目以及各正样本在图片

如何用OpenCV训练自己的分类器

如何用OpenCV训练自己的分类器 2009-09-04 22:15 最近要做一个性别识别的项目,在人脸检测与五官定位上我采用OPENCV的haartraining进行定位,这里介绍下这两天我学习的如何用opencv训练自己的分类器。在这两天的学习里,我遇到了不少问题,不过我遇到了几个好心的大侠帮我解决了不少问题,特别是无忌,在这里我再次感谢他的帮助。 一、简介 目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为:首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。 分类器中的"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器,这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。 分类器训练完以后,就可以应用于输入图像中的感兴趣区域的检测。检测到目标区域分类器输出为1,否则输出为0。为了检测整副图像,可以在图像中移动搜索窗口,检测每一个位置来确定可能的目标。为了搜索不同大小的目标物体,分类器被设计为可以进行尺寸改变,这样比改变待检图像的尺寸大小更为有效。所以,为了在图像中检测未知大小的目标物体,扫描程序通常需要用不同比例大小的搜索窗口对图片进行几次扫描。 目前支持这种分类器的boosting技术有四种: Discrete Adaboost, Real Adaboost, Gentle Adaboost and Logitboost。 "boosted" 即指级联分类器的每一层都可以从中选取一个boosting算法(权重投票),并利用基础分类器的自我训练得到。 根据上面的分析,目标检测分为三个步骤: 1、样本的创建 2、训练分类器 3、利用训练好的分类器进行目标检测。 二、样本创建 训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本,反例样本指其它任意图片。 负样本 负样本可以来自于任意的图片,但这些图片不能包含目标特征。负样本由背景描述文件来描述。背景描述文件是一个文本文件,每一行包含了一个负样本图片的文件名(基于描述文件的相对路径)。该文件创建方法如下: 采用Dos命令生成样本描述文件。具体方法是在Dos下的进入你的图片目录,比如我的图片放在D:\face\posdata下,则: 按Ctrl+R打开Windows运行程序,输入cmd打开DOS命令窗口,输入 d:回车,再输入cd D:\face\negdata进入图片路径,再次输入dir /b > negdata.dat,则会图片路径下生成一个negdata.dat文件,打开该文件将最后一行的

最新基于OpenCV与深度学习框架的物体图像识别

基于OpenCV与深度学习框架Caffe的物体图像识别 摘要:本文主要介绍深度神经网络中的卷积神经的相关理论与技术。研究采用OpenCV深度学习模块DNN与深度学习框架Caffe进行物体识别。采用OpenCV 中的DNN模块加载深度学习框架Caffe模型文件,对物体图像进行识别。实验结果表明,卷积神经网络在物体的识别方面具有较高的准确率。 一.概述 1.1 OpenCV简介 OpenCV于1999年由Intel建立,如今由Willow Garage提供支持。OpenCV 是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows和Mac OS操作系统上。它轻量级而且高效——由一系列C 函数和少量C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。其最新版本是3.2,于2016年12月23日发布。OpenCV致力于真实世界的实时应用,通过优化的C代码的编写对其执行速度带来了可观的提升,并且可以通过购买Intel的IPP高性能多媒体函数库(Integrated Performance Primitives)得到更快的处理速度。在其最新版3.2版本中,已经添加了深度神经网络模块,并支持深度学习框架Caffe模型(Caffe framework models)。 1.2 深度学习框架Caffe简介 Caffe(Convolutional Architecture for Fast Feature Embedding)是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清,曾在Google 工作,现任Facebook研究科学家。Caffe是纯粹的C++/CUDA架构,支持命令行、Python和MATLAB接口;可以在CPU和GPU直接无缝切换。Caffe的优势

Boosting算法简介

Boosting算法简介 分类:机器学习2012-01-06 10:48 1044人阅读评论(1) 收藏举报算法框架任务测试c网络 一、Boosting算法的发展历史 Boosting算法是一种把若干个分类器整合为一个分类器的方法,在boosting算法产生之前,还出现过两种比较重要的将多个分类器整合为一个分类器的方法,即boostrapping 方法和bagging方法。我们先简要介绍一下bootstrapping方法和bagging方法。 1)bootstrapping方法的主要过程 主要步骤: i)重复地从一个样本集合D中采样n个样本 ii)针对每次采样的子样本集,进行统计学习,获得假设H i iii)将若干个假设进行组合,形成最终的假设H f inal iv)将最终的假设用于具体的分类任务 2)bagging方法的主要过程 主要思路: i)训练分类器 从整体样本集合中,抽样n* < N个样本针对抽样的集合训练分类器C i ii)分类器进行投票,最终的结果是分类器投票的优胜结果 但是,上述这两种方法,都只是将分类器进行简单的组合,实际上,并没有发挥出分类器组合的威力来。直到1989年,Yoav Freund与Robert Schapire提出了一种可行的将弱分类器组合为强分类器的方法。并由此而获得了2003年的哥德尔奖(Godel price)。 Schapire还提出了一种早期的boosting算法,其主要过程如下: i)从样本整体集合D中,不放回的随机抽样n1 < n个样本,得到集合D1 训练弱分类器C1 ii)从样本整体集合D中,抽取n2 < n个样本,其中合并进一半被C1分类错误的样本。得到样本集合D2 训练弱分类器C2 iii)抽取D样本集合中,C1和C2分类不一致样本,组成D3 训练弱分类器C3 iv)用三个分类器做投票,得到最后分类结果 到了1995年,Freund and schapire提出了现在的adaboost算法,其主要框架可以描述为: i)循环迭代多次 更新样本分布 寻找当前分布下的最优弱分类器 计算弱分类器误差率 ii)聚合多次训练的弱分类器

用神经网络训练一个文本分类器

用神经网络训练一个文本分类器 理解聊天机器人的工作原理是非常重要的。聊天机器人内部一个非常重要的组件就是文本分类器。我们看一下文本分类器的神经网络(ANN)的内部工作原理。 多层神经网络 我们将会使用2层网络(1个隐层)和一个“词包”的方法来组织我们的训练数据。文本分类有3个特点:模式匹配、算法、神经网络。虽然使用多项朴素贝叶斯算法的方法非常有效,但是它有3个致命的缺陷: ?这个算法输出一个分数而不是一个概率。我们可以使用概率来忽略特定阈值以下的预测结果。这类似于忽略收音机中的噪声。 ?这个算法从一个样本中学习一个分类中包含什么,而不是一个分类中不包含什么。 一个分类中不包含什么的的学习模式往往也很重要。

不成比例的大训练集的分类将会导致扭曲的分类分数,迫使算法相对于分类规模来调整输出分数,这并不理想。 和它“天真”的对手一样,这种分类器并不试图去理解句子的含义,而仅仅对它进行分类。事实上,所谓的“人工智能聊天机器人”并不理解语言,但那是另一个故事。 如果你刚接触人工神经网络,这是它的工作原理。 理解分类算法,请看这里。 我们来逐个分析文本分类器的每个部分。我们将按照以下顺序: 1.引用需要的库 2.提供训练集 3.整理数据 4.迭代:编写代码+测试预测结果+调整模型 5.抽象 代码在这里,我们使用ipython notebook这个在数据科学项目上非常高效的工具。代码语法是python。 我们首先导入自然语言工具包。我们需要一个可靠的方法将句子切分成词并且将单词词干化处理。 1 2 3 4 # use natural language toolkit import nltk from https://www.360docs.net/doc/543683849.html,ncaster import LancasterStemmer import os

毕业设计:基于OpenCV的人脸识别算法(终稿)-精品

安徽工业大工商学院 毕业学士论文 基于OpenCV的人脸识别算法 姓名:陈滔 申请学位级别:学士专业:测控技术与仪器 指导教师:方挺

摘要 人脸在社会交往中扮演着十分重要的角色,是人类在确定一个人身份时所采用的最普通的生物特征,研究人脸跟踪识别及其相关技术具有十分重要的理论价值和应用价值。彩色图像序列的人脸检测、跟踪与识别技术是随着计算机技术的高速发展和视频监控等应用的需要在近几年才逐渐成为一个研究热点。本文着重构建一套人脸跟踪识别系统,致力于精确实时地对彩色视频中的人脸图像检测跟踪,并可以将跟踪到的人脸图片传输到识别端进行身份识别。系统分为客户端和服务器两部分。针对传统Camshifl跟踪算法进行形态学处理、分配多个跟踪器等改进后的算法应用于客户端进行多人脸的跟踪。服务器端首先将人脸图像按其主要特征进行分块,再对分块图执行Eigenface算法实现人脸身份的识别。这套系统完成了对多人脸的跟踪效果,可广泛的应用于各种安防系统之中如:ATM机监控系统,门禁系统等。

Abstract Human face is 0111"primary focus of attention in social intercourse playingamajor rolei conveying dentity and emotion.Researchonthe face tracking,recognition technology has great theoreticaland practical value.This paper focusesOilbuildingasetofhumanface recognition and trackingsystem tocommitted toaccurate and real-timecolorvideoimages,andcalltransmit the tracked human face image to the recognition part to identify the person’S status.Thesystem is divided into client and server parts.Thetracking algorithm whichcarrieson morphology processing after traditional track algorithm Camshifl and assignments severaltrackingdevices is applied to the client for duplex facetracking.Theserver—side first divides the person face image into blocksaccording to its chief feature,then the blocksuses the Eigenfacealgorithm separately to realize the person’S status recognition.The system implementation for multiple face trackingcallbe widelyused among the various security systems,suchas:ATM machine monitoring system,accesscontrol system.Keywords:Face DetectionFace TrackingFace Recognition Eigenface Camshift

基于OpenCV2.0的训练分类器XML的方法

基于opencv2.0的haar算法以人脸识别为例的训练分类器xml的方法 第一步采集样本 1、将正负样本分别放在两个不同的文件夹下面 分别取名pos和neg,其中pos用来存放正样本图像,neg用来存放负样本 注意事项:1、正样本要统一切成24*24像素(或者其他)的格式,建议保存成灰度图,节省空间 2、正样本的数目越多,训练的时间也将越长,训练出来的效果也就越好 3、负样本的数量想对于正样本一定要足够的多,很多朋友在训练的时候,往往出现了CPU占用率达到了100%,但是训练只是停留在一个分类器长达几小时没有相应,问题出现在取负样本的那个函数 icvGetHaarTrainingDataFromBG中; 当剩下所有的negtive样本在临时的cascade Classifier中,evaluate的结果都是0(也就是拒绝了),随机取样本的数目到几百万都是找不到误检测的neg 样本了,因而没法跳出循环 2、建立正负样本的说明文件这里我们假定根目录在D:\boost下面。在cmd下面进入pos目录,输入 dir /b > pos.txt 这个时候会在pos文件加下面生成一个pos.txt文件,打开pos.txt 我们对它进行如下编辑: (1)、将BMP 替换成为 BMP 1 0 0 24 24 注意:1代表此图片出现的目标个数后面的 0 0 24 24代表目标矩形框(0,0)

到(24,24),用户可以根据自身需要调整数值 (2)、删除文本中最后一行的“pos.txt” 2、对负样本进行编辑 在CMD下输入 dir /b > neg.txt 同理,打开neg目录下的neg.txt文件,只需要删除最后一行的neg.txt这一句注意:1、负样本说明文件不能含有目标物体 2、负样本图像尺寸不受到限制,但是尺寸越大,训练所用的时间越长, 3、负样本图像可以是灰度图,也可以不是,笔者建议使用灰度图,这样处理起来可能更有效率 4、负样本图像一定不要重复,增大负样本图像的差异性,可以增加分类器的使用范围,笔者建议可以使用网上的素材库,将1000多张不含目标的图片灰度处理后用来训练,效果更佳 二、使用opencv_createsamples.exe创立样本VEC文件 1、首先我们将要用的的2个程序opencv_createsamples.exe和 opencv_haartraining.exe拷到根目录下

相关文档
最新文档