DR技术的发展和临床应用问题

DR技术的发展和临床应用问题
DR技术的发展和临床应用问题

DR技术的发展和应用问题

友通科技有限公司邹鲁民

前言

自七十年代以来,数字影像,如CT、超声、核医学影像等相继问世。八十年代又出现了核磁共振成像(MRI)、数字减影(DSA)等,形成了医学影像的数字化趋势,而且进展相当快。

然而,占临床影像检查70%以上的X射线摄影检查的数字化步伐却进展不快。从80年代FUJI公司推出第一种数字化X线摄影系统—CR(Computed Radiography)产品后的十余年后,绝大部分的X线摄影检查仍然是由传统的增感屏-胶片( Screen - Film )方式摄取的。CR的发明未能带来X线摄影的全面数字化,这种状况是由二方面的原因造成的,一方[1]

面当时的价格太高;更为重要的原因是CR的性能不能满足临床的要求,图像质量在某些方面还不及胶片,也未能改变传统X线摄影检查的工作流程。这些使得CR不能被医院所广泛接受。要实现放射医学影像的全面数字化,解决常规X射线摄影的数字化问题是最关键的一环;也是无片化( Filmless ) 影像部门必须解决的问题。

因此很多影像厂商和研究机构开始了新型数字化X射线摄影系统的研制工作,这就是后来诞生的DR(Digital Radiography)系统,并在90年代后期取得了突破性的进展,开始出现实用化的多种类型的平面X射线摄影探测器(FPD, Flat Panel Detector),使用这类探测器的数字化X射线摄影系统也开始迅速进入市场。DR技术的出现可以称得上医学X射线摄影技术的一场革命[2]。

DR技术的分类与发展

DR从X线探测器成像原理方面可以分为非直接转换( Indirect Conversion )技术与直接转换( Direct Conversion )技术二大类。

非直接转换技术是最早开发的DR技术,最早期的非直接转换采用的是增感屏加光学镜头耦合的CCD(电荷耦合器)来获取数字化X线图像的,有点类似影像增强器加CCD 的工作方式,这种技术被认为是第一代DR技术。但是由于CCD系统采用增感屏作为其X 线交互介质,它的MTF(传递调制函数)和DQE(量子捕获效率)都不会超过增感屏。另外,由于增感屏被X线激发的荧光,通常只有﹤1%能够通过镜头进入CCD,因此系统的转换效率很低。[3]在工艺方面,由于单片CCD的面积难以做大,所以通常都需要多片才能获得足

够的尺寸。这就带来了图像拼接的问题,并导致系统复杂度的增高与可靠性降低。图一显示了一个4片式CCD探测器系统的结构和原理。

图一:基于CCD的DR系统结构和原理

鉴于CCD技术的这些固有缺陷,使主流影像厂商很快放弃了基于CCD技术DR系统的发展,而将注意力转向基于薄膜晶体管(TFT)的X线平面探测器的发展。最先开发基于TFT 的X线平面探测器的是施乐( Xerox )公司PARC研究中心,他们发展了在TFT基板上制造光电二极管的工艺技术,最终导致了Dpix公司的成立,并推出了第一种基于TFT的平面X 线探测器,这就是后来瓦里安公司的4030探测器的前身。图二是这种探测器的结构和工作原理[4]。

图二:4030探测器像素单元结构

然而这种探测也采用增感屏作为X线交互介质,从而也带来了X线激发的荧光散射所造成的图像模糊;受增感屏的厚度限制,它的X线吸收率也不高,所以这种探测器的整体性能不太高。为了克服增感屏的弱点,一些非直接转换技术DR系统开发商采用了碘化铯(CsI)晶体膜来作为X线交互介质,CsI晶体是呈针状排列的晶体,如图三所示。

图三:碘化铯晶体电镜照片

CsI晶体的针状结构可以有效地抑制光线的散射,并有较高的X线吸收率。从而改善了探测器的MTF和DQE特性,不过仍然不能完全克服散射效应。同时由于生长大面积无缺陷的CsI晶体膜非常困难,使产品的合格率难以提高,从而导致成本高昂。但是经过多年的努力,采用CsI技术的非直接转换技术探测器已进入实用化阶段。图四是法国Trixell公司生产的Pixuim 4600碘化铯非直接转换探测器,是目前性能最好的碘化铯非直接转换探测器。目前西门子、飞利浦和其他多家公司都采用了这种探测器来构建它们的DR系统。

图四:法国Trixell公司生产的Pixuim 4600碘化铯非直接转换探测器

由于非直接转换DR技术的弱点,一些厂商发展了直接转换技术(Direct Conversion ),直接转换技术X线探测器与非直接转换X线技术探测器一样也是基于TFT的,所不同的是直接转换技术X线探测器没有X线荧光转换层,也不需要光电转换单元。它的X射线交互层是由光导半导体(Photo-Conductor)材料构成,目前常用的材料有非晶硒(a-Se)、碲砷镉(CeZnTe)、碘化铅(PbI)和碘化汞(HgI),已经商品化的直接转换技术X线探测器则都是采用非晶硒。这种技术利用光导半导体材料俘获入射的X线光子,直接将接收到的X线光子转换成电荷,再由薄膜晶体管(TFT)阵列将产生的电信号读出即可获得数字化的X射线影像,这种工作方式的最大优点是完全克服了非直接转换技术探测器由增感屏或闪烁体中的光线散射造成的图像模糊效应,有非常高的空间分辨率。图五显示了一个基于非晶硒的直接转换技术X线探测器的结构:

图五:基于非晶硒的直接转换技术X线探测器结构

当入射的X线光子在非晶硒层激发出电子—空穴对时,电子和空穴在外加电场作用下反向运动,产生电流,电流的大小与入射X线光子的数量成正比,这些电流信号被存储在TFT的极间电容上。每个TFT和电容就形成一个像素单元,每个像素区内有一个场效应管,在读出该像素单元电信号时起开关作用。直接转换技术彻底克服了非直接换技术中不可避免的可见光散射效应,使它的MTF特性非常好。图六可以看出直接转换技术的MTF特性比非直接转换技术高得多[5],所以有人把直接转换X线探测器称为第三代DR探测器。

图六:胶片及各种不同类型成像系统的MTF曲线示意图

非晶硒直接转换探测器与碘化铯非直接转换探测器的比较

从理论上讲,由于直接转换技术是直接将入射X线转换成电信号,所以直接转换技术有很高的转换效率、宽广的动态范围(104-105)、非常高的空间分辩率。由于消除了散射效应,从而获得了极佳的MTF特性,图像的锐利度好。非晶硒直接转换探测器与碘化铯非直接转换探测器的X线转换方式及输出响应曲线如图七所示。从图中可以看出,直接转换技术的响应曲线非常陡峭。

图七:非晶硒直接转换探测器与碘化铯非直接转换探测器X线转换方式及输出响应曲

线示意图

而非直接转换技术需要把X线(不可见光)先经荧光介质材料转换成可见光,再由光敏元件将可见光信号转换成电信号(光电转换),最后再将光敏元件产生的模拟电信号经A/D(模数转换器)转换成数字信号。由于经过多次转换,而每次转换过程中都会造成能量、信息损失和引入噪声及非线性失真,所以碘化铯非直接转换探测器的动态范围和密度分辨率相对比较低。另一方面由于散射效应导致MTF特性下降,图像的锐利程度不如直接转换技术。不过由于非晶硒的原子序数较低,它的X线吸收率低于原子序数较高的碘,所以在低分辨率区的DQE比采用碘化铯作为闪烁体的非直接转换探测器低,但是值得注意的是在空间分辨率较高时,非晶硒直接转换探测器的DQE仍然比碘化铯非直接转换探测器高,这是由于在高分辨率的情况下非直接转换检测器的散射效应的影响更大,导致高分辨率时的信噪比下降,而DQE直接与信噪比相关。图八给出了非晶硒直接转换探测器与碘化铯非直接转换探测器和其他几种成像系统DQE的比较。

图八:非晶硒直接转换探测器与碘化铯非直接转换探测器的DQE比较虽然经过了十多年的发展,但是DR技术的发展潜力仍然很大,随着工艺技术的进步,计算机、微电子和材料技术的发展,DR技术还将不断前进。几个主要的研究方向是进一步

提高成像的精度和速度;降低成像所需的辐射剂量;改善软件性能;拓宽应用范围。但是这并不意味DR技术还不成熟,衡量一项新的医学影像技术是否成熟有如下几点:是否具有临床接受的图像质量;系统是否稳定可靠;价格能否为用户接受;而DR技术已经完全满足了这些条件。未来几年DR技术发展的重点是数字化乳腺摄影、实时成像和平板CT。[7]在探测器技术路线方面,直接转换技术正在成为主流,新加入DR探测器发展行列的公司,大多数都选择了直接转换技术,如日本东芝、岛津,加拿大和以色列的一些公司,充分反映了这样一种趋势。

市场上现有成熟的DR平板探测器主要有法国Trixell公司生产的Pixuim 4600碘化铯非直接转换探测器、GE的碘化铯非直接转换探测器(PerkinElmer公司制造)、美国Hologic 公司的DirectRay 1000非晶硒直接转换探测器、V erian公司的2520和4030系列探测器。它们中除GE的产品外,都超过了3 线对/毫米的空间分辨率(GE是2.5线对/毫米),MTF和DQE也都达到或超过了胶片的水平,已经完全能满足高质量临床X线摄影检查的图像质量要求。

DR系统的软件

目前国内的部份用户对DR系统的认识存在一个误区,认为DR系统就是简单地用一个探测器+ X光机组成,而没有认识到软件在DR系统中的巨大作用。实际上DR系统最终得到的图像质量如何、系统应用是否方便、好用,很大程度上取决于软件水平的高低,尤其是图像质图更严重依赖软件的性能,例如图像校正软件的差异可以导致图像噪声成倍增加,从而导致成像所需幅射剂量也成倍增加[8]。笔者曾经做过比较,与友通公司同样采用美国HOLOGIC公司探测器的一些其它DR系统拍摄胸片所需的剂量要比友通公司的系统高出很多。友通公司DR系统拍摄胸部正位片在115kV时,毫安秒视体形不同在1.6 ~ 5mAs之间,而其它系统则高达4~8mAs。

DR系统软件大体上可以分成二大块,图像处理和系统管理/控制。其中图像处理部分主要是图像前处理功能,例如图像校正和不同解剖部位的预设影调处理参数(Body Parts和LUT)。这部分的参数与体形有关,也是为什么许多国外著名品牌的DR系统在国内的图像质量不如它们在国外的表现的原因,因为在他们的系统中仍然使用的是按国外的体形参数设置的影调处理参数。也有部份厂商把一些图像后处理功能放到DR系统的操作台上,例如动态范围控制(组织均衡)和一些影像增强功能等,但是这样的做法存在一些问题。首先,由拍片技师进行图像后处理,会造成拍摄每个病人所需时间大为增加,使病人流通量显著降低。这在病人很多的中国医院将带来病人排长队等待检查的严重问题。其次,技师处理的结果可能不一定是阅片医生想要的效果。另一方面从法律上讲,PACS系统中必须存贮原始图像,而不能是做过后处理的图像。因此,图像的后处理功能应该放在诊断工作站上较为合理。

DR系统软件的管理功能也非常重要,因为DR与CR和胶片相比的一大优势是工作流顺畅。但是如果没有相应软件的支持,就不能实现工作流程管理,要完成工作流程管理,DR系统的软件至少需要支持DICOM任务清单、MPPS。

DR系统的的应用问题

DR系统的设计目标就是为了在PACS环境中应用,因此DR系统要获得良好的应用效果,还需要其它应用系统的支持,例如病人注册登记系统,诊断工作站等的配合。其中的诊断工作站尤为重要,因为DR图像的动态范围非常大,包含了比传统X光片丰富得多的图

像信息,只有采用软拷贝阅读(Softcopy Reading)才能充分利用这些信息,最好地发挥DR 系统的技术性能。图九是未经后处理的原始DR图像与经软组织增强后的图像比较,经过后处理的图像上皮肤中的异物清晰可见,而在原始图像上则无法看到异物。可以看出图像后处理在DR应用中的重要作用,国内外的文献资料都显示采用诊断工作站阅片可以明显提高DR影像的诊断工作效能。如果在诊断工作站上增加计算机辅助诊断软件,还能进一步提高影像诊断水平[8]。

图九:原始图像与经软组织增强后的图像比较

在DR系统应用中另一个重要问题是病人信息录入,如果系统不支持工作流管理,需要技师从系统操作台键入病人信息资料,在病人流量很高的时候会造成很大麻烦,因为在录入病人信息时,不能同时拍片。而录入一个病人的信息可能长达一分钟,每天如果拍摄120位病人,就将占用系统2小时不能拍片,从而大大降低了系统的工作速度。数据重复录入,还增加了产生错误的机会和技师的工作量,因此在高病人流量的环境中必须考虑这一问题,在建立DR应用系统时一定要保证DR系统能直接从HIS/RIS中直接获取病人信息。

然而目前国内的许多单位在引进DR系统还没有注意到上述问题,相当数量的单位只是购买了裸机,简单地配一台激光相机,以打印胶片的方式工作。这是非常不合理的应用方式,极大的限制了DR系统性能的发挥。但是这种现象应该会随着国内用户对DR技术了解的加深而逐步得到克服。

结束语

DR技术历经十多年的发展,目前已经进入成熟阶段,无论从产品的技术性能,还是价格都达到了能够普遍应用的水平。

在可以预见的将来,DR系统将会完全取代传统的各种X射线摄影系统,X射线摄影数字化的时代已经到来。

可喜的是我国已经跻身世界上为数不多的几个DR系统生产国之列,自1999年友通科技公司推出我国第一套具有自主知识产权的商品化DR系统,短短几年已经能生产达到国际先进技术水平的全系列DR产品,友通科技有限公司的DR产品已经在国内市场占有很大的市场份额并已经开始进军国际市场。考虑到中国拥有全球最大的X光机装机量,我国成为DR系统的生产大国将只是一个时间问题,中国DR的春天即将到来。

浅谈先进储能技术及其发展前景

Technological Development of Enterprise ■湖南省科学技术信息研究所胡丹 随着风能、太阳能等可再生能源的普及应用、新能源汽车产业的发展及智能电网的建设,各种储能技术成为万众瞩目的焦点。大规模储能技术作为支撑可再生能源普及的战略性新兴技术,得到世界各国政府和企业的广泛关注与高度重视。同时,储能技术由于其巨大的市场潜力,也迅速受到了风投基金的青睐。本文将对先进储能技术的现状和前景加以介绍。 迄今为止,人们已经开发出多种储能技术,主要分为机械储能、化学储能、电磁储能和相变储能4个大类。机械储能主要包括抽水储能、压缩空气储能、飞轮储能;化学储能主要包括铅酸电池、液流储能电池、镍氢电池、锂离子电池和钠硫电池;电磁储能主要包括超导储能和超级电容器储能,如超导电磁储能;相变储能主要是冰蓄冷技术。本文所研究的先进储能技术以新能源汽车与智能电网储能应用领域为划分基础,主要包括镍氢电池、锂离子电池、燃料电池、超级电容器与液流电池。 1镍氢电池 镍氢电池是目前镍系电池技术路线最先进的电池之一,由氢离子和金属镍合成。其优点在于电量储 备比镍镉电池多30%,比镍镉电池更轻,使用寿命更长,并且对环境无污染。镍氢电池的价格更贵,与镍氢电池相比,性能稍差。 近年来镍氢电池技术发展迅速,尤其是Ni-MH电池正极材料技术和Ni-MH电池负极储氢材料技术。 1.1Ni-MH电池正极材料技术 Ni-MH电池正极材料主要是镍电极,自1887年首次将镍电极运用于碱性电池以来,其发展经历了袋式镍电极、烧结式镍电极和泡沫式镍电极等形式。主要成分均为氢氧化镍,按照镍电极的晶体结构可以分为α-Ni(OH)2和β-Ni(OH)2,对应的充电态分别为γ-NiOOH和β-NiOOH。球形β-Ni(OH)2具有较高的储能导电性能,对于β-Ni(OH) 2 的改性技术主要包括引入钴、锂、镉、锌、稀土系元素进行掺杂,也可以通过纳米 材料与普通球形Ni(OH) 2 进行混合。 而正极材料的制备技术则主要包括烧结式氧化镍工艺、发泡镍填充工艺和纤维镍填充工艺。填充法一般制作简单,所需设备较少,制成的极板具有更高的比容量,但大量生产存在工艺性和性能均衡的问题;烧结式氧化镍基体浸渍活性物质的方法虽然需要 浅谈先进储能技术及其发展前景 透视

激光雷达技术的应用现状及应用前景

光电雷达技术 课程论文 题目激光雷达技术的应用现状及应用前景

专业光学工程 姓名白学武 学号2220140227 学院光电学院 2015年2月28日 摘要:激光雷达无论在军用领域还是民用领域日益得到广泛的应用。介绍了激光雷达的工作原理、工作特点及分类,介绍了它们的研究进展和发展现状,以及应用现状和发展前景。 引言 激光雷达是工作在光频波段的雷达。与微波雷达的T作原理相似,它利用光频波段的电磁波先向目标发射探测信号,然后将其接收到的同波信号与发射信号相比较,从而获得目标的位置(距离、方位和高度)、运动状态(速度、姿态)等信息,实现对飞机、导弹等目标的探测、跟踪和识别。 激光雷达可以按照不同的方法分类。如按照发射波形和数据处理方式,可分为脉冲激光雷达、连续波激光雷达、脉冲压缩激光雷达、动目标显示激光雷达、脉冲多普勒激光雷达和成像激光雷达等:根据安装平台划分,可分为地面激光雷达、机载激光雷达、舰载激光雷达和航天激光雷达;根据完成任务的不同,可分为火控激光雷达、靶场测量激光雷达、导弹制导激光雷达、障碍物回避激光雷达以及飞机着舰引导激光雷达等。 在具体应用时,激光雷达既可单独使用,也能够同微波雷达,可见光电视、

红外电视或微光电视等成像设备组合使用,使得系统既能搜索到远距离目标,又能实现对目标的精密跟踪,是目前较为先进的战术应用方式。 一、激光雷达技术发展状况 1.1关键技术分析 1.1.1空间扫描技术 激光雷达的空间扫描方法可分为非扫描体制和扫描体制,其中扫描体制可以选择机械扫描、电学扫描和二元光学扫描等方式。非扫描成像体制采用多元探测器,作用距离较远,探测体制上同扫描成像的单元探测有所不同,能够减小设备的体积、重量,但在我国多元传感器,尤其是面阵探测器很难获得,因此国内激光雷达多采用扫描工作体制。 机械扫描能够进行大视场扫描,也可以达到很高的扫描速率,不同的机械结构能够获得不同的扫描图样,是目前应用较多的一种扫描方式。声光扫描器采用声光晶体对入射光的偏转实现扫描,扫描速度可以很高,扫描偏转精度能达到微弧度量级。但声光扫描器的扫描角度很小,光束质量较差,耗电量大,声光晶体必须采用冷却处理,实际工程应用中将增加设备量。 二元光学是光学技术中的一个新兴的重要分支,它是建立在衍射理论、计算机辅助设计和细微加工技术基础上的光学领域的前沿学科之一。利用二元光学可制造出微透镜阵列灵巧扫描器。一般这种扫描器由一对间距只有几微米的微透镜阵列组成,一组为正透镜,另一组为负透镜,准直光经过正透镜后开始聚焦,然后通过负透镜后变为准直光。当正负透镜阵列横向相对运动时,准直光方向就会发生偏转。这种透镜阵列只需要很小的相对移动输出光束就会产生很大的偏转,透镜阵列越小,达到相同的偏转所需的相对移动就越小。因此,这种扫描器的扫

激光技术的发展及应用论文

激光技术的发展及应用 引言 随着激光技术的飞速发展和广泛应用激光已成为工业生产,科学探测和现代军事战争中极为重要的工具。总结了激光技术在工业生产,军事,国防,医疗等行业中的应用,提出激光技术应用领域的发展趋势。 “激光”一词是“LASER”的意译。LASER原是Light amplificati on by stimulated emissi on of radiation取字头组合而成的专门名词,在我国曾被翻译成“莱塞”、“光激射器” 、“光受激辐射放大器”等。激光具有普通光源发出的光的所有光学特性,是上世纪 60 年代所诞生和发展起来的新技术。1964年,钱学森院士提议取名为“激光”,既反映了“受激辐射”的科学内涵,又表明它是一种很强烈的新光源,贴切、传神而又简洁,得到我国科学界的一致认同并沿用至今。 激光不是普通的光,其特性是任何光都无法比拟的。激光能量密度高,其亮度比太阳表面还高数百亿倍;[1]激光方向性强,其发散度仅为毫弧度量级,所以用途非常广泛。由于激光的优异特性,使激光在工业生产,科技探测,军事等方面得到了广泛应用,激光渗透到社会的各个行业,而且发展潜力还非常大,激光也成为了当代科学发展最快的科学领域之一。 一、激光发展史 激光技术的启蒙研究发展就完全印证了上面的话。最早对激光做出理论研究的人是爱因斯坦,1916年爱因斯坦提出受激辐射的概念,即处于高能级的原子受外来光子作用,当外来光子的频率与其跃迁频率恰好一致时,原子就会从高能级跃迁到低能级,并发射与外来光子完全相同的另一光子,新发出的光子不仅在

频率方面与外来光子相一致,而且在发射方向、偏振态以及位相等方面均与外来光子相一致,因此,受激辐射具有相干性;在发生受激辐射时,一个光子变成了两个光子,利用这个特点,可实现光放大,并且能够得到自然条件下得不到的相干光. 受激辐射提出后,陆续有科学家进行研究。如1916-1930年间拉登堡及其合作者对氖的色散的研究并于1933年绘制出色散系数随放电带电流密度变化的曲线。1940年法布里坎特首先注意到了负吸收现象。这一阶段发展并不迅速。到了第二次世界大战之后,1947年兰姆和雷瑟夫指出通过粒子数反转可以受激辐射,从此激光理论的研究开始突破。1952年帕塞尔及其合作者实现了粒子数反转,观察到了负吸收现象。第二年,韦伯产生了利用受激辐射诱发原子或分子,从而放大电磁波的思想,进而提出了微波辐射器的原理。1957年斯科威尔实现了固体顺磁微波激射器。既然微波可以激发受激辐射,那么红外乃至可见光等也应该可以。1958年汤斯和肖洛发表了著名的“红外与光学激射器”一文,1959年汤斯提出了建造红宝石激光器的建议。终于1960年由休斯航空公司的莱曼建造出第一部可用的激光装置。(我国第一台红宝石激光器于15个月后的1961年8月建成。)从此人类拥有了激光这一利器。 由于生产技术不成熟,激光技术产生之初并未有太多实际用途。后虽有切割,光束武器等应用,但又受制于制造成本高昂和气候条件复杂等。几十年来各方面工程师和专家一直努力改进创新激光技术及应用,随着激光技术的发展成熟,今天,它已经广泛地应用于生产生活的各方面。 二、激光的特点及激光器 激光的特点主要有四点,一是方向性好,激光束偏离轴线的发散角往往非常小,甚至可以用来测量地球到月球的精确距离(发射到38万公里外的月球形成的光斑直径不超过一公里);二是亮度高,激光功率在空间高度集中,亮度是普通太阳光的百万倍;三是单色性好,比如氪激光的波长范围只有4.7微埃,比原来个公认单色性最好的氪灯高出数个数量级;四是相干性好,激光器输出的光子频率、偏振、相位和传播方向都完全一致,这使得很多光学实验的精度大大提高。

飞轮储能技术的现状和发展前景

飞轮储能技术的现状和发展前景 飞轮储能系统(FESS)又称飞轮电池或机械电池,由于它与化学电池相比所具有 的巨大优势和未来市场的巨大潜力,引起了人们的密切关注。它结合了当今最新的磁悬浮技术、高速电机技术、电力电子技术和新材料技术,使得飞轮储存的能量有了质的飞跃,再加上真空技术的应用,使得各种损耗也非常小。 飞轮电池的发展开始于20 世纪70 年代,当时正处于石油禁运和天然气危机时期。此时,美国能量研究发展署(ERDA) 及其后的美国能源部(DoE) 资助飞轮系统的应用开发,包括电动汽车的超级飞轮的研究。 Lewis 研究中心(LeRC) 在ERDA 的 协助和美国航空航天局(NASA) 的资助下专门研究用于真空下的机械轴承和用于复合车辆的飞轮系统的传动系统。NASA 同时也资助Goddard 空间飞行中心(GSFC) 研究适用于飞行器动量飞轮的电磁轴承。80 年代,DoE 削减了飞轮储能研究的资助,但NASA 继续资助GSFC 研究卫星飞轮系统的电磁轴承,同时还资助了Langley 研 究中心(LaRC) 及Marshall 空间飞行中心(MSFC) 关于组合能量储存和姿态控制的动量飞轮构形的研究。 近10 年来,一大批新型复合材料和新技术的诞生和发展,如高强度的碳素纤维 复合材料(抗拉强度高达8. 27 GPa) 、磁悬浮技术和高温超导技术、高速电机/ 发电机技术以及电力电子技术等,使得飞轮能够储存大量的能量,给飞轮的应用带来了新的活力。它可应用于国防工业(如卫星、电磁炮和电热化学枪、作战侦察车辆等) 、汽车工业(电动汽车) 、电力行业(如电力质量和电力负载调节等) 、医疗和电信业(作UPS 用) 等1NASA 的应用有航天器(宇宙飞船) 、发射装置、飞行器动力系统、不间断电源(UPS) 和宇宙漫步者。

激光技术的发展与展望

激光技术的发展与展望 "激光"一词是"LASER"的意译。LASER原是Light amplification by stimulated emissi on of radiation取字头组合而成的专门名词,在我国曾被翻译成"莱塞"、"光激射器"、"光受激辐射放大器"等。1964年,钱学森院士提议取名为"激光",既反映了"受激辐射"的科学内涵,又表明它是一种很强烈的新光源,贴切、传神而又简洁,得到我国科学界的一致认同并沿用至今。 从1961年中国第一台激光器宣布研制成功至今,在全国激光科研、教学、生产和使用单位共同努力下,我国形成了门类齐全、水平先进、应用广泛的激光科技领域,并在产业化上取得可喜进步,为我国科学技术、国民经济和国防建设作出了积极贡献,在国际上了也争得了一席之地。 一、我国早期激光技术的发展 1957年,王大珩等在长春建立了我国第一所光学专业研究所--中国科学院(长春)光学精密仪器机械研究所(简称"光机所")。在老一辈专家带领下,一批青年科技工作者迅速成长,邓锡铭是其中的突出代表。早在1958年美国物理学家肖洛、汤斯关于激光原理的著名论文发表不久,他便积极倡导开展这项新技术研究,在短时间内凝聚了富有创新精神的中青年研究队伍,提出了大量提高光源亮度、单位色性、相干性的设想和实验方案。1960年世界第一台激光器问世。1961年夏,在王之江主持下,我国第一台红宝石激光器研制成功。此后短短几年内,激光技术迅速发展,产生了一批先进成果。各种类型的固体、气体、半导体和化学激光器相继研制成功。在基础研究和关键技术方面、一系列新概念、新方法和新技术(如腔的Q突变及转镜调Q、行波放大、铼系离子的利用、自由电子振荡辐射等)纷纷提出并获得实施,其中不少具有独创性。 同时,作为具有高亮度、高方向性、高质量等优异特性的新光源,激光很快应用于各技术领域,显示出强大的生命力和竞争力。通信方面,1964年9月用激光演示传送电视图像,1964年11月实现3~30公里的通话。工业方面,1965年5月激光打孔机成功地用于拉丝模打孔生产,获得显著经济效益。医学方面,1965年6月激光视网膜焊接器进行了动物和临床实验。国防方面,1965年12月研制成功激光漫反射测距机(精度为10米/10公里),1966年4月研制出遥控脉冲激光多普勒测速仪。 可以说,在起步阶段我国的激光技术发展迅速,无论是数量还是质量,都和当时国际水平接近,一项创新性技术能够如此迅速赶上世界先进行列,在我国近代科技发展史上并不多见。这些成绩的取得,尤其是能够把物理设想、技术方案顺利地转化成实际激光器件,主要得力于光机所多年来在技术光学、精密机械和电子技术方面积累的综合能力和坚实基础。一项新技术的开发,没有足够的技术支撑是很难形成气候的。 二、重点项目带动激光技术的发展 激光科技事业从一开始就得到了领导和科学管理部门的高度重视。当时中国科学院副院长张劲夫提出建立专业激光研究所的设想,很快得到国家科委、国家计委的批准。主管科技的聂荣臻副总理还特别批示:研究所要建在上海,上海有较好的工业基础,有利于发展这一新技术。1964年,我国第一所,也是当时世界上第一所激光技术的专业研究所--中国科学院上海光学精密机械研究所(简称"上海光机所")成立。当年12月在上海召开全国激光会议,张劲夫、严济慈出席并主持会议,140位代表提交了103篇学术报告。 1964年启动的"6403"高能钕玻璃激光系统、1965年开始研究的高功率激光系统和核聚变研究,以及1966年制定的研制15种军用激光整机等重点项目,由于技术上的综合性和高难度,有力地牵引和带动了激光技术各方面在中国的发展。我国的激光科技事业,虽然也遭遇了"文革"十年浩劫,但借助于重点项目的支撑,

储能技术应用和发展前景

储能是智能电网、可再生能源接入、分布式发电、微电网以及电动汽车发展必不可少的支撑技术,可以有效地实现需求侧管理、消除昼夜峰谷差、平滑负荷,可以提高电力设备运行效率、降低供电成本,还可以作为促进可再生能源应用,提高电网运行稳定性、调整频率、补偿负荷波动的一种手段。智能电网的构建促进储能技术升级、推动储能需求尤其是大规模储能需求的快速增长,从而带来相应的投资机会。 随着储能技术的大量应用必将在传统的电力系统设计、规划、调度、控制方面带来变革。储能技术关系到国计民生,具有越来越重要的经济价值和社会价值,目前储能在中国的发展刚刚起步。国家应该尽快研究储能技术的相关产业标准,加强储能技术基础研究的投入,切实鼓励技术创新,掌握自主知识产权;从规模储能技术发展起始阶段就重视环境因素,防治环境污染;充分发挥储能在节能减排方面的作用,把对新能源的鼓励政策延伸到储能环节。 近年来,我国电网峰谷差逐年增大,多数电网的高峰负荷增长幅度在10%左右,甚至更高。而低谷负荷的增长幅度则维持在5%甚至更低。峰谷差的增加幅度大于负荷的增长幅度,在电网中引入储能系统成为了实现电网调峰的迫切需求。 储能技术拥有广泛的应用前景,但实现规模化储能当前仍是一个世界性难题。目前,我国约有40个储能示范项目,而规模在1000千瓦级的项目为数不多。这些储能项目多起到示范、探索性作用,并不具备产业化意义。 储能产业的发展机遇

由于我国的能源中心和电力负荷中心距离跨度大,电力系统一直遵循着大电网、大电机的发展方向,按照集中输配电模式运行,随着可再生能源发电的飞速发展和社会对电能质量要求的不断提高,储能技术应用前景广阔。储能技术主要的应用方向有:风力发电与光伏发电互补系统组成的局域网,用于偏远地区供电、工厂及办公楼供电;通信系统中作为不间断电源和应急电能系统;风力发电和光伏发电系统的并网电能质量调整;作为大规模电力存储和负荷调峰手段;电动汽车储能装置;作为国家重要部门的大型后备电源等。随着储能技术的不断进步,安全性好、效率高、清洁环保、寿命长、成本低、能量密度大的储能技术将不断涌现,必将带动整个电力行业产业链的快速发展,创造巨大的经济效益和社会效益。 国家电网公司近期确定的智能电网重点投资领域中包括了大量储能应用领域,如发电领域的风力发电和光伏发电中应用储能技术项目,配电领域储能技术,电动汽车充放电技术等。无论是风电还是太阳能发电,其自身都具有随机性和间歇性特征,其装机容量的快速增长必对电网调峰和系统安全带来不利影响,所以,必须要有可靠的储能技术作为支撑和缓冲。先进储能技术能够在很大程度上解决新能源发电的波动性问题,使风电及太阳能发电大规模的安全并入电网。 并网逆变器作为光伏电池与电网的接口装置,将光伏电池的直流电能转换成交流电能并传输到电网上,在光伏并网发电系统中起着至关重要的作用。并网逆变器性能对于系统的效率、可靠性,系统的寿命及降低光伏发电成本至关重要。 储能技术发展有利于推进风电就地消纳,在当前产业梯度转移的大背景下,可考虑在大型风电基地附近布局供热、高耗能产业,同时加快建立风电场与这些大电力用户和电力系统的协调运行机制。国家电网近期确定的智能电网重点投资

CT成像原理与临床应用

CT成像原理与临床应用 内容提要 ?CT发展概述 ?CT扫描仪的主要结构 ?CT成像的基本原理(重点、难点) ?CT图像特点 ?影响CT图像的因素(重点) ?CT检查方法与临床应用(难点) ?CT诊断方法 ?CT诊断报告的书写规范 ?CT的新进展 CT发展概述 ?CT(computed tomography)即计算机断层摄影。 ?发明人:英国科学家Hounsfield。 ?发明时间:1969年设计成功,1972年公诸于世的。 ?突出特点: ?就是X线成像与计算机技术相结合的产物。 ?就是横断面图像显示,没有重叠或重叠很少。 ?密度分辨率高,图像清晰,诊断准确。 ?CT问世的意义:大大扩展了影像检查的范围,就是影像诊断学发展史上的里程碑。Hounsfield因此获得了1979年诺贝尔奖。 CT的发展历程 2004年64层的螺旋CT问世(3D) ?2002年16层的螺旋CT问世 ?2000年8层的螺旋CT问世 ?1998年4层螺旋CT应用于临床 ?1993年双排CT研制成功 ?1989年螺旋CT应用于临床 ?1983年电子束CT(EBCT)研制成功 ?1978年国内开始引进CT ?1974年全身CT应用于临床 ?1972年CT正式应用于临床 CT发展史 ——传统CT ?CT分代扫描方式检测器数量 X线束形态扫描时间用途 ?第一代:平移/旋转一个直线形 4-5分/层头颅 ?第二代:平移/旋转几十个小扇形 18秒/层头腹

?第三代:旋转/旋转几百个大扇形 2-4秒/层全身 ?第四代:旋转/固定几千个大扇形 1-4秒/层全身 ?第五代: 电子束CT ?第六代: 螺旋CT CT发展史 ——传统CT ?CT分代扫描方式检测器数量 X线束形态扫描时间用途 ?第一代:平移/旋转一个直线形 4-5分/层头颅 CT发展史 ——传统CT ?CT分代扫描方式检测器数量 X线束形态扫描时间用途 ?第二代:平移/旋转几十个小扇形 18秒/层头腹 CT发展史 ——传统CT ?CT分代扫描方式检测器数量 X线束形态扫描时间用途 ?第三代:旋转/旋转几百个大扇形 2-4秒/层全身 CT发展史 ——传统CT 小结:X线成像与常规CT成像的异同点 相同点:X线、灰阶图像 不同点 X照片:X线穿透人体后在胶片上形成潜影,经显定影处理后得到X线图像。 CT成像:安装于扫描机架上的X线管发射X线,X线管与探测器环绕患者做机械性往复运动,X线穿透扫描层面后被探测器检测并转化为电流信号,再转化为数字信号,由计算机实现横断面图像重建。 CT发展史 ——电子束CT 的概念 ?1982年设计成功。由电子枪发射电子束,经偏转线圈偏转,形成4束电子束同时打击钨靶,产生X线,并用于成像。其显著特点就是扫描速度快(可短到40ms/层),密度与空间分辨率高。主要用于心脏大血管病变检查。设备非常昂贵,国内装机量少。 CT发展史

激光技术的发展历史

73 2006 NO.9&10 记录媒体技术激 光的发明是20世纪中期一项划时代的成就,对人类社会文明产生了极其深远的影响。人们把 激光和原子能、半导体、计算机列在一起,称为20世纪的“新四大发明”。激光的出现不但引起了光学革命性的发展,冲击了整个物理学,并且对其它学科如化学、生物学和技术及应用学科如电机工程学、材料科学、医学等都产生了巨大的影响。像蒸汽机、发电机和电动机、晶体管、计算机这些创新一样,激光是一项通用技术,它提供了可以在大量实际领域应用的技术能力。对光盘存储而言,激光的发明是光盘存储技术必不可少的基础,它为光盘存储提供了一个有足够功率并且能够汇聚成很小光斑(微米级或亚微米级)的光源。可以说,没有激光的发明,就没有后来的光盘的发明。本文主要为光盘技术人员介绍激光技术的发展历史和趋势。 一、激光的发明和发展 所谓激光就是受激发射的光,是被其它辐射感应而激发的辐射。激光的英文名词为Laser ,是Light Amplification by Stimulated Emission of Radiation 的词首字母构成的新词,其原意是受激辐射光放大器。早期在我国曾被翻译成“莱塞”、“雷射”、“光激射器”、“光受激辐射放大器”等。直到1964年,由钱学森院士提议取名为“激光”,它既反映了“受激辐射”的科学内涵,又表明了它是一种很强烈的新光源。钱学森院士的提议得到国内学术界的一致认同,在中国大陆激光这个新名词就一直沿用至今。 现在我们知道,物质的发光过程有两种:一种称为自发辐射,另一种称为受激辐射。自发辐射是在没有外来光子情况下,原子自发地、独立地从高能级E 2向低能级E 1的跃迁。自发辐射是随机过程,跃迁时发出的光在相位、偏振态和传播方向上都彼此无关。受激辐射是处于高能级E 2的原子,在受到能量为hv = E 2-E 1的外来光子的激励时,跃迁到低能级E 1,并辐射一个与外来光子的频率、相位、振动方向和传播方向都相同的光子。 1916年,爱因斯坦根据物质发光和吸收必须符合能量守恒的基本原则,预言除了大量的自发辐射以外还必然存在着少量的受激辐射,并且这种受激辐射还 激光技术的发展历史 ◇顾 颖 会进一步引发同类的受激辐射,因此可以获得受激辐射被增强的效应。爱因斯坦的论断为激光的发明提供了理论基础。 图1 自发辐射和受激辐射 图2 爱因斯坦 此后,科学家们多次企图在原子发光实验中验证受激辐射的存在,但是要从大量的自发辐射中区分出只含万分之几的受激辐射确实是十分困难的,所以始终未能获得成功。 第二次世界大战时期,由于军事上雷达技术的需要,微波辐射和分子光谱学得到迅速发展,研究前沿向更短的波长领域推进,以达到更高分辨率的目标。战争结束后,美国军方对毫米级波谱学的研究工作保持着强烈的兴趣,因为其方便的部件可以用于减少导弹的重量、设计安装在坦克和潜水艇上的轻量级短波雷达、以及用于提高短波通讯的安全性。科学家们在军方的资助下能够利用战后剩余的微波设备继续微波辐射研究。1951年,美国哥伦比亚大学教授汤斯(Charles Townes)开始了“受激辐射微波放大器”(Microwave Amplification by Stimulated Emission of Radiation-MASER ,译作脉塞)的研究。1954年,汤斯和他的学生古尔德(Gordon Gou)合作制成了第一台脉塞,他成功地隔离了激发态氨(Ammonia)分子并实现了粒子数反转(上能级分子数分布大于下能级分子),把一束受激的氨分子束瞄准进入谐振腔,使腔内激发态氨分子受激跃迁产生24千兆赫频率的辐射信号。第一个脉塞辐射的波长略大于1厘米,功率只有几十毫微 瓦,但是能量集中在很窄的谱线内。同年,苏联科学

激光加工的应用和发展趋势

课程:特种加工基础实训教程 题目:激光加工技术应用和发展趋势院系:工学院机械系 专业:机械设计制造及其自动化 班级: 姓名: 学号: 时间:

目录 摘要 (2) 1引言 (2) 2激光的特点 (2) 定向发光 (2) 亮度极高 (2) 颜色极纯 (3) 3 激光加工技术的主要应用 (3) 激光打孔 (4) 激光快速成型 (4) 激光打标 (4) 激光切割 (5) 激光焊接 (5) 激光热处理 (6) 4 激光加工的发展趋势 (6) 数控化和多功能化 (6) 高频度和高可靠性 (7) 小型化和集成化 (7) 5 结语 (7) 参考文献 (7)

激光加工的应用和发展趋势 摘要:激光加工在现代产业中展示了强大的优势和发展潜力,成为21世纪的主导技术。本文主要介绍激光加工技术的应用现状和未来的发展趋势。 关键词:激光激光技术激光加工应用与发展趋势 1. 引言 激光是20世纪人类最伟大的发明之一,现在已广泛应用于工业、军事、科学研究与日常生活中。激光具有四大特性:高的单色性、方向性、相干性和亮度性。应用激光固有的四大特性,将具有高能量密度的,能被聚焦到微小空间的激光用于加工的方法叫激光加工。激光加工技术是一项集光、机电、材料及检测于一体的先进技术。激光加工主要涉及:激光焊接、激光切割、激光打标、激光雕刻等.现在一般的激光加工都采用了多项先进技术,多功能集成度高、实用性强、自动化程度高、操作简单、结果直观,而且加工过程中可实现动态同步跟踪显示,具有程序错误自动诊断、限位保护等功能。 2. 激光的特点 定向发光 普通光源是向四面八方发光。要让发射的光朝一个方向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有弧度,接近平行。1962年,人类第一次使用激光照射月球,地球离月球的距离约38万公里,但激光在月球表面的光斑不到两公里。若以聚光效果很好,看似平行的探照灯光柱射向月球,按照其光斑直径将覆盖整个月球。 亮度极高 在激光发明前,人工光源中高压脉冲氙灯的亮度最高,与太阳的亮度不相上下,而红宝石激光器的激光亮度,能超过氙灯的几百亿倍。因为激光的亮度极高,所以能够照亮远距离的物体。红宝石激光器发射的光束在月球上产生的照度约为勒克斯(光照度的单位),颜色鲜红,激光光斑明显可见。若用功率最强的探照灯照射月球,产生的照度

新型相变储能技术的应用与发展

0引言 能源是人类赖以生存的基础。目前,随着全球工 业的高速发展,全球能源也日益短缺。矿物能源的枯竭性危机和环境污染问题越来越受到世人关注,提高能源使用效率和开发可再生能源是人类面临的重要课题。 上世纪末相变储热(LTES)的基础理论和应用技术研究在发达国家(如美国、加拿大、日本、德国等)迅速崛起并得到不断发展。材料科学、太阳能、航天技术、工程热物理、建筑物空调采暖通风及工业废热利用等领域的相互渗透与迅猛发展为LTES研究和应用创造了条件。LTES具有储热密度高,储热放热近似等温,过程易控制的特点。潜热储热是有效利用新能源利节能的重要途径。提高储热系统的相变速率,热效率,储热密度和长期稳定型是目前面临的重要课题。研究潜热储热的核心就是研究材料的相变传热过程[1]。 相变储能控温是提高能源利用效率和保护环境的重要技术,常用于缓解能量供求双方在时间、强度及地点上不匹配的有效方式,在太阳能的利用、电力的“移峰填谷”、废热和余热的回收利用,以及工业与民用建筑和空调的节能等领域具有广泛的应用前景,目前已成为世界范围内的研究热点。利用相变材料的相变潜热来实现能量的储存和利用,有助于提高能效和开发可再生能源,是近年来能源科学和材料科学领 域中一个十分活跃的前沿研究方向。 1相变储能控温材料的机理及发展现状 1.1相变储能控温材料的机理 相变储能控温材料是指在其物相变化过程中,可以与外界环境进行能量交换(从外界环境吸收热量或者向外界环境放出热量),从而达到控制环境温度和能量利用的目的的材料。与显热储能相比,相变储能控温具有储能密度高、体积小巧、温度控制恒定、节能效果显著、相变温度选择范围宽、易于控制等优点,在航空航天、太阳能利用、采暖和空调、供电系统优化、医学工程、军事工程、蓄热建筑和极端环境服装等众多领域具有重要的应用价值和广阔的前景。 相变材料从液态向固态转变时,要经历物理状态的变化。在这两种相变过程中,材料要从环境中吸热,反之,向环境放热。在物理状态发生变化时可储存或释放的能量称为相变热,发生相变的温度范围很窄。物理状态发生变化时,材料自身的温度在相变完成前几乎维持不变。大量相变热转移到环境中时,产生了一个宽的温度平台。该温度平台的出现,体现了恒温时间的延长,并可与显热和绝缘材料区分开来(绝缘材料只提供热温度变化梯度)。相变材料在热循环时,储存或释放显热。 相变材料在熔化或凝固过程中虽然温度不变,但吸收或释放的潜热却相当大。目前已知的天然和合成 新型相变储能技术的应用与发展 尚燕1,张雄2 (1.江苏省建筑科学研究院,江苏 南京 210008;2.同济大学材料科学与工程学院,上海 200092) 摘要:概括和评述了相变储能复合材料的制备方法及其研究进展,介绍了相变材料在建筑方面的应用,最后,指出当前存在问题以及 目前值得深入研究的课题。 关键词:相变材料;储能;复合材料;应用中图分类号:TU599 文献标志码:A 文章编号:1673-7237(2006)02-0021-06 ApplicationandDevelopmentontheTechnologyofPhaseChangeEnergyStorage SHANGYan1,ZHANGXiong2 (1.JiangsuInstituteofBuildingScience,Nanjing210008,China; 2.DepartmentofMaterialsScience&Engineering,TongjiUniversity,Shanghai200092,China) Abstract:Thepreparationmethodofcompositephasechangematerialsandtheirresearchdevelopmentarereviewed.Theapplicationsofphasechangematerialsinarchitecturearealsodiscussed.Atlast,theexistingproblemsandsubjectsdeservingtofurtherstudyareindicated. Key words:phasechangematerials;energystorage;compositematerials;application ■节能技术 ENERGY-SAVINGTECHNOLOGY 建筑节能 2006年第2期(总第34卷第190期) No.2in2006(TotalNo.190,Vol.34) 21

激光技术简介及发展历程介绍

激光技术简介及发展历程介绍 世界上第一台激光器诞生于1960年,我国于1961年研制出第一台激光器,40多年来,激光技术与应用发展迅猛,已与多个学科相结合形成多个应用技术领域,比如光电技术,激光医疗与光子生物学,激光加工技术,激光检测与计量技术,激光全息技术,激光光谱分析技术,非线性光学,超快激光学,激光化学,量子光学,激光雷达,激光制导,激光分离同位素,激光可控核聚变,激光武器等等。这些交叉技术与新的学科的出现,大大地推动了传统产业和新兴产业的发展。 一、激光技术应用简介 激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为: 1.冠钧激光加工系统。包括激光器、导光系统、加工机床、控制系统及检测系统。 2.冠钧激光加工工艺。包括切割、焊接、表面处理、打孔、打标、划线、微调等各种加工工艺。 激光焊接:汽车车身厚薄板、汽车零件、锂电池、心脏起搏器、密封继电器等密封器件以及各种不允许焊接污染和变形的器件。目前使用的激光器有YAG激光器,CO2激光器和半导体泵浦激光器。 激光切割:汽车行业、计算机、电气机壳、木刀模业、各种金属零件和特殊材料的切割、圆形锯片、压克力、弹簧垫片、2mm以下的电子机件用铜板、一些金属网板、钢管、镀锡铁板、镀亚铅钢板、磷青铜、电木板、薄铝合金、石英玻璃、硅橡胶、1mm以下氧化铝陶瓷片、航天工业使用的钛合金等等。使用激光器有YAG激光器和CO2激光器。

MRU成像技术和临床应用的

MRU成像技术和临床应用 John R. Leyendecker, MD; Craig E. Barnes, MD; Ronald J. Zagoria, MD 磁共振尿路成像(MRU)是一组成像技术,可无创性的评价尿路的病变。临床上,MRU用于评价可疑的尿路梗阻、血尿和先天畸形,以及术后解剖的改变,特别在儿童、怀孕患者,及需要避免辐射的情况。最常用的MRU技术可分为两类:静态液体MRU(简称静态MRU)和动态排泄期MRU (简称排泄MRU)。静态MRU采用重T2加权技术获得静态下的尿路影像,能够连续的重复使用(电影MRU)来更好显示尿路的全貌从而发现狭窄的部位,这项技术在集合系统扩张或梗阻的患者中应用得非常成功。排泄MRU用于经静脉注射造影剂后获得增强的排泄期影像。但要求患者肾功能良好,能够正常排泄和分泌造影剂。做排泄性MRU前的尿路准备也很重要,这能更好显示无扩张的集合系统。临床上,一般将静态和排泄MRU与传统的MRI一起应用来综合评价尿路情况。对MRU检查影像的观察要求医师对此项技术的缺点和伪影要非常熟悉。 概述 已经发展的尿路成像的技术有多种,其中只有CTU和MRU能够全面的综合评价尿路集合系统、肾实质和周围结构。虽然CTU在空间分辨率、组织分辨率和肾脏解剖的显示方面已接近极致,但MRU是一项更新的技术。MRU是一组能够无创性提供全面和特异的尿路检查的影像技术,而且无辐射。但同时,MRU的局限性和缺点是对钙化不敏感,成像时间长,对移动敏感,(与CT和X线比较)空间分辨率低。在本文中,我们回顾最常用的MR尿路成像技术,并讨论与MRU有关的特殊情况(如儿童患者、怀孕患者,肾功能不全、3T成像)。此外,我们还讨论MRU的临床应用范例,关于尿路结石性和非结石性的尿路梗阻、血尿、先天畸形,以及手术前后的评价。我们也讨论这项技术的局限性和常见伪影。 MRU技术 最常用的MRU技术可分为两类:(a)静态液体MRU(也称为静态MRU、T2加权MRU,或MR水成像);(b)动态排泄期MRU(也称为增强T1加权MRU)。 静态液体MRU T2加权技术是最先采用的MR尿路成像方法。静态MRU将尿路当作一个装有静态液体的容器,采用T2加权技术利用液体长T2驰豫时间的特性来显像。因此,静态MRU尿路成像技术类似MRCP,屏气T2加权MRU可用于厚层单激发快速自旋回波技术或类似的薄层技术(如驰豫增强半傅立叶快速采集、单激发快速自旋回波,单激发双回波)。背景组织的信号强度可通过回波时间和脂肪抑制来调节。三维呼吸门控序列应用于获得薄层数据,经后处理获得尿路的容积显示(VR)或最大密度投影(MIP)。重T2加权静态MRU类似传统的排泄性尿路造影,用于快速确定尿路梗阻。可是,确定梗阻原因常常需要额外的序列(图1)。静态MRU不需要对比剂,因此可用于显示肾功能不齐的尿路梗阻。 图1 53岁,男性,前列腺癌淋巴结转移。(a)冠状位静态MRU显示右侧输尿管远端梗阻(箭头)。(b)冠状位单激发快速自旋回波图像显示增大的前列腺和转移的淋巴结(箭头)是导致输尿管梗阻的原因。

储能技术应用和发展前景

储能技术应用和发展前景 深圳市中美通用电池有限公司网址:WWW+中美通用电池首字母+COM General Electronics Battery Co., Ltd. 网址:WWW+中美通用电池首字母+COM 储能是智能电网、可再生能源接入、分布式发电、微电网以及电动汽车发展必不可少的支撑技术,可以有效地实现需求侧管理、消除昼夜峰谷差、平滑负荷,可以提高电力设备运行效率、降低供电成本,还可以作为促进可再生能源应用,提高电网运行稳定性、调整频率、补偿负荷波动的一种手段。智能电网的构建促进储能技术升级、推动储能需求尤其是大规模储能需求的快速增长,从而带来相应的投资机会。 随着储能技术的大量应用必将在传统的电力系统设计、规划、调度、控制方面带来变革。储能技术关系到国计民生,具有越来越重要的经济价值和社会价值,目前储能在中国的发展刚刚起步。国家应该尽快研究储能技术的相关产业标准,加强储能技术基础研究的投入,切实鼓励技术创新,掌握自主知识产权;从规模储能技术发展起始阶段就重视环境因素,防治环境污染;充分发挥储能在节能减排方面的作用,把对新能源的鼓励政策延伸到储能环节。 近年来,我国电网峰谷差逐年增大,多数电网的高峰负荷增长幅度在10%左右,甚至更高。而低谷负荷的增长幅度则维持在5%甚至更低。峰谷差的增加幅度大于负荷的增长幅度,在电网中引入储能系统成为了实现电网调峰的迫切需求。 储能技术拥有广泛的应用前景,但实现规模化储能当前仍是一个世界性难题。目前,我国约有40个储能示范项目,而规模在1000千瓦级的项目为数不多。这些储能项目多起到示范、探索性作用,并不具备产业化意义。 储能产业的发展机遇

激光的发展历程及应用汇总

南京理工大学 研究生研究型课程考试 课程名称:现代物理学导论 考试形式:□专题研究报告√论文□大作业□综合考试 学生姓名:王慧学号: 512011424 评阅人:王清华 时间:2013年6 月

激光的发展历程及应用 王慧 (南京理工大学机械工程学院南京210094) 摘要:自1960年第一台激光器发明以来,经过儿十年的发展,激光技术的研究取得了飞越性的发展并广泛应用于人们生活的各个领域。本文主要介绍了激光的应用领域以及一此处于研究前沿领域的技术。 关键词:激光发展;激光历史;激光应用 The Development and Application Prospects Of Laser Technology Abstract:Since the advent of the first optical maser, there has been several dacades. In the short years laser technology has made transilient progress and has applied to in many affairs civil use. The article is about the application of laser technology which is under application and advancing front of study. Key words:Laser Development; Laser history; Laser Applications 一.引言 自1960年7月梅曼发明了世界上第一台红宝石激光器以来,经过四十多年的发展,人们在激光的研究上突破了许多技术难题并取得了相当的成就。激光被发明以来,以其方向性强、单色性好、高亮度和高度的时空相干性引起了科学家们特别是军事家们的广泛关注,经过科学家们的不懈努力,今天的激光仪器无论是从工作原理、实验手段,还是制造工艺都已逐步成熟。激光日益受到各大军事强国的重视,并有望成为未来军事技术发展中最活跃的一个领域之一。迄今为止,激光在军事领域已经广泛应用于定向能武器、航空航天、侦察与反侦察、制导、通信等诸多领域,大大提高了军队在高技术战争条件下的打击与防御能力。同时,激光的军转民技术也得到了很大的发展。 二.激光的发展历程 早在1917年,爱因斯坦在光量子假设基础上,提出了光的两种不同性质的辐射—自发辐射和受激辐射.从理论上预言了存在受激辐射光的可能性。1928年,德国的https://www.360docs.net/doc/533715223.html,denburg,H.Kopferman用实验证明了受激辐射假设成立。到本世纪五十年代,实验上验证了粒子数反转现象,并提出爱激辐射放 大理论,由这个理论所预见的粒子数反转体系对入射电磁场产生受激放大作用的可能性,首先在无线电电子学的微波技术领域内得以实现。1954年,氮分子气体微波量子放大器诞生。微波量子放大器技术的出现和进展。促进人们在光频波段的探索。1957年9月,美国的c.H.Townes第一次提出光频受激辐射放大设想,同每11月,美国的R.G.Gould 独立提出光频受激辐射放大构思并提出证据公证。继而许多人提出了各种激光器 建议.1960年5月」.5日第一台红宝石激光器〔69招A。)由美国人T.H.Maiman研制成功至此,激光技术就以科学史上罕见的高速度向前发展着,激光理论和激光应用也很快开拓。 在理论研究方面.激光技术的出现极大地促进了光辐射理论的发展。激光以前所有各类光源的发光纂本上属于自发辐射机制.光辐射与物质的作用属于弱光与物质的相互作用,其辐射理论属于有关弱光辐射的产

全球储能技术发展现状与应用情况

全球储能技术发展现状与应用情况 一、储能技术分类、技术原理、主要特征 针对电储能的储能技术主要分为三类:电化学储能(如钠硫电池、液流电池、铅酸电池、锂离子电池、镍镉电池、超级电容器等) 、物理储能(如抽水蓄能、压缩空气储能、飞轮储能等)和电磁储能(如超导电磁储能等)。 也可以分为功率型和能量型,功率型的特点是功率密度大、充放电次数多、响应速度快、能量密度小的特点,例如飞轮、超级电容、超导;能量型的特点是能量密度大、响应时间长、充放电次数少、功率密度低等特点。例如蓄电池。 从目前的情况来看,两种储能设备混用会产生更大的效果,混用比单一使用更有利于降低成本。(最近的一篇论文介绍的模型计算结果是在微网中使用超级电容和蓄电池两种混合储能成本是单一储能成本的33.8%。) (一)电化学储能技术 1、钠硫电池 钠硫电池的正极活性物质是液态的硫(S);负极活性物质是液态金属钠(Na),中间是多孔性瓷隔板。它利用熔融状态的金属钠和硫磺在300℃以上高温条件下,进行氧化-还原反应,完成充放电过程。 钠硫电池的主要特点是能量密度大(是铅蓄电池的3倍)、充电效率高(可达到80%)、可大电流、高功率放电、循环寿命比铅蓄电

池长。然而钠硫电池在工作过程中需要保持高温,有一定安全隐患。由于钠硫电池中所用的储能介质金属钠和硫磺均为易燃、易爆物质,对电池材料要求十分苛刻,目前只有日本(NGK)公司实现产品的产业化生产。 图1 钠硫电池储能系统原理 (来源:美国储能协会) 2、液流电池 液流氧化还原电池(Redox flow cell energy storage systems),简称液流蓄电站或液流电池,与通常蓄电池活性物质包含在阳极和阴极不同,液流电池作为氧化-还原电对的活性物质分别溶解于装在两个大储液罐中的溶液里,各用一个泵使溶液流经液流电池堆中高选择性离子交换膜的两侧,在其多孔炭毡电极上发生还原和氧化反应。电池堆通过双极板串联,结构类似于燃料电池。目前还发展有在一个或两个电极上发生金属离子(及非金属离子)溶解/沉积反应的液流电池。 由于液流电池的储能容量由储存槽中的电解液容积决定,而输出功率取决于电池的反应面积,通过调整电池堆中单电池的串连数量和电极面积,能够满足额定放电功率要求。两者可以独立设计,因此系

相关文档
最新文档