《概率论与数理统计》浙江大学第四版课后习题答案

《概率论与数理统计》浙江大学第四版课后习题答案
《概率论与数理统计》浙江大学第四版课后习题答案

概率论与数理统计习题答案 第四版 盛骤 (浙江大学)

浙大第四版(高等教育出版社) 第一章 概率论的基本概念

1.[一] 写出下列随机试验的样本空间

(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)

???

????=n n n

n o S 1001, ,n 表小班人数

(3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2)

S={10,11,12,………,n ,………}

(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。 ([一] (3))

S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}

2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生。 表示为:

C B A 或A - (AB+AC )或A - (B ∪C )

(2)A ,B 都发生,而C 不发生。 表示为:

C AB 或AB -ABC 或AB -C

(3)A ,B ,C 中至少有一个发生 表示为:A+B+C

(4)A ,B ,C 都发生,

表示为:ABC

(5)A ,B ,C 都不发生,

表示为:C B A 或S - (A+B+C)或C B A ??

(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。故 表示为:C A C B B A ++。 (7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。故 表示为:AB +BC +AC

6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0.

7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少?

解:由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).

从而由加法定理得

P (AB )=P (A )+P (B )-P (A ∪B ) (*)

(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6,

(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。

7.[四] 设A ,B ,C 是三事件,且0)()(,4

1

)()()(===

==BC P AB P C P B P A P ,8

1

)(=

AC P . 求A ,B ,C 至少有一个发生的概率。 解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )

-P (AC )+ P (ABC )=

8

508143=+- 8.[五] 在一标准英语字典中具有55个由二个不相同的字母新组成的单词,若从26个英语字母中任取两个字母予以排列,问能排成上述单词的概率是多少?

记A 表“能排成上述单词”

∵ 从26个任选两个来排列,排法有2

26A 种。每种排法等可能。

字典中的二个不同字母组成的单词:55个 ∴

130

11

55)(2

26==

A A P 9. 在电话号码薄中任取一个电话号码,求后面四个数全不相同的概率。(设后面4个数中的每一个数都是等可能性地取自0,1,2……9)

记A 表“后四个数全不同”

∵ 后四个数的排法有104

种,每种排法等可能。

后四个数全不同的排法有410A

504.010

)(44

10

==A A P

10.[六] 在房间里有10人。分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的号码。

(1)求最小的号码为5的概率。 记“三人纪念章的最小号码为5”为事件A

∵ 10人中任选3人为一组:选法有??

? ??310种,且每种选法等可能。

又事件A 相当于:有一人号码为5,其余2人号码大于5。这种组合的种数有??

? ???251

121310251)(=??

?

???

?? ???=

A P

(2)求最大的号码为5的概率。

记“三人中最大的号码为5”为事件B ,同上10人中任选3人,选法有??

? ??310种,且

每种选法等可能,又事件B 相当于:有一人号码为5,其余2人号码小于5,选法有?

?

? ???241种

201310241)(=??

?

???

?? ???=

B P 11.[七] 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。在搬运中所标笺脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少?

记所求事件为A 。

在17桶中任取9桶的取法有9

17C 种,且每种取法等可能。

取得4白3黑2红的取法有23

34410C C C ?? 故

2431252

)(6

17

2

334410=??=C C C C A P 12.[八] 在1500个产品中有400个次品,1100个正品,任意取200个。 (1)求恰有90个次品的概率。 记“恰有90个次品”为事件A

∵ 在1500个产品中任取200个,取法有?

?

? ??2001500种,每种取法等可能。 200个产品恰有90个次品,取法有?

?

? ????? ??110110090400种 ∴

??

? ???

??

????? ??=2001500110110090400)(A P

(2)至少有2个次品的概率。 记:A 表“至少有2个次品”

B 0表“不含有次品”,B 1表“只含有一个次品”,同上,200个产品不含次品,取法有

??? ??2001100种,200个产品含一个次品,取法有??

? ????? ??199********种 ∵

10B B A +=且B 0,B 1互不相容。

???

??

?

????????? ????? ????? ??+??? ????? ??-=+-=-=200150019911001400200150020011001)]()([1)(1)(10B P B P A P A P

13.[九] 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少?

记A 表“4只全中至少有两支配成一对” 则A 表“4只人不配对”

∵ 从10只中任取4只,取法有??

? ??410种,每种取法等可能。

要4只都不配对,可在5双中任取4双,再在4双中的每一双里任取一只。取法有

4245???

? ??

21

132181)(1)(2182)(410

445=-

=-==

?=

A P A P C C A P

15.[十一] 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概率各为多少?

记A i 表“杯中球的最大个数为i 个” i=1,2,3, 三只球放入四只杯中,放法有43

种,每种放法等可能

对A 1:必须三球放入三杯中,每杯只放一球。放法4×3×2种。

(选排列:好比3个球在4个位置做排列)

166

4

234)(31=??=

A P 对A 2:必须三球放入两杯,一杯装一球,一杯装两球。放法有342

3??C 种。

(从3个球中选2个球,选法有2

3C ,再将此两个球放入一个杯中,选法有4

种,最后将剩余的1球放入其余的一个杯中,选法有3种。

16

9

43

4)(3

2

32=

??=

C A P 对A 3:必须三球都放入一杯中。放法有4种。(只需从4个杯中选1个杯子,放入此

3个球,选法有4种)

161

4

4)(33==

A P 16.[十二] 50个铆钉随机地取来用在10个部件,其中有三个铆钉强度太弱,每个

部件用3只铆钉,若将三只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱,问发生一个部件强度太弱的概率是多少?

记A 表“10个部件中有一个部件强度太弱”。 法一:用古典概率作:

把随机试验E 看作是用三个钉一组,三个钉一组去铆完10个部件(在三个钉的一组中不分先后次序。但10组钉铆完10个部件要分先后次序)

对E :铆法有3

23

344347350C C C C ??? 种,每种装法等可能 对A :三个次钉必须铆在一个部件上。这种铆法有〔323

34434733C C C C ??〕×10种

00051.01960

1

10

][)(3

23

3473503

2334434733==

???????=C C C C C C C A P 法二:用古典概率作

把试验E 看作是在50个钉中任选30个钉排成一列,顺次钉下去,直到把部件铆完。

(铆钉要计先后次序)

对E :铆法有3

50A 种,每种铆法等可能

对A :三支次钉必须铆在“1,2,3”位置上或“4,5,6”位置上,…或“28,29,

30”位置上。这种铆法有2747

3327473327473327473310A A A A A A A A ??=+++?+? 种 00051.01960

1

10)(30

50

27

47

33==

??=A A A A P 17.[十三] 已知)|(,5.0)(,4.0)(,3.0)(B A B P B A P B P A P ?===求。 解一:

B A AB B B A AS A B P B P A P A P ?=?===-==-=)(,6.0)(1)(,7.0)(1)(注意φ=))((B A AB . 故有

P (AB )=P (A )-P (A B )=0.7-0.5=0.2。

再由加法定理,

P (A ∪B )= P (A )+ P (B )-P (A B )=0.7+0.6-0.5=0.8

于是25.08

.02

.0)()()()]([)|(==?=??=

?B A P AB P B A P B A B P B A B P

25.05

.06.07.051

)()()()()()()|(5

1)|()()(72)|(757.05.0)|()|(0705)|()()(:=-+=-+=???===?==

∴?=??→?=B A P B P A P BA P B A P B B BA P B A B P A B P A P AB P A B P A B P A B P A B P A P B A P 定义 故 解二由已知

18.[十四] )(,2

1

)|(,31)|(,41)(B A P B A P A B P A P ?===求。 解

6

1)()(314121)()|()()()()|(=??

=

????→?=B P B P B P A B P A P B P AB P B A P 有定义由已知条件 由乘法公式,得12

1

)|()()(=

=A B P A P AB P 由加法公式,得3

11216141)()()()(=-+=

-+=?AB P B P A P B A P 19.[十五] 掷两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率(用两种方法)。

解:(方法一)(在缩小的样本空间SB 中求P(A|B),即将事件B 作为样本空间,求事件A 发生的概率)。

掷两颗骰子的试验结果为一有序数组(x , y )(x , y =1,2,3,4,5,6)并且满足x ,+y =7,则样本空间为

S={(x , y )| (1, 6 ), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)} 每种结果(x , y )等可能。

A={掷二骰子,点数和为7时,其中有一颗为1点。故3

1

62)(==

A P } 方法二:(用公式)

()

()|(B P AB P B A P =

S={(x , y )| x =1,2,3,4,5,6; y = 1,2,3,4,5,6}}每种结果均可能

A=“掷两颗骰子,x , y 中有一个为“1”点”,B=“掷两颗骰子,x ,+y =7”。则

226

2

)(,6166)(===

AB P B P , 故3

1626

162)()()|(2====B P AB P B A P

20.[十六] 据以往资料表明,某一3口之家,患某种传染病的概率有以下规律:

P (A )=P {孩子得病}=0.6,P (B |A )=P {母亲得病|孩子得病}=0.5,P (C |AB )=P {父亲得病|

母亲及孩子得病}=0.4。求母亲及孩子得病但父亲未得病的概率。

解:所求概率为P (AB C )(注意:由于“母病”,“孩病”,“父病”都是随机事件,这里不是求P (C |AB )

P (AB )= P (A )=P (B |A )=0.6×0.5=0.3, P (C |AB )=1-P (C |AB )=1-0.4=0.6.

从而P (AB C )= P (AB ) · P (C |AB )=0.3×0.6=0.18.

21.[十七] 已知10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概率。

(1)二只都是正品(记为事件A )

法一:用组合做 在10只中任取两只来组合,每一个组合看作一个基本结果,每种取法等可能。

62.045

28

)(21028===C C A P

法二:用排列做 在10只中任取两个来排列,每一个排列看作一个基本结果,每个排列等可能。

45

28)(210

28=

=A A A P

法三:用事件的运算和概率计算法则来作。 记A 1,A 2分别表第一、二次取得正品。

45

2897108)|()()()(1221=?=

==A A P A P A A P A P (2)二只都是次品(记为事件B )

法一: 45

1)(210

22=

=

C C B P 法二: 45

1)(210

22=

=

A A

B P

法三:

45

1

91102)|()()()(12121=

?=

==A A P A P A A P B P (3)一只是正品,一只是次品(记为事件C )

法一: 45

16)(210

1218=

?=

C C C C P 法二:

45

16)()(2

10

22

1218=

??=

A A C C C P 法三:

互斥与且21212121)()(A A A A A A A A P C P +=

45

169108292

108)|()()|()(121121=+?=

+=A A P A P A A P A P (4)第二次取出的是次品(记为事件D )

法一:因为要注意第一、第二次的顺序。不能用组合作,

法二: 5

1)(210

1219=

?=A A A D P 法三: 互斥与且21212121)()(A A A A A A A A P D P +=

5

19110292108)|()()|()(121121=?+?=

+=A A P A P A A P A P 22.[十八] 某人忘记了电话号码的最后一个数字,因而随机的拨号,求他拨号不超过三次而接通所需的电话的概率是多少?如果已知最后一个数字是奇数,那么此概率是多少?

记H 表拨号不超过三次而能接通。

A i 表第i 次拨号能接通。

注意:第一次拨号不通,第二拨号就不再拨这个号码。

10

3819810991109101)|()|()()|()()()(2131211211321211=??+?+=

++=∴

++=A A A P A A P A P A A P A P A P H P A A A A A A H 三种情况互斥

如果已知最后一个数字是奇数(记为事件B )问题变为在B 已发生的条件下,求H 再发生的概率。

)|||)|(321211B A A A B A A B PA B H P ++=

)|()|()|()|()|()|(2131211211A A B A P A B A P B A P A B A P B A P B A P ++=

5

3314354415451=??+?+=

24.[十九] 设有甲、乙二袋,甲袋中装有n 只白球m 只红球,乙袋中装有N 只白球

M 只红球,今从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,问取到(即从乙袋中

取到)白球的概率是多少?(此为第三版19题(1))

记A 1,A 2分别表“从甲袋中取得白球,红球放入乙袋” 再记B 表“再从乙袋中取得白球”。 ∵ B =A 1B +A 2B 且A 1,A 2互斥

P (B )=P (A 1)P (B | A 1)+ P (A 2)P (B | A 2)

=

1

11++?

+++++?+M N N

m n m M N N m n n [十九](2) 第一只盒子装有5只红球,4只白球;第二只盒子装有4只红球,5只白球。先从第一盒子中任取2只球放入第二盒中去,然后从第二盒子中任取一只球,求取到白球的概率。

记C 1为“从第一盒子中取得2只红球”。 C 2为“从第一盒子中取得2只白球”。

C 3为“从第一盒子中取得1只红球,1只白球”,

D 为“从第二盒子中取得白球”,显然C 1,C 2,C 3两两互斥,C 1∪C 2∪C 3=S ,由全概率

公式,有

P (D )=P (C 1)P (D|C 1)+P (C 2)P (D|C 2)+P (C 3)P (D| C 3)

99531161171152

9

1415292

42925=??+?+?=C C C C C C C 26.[二十一] 已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?

解:A 1={男人},A 2={女人},B={色盲},显然A 1∪A 2=S ,A 1 A 2=φ 由已知条件知%25.0)|(%,5)|(21

)()(2121====A B P A B P A P A P

由贝叶斯公式,有

212010000

2521100521100521)|()()|()()|()()()()|(22111111=

?

+??

=+==A B P A P A B P A P A B P A P B P B A P B A P

[二十二] 一学生接连参加同一课程的两次考试。第一次及格的概率为P ,若第一次

及格则第二次及格的概率也为P ;若第一次不及格则第二次及格的概率为2

P

(1)若至少

有一次及格则他能取得某种资格,求他取得该资格的概率。(2)若已知他第二次已经及格,求他第一次及格的概率。

解:A i ={他第i 次及格},i=1,2

已知P (A 1)=P (A 2|A 1)=P ,2)|(12P A A P = (1)B ={至少有一次及格} 所以21}{A A B ==两次均不及格

∴)|()(1)(1)(1)(12121A A P A P A A P B P B P -=-=-= )]|(1)][(1[1121A A P A P ---= 22

1

23)21)(1(1P P P P -=-

--=

(2))

()

()22121(A P A A P A A P 定义

(*)

由乘法公式,有P (A 1 A 2)= P (A 1) P (A 2| A 1) = P 2

由全概率公式,有)|()()|()()(1211212A A P A P A A P A P A P +=

2

22

)1(2P P P P P P +=?

-+?=

将以上两个结果代入(*)得1

22

2)|(2221+=

+=

P P

P

P P A A P 28.[二十五] 某人下午5:00下班,他所积累的资料表明:

到家时间 5:35~5:39 5:40~5:44 5:45~5:49 5:50~5:54 迟于5:54

乘地铁到

家的概率 0.10

0.25

0.45

0.15

0.05 乘汽车到

家的概率

0.30

0.35

0.20

0.10

0.05

某日他抛一枚硬币决定乘地铁还是乘汽车,结果他是5:47到家的,试求他是乘地铁回家的概率。

解:设A=“乘地铁”,B=“乘汽车”,C=“5:45~5:49到家”,由题意,AB=φ,A ∪B =S 已知:P (A )=0.5, P (C|A )=0.45, P (C|B )=0.2, P (B )=0.5 由贝叶斯公式有

6923.013

9

65.045.02

1)

|(21)|(45.05.0)

()

()|()|(===+?=

=

B C P A C P C P A P A C P C A P

29.[二十四] 有两箱同种类型的零件。第一箱装5只,其中10只一等品;第二箱30只,其中18只一等品。今从两箱中任挑出一箱,然后从该箱中取零件两次,每次任取

一只,作不放回抽样。试求(1)第一次取到的零件是一等品的概率。(2)第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率。

解:设B i 表示“第i 次取到一等品” i=1,2

A j 表示“第j 箱产品” j=1,2,显然A 1∪A 2=S

A 1A 2=φ

(1)4.05

2

301821501021)(1==?+?=

B P (B 1= A 1B +A 2B 由全概率公式解)。 (2)4857.05

229

17

301821499501021)

()()|(12112=+

==B P B B P B B P

(先用条件概率定义,再求P (B 1B 2)时,由全概率公式解) 32.[二十六(2)] 如图1,2,3,4,5表示继电器接点,假设每一继电器接点闭合的概率为p ,且设各继电器闭合与否相互独立,求L 和R 是通路的概率。

记A i 表第i 个接点接通 记A 表从L 到R 是构成通路的。

∵ A=A 1A 2+ A 1A 3A 5+A 4A 5+A 4A 3A 2四种情况不互斥

∴ P (A )=P (A 1A 2)+P (A 1A 3A 5) +P (A 4A 5)+P (A 4A 3A 2)-P (A 1A 2A 3A 5)

+ P (A 1A 2 A 4A 5)+ P (A 1A 2 A 3 A 4) +P (A 1A 3 A 4A 5)

+ P (A 1A 2 A 3A 4A 5) P (A 2 A 3 A 4A 5)+ P (A 1A 2A 3 A 4A 5)+ P (A 1A 2 A 3 A 4A 5) + (A 1A 2 A 3 A 4A 5) + P (A 1A 2 A 3 A 4A 5)-P (A 1A 2 A 3 A 4A 5)

又由于A 1,A 2, A 3, A 4,A 5互相独立。 故

P (A )=p 2

+ p 3

+ p 2

+ p 3

-[p 4

+p 4

+p 4

+p 4

+p 5

+p 4

]

+[ p 5

+ p 5

+ p 5

+ p 5

]-p 5

=2 p 2

+ 3p 3

-5p 4

+2 p 5

[二十六(1)]设有4个独立工作的元件1,2,3,4。它们的可靠性分别为P 1,P 2,

5

3 4

2

1

L

R

P 3,P 4,将它们按图(1)的方式联接,求系统的可靠性。

记A i 表示第i 个元件正常工作,i=1,2,3,4,

A 表示系统正常。

∵ A=A 1A 2A 3+ A 1A 4两种情况不互斥

∴ P (A )= P (A 1A 2A 3)+P (A 1A 4)-P (A 1A 2A 3 A 4) (加法公式)

= P (A 1) P (A 2)P (A 3)+ P (A 1) P (A 4)-P (A 1) P (A 2)P (A 3)P (A 4) = P 1P 2P 3+ P 1P 4-P 1P 2P 3P 4

(A 1, A 2, A 3, A 4独立)

34.[三十一] 袋中装有m 只正品硬币,n 只次品硬币,(次品硬币的两面均印有国徽)。在袋中任取一只,将它投掷r 次,已知每次都得到国徽。问这只硬币是正品的概率为多少?

解:设“出现r 次国徽面”=B r “任取一只是正品”=A 由全概率公式,有

r

r r

r r r r

r r r r n m m n m n n m m n m m B P A B P A P B A P n m n

n m m A B P A P A B P A P B P 2)21()

21()()|()()|(1)21()|()()|()()(?+=

++++==∴?+++=

+= (条件概率定义与乘法公式)

35.甲、乙、丙三人同时对飞机进行射击,三人击中的概率分别为0.4,0.5,0.7。飞机被一人击中而被击落的概率为0.2,被两人击中而被击落的概率为0.6,若三人都击中,飞机必定被击落。求飞机被击落的概率。

解:高H i 表示飞机被i 人击中,i=1,2,3。B 1,B 2,B 2分别表示甲、乙、丙击中飞机

3213213211B B B B B B B B B H ++=,三种情况互斥。

3

4

2

1

3213213212B B B B B B B B B H ++= 三种情况互斥

3223B B B H =

又 B 1,B 2,B 2独立。 ∴

)()()()()()()(3213211B P B P B P B P B P B P H P +=

36

.07.05.06.03.05.06.03.05.04.0)()()(321=??+??+??=+B P B P B P

)()()()()()()(3213212B P B P B P B P B P B P H P +=

3.05.0

4.0)()()(321??=+B P B P B P + 0.4×0.5×0.7+0.6×0.5×0.7=0.41

P (H 3)=P (B 1)P (B 2)P (B 3)=0.4×0.5×0.7=0.14

又因:

A=H 1A+H 2A+H 3A 三种情况互斥

故由全概率公式,有

P (A )= P (H 1)P (A |H 1)+P (H 2)P (A |H 2)+P (H 3)P (AH 3)

=0.36×0.2+0.41×0.6+0.14×1=0.458

36.[三十三]设由以往记录的数据分析。某船只运输某种物品损坏2%(这一事件记为

A 1),10%(事件A 2),90%(事件A 3)的概率分别为P (A 1)=0.8, P (A 2)=0.15, P (A 2)=0.05,

现从中随机地独立地取三件,发现这三件都是好的(这一事件记为B ),试分别求P (A 1|B )

P (A 2|B), P (A 3|B)(这里设物品件数很多,取出第一件以后不影响取第二件的概率,所

以取第一、第二、第三件是互相独立地)

∵ B 表取得三件好物品。

B=A 1B+A 2B+A 3B 三种情况互斥

由全概率公式,有 ∴

P (B )= P (A 1)P (B|A 1)+P (A 2)P (B|A 2)+P (A 3)P (B|A 3)

=0.8×(0.98)3+0.15×(0.9)3+0.05×(0.1)3

=0.8624

0001

.08624

.0)1.0(05.0)()|()()()()|(1268.08624.0)9.0(15.0)()|()()()()|(8731

.08624

.0)98.0(8.0)()|()()()()|(3

33333

22223

1111=?====?====?===B P A B P A P B P B A P B A P B P A B P A P B P B A P B A P B P A B P A P B P B A P B A P

37.[三十四] 将A ,B ,C 三个字母之一输入信道,输出为原字母的概率为α,而输出为其它一字母的概率都是(1-α)/2。今将字母串AAAA ,BBBB ,CCCC 之一输入信道,输入AAAA ,BBBB ,CCCC 的概率分别为p 1, p 2, p 3 (p 1 +p 2+p 3=1),已知输出为ABCA ,问输入的是AAAA 的概率是多少?(设信道传输每个字母的工作是相互独立的。)

解:设D 表示输出信号为ABCA ,B 1、B 2、B 3分别表示输入信号为AAAA ,BBBB ,CCCC ,则B 1、B 2、B 3为一完备事件组,且P(B i )=P i , i=1, 2, 3。

再设A 发、A 收分别表示发出、接收字母A ,其余类推,依题意有

P (A 收| A 发)= P (B 收| B 发)= P (C 收| C 发)=α,

P (A 收| B 发)= P (A 收| C 发)= P (B 收| A 发)= P (B 收| C 发)= P (C 收| A 发)= P (C 收| B 发)=

2

- 又P (ABCA|AAAA )= P (D | B 1) = P (A 收| A 发) P (B 收| A 发) P (C 收| A 发) P (A 收| A 发) =2

2)2

1(

αα-, 同样可得P (D | B 2) = P (D | B 3) =3

)2

1(αα-? 于是由全概率公式,得

3

322213

1

)2

1()()21(

)

|()()(ααP P αa p B D P B P D P i i

i

-++-==

∑=

由Bayes 公式,得

P (AAAA|ABCA )= P (B 1 | D ) =

)

()

|()(11D P B D P B P

=

)

)(1(223211

P P αP αP α+-+

[二十九] 设第一只盒子装有3只蓝球,2只绿球,2只白球;第二只盒子装有2只蓝球,3只绿球,4只白球。独立地分别从两只盒子各取一只球。(1)求至少有一只蓝球的概率,(2)求有一只蓝球一只白球的概率,(3)已知至少有一只蓝球,求有一只蓝球一只白球的概率。

解:记A 1、A 2、A 3分别表示是从第一只盒子中取到一只蓝球、绿球、白球,B 1、B 2、

B 3分别表示是从第二只盒子中取到一只蓝球、绿球、白球。

(1)记C ={至少有一只蓝球}

C = A 1B 1+ A 1B 2+ A 1B 3+ A 2B 1+ A 3B 1,5种情况互斥

由概率有限可加性,得

9

592729272947393739273)()()()()()()()()()()

()()()()()(13123121111312312111=?+?+?+?+?=

++++++++=B P A P B P A P B P A P B P A P B P A P B A P B A P B A P B A P B A P C P 独立性

(2)记D={有一只蓝球,一只白球},而且知D= A 1B 3+A 3B 1两种情况互斥

63

1692729473)

()()()()(()(13311331=?+?=+=+=B P A P B P A P B A P B A P D P

(3))(35

16

)()()()()|(D CD C P D P C P CD P C D P ====

注意到

[三十] A ,B ,C 三人在同一办公室工作,房间有三部电话,据统计知,打给A ,B ,C 的电话的概率分别为5

1

,

52,52。他们三人常因工作外出,A ,B ,C 三人外出的概率分别为4

1

41,21,设三人的行动相互独立,求

(1)无人接电话的概率;(2)被呼叫人在办公室的概率;若某一时间断打进了3个电话,求(3)这3个电话打给同一人的概率;(4)这3个电话打给不同人的概率;(5)

这3个电话都打给B ,而B 却都不在的概率。

解:记C 1、C 2、C 3分别表示打给A ,B ,C 的电话 D 1、D 2、D 3分别表示A ,B ,C 外出 注意到C 1、C 2、C 3独立,且5

1)(,52)()(321===C P C P C P 4

1

)()(,21)(321===

D P D P D P (1)P (无人接电话)=P (D 1D 2D 3)= P (D 1)P (D 2)P (D 3) =

32

1

414121=

?? (2)记G=“被呼叫人在办公室”,332211D C D C D C G ++=三种情况互斥,由有限可加性与乘法公式

20

13435143522152)|()()|()()|()()

()()()(333222111332211=

?+?+?=++=++=C D P C P C D P C P C D P C P D C P D C P D C P G P ????

??

??=)()|(k k k D P C D P 故否和来电话无关

由于某人外出与 (3)H 为“这3个电话打给同一个人”

125

17

515151525252525252)(=

??+??+??=

H P (4)R 为“这3个电话打给不同的人”

R 由六种互斥情况组成,每种情况为打给A ,B ,C 的三个电话,每种情况的概率为

125

4

515252=

?? 于是125

24

12546)(=

?

=R P (5)由于是知道每次打电话都给B ,其概率是1,所以每一次打给B 电话而B 不在

的概率为4

1

,且各次情况相互独立

于是 P (3个电话都打给B ,B 都不在的概率)=64

1

)41(3=

第二章 随机变量及其分布

1.[一] 一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律

解:X 可以取值3,4,5,分布律为

10

61)4,3,2,1,5()5(1031)3,2,1,4()4(10

1

1)2,1,3()3(35

2

435

2

335

2

2=?=

===

?====

?===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为

也可列为下表 X : 3, 4,5

P :

10

6

,

103,101 3.[三] 设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。

解:任取三只,其中新含次品个数X 可能为0,1,2个。

35

22)0(315

3

13=

=

=C C X P 3512)1(3

15213

12=?=

=C C C X P 35

1)2(3

15

113

22=?=

=C C C X P x

1 2

O

P

博弈论期末习题

《博弈论》期末习题 专业:经济学学号:2 ;姓名:王兆丽 一、试写出掷硬币博弈的局中人及其策略与得益函数,并写出双变量得 益矩阵。 答:局中人:盖硬币者和猜硬币者。 策略:有正面和反面两种可选择策略,若猜对,猜者得1盖者-1.否则猜者-1盖者1.由于每一方都不会让对方在选择之前知道自己的决策,所以可以看做是同时做决策的。 双变量得益矩阵; 猜硬币方 二、试举生活中的一例,说明囚徒困境是如何产生的?并试分析可能走 出囚徒困境的途径。 答:例子:中国移动和中国联通之间的价格战。 产生原因:囚徒困境是在个体之间存在行为和利益相互制约的博弈结构中,以个体理性和个体选择为基础的分散决策方式,无法有效地协调各方面的利益,并实现整体、个体利益共同的最优。简单的说,囚徒困境问题都是个体理性与集体理性的矛盾引起的。 可能走出的囚徒困境途径:(1)惩罚。如果政府对实行价格战以获利的企业实行惩罚,那么就会制止这种现象发生。(2)忠诚文化。有时候,建立一种相互忠诚的文化也可以帮助走出囚徒困境。在很多组织中,团体产生所面临的囚徒困境问题的轻重程度是不同的,这种差异的根本来源就是各个组织有自己的文化。(3)长期关系和重复博弈。建立长期关系使得囚徒困境博弈可以多次重复,如果这个“多次”足够长,那么人们就有可能为了长远的将来利益而牺牲眼前的一笔横财,合作也是可以达成的。

三、用逆向归纳法求解下面的博弈的子博弈完美纳什均衡。 答:1、该博弈共包括四个子博弈:(1)从博弈方1选择R 以后博弈方2的第二 阶段选择开始的三阶段动态博弈;(2)从博弈方2第二阶段选择R 以后博弈方1 的开始选择的两个阶段动态博弈;(3)第三阶段博弈方1选择A 以后博弈方2 的单人博弈;(4)第三阶段博弈方1选择B 以后博弈方2的单人博弈 2、根据逆推归纳法先讨论博弈方2在第四阶段的选择。由于选择C 、D 个中 任何一个的得益都相同,因此在这阶段随意选择一个都可以。倒退回第三阶段, 博弈方1选择AB中任何一个都可以。再推回第二阶段,博弈方2选择L将得到 3选择R得到2,因此选择L;最后回到第一阶段,博弈方1选择L得到2选择 R得到3,。所以该博弈的子博弈完美纳什均衡为:博弈方1第一阶段选择R, 博弈方2第二阶段选择L,即(3,1)是该博弈的完美纳什均衡。 四、两个寡头企业进行价格竞争博弈,企业1的利润函数是 q c aq p ++--=21)(π,企业2的利润函数是p b q +--=22)(π,其中p 是企业1 的价格,q 是企业2的价格。求: 1.两个企业同时决策的纯战略纳什均衡; 两个企业同时定价。根据两个企业的得益函数,很容易导出它们各自的反应 函数:απ1 /αp = -2(p-aq+c)=0 ____ p=aq-c απ2/αq = -2(q-b)=0 ______ q=b

博弈论第七章习题

第七章习题 一、判断下列表述是否正确,并作简单分析 (1)海萨尼转换可以把不完全信息静态博弈转换为不完美信息博弈,说明有了海萨尼转换,不完全信息静态博弈和一般的不完美信息动态博弈是等同的,不需要另外发展分析不完全信息静态博弈的专门分析方法和均衡概念。 答:错误。即使海萨尼转换把不完全信息静态博弈转换为不完美信息动态博弈,也是一种特殊的有两个阶段同时选择的不完美信息动态博弈,对这种博弈的分析进行专门讨论和定义专门均衡的概念有利于提高分析的效率。 (2)完全信息静态博弈中的混合策略可以被解释成不完全信息博弈的纯策略贝叶斯纳什均衡。 答:正确。完全信息静态博弈中的混合策略博弈几乎总是可以解释成一个有少量不完全信息的近似博弈的一个纯策略Bayes—Nash均衡。夫妻之争的混合策略Nash均衡可以用不完全信息夫妻之争博弈的Bayes—Nash均衡表示就是一个例证。 (3)证券交易所中的集合竞价交易方式本质上就是一种双方报价拍卖。 答:正确。我国证券交易中运用的集合竞价确定开盘价的方式就是一种双方报价拍卖。与一般双方报价拍卖的区别只是交易对象,标的不是一件而是有许多件。 (4)静态贝叶斯博弈中之所以博弈方需要针对自己的所有可能类型,都设定行为选择,而不是只针对实际类型设定行为选择,是因为能够迷惑其他博弈方,从而可以获得对自己更有利的均衡。

答:错误。不是因为能够迷惑其他博弈方,而是其他博弈方必然会考虑这些行为选择并作为他们行为选择的依据。因为只根据实际类型考虑行为选择就无法判断其他博弈方的策略,从而也就无法找出自己的最优策略。其实,在这种博弈中一个博弈方即使自己不设定针对自己所有类型的行为选择,其他博弈方也会替他考虑。因为设定自己所有类型下的行为,实际上是要弄清楚其他博弈方对自己策略的判断。 (5)“鼓励—响应”的直接机制能保证博弈方都按他们的真实类型行为并获得理想的结果。 答:错误。“鼓励—响应”机制也就是说真话的直接机制,实际上只保证博弈方揭示,也就是说出自己的真实类型。 博弈方不直接选择行为,也不保证根据真实类型行为,更谈不上一定能实现最理想的结果。因为直接机制的结果常常是带有随机选择机制的,并不一定理想。实际上对所有博弈方都理想的结果在静态贝叶斯博弈中本身不一定存在。 二、双寡头古诺模型,倒转的需求函数为 ()P Q a Q =-, 其中12Q q q =+为市场总需求,但a 有h a 和l a 两种可能的情况,并且厂商1知道a 究竟是h a 还是l a , 而厂商2只知道h a a =的概率是θ, l a a =的概率是1θ-,这种信息不对称情况双方都是了解的。双方的总成本仍然是i i i c q cq =。如果两厂商同时选择产量,问双方的策略空间是什么?本博弈的贝叶斯纳什均衡是什么? 解:设厂商1已知h a a =时的产量为11()h q a q =,已知l a a =时的产量是11()l q a q =;再假设厂商2的产量是 2q ,这两个函数关系就是两个厂商的策略空间。 11211()h h h h h a q q q cq π=---

博弈论复习题及标准答案

囚徒困境说明个人的理性选择不一定是集体的理性选择。(√) 子博弈精炼纳什均衡不是一个纳什均衡。(×) 若一个博弈出现了皆大欢喜的结局,说明该博弈是一个合作的正和博弈。( ) 博弈中知道越多的一方越有利。( ×) 纳什均衡一定是上策均衡。(×) 上策均衡一定是纳什均衡。(√) 在一个博弈中只可能存在一个纳什均衡。(×) 在一个博弈中博弈方可以有很多个。(√) 在一个博弈中如果存在多个纳什均衡则不存在上策均衡。 (√ ) 在博弈中纳什均衡是博弈双方能获得的最好结果。(×) 在博弈中如果某博弈方改变策略后得益增加则另一博弈方得益减少。(×)上策均衡是帕累托最优的均衡。 (×) 因为零和博弈中博弈方之间关系都是竞争性的、对立的,因此零和博弈就是非合作博弈。 (×) 在动态博弈中,因为后行动的博弈方可以先观察对方行为后再选择行为,因此总是有利的。(×) 在博弈中存在着先动优势和后动优势,所以后行动的人不一定总有利,例如:在斯塔克伯格模型中,企业就可能具有先动优势。 囚徒的困境博弈中两个囚徒之所以会处于困境,无法得到较理想的结果,是因为两囚徒都不在乎坐牢时间长短本身,只在乎不能比对方坐牢的时间更长。 (×) 纳什均衡即任一博弈方单独改变策略都只能得到更小利益的策略组合。(√ ) 不存在纯战略纳什均衡和存在惟一的纯战略纳什均衡,作为原博弈构成的有限次重复博弈,共同特点是重复博弈本质上不过是原博弈的简单重复,重复博弈的子博弈完美纳什均衡就是每次重复采用原博弈的纳什均衡。(√ ) 多个纯战略纳什均衡博弈的有限次重复博弈子博弈完美纳什均衡路径:两阶段都采用原博弈同一个纯战略纳什均衡,或者轮流采用不同纯战略纳什均衡,或者两次都采用混合战略纳什均衡,或者混合战略和纯战略轮流采用。(√) 如果阶段博弈G={A1, A2,…,An; u1, u2,…,un)具有多重Nash均衡,那么可能(但不必)存在重复博弈G(T)的子博弈完美均衡结局,其中对于任意的t

博弈论案例分析

(1)失火了,你往哪个门跑 失火了,你往哪个门跑——这就是博弈论 一天晚上,你参加一个派对,屋里有很多人,你玩得很开心。这时候,屋里突然失火,火势很大,无法扑灭。此时你想逃生。你的面前有两个门,左门和右门,你必须在它们之间选择。但问题是,其他人也要争抢这两个门出逃。如果你选择的门是很多人选择的,那么你将因人多拥挤、冲不出去而烧死;相反,如果你选择的是较少人选择的,那么你将逃生。这里我们不考虑道德因素,你将如何选择?这就是博弈论! 你的选择必须考虑其他人的选择,而其他人的选择也考虑你的选择。你的结果——博弈论称之为支付,不仅取决于你的行动选择——博弈论称之为策略选择,同时取决于他人的策略选择。你和这群人构成一个博弈(game)。 上述博弈是一个叫张翼成的中国人在1997年提出的一个博弈论模型,被称之为少数者博弈或少数派博弈(Minority Game)。当然,原来的博弈形式不是这么简单,这里我把它简化了,我们在第三部分论述归纳推理时还要谈这个博弈模型。现在很多学者在研究这个问题。 生活中博弈的案例很多,你会见到很多例子。只要涉及到人群的互动,就有博弈。 什么叫博弈?博弈的英文为game,我们一般将它翻译成“游戏”。而在西方,game的意义不同于汉语中的游戏。在英语中,game即是

人们遵循一定规则下的活动,进行活动的人的目的是使自己“赢”。奥林匹克运动会叫Olympic Games。在英文中,game有竞赛的意思,进行game的人是很认真的,不同于汉语中游戏的概念。在汉语中,游戏有儿戏的味道。因此将关于game的理论,即game theory翻译成博弈论或者对策论,是恰当的。本书下面统称game theory为博弈论。 博弈论的出现只有50多年的历史。博弈论的开创者为诺意曼与摩根斯坦,他们1944年出版了《博弈论与经济行为》。诺意曼是着名的数学家,他同时对计算机的发明作出了巨大贡献,他去世时博弈论还未对经济学产生广泛影响,否则经济学的诺贝尔奖肯定有他的名字,因为诺贝尔奖有规定,只颁发给在世的学者。谈到博弈论,不能忽略博弈论天才纳什(John Nash)。纳什的开创性论文《n人博弈的均衡点》(1950)、《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。今天博弈论已发展成一个较完善的学科。 博弈论对于社会科学有着重要的意义,它正成为社会科学研究范式中的一种核心工具,以至于我们可称博弈论是“社会科学的数学”,或者说是关于社会的数学。从理论上讲,博弈论是研究理性的行动者(agents)相互作用的形式理论,而实际上它正深入到经济学、政治学、社会学等等,被各门社会科学所应用。甚至有学者声称要用博弈论重新改写经济学。1994年经济学诺贝尔奖颁发给三位博弈论专家:纳什、塞尔屯、哈桑尼(),而像1985年获得诺贝尔奖的公共选择学派的领导者布坎南,1995年获得诺贝尔奖的理性主义学派的领袖卢

博弈论经典案例与分析

博弈论的经典案例与分析 囚徒困境 案例:警察把甲乙分开关押,并在提审时分别告之,如果你坦白而他不坦白,那么你将只判0年,他将被判8年;如果你不坦白而他坦白,那么你判8年,他判0年;如果你们两人都坦白了,各判5年;如果你们两人都不坦白了,各判1年。 分析:每个博弈方选择自己的策略时,虽然无法知道另一方的实际选择,但他却不能忽视另一方的选择对他自己的得益的影响,因此他应该考虑到另一方有两种可能的选择,并分别考虑自己相应的最佳策略。对囚徒A来说,囚徒B有坦白和不坦白两种可能的选择,假设囚徒B的选择是不坦白,则对囚徒A来说,不坦白得益为-1,坦白得益为0,他应该选择坦白; 假设囚徒B选择的是坦白,则囚徒A不坦白得益为-8,坦白得益为-5,他还是该选择坦白。因此,在此博弈中,无论囚徒B采取何种策略囚徒A的选择只有一种,即坦白,因为在另一方两种可能的情况下,坦白给自己带来的得益都是较大的。同样的道理,囚徒B 的唯一的选择也是坦白。 所以最可能的结局:该博弈的最终结果是两博弈方同选择坦白策略。 其支付矩阵如下: 性格大战 嫌疑犯乙

案例:一对恋人准备在周末晚上一起出去,男的喜欢看足球,但女的喜欢看时装表演。当然两个人都不愿意分开活动。不同的选择给他们带给他们不同的满足。 分析:可以看出,分开将使他们两人得不到任何满足,只要在一起,不管是看时装表演还是看足球,两人都会得到一定的满足。但看足球将使男的得到更大的满足,看时装表演则使女的得到更大的满足。 在这样的一个对局中,男的和女的都没有占优战略。他们的最优侧率依赖于对方的选择,一旦对方选定了某一项活动,另一个人选择同样的活动就是最好的策略。因此,如果男的已经买好了足球的门票,女的当然就不再反对;反之,如果女的已经买好了时装表演票,男的也就会与她一起看时装表演。 价格战 案例:假设市场中仅有A 、B 两家企业,每家企业可采取的定价策略都是10元或15元,我们可以得出得益矩阵如下: 分析:无论对企业A 还是企业B 来说,低价都是他们的占优战略。从表可见,企业A 的占优战略是10元,因为无论B 采取什么战略,企业A 都能获取比定价15元更多的利润。 如果企业B 定价10元,企业A 定价10元能够获利80万元,而定价15元只能获得30万元;如果企业B 定价15元,企业A 定价10元可获利170万元,而定价15元却只能获利120万元。同样地,企业B 的占优战略也是定价10元的策略。 企业B 男

博弈论习题及解答

※第一章绪论 §1.2 1. 什么是博弈论?博弈有哪 些基本表示方法?各种表示法 的基本要素是什么?(见教材) 2. 分别用规范式和扩展式表 示下面的博弈。 两个相互竞争的企业考虑同 时推出一种相似的产品。如果两家企业都推出这种产品,那么他们每家将获得利润400万元;如果只有一家企业推出新产品,那么它将获得利润700万元,没有推出新产品的企业亏损600万元;如果两家企业都不推出该产品,则每家企业获得200万元的利润。 3. 什么是特征函数? (见教材) 4. 产生“囚犯困境”的原因是什么?你能否举出现实经济活动中囚徒困境的例子? 原因:个体理性与集体理性的矛盾。 例子:厂商之间的价格战,广告竞争等。

※第二章完全信息的静态博弈和纳什均衡 1. 什么是纳什均衡? (见教材) 2. 剔除以下规范式博弈中的严格劣策略,再求出纯策略纳什均衡。 先剔除甲的严格劣策略3,再剔除乙的严格劣策略2,得如下矩阵博弈。然后用划线法求出该矩阵博弈的纯策略Nash均衡。 3. 求出下面博弈的纳什均衡。 由划线法易知,该矩阵博弈没有纯策略Nash均衡。 由表达式(2.3.13)~(2.3.16)可得如下不等式组 Q=a+d-b-c=7,q=d-b=4,R=0+5-8-6=-9,r=-1 将这些数据代入(2.3.19)和(2.3.22),可得混合策略Nash均衡((),()) 4. 用图解法求矩阵博弈的解。 解:设局中人1采用混合策略(x,1-x),其中x∈[0,1],于是有:,其中F(x)=min{x+3(1-x),-x+5(1-x),3x-3(1-x)} 令z=x+3(1-x),z=-x+5(1-x),z=3x-3(1-x) 作出三条直线,如下图,图中粗的折线,就是F(x)的图象

博弈论的经典案例与分析

博弈论的经典案例与分析 囚徒困境 案例:警察把甲乙分开关押,并在提审时分别告之,如果你坦白而他不坦白,那么你将只判0年,他将被判8年;如果你不坦白而他坦白,那么你判8年,他判0年;如果你们两人都坦白了,各判5年;如果你们两人都不坦白了,各判1年。 分析:每个博弈方选择自己的策略时,虽然无法知道另一方的实际选择,但他却不能忽视另一方的选择对他自己的得益的影响,因此他应该考虑到另一方有两种可能的选择,并分别考虑自己相应的最佳策略。对囚徒A 来说,囚徒B 有坦白和不坦白两种可能的选择,假设囚徒B 的选择是不坦白,则对囚徒A 来说,不坦白得益为-1,坦白得益为0,他应该选择坦白; 假设囚徒B 选择的是坦白,则囚徒A 不坦白得益为-8,坦白得益为-5,他还是该选择坦白。因此,在此博弈中,无论囚徒B 采取何种策略囚徒A 的选择只有一种,即坦白,因为在另一方两种可能的情况下,坦白给自己带来的得益都是较大的。同样的道理,囚徒B 的唯一的选择也是坦白。 所以最可能的结局:该博弈的最终结果是两博弈方同选择坦白策略。 其支付矩阵如下: 性格大战 案例:一对恋人准备在周末晚上一起出去,男的喜欢看足球,但女的喜欢看时装表演。当然两个人都不愿意分开活动。不同的选择给他们带给他们不同的满足。 分析:可以看出,分开将使他们两人得不到任何满足,只要在一起,不管是看时装表演还是看足球,两人都会得到一定的满足。但看足球将使男的得到更大的满足,看时装表演则使女的得到更大的满足。 在这样的一个对局中,男的和女的都没有占优战略。他们的最优侧率依赖于对方的选择,一旦对方选定了某一项活动,另一个人选择同样的活动就是最好的策略。因此,如果男的已经买好了足球的门票,女的当然就不再反对;反之,如果女的已经买好了时装表演票,男的也就会与她一起看时装表演。 1,1 8, 0 不坦白 0,8 5,5 坦白 嫌疑犯乙 不坦白 坦白 嫌疑犯甲 1,2 -1, -1 时装 0,0 2,1 足球 男 时装 足球 女

博弈论复习题及答案

博弈论 判断题(每小题1分,共15分) 囚徒困境说明个人的理性选择不一定是集体的理性选择。(√) 子博弈精炼纳什均衡不是一个纳什均衡。(×) 若一个博弈出现了皆大欢喜的结局,说明该博弈是一个合作的正和博弈。()博弈中知道越多的一方越有利。(×) 纳什均衡一定是上策均衡。(×) 上策均衡一定是纳什均衡。(√) 在一个博弈中只可能存在一个纳什均衡。(×) 在一个博弈中博弈方可以有很多个。(√) 在一个博弈中如果存在多个纳什均衡则不存在上策均衡。(√) 在博弈中纳什均衡是博弈双方能获得的最好结果。(×) 在博弈中如果某博弈方改变策略后得益增加则另一博弈方得益减少。(×)上策均衡是帕累托最优的均衡。(×) 因为零和博弈中博弈方之间关系都是竞争性的、对立的,因此零和博弈就是非合作博弈。 (×) 在动态博弈中,因为后行动的博弈方可以先观察对方行为后再选择行为,因此总是有利的。(×) 在博弈中存在着先动优势和后动优势,所以后行动的人不一定总有利,例如:在斯塔克伯格模型中,企业就可能具有先动优势。 囚徒的困境博弈中两个囚徒之所以会处于困境,无法得到较理想的结果,是因为两囚徒都不在乎坐牢时间长短本身,只在乎不能比对方坐牢的时间更长。 (×) 纳什均衡即任一博弈方单独改变策略都只能得到更小利益的策略组合。(√)不存在纯战略纳什均衡和存在惟一的纯战略纳什均衡,作为原博弈构成的有限次重复博弈,共同特点是重复博弈本质上不过是原博弈的简单重复,重复博弈的子博弈完美纳什均衡就是每次重复采用原博弈的纳什均衡。(√) 多个纯战略纳什均衡博弈的有限次重复博弈子博弈完美纳什均衡路径:两阶段都采用原博弈同一个纯战略纳什均衡,或者轮流采用不同纯战略纳什均衡,或者两次都采用混合战略纳什均衡,或者混合战略和纯战略轮流采用。(√) 如果阶段博弈G={A1, A2,…,An; u1, u2,…,un)具有多重Nash均衡,那么可能(但不必)存在重复博弈G(T)的子博弈完美均衡结局,其中对于任意的t

“博弈论”习题及参考答案

《博弈论》习题 一、单项选择题 1.博弈论中,局中人从一个博弈中得到的结果常被称为()。 A. 效用 B. 支付 C. 决策 D. 利润 2.博弈中通常包括下面的内容,除了()。 A.局中人 B.占优战略均衡 C.策略 D.支付 3.在具有占优战略均衡的囚徒困境博弈中()。 A.只有一个囚徒会坦白 B.两个囚徒都没有坦白 C.两个囚徒都会坦白 D.任何坦白都被法庭否决了 4.在多次重复的双头博弈中,每一个博弈者努力()。 A.使行业的总利润达到最大 B.使另一个博弈者的利润最小 C.使其市场份额最大 D.使其利润最大 5.一个博弈中,直接决定局中人支付的因素是()。 A. 策略组合 B. 策略 C. 信息 D. 行动 6.对博弈中的每一个博弈者而言,无论对手作何选择,其总是拥有惟一最佳行为,此时 的博弈具有()。 A.囚徒困境式的均衡 B.一报还一报的均衡 C.占优策略均衡 D.激发战略均衡 7.如果另一个博弈者在前一期合作,博弈者就在现期合作;但如果另一个博弈者在前一期违约,博弈者在现期也违约的策略称为()。 A.一报还一报的策略 B.激发策略 C.双头策略 D.主导企业策略 8.在囚徒困境的博弈中,合作策略会导致()。 A.博弈双方都获胜 B.博弈双方都失败

C.使得先采取行动者获胜 D.使得后采取行动者获胜 9.在什么时候,囚徒困境式博弈均衡最可能实现()。 A. 当一个垄断竞争行业是由一个主导企业控制时 B.当一个寡头行业面对的是重复博弈时 C.当一个垄断行业被迫重复地与一个寡头行业博弈时 D. 当一个寡头行业进行一次博弈时 10.一个企业采取的行为与另一个企业在前一阶段采取的行为一致,这种策略是一种()。 A.主导策略 B.激发策略 C.一报还一报策略 D.主导策略 11.关于策略式博弈,正确的说法是()。 A. 策略式博弈无法刻划动态博弈 B. 策略式博弈无法表明行动顺序 C. 策略式博弈更容易求解 D. 策略式博弈就是一个支付矩阵 12.下列关于策略的叙述哪个是错误的(): A. 策略是局中人选择的一套行动计划; B. 参与博弈的每一个局中人都有若干个策略; C. 一个局中人在原博弈中的策略和在子博弈中的策略是相同的; D. 策略与行动是两个不同的概念,策略是行动的规则,而不是行动本身。 13. 囚徒困境说明(): A. 双方都独立依照自己的利益行事,则双方不能得到最好的结果; B. 如果没有某种约束,局中人也可在(抵赖,抵赖)的基础上达到均衡; C. 双方都依照自己的利益行事,结果一方赢,一方输; D、每个局中人在做决策时,不需考虑对手的反应 14. 一个博弈中,直接决定局中人损益的因素是(): A. 策略组合 B. 策略 C. 信息 D. 行动 15. 动态博弈参与者在关于博弈过程的信息方面是() A 不对称的 B 对称的 C 不确定的 D 无序的

(完整word版)经典的博弈论分析案例——“海盗分金”问题

经典的博弈论分析案例——“海盗分金”问题 5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。 “海盗分金”其实是一个高度简化和抽象的模型,体现了博弈的思想。在“海盗分金”模型中,任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚“挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”分配方案中最不得意的人们。 假设前提 假定“每个海盗都是绝顶聪明且很理智”,那么“第一个海盗提出怎样的分配方案才能够使自己的收益最大化?” 推理过程 从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。所以,4号惟有支持3号才能保命。 3号知道这一点,就会提出(100,0,0)的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。 不过,2号推知3号的方案,就会提出(98,0,1,1)的方案,即放弃3号,而给予4号和5号各一枚金币。由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。这样,2号将拿走98枚金币。 同样,2号的方案也会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。这无疑是1号能够获取最大收益的方案了!答案是:1号强盗分给3号1枚金币,分给4号或5号强盗2枚,自己独得97枚。分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)。分析 1号看起来最有可能喂鲨鱼,但他牢牢地把握住先发优势,结果不但消除了死亡威胁,还收益最大。这不正是全球化过程中先进国家的先发优势吗?而5号,看起来最安全,没有死亡的威胁,甚至还能坐收渔人之利,却因不得不看别人脸色行事而只能分得一小杯羹。 不过,模型任意改变一个假设条件,最终结果都不一样。而现实世界远比模型复杂。 首先,现实中肯定不会是人人都“绝对理性”。回到“海盗分金”的模型中,只要3号、4号或5号中有一个人偏离了绝对聪明的假设,海盗1号无论怎么分都可能会被扔到海里去了。所以,1号首先要考虑的就是他的海盗兄弟们的聪明和理性究竟靠得住靠不住,否则先分者倒霉。 如果某人偏好看同伙被扔进海里喂鲨鱼。果真如此,1号自以为得意的方案岂不成了自掘坟墓! 再就是俗话所说的“人心隔肚皮”。由于信息不对称,谎言和虚假承诺就大有用武之地,而阴谋也会像杂草般疯长,并借机获益。如果2号对3、4、5

博弈论复习题及答案

名词解释(每题7 分,共 2 8 分) 1、逆向选择:逆向选择源于事前的信息不对称,经典例子就是“柠檬市场”——二手车市场,它使得市场资源逐渐流向低质量的产品或要素,最后形成劣货驱逐良货的局面,这种现象称之为“逆向选择”。 2、策略互动:所谓策略互动,就是参与人之间的策略相互影响、相互作用和相互制约。用策略性思维来分析问题,从中找出合理策略,实现目标最优。 3、纳什均衡:对于博弈方而言,互为最优的策略选择就是纳什均衡。 4、信号发送:是指信息优势方不断发出信息的行为,就叫信号发送。 5、博弈论:研究人们如何进行决策,以及这种决策如何达到均衡(合理策略)的问题。每个博弈者在决定采取何种行动时,不但要根据自身的利益和目的行事,还必须考虑到他的决策行为对其他人的可能影响,以及其他人的反应行为的可能后果,通过选择最佳行动计划,来寻求收益或效用的最大化。 二、简要回答问题(每题10 分,共40 分) 1、博弈的基本要素有哪些? 基本特点是什么? 答:博弈的基本要素有:参与人、策略、行动顺序、信息、收益等五个要素。博弈的基本特点则是需尽可能考虑到博弈对方的决策选择以及对自身的影响,并从中选择出对自身最有利的方案决策,从而达到收益和效用最大化。 2、什么是性别战博弈?请求出其中的纳什均衡?答:性别战博弈是不可调和的博弈,双方只有一方选择满足另外一方的要求才能达成均衡,也就是混合策略纳什均衡;故性别战博弈的纳什均衡会有两种情况,分别是:男生陪女生看电影以及女生陪男生看足球的两种选择。

3、猎鹿博弈反映的基本思想是什么? 答:反应的基本思想是需要沟通和互相协调,因为只有合作才能 猎到所 需猎物。 4、什么是道德风险?有什么办法可以解决道德风险问题? 答:道德风险是指委托-代理框架中,由于委托人无法直接观察代 理人行 动,造成信息不对称,从而出现代理人选择不利于委托人的行 为的一种现 象;解决道德风险的方法可以用签订合同、派人监督,以 及采用激励等方式来进行解决,约束和激励机制。 三、计算题(16分) 1、求解下列博弈中的纳什均衡(包括混合策略纳什均衡)。 H B i 答:根据上方的矩阵图, 我们可得出其博弈中存在两种策略的纳 什均衡:分别是 H 选择F1和N 选择F2,以及H 选择B1和N 选择 B2 2、A 、B 两者博弈:A 首先行动,可以选择“左”或者“右”的行动;B 后行动,有“L ”和R ”的行动,其收益如下:当 A 选左,B 选L 时,A 的收益为2,B 的收益为3 ;当A 选左,B 选R 时,A 的收益为1 , B 的收益为4;当A 选右,B 选L 时,A 的收益为3 ,B 的收益为1 ; 当A 选右,B 选R 时,A 的收益为0,B 的收益为2。请画出该博弈 的博弈树,并求出该博弈的均衡解。 四、论述题(16分) 1、请结合你的工作或生活,谈谈对行动的可信性的理解,有什么方 法可以建立可信的策略行动。 答:每一种策略性行动都面临着可信性的问题, 人们不一定相信 策略性行动的提出者会实施其行动。 因此提出者必须做一些辅助工作 F 2 B 2

博弈论课后习题

第一章导论 1、什么是博弈博弈论的主要研究内容是什么 2、设定一个博弈模型必须确定哪几个方面 3、举出烟草、餐饮、股市、房地产、广告、电视等行业的竞争中策略相互依存的例子。 4、“囚徒的困境”的内在根源是什么举出现实中囚徒的困境的具体例子。 5、博弈有哪些分类方法,有哪些主要的类型 6、你正在考虑是否投资100万元开设一家饭店。假设情况是这样的:你决定开,则的概率你讲收益300万元(包括投资),而的概率你将全部亏损;如果你不开,则你能保住本钱但也不会有利润,请你(a)用得益矩阵和扩展形式表示该博弈;(b)如果你是风险中性的,你会怎样选择(c)如果你是风险规避的,且期望得益的折扣系数为,你的策略选择是什么(d)如果你是风险偏好的,期望得益折算系数为,你的选择又是什么 7、一逃犯从关押他的监狱中逃走,一看守奉命追捕。如果逃犯逃跑有两条可选择的路线,看守只要追捕方向正确就一定能抓住逃犯。逃犯逃脱可以少坐10年牢,但一旦被抓住则要加刑10年;看守抓住逃犯能得到1000元奖金。请分别用得益矩阵和扩展形式表示该博弈,并作简单分析。 第二章完全信息静态博弈 1、上策均衡、严格下策反复消去法和纳什均衡相互之间的关系是什么 2、为什么说纳什均衡是博弈分析中最重要的概念 3、找出现实经济或生活中可以用帕累托上策均衡、风险上策均衡分析的

例子。 4、多重纳什均衡是否会影响纳什均衡的一致预测性质,对博弈分析有什么不利影响 5、下面的得益矩阵表示两博弈方之间的一个静态博弈。该博弈有没有纯策略纳什均衡博弈的结果是什么 6、求出下图中得益矩阵所表示的博弈中的混合策略纳什均衡。 7、博弈方1和2就如何分10 000元进行讨价还价。假设确定了以下规则:双方同时提出自己要求的数额S1和S2,0≤s1,s2≤10000,如果s1+s2≤10 000,则两博弈方的要求都得到满足,即分别得到s1和s2,但如果是s1+s2>10 000,则该笔钱就被没收。问该博弈的纯策略纳什均衡是什么如果你是其中一个博弈方,你会要求什么数额,为什么 8、设古诺模型中有n家厂商、qi 为厂商i的产量,Q=q1+…+qn 为市场总产量、P为市场出清价格,且已知P=P(Q)=a-Q(当Q<a时,否则P=0)。假设厂商i生产qi产量的总成本为Ci=Ci(qi)=cqi,也就是说没有固定成本且各厂商的边际成本都相同,为常数c(c<a).假设各厂商同时选择产量,该模型的纳什均衡是什么当n趋向于无穷大时博弈分析是否仍然有效9、两寡头古诺模型,P(Q)=a-Q等与上题相同,但量厂商的边际成本不同,分别为c1和c2。如果0<ci<a/2,问纳什均衡产量各为多少如果c1<c2<a,但2c2>a+c1,则纳什均衡产量又为多少 10、甲乙两公司分属两个国家,在开发某种新产品方面有下面得益矩阵表示的博弈关系(单位:百万美元)。该博弈的纳什均衡有哪些如果乙公司所在国政府想保护本国公司利益,有什么好的办法

博弈论练习题2答案

111111111111111111 博弈论练习题(四) 一、什么是子博弈精炼纳什均衡? 答:将纳什均衡中包含的不可置信的威胁策略剔除出去。它要求参与者的决策在任何时点上都是最优的。由于剔除了不可置信的威胁,在许多情况下,精炼纳什均衡也就缩小了纳什均衡的个数。只有当参与人的策略在每一个子博弈中都构成纳什均衡叫做精炼纳什均衡。或者说,组成精炼纳什均衡的策略必须在每一个子博弈中都是最优的。 二、参与人的理性问题对动态博弈分析的影响是否比静态博弈的影响更大?为什么? 答:正确,博弈论要求个体具有始终追求自身利益最大化的理性意识和理性能力的“自我” 个体理性,这是静态博弈的范畴。除此之外,还要求相关的参与者具有层次较高的“交互理性”,要求不同个体之间在理性和行为方面具有一种“默契”。即,人们的自身利益的最大化不仅取决于自己的选择,还取决于与之相关的其他人的选择与行为,那么为了实现自己的最大利益,个体的理性决策就必须考虑他人的理性选择与行为。作为博弈论的基础,交互理性是其基本的理性要求。博弈论还要求有关博弈的结构、各个博弈参与者的得益函数以及各个博弈参与者的理性等“知识”是所有博弈参与者之间的“共同知识”。也就是,每个博弈参与者不仅要首先明确自己和其他参与者所有可选的策略,还需知晓各种情况下自己最终的收益或其概率分布,并且每个博弈参与者都知道各个参与者掌握这些信息;更为重要的是,每个博弈参与者都知道所有参与者都是理性的,都知道其他博弈参与者知道所有参与者都是理性的,都知道其他博弈参与者知道其他博弈参与者知道所有博弈参与者都是理性的------。理性的共同知识假设是非合作博弈理论的一个非常重要和关键的假设,是实现交互理性和理性主义的纳什均衡的基本前提,这些,都是动态博弈的范畴。因此说,参与者理性问题对动态博弈的分析影响更大。 三、纳什均衡和精炼纳什均衡存在哪些问题? 答:纳什均衡存在的问题: (1)不是所有博弈都存在纳什均衡如纯策略就不存在混合策略则一定会存在纳什均衡,它是通过概率来计算纳什均衡,在这种均衡下,给定其他参与人的策略选择概率,每个参与人都可以为自己确定选择每一种策略的最优概率。 (2)在论及纳什均衡时,我们假设参与人是完全理性的,而且是假定参与人之间不允许达成任何协议的非合作博弈的均衡解。而现实并非如此。 精炼纳什均衡存在的问题:有限重复博弈的子博弈精炼纳什均衡有如下定理∶令G是阶段博弈,G(T)是重复T次的重复博弈。那么,如果G有唯一的纳什均衡,重复博弈G(T)的唯一子博弈精炼纳什均衡结果是阶段博弈G的纳什均衡重复T次。这个定理成立的条件是单阶段纳什均衡的“唯一性” ,若纳什均衡不是唯一的,上述定理的结论就不一定成立。 四、有限次重复博弈和无限次重复博弈有什么区别?这些区别对我们有什么启发? 答:有限次重复博弈与无限次重复博弈都属于动态博弈,对于有限次博弈,收益是每次收益的简单相加,可以采取子博弈纳什均衡的方法求解,即逆推法;但无限次博弈却不能采取;此外,有限次博弈中博弈的双方都还是关注的是自己短期的利益,而无限次博弈中博弈的双方可能针对某项事情达成协议,达到共谋,为共同的利益而选择自己的行动,达到整体的最优,供应链契约即类似。 五、有限次重复博弈的精炼纳什均衡的最后一次重复必定是第一阶段博弈的一个纳什均衡?答:

博弈论案例分析1

一、经济学中的“智猪博弈”(Pigs’payoffs) 故事背景:猪圈里有一头大猪和一头小猪。猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。 那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。 原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。 “小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。规则的核心指标是:每次落下的事物数量和踏板与投食口之间的距离。 如果改变一下核心指标,猪圈里还会出现同样的“小猪躺着大猪跑”的景象吗?试试看。 改变方案一:减量方案。投食仅原来的一半分量。结果是小猪大猪都不去踩踏板了。小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。 如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然是失败的。 改变方案二:增量方案。投食为原来的一倍分量。结果是小猪、大猪都会去踩踏板。谁想吃,谁就会去踩踏板。反正对方不会一次把食物吃完。小猪和大猪相当于生活在物质相对丰富的“共产主义”社会,所以竞争意识却不会很强。 对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让猪们去多踩踏板的效果并不好。 改变方案三:减量加移位方案。投食仅原来的一半分量,但同时将投食口移到踏板附近。结果呢,小猪和大猪都在拼命地抢着踩踏板。等待者不得食,而多劳者多得。每次的收获刚好消费完。 对于游戏设计者,这是一个最好的方案。成本不高,但收获最大。 原版的“智猪博弈”故事给了竞争中的弱者(小猪)以等待为最佳策略的启发。但是对于社会而言,因为小猪未能参与竞争,小猪搭便车时的社会资源配置的并不是最佳状态。为使资源最有效配置,规则的设计者是不愿看见有人搭便车的,政府如此,公司的老板也是如此。而能否完全杜绝“搭便车”现象,就要看游戏规则的核心指标设置是否合适了。 比如,公司的激励制度设计,奖励力度太大,又是持股,又是期权,公司职员个个都成了百万富翁,成本高不说,员工的积极性并不一定很高。这相当于“智猪博弈”增量方案所描述的情形。但是如果奖励力度不大,而且见者有份(不劳动的“小猪”也有),一度十分努力的大猪也不会有动力了----就像“智猪博弈”

博弈论复习题及答案

可口可乐与百事可乐(参与者)的价格决策:双方都可以保持价格不变或者提高价格(策略);博弈的目标和得失情况体现为利润的多少(收益);利润的大小取决于双方的策略组合(收益函数);博弈有四种策略组合,其结局是: (1)双方都不涨价,各得利润10单位; (2)可口可乐不涨价,百事可乐涨价,可口可乐利润100,百事可乐利润-30; (3)可口可乐涨价,百事可乐不涨价,可口可乐利润-20,百事可乐利润30; (4)双方都涨价,可口可乐利润140,百事可乐利润35; 画出两企业的损益矩阵求纳什均衡。 9、北方航空公司和新华航空公司分享了从北京到南方冬天度假胜地的市场。如果它们合作,各获得500000元的垄断利润,但不受限制的竞争会使每一方的利润降至60000元。如果一方在价格决策方面选择合作而另一方却选择降低价格,则合作的厂商获利将为零,竞争厂商将获利900000元。 (1)将这一市场用囚徒困境的博弈加以表示。 (2)解释为什么均衡结果可能是两家公司都选择竞争性策略。 ;若新华航空公司选择合作,北方航空公司仍会选择竞争(900000>500000)。若北方航空公司选择竞争,新华航空公司也将选择竞争(60000>0);若北方航空公司选择合作,新华航空公司仍会选择竞争(900000>0)。由于双方总偏好竞争,故均衡结果为两家公司都选择竞争性策略,每一家公司所获利润均为600000元。 12、设啤酒市场上有两家厂商,各自选择是生产高价啤酒还是低价啤酒,相应的利润(单位:万元)由下图的得益矩阵给出: (1)有哪些结果是纳什均衡 (2)两厂商合作的结果是什么 答(1)(低价,高价),(高价,低价) (2)(低价,高价) 13、A、B两企业利用广告进行竞争。若A、B两企业都做广告,在未来销售中,A企业可以获得20万元利润,B企业可获得8万元利润;若A企业做广告,B企业不做广告,A 企业可获得25万元利润,B企业可获得2万元利润;若A企业不做广告,B企业做广告,A企业可获得10万元利润,B企业可获得12万元利润;若A、B两企业都不做广告,A 企业可获得30万元利润,B企业可获得6万元利润。 (1)画出A、B两企业的支付矩阵。 (2)求纳什均衡。 。

博弈论模型案例分析

利用古诺双寡头模型来分析案例 1 案例 在目前竞争的市场上主打的两种可乐是可口可乐和百事可乐,几乎垄断了整个市场,在生产过程中,他们都了解对方的策略。据统计他们的产量接近于Q/3,其中Q 为市场总容量,问题1是:为什么这个市场会这样发展? 2 建立古诺双寡头模型 根据以上案例可以采取古诺双寡头模型来分析问题,该模型假定市场只有两个卖者,商品是同质的,并且假设他们共同面临的市场的需求曲线是线性的,相互间没有任何勾结行为,但相互间都知道对方将怎样行动,从而各自怎样确定最优的产量来实现利润最大化。 这个博弈的参与人是两家公司,在该模型下,把两种可乐看成是同质商品,在这个博弈中生产成本就是C*Q ,生产一单位商品的成本是C 。根据需求曲线图,可乐属于正常品,两家企业生产得越多,该商品的价格就越低。价格取决于两个参数:a &b ,b 为需求曲线的斜率。)(21q q b a P +-= ------① 这些公司的目标是利润最大化,公司1的利润跟q1,q2有关, 11211,q c q p q q u *-*=) (,把①式中的价格p 带入得122111cq q bq bq aq u ---=②,同理可得,222 22212),(cq q bq bq aq q q u ---=③。 2.1我们可以尝试找出纳什均衡: 方法:把每个人的最佳对策看成别人策略的函数,然后找出函数的交点。参与人1对于2不同产量下的最佳产量,然后反过来,在参与人1的不同产量下,参与人2的最佳产量。即在不同的q2下q1取什么值才能最大化利润。 ②式对q1求导后,令导数为0,并且验证2阶条件,发现其小于0 ,所以是最大值,就得出参与人2不同策略下参与人1的最佳对策,2/2/)(21q b c a q --=,同理可得市场价格P 图1需求曲线 总产量Q=q1+q2 斜率是-b 边际成本 C D 0 边际收入MR m q

博弈论例题分析

博弈论期末作业 20120416XX XXX 物理与机电工程学院 1、 解答:(1)用划线法可以找出本博弈的两个纯策略纳什均衡(开发,不开发)和(不开发,开发)。此外,本博弈还有一个混合策略纳什均衡, 解: 甲公司认为乙公司选开发和不开发的概率分别为p1,1-p1 则甲选开发的期望收益为E1=-10p1+100(1-p1) 甲选不开发的期望收益为E2=0 因为是完全信息博弈,则较优策略为两者相同,即E1=E2,可得p1=10/11 乙公司认为甲公司选开发和不开发的概率分别为q1,1-q1 同理的q2=10/11 即两个公司都以(10/11,1/11)的概率分布随机选择开发或不开

发。 (2)本博弈的两个纯策略纳什均衡一个对甲公司有利,一个对乙公司有利;混合策略纳什均衡也并不是好的选择,因为结果除了是对一方有利之外,还可能出现大家都不开发浪费了机会,或者大家都开发撞车的可能。 乙公司所在国政府要保护本国公司的利益、促使博弈结果利于本公司,可以设法改变博弈的得益结构,从而促使有利于乙公司的均衡出现。 解答:动态博弈的逆向归纳法可以用于有限次重复博弈,但不能用于无限次重复博弈,主要用逆向归纳法。 无限次重复博弈的效率往往高于有限次重复博弈。当重复次数较少不一定考虑贴现问题,但无限次重复博弈必须考虑贴现问题。 启发:重视有限次与无限次的区别,区分和研究这两类博弈,在实践方面重要启发是促进和保持经济的长期稳定和可持续发展,提高社会经济效率是非常有意的。 3、 解答:消费者去大商店更接近无限次重复博弈,商场提供高质量产品的概率更大;小商贩流动性强,多属一次博弈,且不易起诉,因而消费者偏好去大商店买东西而不太信赖走街串巷的小商贩

相关主题
相关文档
最新文档