纳米SiO2/TiO2光催化降解空气中甲醛的研究

纳米SiO2/TiO2光催化降解空气中甲醛的研究
纳米SiO2/TiO2光催化降解空气中甲醛的研究

二氧化钛光催化分解甲醛原理

二氧化钛光催化分解甲 醛原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

纳米二氧化钛光催化分解甲醛原理 1. 光催化剂的发现历史 自从1972年Fujishima和Honda[2]发现TiO2在受到紫外光照射时可以将水氧化还原生成氢,光催化材料就引起了科研人员的关注。而1976年Carey等[3]将TiO2的光催化作用应用于水中多氯联苯化合物脱氯去毒并取得了成功,从此TiO2作为一种去除有机物的一种有效方法应用到了水和空气的清洁净化领域。1985年,日本科学家Tadashi Matsunaga等[4]第一个发现了TiO2在紫外光下有杀菌作用。近年来科学家们又对TiO2进行了深入的研究,并取得了很大的进步。但是以前的研究多数是用溶胶凝胶负载在基材上,这样的负载量有限,所以对空气的净化的速率较慢。如何能够快速、便捷、安全、有效的除去室内的各种污染物及病菌成为一个亟待解决的问题。纳米TiO2良好的光催化性能使它成为了解决这一问的热点研究方向。纳米TiO2以其催化活性高、化学稳定性好、使用安全, 2. 纳米TiO2光催化机理 纳米TiO2是一种n型半导体氧化物,其光催化原理可以用半导体的能带理论来解释[5]。由于TiO2纳米粒子的粒径在1~100 nm,所以其电子的Fermi能级是分立的,而不是像金属导体中的能级是连续的,在纳米TiO2半导体氧化物的原子或分子轨道中具有一个空的能量区域,它介于导带与价带之间,称为禁带[6],其宽度为 eV,当纳米TiO2接受波长为 nm以下的光线照射时,其内部价带的电子由于吸收光子跃迁到导带,从而产生空穴-电子对,即光生载流子,然后迅速迁移到其表面并激活被吸附的O2和H2O,产生高活性羟基自由基(·OH)和超氧离子自由基(·O2- )[7],当污染物以及细菌吸附其表面时,会发生两个步骤:

光催化降解甲基橙

N-TiO2的制备及可见光降解有机污染物的测定 一、目的要求 1、N掺杂TiO2光催化剂的简易液溶液制备; 2、测定甲基橙在可见光作用下的光催化降解反应速率常数; 3、了解可见光分光光度计的构造、工作原理、掌握分光光度计的使用方法。 二、实验原理 国内外大量研究表明,光催化法能有效地将烃类、卤代有机物、表面活性剂、染料、农药、酚类、芳烃类等有机污染物降解,最终无机化为CO2, H2O。因此,光催化技术具有在常温常压下进行,彻底消除有机污染物,无二次污染等优点。 光催化技术的研究涉及到原子物理、凝聚态物理、胶体化学、化学反应动力学、催化材料、光化学与环境化学等多个学科,因此多相光催化科技就是集这些学科于一体的多种学科交叉汇合而成的一门新兴的科学。 光催化以半导体如TiO2,ZnO,CdS,WO3,SnO2,ZnS,SrTiO3等作催化剂,其中TiO2具有价廉无毒、化学及物理稳定性好、耐光腐蚀、催化活性好等优点。TiO2就是目前广泛研究、效果较好的光催化剂之一。 半导体之所以能作为催化剂,就是由其自身的光电特性所决定的。半导体粒子含有能带结构,通常情况下就是由一个充满电子的低能价带与一个空的高能导带构成,它们之前由禁带分开。研究证明,当pH=1时锐钛矿型TiO2的禁带宽度为3、2eV,半导体的光吸收阈值λg与禁带宽度Eg的关系为 (nm)=1240/E g(eV) 当用能量等于或大于禁带宽度的光(λ<388nm的近紫外光)照射半导体光催化剂时,半导体价带上的电子吸收光能被激发到导带上,因而在导带上产生带负电的高活性光生电子(e-),在价带上产生带正电的光生空穴(h+),形成光生电子-空穴对。空穴具有强氧化性;电子则具有强还原性。 当光生电子与空穴到达表面时,可发生两类反应。第一类就是简单的复合,如果光生电子与空穴没有被利用,则会重新复合,使光能以热能的形式散发掉。 第二类就是发生一系列光催化氧化还原反应,还原与氧化吸附在光催化剂表面上物质。 TiO2→e-+h+ OH-+h+→·OH

二氧化钛光催化降解甲醛废气及动力学研究毕业

二氧化钛光催化降解甲醛废气及动力学研究毕业

二氧化钛光催化降解甲醛废气及动力学研究 前言 随着生活和工作条件的现代化,人们大量使用有机材料进行装修,而它们会不断散发出一些有毒的气体。在众多的室内污染物中,甲醛以其来源广,毒性大,污染时间长等特点,已成为主要的室内污染物之一[3]。甲醛是一种无色易溶于水的刺激性气体,当室内空气中含量为0.1 mg/m3时就有异味和不适感;当大于65 mg/m3可以引起肺炎、肺水肿等损伤,甚至导致死亡。 室内甲醛的污染来源主要为建筑材料和家具。板材中残留和未反应的甲醛会逐渐向周围环境释放,这是形成室内空气中甲醛的主体[4]。部分装饰、装修材料及用品或含有有害化学物质,或因使用不当,导致某些污染物如甲醛,苯、氡等进入室内环境,造成室内空气污染,严重者甚至危害居住者健康,引起装修纠纷,室内空气污染已引起政府和公众的高度重视。甲醛为高毒性的物质,在我国有毒化学品优先控制名单上,甲醛高居第二位。 甲醛已被世界卫生组织确定为致癌和致畸形物质[5],是公认的变态反应源,也是潜在的强制突变物之一。所以寻求有效的治理方法以清除室内空气中的甲醛已成为关系到人们身体健康而亟待解决的问题,同时也成为环境污染物治理研究中的热点之一。

一、文献综述 1当前状况 1.1课题研究的背景 20世纪是人类高速发展的世纪。世界各国投入了大量的人力、物力和财力环境污染进行治理和预防,并且已经取得了卓有成效的成绩。一提到环境问题,人们似乎更关注较易感觉到的室外空气和水的污染,认为只要降染源的排放量,净化了空气和水源就能从根本上解决环境污染问题。其实则不然,人们生活水平的提高,室内空气质量对人体健康的影响已成为引起社会普遍关注的重要环境问题之一。随着对室内环境保护意识的不断增强,人们迫切希望有一个安全、健康的生活空间。 据世界卫生组织(WHO)调查结果显示,世界上30%的新建和重修的建筑物中发现室内空气有害健康,这些被污染的室内空气已经导致全球性的人口发病率和死亡率增加,室内空气污染已被列入对公众健康危害的五种环境因素之一[1]。国际上一些室内环境专家提醒人们,在经历了工业革命带来的“煤烟型污染”和“光化学烟雾型污染”之后,现代人已经进入了以“室内空气污染”为标志的第三个污染时期[2]。 部分装饰、装修材料及用品或含有有害化学物质,或因使用不当,导致某些污染物如甲醛,苯、氡等进入室内环境,造成室内空气污染,严重者甚至危害居住者健康,引起装修纠纷,室内空气污染已引起政府和公众的高度重视。甲醛为高毒性的物质,在我国有毒化学品优先控制名单上,甲醛高居第二位。 甲醛已成为关系到人们身体健康而亟待解决的问题! 1.2室内甲醛的污染现状 20世纪90年代末,北京大学对其校园园区内的室内空气质量进行了一次调查,表1.1反映了此次调查中甲醛的测定值及我国和其他国家已有的室内空气中甲醛平均水平。

氧化钛光催化分解甲醛原理

纳米二氧化钛光催化分解甲醛原理 1. 光催化剂的发现历史 自从1972年Fujishima和Honda[2]发现TiO2在受到紫外光照射时可以将水氧化还原生成氢,光催化材料就引起了科研人员的关注。而1976年Carey等[3]将TiO2的光催化作用应用于水中多氯联苯化合物脱氯去毒并取得了成功,从此TiO2作为一种去除有机物的一种有效方法应用到了水和空气的清洁净化领域。1985年,日本科学家Tadashi Matsunaga等[4]第一个发现了TiO2在紫外光下有杀菌作用。近年来科学家们又对TiO2进行了深入的研究,并取得了很大的进步。但是以前的研究多数是用溶胶凝胶负载在基材上,这样的负载量有限,所以对空气的净化的速率较慢。如何能够快速、便捷、安全、有效的除去室内的各种污染物及病菌成为一个亟待解决的问题。纳米TiO2良好的光催化性能使它成为了解决这一问的热点研究方向。纳米TiO2以其催化活性高、化学稳定性好、使用安全,2. 纳米TiO2光催化机理 纳米TiO2是一种n型半导体氧化物,其光催化原理可以用半导体的能带理论来解释[5]。由于TiO2纳米粒子的粒径在1~100 nm,所以其电子的Fermi能级是分立的,而不是像金属导体中的能级是连续的,在纳米TiO2半导体氧化物的原子或分子轨道中具有一个空的能量区域,它介于导带与价带之间,称为禁带[6],其宽度为eV,当纳米TiO2接受波长为nm以下的光线照射时,其内部价带的电子由于吸收光子跃迁到导带,从而产生空穴-电子对,即光生载流子,然后迅速迁移到其表面并激活被吸附的O2和H2O,产生高活性羟基自由基(·OH)和超氧离子自由基(·O2- )[7],当污染物以及细菌吸附其表面时,会发生两个步骤:(1)吸收相波长为nm以下的光能,使表面发生光激发而产生光致电子和正的空穴。 (2)在受光照射而产生的电子-空穴中,电子消耗于空气中氧的还原,空穴则将吸附物质氧化,分解这些吸附物质的作用。如下图1: 导带 O2

纳米二氧化钛光催化净化甲醛

个人收集整理-ZQ 纳米二氧化钛光催化净化甲醛 纳米二氧化钛光催化参数及净化甲醛性能地研究 作为一种新型环保光催化材料,纳米二氧化钛(<>)以其所具有地众多优越性能而受到广泛关注,应用研究延伸至能源、环保、建材、医疗卫生等多个领域.本课题主要基于纳米<>在气相光催化领域地应用,针对室内环境中长期严重影响人体健康地有机污染物甲醛,开展了一系列相关实验研究,内容涉及纳米<>光催化剂地制备、负载、光催化降解甲醛以及吸附光催化净化甲醛地性能研究,本课题地开展对光催化及吸附光催化净化空气技术地应用具有一定地参考价值.受到本课题前期研究地启发,在本实验研究开展初期纳米<>光催化剂制备环节,引入分散液粒子粒度分析、液膜状态、甲醛释放性及甲醛降解性等项指标对分散液效果进行综合考核.实验结果表明,阴离子表面活性剂配制而成地<'#>分散液具有<>粒径小且分布均匀,液膜光滑度、牢度、透明度高,甲醛释放性小及甲醛降解率高等优点,作为该项研究开展地基础.文档来自于网络搜索 降解净化甲醛地性 能研究涉及两大部分:()单纯纳米<>负载状态下光催化降解甲醛性能研究.①单因素分析法就不同纳米<>负载量、不同光强对纳米<>光催化性能产生地影响予以分析,结果表明,随<>负载量地增加,甲醛降解率略有提高;较低光照强度下,纳米<>对甲醛地降解率随时间延长而不断提高,当光强较高时,特别是在μ<'>,纳米<>分解分散液成分使其产生甲醛;②纳米<>负载量、光照强度和反应时间因素作用下开展正交实验以探讨最佳工艺参数,结果表明,纳米<>分散液量为、μ<'>光照强度下作用小时,<>对甲醛地光催化降解率可达%,其最佳净化效率为μ.()纳米<>和吸附材料共同负 1 / 16

光催化降解有机污染物

光催化降解有机污染物 19113219 高思睿 1、有机污染物处理的重要性 在21世纪,能源与环境问题已经成为世界关注的主题,如何减少污染,保护生态平衡,解决环保问题,已经引起各政府决策部门和学术研究部门的高度重视。 水和空气作为人类最宝贵的资源,随着工业进程的加快,大量的废水、废气被排入其中,其中的有毒有机化合物会在人体内富集,给健康带来巨大威胁。而且在这些化合物中,有部分化合物用平常的处理方法很难将其降解。 我国学者金奇庭等人通过研究观察发现:很多的有机化合物能使厌氧微生物产生明显的毒害作用。这些有机化合物必须通过一些其他的非生物的降解技术来除去。 光催化处理有机污染物的技术由于其价廉,无毒,节能,高效的优势逐渐成为各界人士研究的重点,光催化的研发也一跃成为当前国际热门研究领域之一。 自1972年日本学者藤島(Fujishima)和本田(Honda)发现TiO2单晶能光电催化分解水以来,光催化氧化还原技术,在污水处理、空气净化、抗菌杀毒、太阳能开发等方面具有广阔的应用前景,受到世界各国的广泛关注,并得到了迅速发展。 大量研究证实:染料、表面活性剂、有机卤化物、农药、油类、氰化物等许多难降解或用其它方法难以去除的有机污染物都能够通过光催化氧化反应有效的降解、脱色、去毒,并最终完全矿化为CO2、H2O及其他无机小分子物质,达到完全无机化的目的,从而消除对环境的污染。 2、光催化剂 主要的光催化剂类型: 1、金属氧化物或硫化物光催化剂 2、分子筛光催化剂 3、有机物光催化剂 在光催化中采用半导体物质作为光催化剂,有ZnO、CdS、WO3、TiO2等。由于TiO2具有价廉易得、使用稳定及光活性高等优点,所以在光催化降解中,一般采用它作为光催化剂。 1. TiO2的结构 二氧化钛是钛的氧化物。根据晶型可以划分为金红石型、锐钛矿型和板钛矿型三种。金红石矿在自然界中分布最广,锐钛矿型TiO2属于四方晶系,板钛矿型TiO2由于属于正交晶系很不稳定,金红石型TiO2相对于锐钛矿型和板钛矿型来说应用较广。

光催化氧化技术降解有机污染物

光催化氧化技术降解有机污染物 摘要:光催化氧化技术是一种新型的高级氧化技术,TiO2光催化氧化技术具有工艺简单、能耗低、效率高、易操作、无二次污染等特点,被认为是降解持久性有机污染物最有前途最有效的处理方法之一。 本文阐述了光催化氧化的基本原理和特点,探讨了其影响因素,如温度、pH、催化剂用量等。综合可知,光催化氧化技术具有良好的发展前景,值得广大研究人员进一步的探究。 关键字:光催化氧化,二氧化钛,有机污染物 Abstract:The technique of photocatalytic oxidation is a new advanced ocidation technique. UV/ TiO2 photocatalytic treatment is considered one of the most promising and effective methods of treating persistent organic pollutants due to its simple process, low energy consumption, high mineralization efficiency, easy access and low toxicity of end products et al. This paper states the basic principles and characteristics of the photocatalytic oxidation and explore the influencing factors such as temperature, the pH, the amount of catalyst et al. Comprehensive seen that photocatalytic oxidation has a good prospects of development and its worth further exploration by researchers. Key words:photocatalytic oxidation, TiO2, organic pollutants

光催化技术净化甲醛的效果研究

龙源期刊网 https://www.360docs.net/doc/583907904.html, 光催化技术净化甲醛的效果研究 作者:俞圣哲 来源:《中国科技纵横》2018年第22期 摘要:人们生活品质的提高,对于家居有了新的要求,那就是无毒无害,但现实中未能解决有害气体的散发。通过密闭房间内利用光触媒设备对有害有机物气体的消除测试阐述了在低浓度状况下除VOCs的有效性;对于不同基材负载的光触媒板在相同条件下去除低浓度甲醛气体的动态模拟测试的比较,进一步的得出基材的选择对于光催化去除甲醛能力的影响。 关键词:光催化;TiO2;负载;去除率 中图分类号:X511 文献标识码:A 文章编号:1671-2064(2018)22-0005-03 随着生活生平的提高,人们更多的关注健康,很多专业术语也被认知,比如PM2.5, PM10,空气污染指数等等。一天当中大部分时间在室内度过,因此室内空气的好坏直接影响着我们,尤其是各式各样的新家具用品和装修涂料时时刻刻释放出有毒有害的污染物让我们的身体处在危害当中。 在室内空气污染物中,挥发性有机化合物VOCs来源广泛且对人体健康影响较大,研究认为,室内TVOC浓度大于0.2mg/m3时,人体会有轻微不适的感觉,TVOC浓度上升到 25mg/m3以上时就容易出现头痛等中毒症状[1]。 2002年我国制定并实施了GB/T18883.2002《室内空气质量标准》,这部标准引入室内空气质量概念,明确提出“室内空气应无毒、无害、无异常嗅味”的要求。其中规定的控制项目包括化学性、物理性、生物性和放射性污染。规定控制的化学性污染物质不仅包括人们熟悉的甲醛、苯、氨、氧等污染物质,还有可吸入颗粒物、二氧化碳、二氧化硫等13项化学性污染物质。 目前,室内空气污染物的控制途径分为:污染源头控制以及末端治理。使用环保型材料能有效的从源头减少污染物,但是由于成本和售价的昂贵普通百姓无法承受,通常会选用末端治理的方法来改善空气质量。现有末端治理技术包括过滤技术、静电除尘技术、吸附净化技术、低温等离子体技术、光催化技术和组合技术等。通常我们常见的方法有吸附型的比如活性炭包;过滤和吸附相结合的有空气净化器;以及可直接喷洒于墙体表面去除甲醛,苯类的有光触媒分散液。 本文以光催化技术为主要研究对象,所谓光催化(光触媒)指半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解的过程。当光能等于或超过半导体材料的带隙能量时形成光生载流子(电子-空穴对)。在缺乏合适的电子或空穴捕获剂时,吸

光催化剂降解有机污染物

光催化降解有机污染物 摘要:在21世纪的社会,能源与环境问题已经成为世界关注的主题,水和空气作为人类最宝贵的资源已日益受到重视。开发一种简便有效的方法来治理水体污染和大气污染是人类社会一个急需解决的问题。虽然目前已经有许多治理手段,但是光催化处理有机污染物的技术由于其价廉,无毒,节能,高效的优势逐渐成为各界人士研究的重点,光催化的研发也一跃成为当前国际热门研究领域之一。关键词:光催化,有机污染物,环境,二氧化钛 正文: 在21世纪的社会,能源与环境问题已经成为世界关注的主题,如何减少污染,保护生态平衡,解决环保问题,已经引起各政府决策部门和学术研究部门的高度重视。当今时代,我们在大力发展社会生产力,提高生活水平的同时,对环境也造成了严重的破坏,严重威胁着我们的生存。现如今,水和空气作为人类最宝贵的资源已日益受到重视。特别是随着工业进程的加快,水和空气中被排放了大量的废水、废气,其中含有大量的有毒有机化合物会在人体内富集,给人类的健康带来巨大的威胁[1-2]。而且在这些化合物中,有部分化合物用平常的处理方法很难将其降解[3]。我国学者金奇庭等人通过研究观察发现:很多的有机化合物能使厌氧微生物产生明显的毒害作用[4]。由实验结果可以看出,这些有机化合物必须通过一些其他的非生物的降解技术来除去。在我们的日常生活中,有大量的挥发性有机化合物(volatile organic compound,VOC)被排放到我们生活的环境中,不仅对环境造成了严重的破坏,而且使人类自己的健康乃至生命受到严重的威胁,例如,各种各样的的石油化工产品及会产生有毒气体的室内外装饰品、日常生活用品,特别是室内装饰经常使用的建筑材料像油漆、涂料等,这些化合物对环境造成严重的污染,对人类的健康造成严重的威害。因此,开发一种简便有效的方法来治理水体污染和大气污染是人类社会一个急需解决的问题。虽然目前已经有许多治理手段,但是光催化处理有机污染物的技术由于其价廉,无毒,节能,高效的优势逐渐成为各界人士研究的重点,光催化的研发也一跃成为当前国际热门研究领域之一。尽管纳米二氧化钛具有优良的光催化性能,但仍然有一些缺陷制约着光催化的大规模应用。主要由于其带隙较宽,导致其只能被太阳光谱中仅含有3%左右的紫外线激化,这一原因极大的限制了光催化技术的应用。目

甲醛空气净化器及光催化降解甲醛的研究进展

Journal of Advances in Physical Chemistry 物理化学进展, 2016, 5(4), 131-136 Published Online November 2016 in Hans. https://www.360docs.net/doc/583907904.html,/journal/japc https://www.360docs.net/doc/583907904.html,/10.12677/japc.2016.54015 文章引用: 曾晶, 江志成, 郑爱苹, 谢梦淋, 吴梦芹, 肖强. 甲醛空气净化器及光催化降解甲醛的研究进展[J]. 物理化 Progresses on Formaldehyde Air Purifier and Photocatalytic Degradation of Formaldehyde Jing Zeng, Zhicheng Jiang, Aiping Zheng, Menglin Xie, Mengqin Wu, Qiang Xiao Key Laboratory of Authorized by China’s Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua Zhejiang Received: Nov. 3rd , 2016; accepted: Nov. 20th , 2016; published: Nov. 23rd , 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/583907904.html,/licenses/by/4.0/ Abstract The paper summarizes the principle of elimination of indoor formaldehyde pollution in the com-mercialized air purifier. The status of the photocatalytic degradation reactor for the elimination of indoor formaldehyde pollution has been reviewed. The development direction and application prospects of photocatalytic degradation of indoor air formaldehyde are discussed. Keywords Formaldehyde, Air Purifier, Photocatalytic Degradation 甲醛空气净化器及光催化降解甲醛的 研究进展 曾 晶,江志成,郑爱苹,谢梦淋,吴梦芹,肖 强 浙江师范大学,物理化学研究所,先进催化材料省部共建教育部重点实验室,浙江 金华 收稿日期:2016年11月3日;录用日期:2016年11月20日;发布日期:2016年11月23日 Open Access

二氧化钛光催化分解甲醛原理

纳米二氧化钛光催化分解甲醛原理 1、 光催化剂的发现历史 自从1972年Fujishima 与Honda [2]发现TiO 2在受到紫外光照射时可以将水氧化还原生成氢,光催化材料就引起了科研人员的关注。而1976年Carey 等[3]将TiO 2的光催化作用应用于水中多氯联苯化合物脱氯去毒并取得了成功,从此TiO 2作为一种去除有机物的一种有效方法应用到了水与空气的清洁净化领域。1985年,日本科学家Tadashi Matsunaga 等[4]第一个发现了TiO 2在紫外光下有杀菌作用。近年来科学家们又对TiO 2进行了深入的研究,并取得了很大的进步。但就是以前的研究多数就是用溶胶凝胶负载在基材上,这样的负载量有限,所以对空气的净化的速率较慢。如何能够快速、便捷、安全、有效的除去室内的各种污染物及病菌成为一个亟待解决的问题。纳米TiO 2良好的光催化性能使它成为了解决这一问的热点研究方向。纳米TiO 2以其催化活性高、化学稳定性好、使用安全, 2、 纳米TiO 2光催化机理 纳米TiO 2就是一种n 型半导体氧化物,其光催化原理可以用半导体的能带理论来解释[5]。由于TiO 2纳米粒子的粒径在1~100 nm,所以其电子的Fermi 能级就是分立的,而不就是像金属导体中的能级就是连续的,在纳米TiO 2半导体氧化物的原子或分子轨道中具有一个空的能量区域,它介于导带与价带之间,称为禁带[6],其宽度为3、2 eV ,当纳米TiO 2接受波长为387、5 nm 以下的光线照射时,其内部价带的电子由于吸收光子跃迁到导带,从而产生空穴-电子对,即光生载流子,然后迅速迁移到其表面并激活被吸附的O 2与H 2O,产生高活性羟基自由基(·OH)与超氧离子自由基(·O 2- )[7],当污染物以及细菌吸附其表面时,会发生两个步骤: (1)吸收相波长为387、5 nm 以下的光能,使表面发生光激发而产生光致电子与正的空穴。 (2)在受光照射而产生的电子-空穴中,电子消耗于空气中氧的还原,空穴则将吸附物质氧化,分解这些吸附物质的作用。如下图1: 禁带 导带 λ≤387、5nm 光 有机物 O 2 ·O 2-

二氧化钛光催化分解甲醛原理说课材料

精品文档纳米二氧化钛光催化分解甲醛原理 1. 光催化剂的发现历史 自从1972年Fujishima和Honda[2]发现TiO2在受到紫外光照射时可以将水氧化还原生成氢,光催化材料就引起了科研人员的关注。而1976年Carey等[3]将TiO2的光催化作用应用于水中多氯联苯化合物脱氯去毒并取得了成功,从此TiO2作为一种去除有机物的一种有效方法应用到了水和空气的清洁净化领域。1985年,日本科学家Tadashi Matsunaga等[4]第一个发现了TiO2在紫外光下有杀菌作用。近年来科学家们又对TiO2进行了深入的研究,并取得了很大的进步。但是以前的研究多数是用溶胶凝胶负载在基材上,这样的负载量有限,所以对空气的净化的速率较慢。如何能够快速、便捷、安全、有效的除去室内的各种污染物及病菌成为一个亟待解决的问题。纳米TiO2良好的光催化性能使它成为了解决这一问的热点研究方向。纳米TiO2以其催化活性高、化学稳定性好、使用安全,2. 纳米TiO2光催化机理 纳米TiO2是一种n型半导体氧化物,其光催化原理可以用半导体的能带理论来解释[5]。由于TiO2纳米粒子的粒径在1~100 nm,所以其电子的Fermi能级是分立的,而不是像金属导体中的能级是连续的,在纳米TiO2半导体氧化物的原子或分子轨道中具有一个空的能量区域,它介于导带与价带之间,称为禁带[6],其宽度为3.2 eV,当纳米TiO2接受波长为387.5 nm以下的光线照射时,其内部价带的电子由于吸收光子跃迁到导带,从而产生空穴-电子对,即光生载流子,然后迅速迁移到其表面并激活被吸附的O2和H2O,产生高活性羟基自由基(·OH)和超氧离子自由基(·O2- )[7],当污染物以及细菌吸附其表面时,会发生两个步骤:(1)吸收相波长为387.5 nm以下的光能,使表面发生光激发而产生光致电子和正的空穴。 (2)在受光照射而产生的电子-空穴中,电子消耗于空气中氧的还原,空穴则将吸附物质氧化,分解这些吸附物质的作用。如下图1: 导带 O2

光催化氧化降解甲醛影响因素

光催化氧化降解甲醛影响因素 摘要:本文通过做甲醛降解实验,来分析光催化氧化降解甲醛的影响因素,本文只对四个因素进行分析,即浓度、温度、湿度、气体流速。 关键词:光催化氧化;甲醛;因素 引言 本实验所有试剂都为分析纯,气固相光催化间歇反应器示意图如图1所示,其有效容积9.34L,内径200mm,长300mm。反应器材质为不锈钢,光源固定在反应器轴线上,将催化剂薄膜紧贴内壁环绕放置底部,中央放置10W风扇用于反应器内气体的混合。检测系统采用气相色谱进行分析。光催化是一种在光的照射下,自身不起变化,却可以促进化学反应的物质,光催化是利用自然界存在的光能转换成为化学反应所需的能量,来产催化作用,使周围之氧气及水分子激发成极具氧化力的自由负离子。 其甲醛降解的反映速率k随初始质量浓度的变化可用方程k=12.92来表示。实验表明,当甲醛浓度增加到一定值时,光催化反应的级数将由一级经过分数级而下降为零级。在甲醛浓度为500-2500mg/m3的范围内,随着甲醛初始浓度的降低甲醛的降解率升高。 2.温度对甲醛降解的影响 温度对光催化氧化降解不同有机物具有促进、抑制、先促进后抑制等不同作用。目前,对甲醛光催化氧化降解的研究多数都是在室温下进行的。但是在光催化氧化技术降解甲醛并不是在室温下进行,因此,高温下研究光催化氧化甲醛反应是非常有必要的。 3.湿度对甲醛降解效率的影响 在光催化氧化反应中,水分子起着重要作用,从理论上讲,只要半导体吸收的光能大于其禁带宽度,价电带上的电子就可以被激发到导电带,在价电带上产生相应的空穴,随后空穴与电子与水和氧气发生作用,生成极强氧化还原能力的高活性基团,对有机物起到降解的作用。在催化剂活性一定的条件下,湿度对光催化降解效率的影响主要是湿度大小决定着与污染物发生光催化作用的羟基官能团产生量,光催化作用机理表明,水分子的存在是光催化反应的必要条件。

氧化钛光催化分解甲醛原理

氧化钛光催化分解甲醛 原理 The manuscript was revised on the evening of 2021

纳米二氧化钛光催化分解甲醛原理 1. 光催化剂的发现历史 自从1972年Fujishima和Honda[2]发现TiO2在受到紫外光照射时可以将水氧化还原生成氢,光催化材料就引起了科研人员的关注。而1976年Carey等[3]将TiO2的光催化作用应用于水中多氯联苯化合物脱氯去毒并取得了成功,从此TiO2作为一种去除有机物的一种有效方法应用到了水和空气的清洁净化领域。1985年,日本科学家Tadashi Matsunaga等[4]第一个发现了TiO2在紫外光下有杀菌作用。近年来科学家们又对TiO2进行了深入的研究,并取得了很大的进步。但是以前的研究多数是用溶胶凝胶负载在基材上,这样的负载量有限,所以对空气的净化的速率较慢。如何能够快速、便捷、安全、有效的除去室内的各种污染物及病菌成为一个亟待解决的问题。纳米TiO2良好的光催化性能使它成为了解决这一问的热点研究方向。纳米TiO2以其催化活性高、化学稳定性好、使用安全, 2. 纳米TiO2光催化机理 纳米TiO2是一种n型半导体氧化物,其光催化原理可以用半导体的能带理论来解释[5]。由于TiO2纳米粒子的粒径在1~100 nm,所以其电子的Fermi能级是分立的,而不是像金属导体中的能级是连续的,在纳米TiO2半导体氧化物的原子或分子轨道中具有一个空的能量区域,它介于导带与价带之间,称为禁带[6],其宽度为 eV,当纳米TiO2接受波长为 nm以下的光线照射时,其内部价带的电子由于吸收光子跃迁到导带,从而产生空穴-电子对,即光生载流子,然后

光催化降解有机污染物-实验三、光催化降解有机污染物(一)

实验三、光催化降解有机污染物 (一) TiO2纳米光催化剂的制备(溶胶一凝胶法) 学时:10 一、背景材料 治理污染、保护环境,是我国的一项基本国策,随着我国经济的快速发展,环境保护特别是污水处理的任务已经越来越严峻。纳米结构光催化材料-TiO2胶体及浆料,用以光催化氧化降解有机污染物,能达到净化水质的目的。 目前纳米TiO2颗粒的制备方法有很多种,根据对所要求制备的性状、结构、尺寸、晶型、用途,采用不同的制备方法。按照原料的不同大致分为两类:气相法和液相法。 气相法是直接利用气体或通过各种手段将物质变为气体,使之在气态下发生物理变化或化学变化,最后在冷却过程中凝聚成纳米粒子的方法。气相法的特点是粉体纯度高、颗粒尺寸小、颗粒团聚少、组分更易控制。主要有以下方法:低压气体蒸发法、溅射法和钛醇盐气相水解法。气相法制备的纳米TiO2具有粒度好、化学活性高、粒子呈球形、凝聚粒子小、可见透光性好及吸收紫外线以外的光能力强等特点,但产率低,成本高,因此目前制备纳米TiO2光催化剂多采用液相法。 液相法是生产各种氧化物颗粒的主要方法。它的基本原理是:选择一种或多种合适的可溶性金属盐,按所制备的材料组成计量配制溶液,再选择一种沉淀剂(或用蒸发、升华、水解等方法)使金属离子均匀沉淀(或结晶出来)。液相制备纳米Ti02又可分为沉淀法、溶胶一凝胶法(Sol-Gel)、醇盐水解法等。 溶胶一凝胶法(Sol-Gel method,以下简称S-G法)是以金属醇盐M(OR)-(M=Ti, Na, Mg, Ba, Pb, V, Si等;R=-CH3、一C2H;、一C3H7, 一C4H9等)为原料,无水醇为有机溶剂,加入一定量的酸起抑制快速水解作用,诱导所得粒子间产生静电排斥力,阻止粒子间的碰撞,防止进一步产生大粒子,生成透明均匀的溶胶,经过一定的时间陈化,溶胶凝胶化,湿凝胶进行干燥,得到松散干凝胶粉末,此时十凝胶粉体为无定型结构。干凝胶粉体再在马弗炉中进行热处理,即可得到Ti02粒子。该方法不会引入杂质,所以能制备高纯度的Ti02粉体,水解反应一般在常温下进行,设备简单,能耗少。 二、实验目的

光催化降解甲基橙实验报告

光催化降解甲基橙实验报告

————————————————————————————————作者:————————————————————————————————日期:

光催化降解染料甲基橙 一、目的要求 1、掌握确定反应级数的原理和方法; 2、测定甲基橙光催化降解反应速率常数和半衰期; 3、了解可见光分光光度计的构造、工作原理、掌握分光光度计的使用方法。 二、实验原理 光催化始于1972年,Fujishima和Honda发现光照的TiO2单晶电极能分解水,引起人们对光诱导氧化还原反应的兴趣,由此推动了有机物和无机物光氧化还原反应的研究。 1976年,Cary等报道,在近紫外光照射下,曝气悬浮液,浓度为50μg/L 的多氯联苯经半小时的光反应,多氯联苯脱氯,这个特性引起了环境研究工作者的极大兴趣,光催化消除污染物的亚牛日趋活跃。国内外大量研究表明,光催化法能有效地将烃类、卤代有机物、表面活性剂、染料、农药、酚类、芳烃类等有机污染物降解,最终无机化为CO2 H2O,而污染物中含有的卤原子、硫原子、磷原子和氮原子等则分别转化为X-,SO42-,PO43-,PO43-,NH4+,NO3-等离子。因此,光催化技术具有在常温常压下进行,彻底消除有机污染物,无二次污染等优点。 光催化技术的研究涉及到原子物理、凝聚态物理、胶体化学、化学反应动力学、催化材料、光化学和环境化学等多个学科,因此多相光催化科技是集这些学科于一体的多种学科交叉汇合而成的一门新兴的科学。 光催化以半导体如TiO2,ZnO,CdS,Fe2O3,WO3,SnO2,ZnS,SrTiO3,CdSe,CdTe,In2O3,FeS2,GaAs,GaP,SiC,MoS2等作催化剂,其中TiO2具有价廉无毒、化学及物理稳定性好、耐光腐蚀、催化活性好等优点,帮TiO2是目前广泛研究、效果较好的光催化剂。 半导体之所以能作为催化剂,是由其自身的光电特性所决定的。半导体粒子含有能带结构,通常情况下是由一个充满电子的低能价带和一个空的高能导带构成,它们之前由禁带分开。研究证明,当pH=1时锐钛矿型TiO2的禁带宽度为3.2eV,半导体的光吸收阈值λg与禁带宽度Eg的关系为 λg(nm)=1240/Eg(eV) 当用能量等于或大于禁带宽度的光(λ<388nm的近紫外光)照射半导体光催化剂时,半导体价带上的电子吸收光能被激发到导带上,因而在导带上产生带负电的高活性光生电子(e-),在价带上产生带正电的光生空穴(h+),形成光生电子-空穴对。空穴的能量(TiO2)为7.5 eV,具有强氧化性;电子则具有强还原性。 当光生电子和空穴到达表面时,可发生两类反应。第一类是简单的复合,如果光生电子与空穴没有被利用,则会重新复合,使光能以热能的形式散发掉

光催化降解水体中有机污染物的研究

光催化降解水体中有机污染物的研究 一、实验目的 通过本实验了解光催化的基本原理,掌握亚甲基蓝等有机污染物降解的实验方法和光催化降解的动力学参数测定,掌握光催化中紫外光源的使用及有机物的光谱分析法。 二、实验原理 20世纪70年代以来,利用半导体光催化氧化水中污染物的工作日益为人们所重视,其优点主要在于:首先,利用半导体光催化氧化降解水中污染物不同于单纯的物理方法,化学方法和生物方法的水处理,处理流程简单,无二次污染,处理速度比微生物法快;其次,半导体光催化氧化可以处理各种无机和有机污染物使其矿化,是一种氧化处理方法,最关键的是半导体光催化氧化过程有可能利用太阳光资源,节能且无污染。 目前,在多相光催化反应所使用的半导体催化剂中,TiO2以其无毒、催化活性高、氧化能力抢、稳定性好最为常用。研究表明:纳米TiO2对紫外线具有很强的吸收能力,具有很高的光催化活性,当受到波长小于388nm的紫外光照射后,纳米TiO2 粒子将分别在导带和价带上产生大量的光电子(e)和光生空穴(h+),e和h+经过一系列反应可生成含氧小分子活性物种OH 、H2O2、O2-等,这些含氧小分子物种具有极强的氧化还原能力,可以光催化降解水中的有机污染物,将其直至完全矿化为CO2和H2O,并可以光催化还原重金属离子和光催化杀菌。 光催化机理可用下式说明:TiO2 + H2O—hv—>e + h+ h+ + H2O →?OH + H+ h+ + OH-→?OH 02 + e→?O2- O2- + H+-→ H2O ? 2HO2?→ O2+ H2O2 H2O2 + ?O2-→?OH+OH-+O2

羟基自由基-OH 是光催化反应的一种主要活性物质,对光催化氧化起决定作用,吸附于催化剂表面的氧基水合悬浮液中的OH-、H 2O 等均可产生该物质,氧化作用既可以通过表面键合羟基的间接氧化,即粒子表面捕获的空穴氧化;又可在粒子内部或颗粒表面经价带空穴直接氧化;或同时起作用,视具体情况有所不同。表面吸附分子氧的存在会影响光催化胜率和量子速率。但由于TiO 2的带隙较宽(约3.2ev ),能利用的太阳能大约仅占太阳光强的3%,而且由于光激发产生的电子与空穴的复合,光量子效率很低。为了提高对太阳能的利用率,并积极改善催化效率,人们已进行了大量的研究工作,如采取一些表面修饰改性技术,射击研制高效能反应器等。 三、仪器与试剂 自镇流荧光高压汞灯(125W );磁力搅拌器;721型分光光度计;亚甲基蓝(分析纯);二氧化钛;过氧化氢(分析纯)。 四、实验步骤 1、实验方法及试样分析 称取一定量的亚甲基蓝粉末,用蒸馏水配成100mg/L 的溶液。取100ml 置于玻璃皿中,加入一定量的TiO 2粉末,用玻璃棒搅拌,使TiO 2粉末分布均匀。然后将玻璃皿置于磁力搅拌器上,磁力搅拌器上方放置自镇流荧光高压汞灯。在稳定的光照条件下,反应一段时间后,取出反应悬浮液,离心过滤(3000r/min )、测上清液的吸光度,计算不同反应条件下的染料脱色率。 亚甲基蓝分析采用分光光度法,亚甲基蓝最大吸收波长为665nm ,在该波长下用721型分光光度计以去离子水为参比,测得亚甲基蓝溶液在反应前后的吸光度来计算。试样的脱色率D 以下式计算: %100A A A D ?= - 式中:A 0——亚甲基蓝溶液的初始吸光度; A ——反应结束后亚甲基蓝溶液的吸光度。

二氧化钛光催化降解有机污染物的性能研究

二氧化钛光催化降解有机污染物的性能研究 摘要 本文以钛酸四丁酯为钛源,采取水热法制备了二氧化钛纳米材料,用X射线衍射,电子扫描电镜等方法对合成的TiO2进行表征。实验研究了在模拟自然光条件下纳米二氧化钛降解亚甲基蓝的光催化行为,优化了实验条件如温度、二氧化钛光催化剂的用量对光催化降解的影响。实验结果表明,常温下,对于40mg/mL的亚甲基蓝溶液,加入10mg的TiO2,光催化降解40min,降解率可达到89%,但是在此基础上改变用量都会导致光催化降解率的降低。 关键词:纳米二氧化钛水热法光催化降解亚甲基蓝

Properties of organic pollutants Photocatalytic Degradation ABSTRACT In this paper, titanium dioxide was prepared by hydrothermal method to prepare rutile titanium dioxide nanorods by using four butyl titanate as titanium source. On the basis of this study, the photocatalytic degradation of methylene blue under infrared light is studied. And through the adjustment of the experimental conditions such as temperature, pH, the amount of photocatalyst, it was concluded that the relative optimum conditions of photocatalytic degradation of methylene blue were obtained. In addition, by X-ray diffraction, cyclic voltammetry and scanning electron microscope (SEM) method of TiO2 nano meter sticks from the phase and microstructure were characterized. The experimental results show that the room temperature and for 40mg / mL of methylene blue solution, adding more than 1.0g of TiO2 photocatalytic degradation catalyst reaction 20MIN can achieve 89% of the degradation rate, but with the amount of catalyst increase and decrease, the

二氧化钛光催化降解有机污染物的性能研究

二氧化钛光催化降解有机污染物的性能研究

————————————————————————————————作者:————————————————————————————————日期: ?

二氧化钛光催化降解有机污染物的性能研究 摘要 本文以钛酸四丁酯为钛源,采取水热法制备了二氧化钛纳米材料,用X射线衍射,电子扫描电镜等方法对合成的TiO 进行表征。实验研究了在模拟自然光条 2 件下纳米二氧化钛降解亚甲基蓝的光催化行为,优化了实验条件如温度、二氧化钛光催化剂的用量对光催化降解的影响。实验结果表明,常温下,对于40mg/mL的亚甲基蓝溶液,加入10mg的TiO ,光催化降解40min,降解率可达到89%,但是在此基础上 2 改变用量都会导致光催化降解率的降低。 关键词:纳米二氧化钛水热法光催化降解亚甲基蓝

Properties oforganicpollutants Photocatalytic Degradation ABSTRACT In this paper, titanium dioxidewas prepared byhydrothermal method topreparerutile titaniumdioxide nanorods byusing fourbutyl titanate as titanium source.On thebasis of this study,the photocatalytic degradationof methyleneblueunder infrared light is studied. Andthroughthe adjustment of the experimental conditions suchastemperature,pH,the amount ofphotocatalyst,itw as concluded thattherelativeoptimum conditions ofphoto catalyticdegradationof methylene blue wereobtained. Inaddition, by X-raydiffraction,cyclicvoltammetry andscanning electron microscope (SEM)method ofTiO2 nano meter sticks fromthe phase andm icrostructure were characterized. The experimental results show thatt he room temperature and for 40mg / mLofmethylene blue solution,addingmorethan1.0g ofTiO2photocatalytic degradation catalyst reaction 20MIN canachieve89% of thedegradation rate, but withtheamount of catalystincrease anddecrease,thed egradation efficiencyofcatalyst will reduce,sothe photocataly tic degradationshouldpayattention to the usage ofcatalyst, should notbe too much, also should notbe too little.

相关文档
最新文档