初中三角函数知识点总结及典型习题(含答案)

初中三角函数知识点总结及典型习题(含答案)
初中三角函数知识点总结及典型习题(含答案)

初三下学期锐角三角函数知识点总结及典型习题

1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

2

3

5、30°、45°、 6 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、的增减性:

当0°<α<90°时,tan α随α的增大而增大,

1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法)

2、应用举例:

(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

A 90

B 90∠-?=∠?

=∠+∠得由B A

对边

邻边

(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。用字母i 表示,即h i l

=。坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan h

i l

α=

=。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。

4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。

例1:已知在Rt ABC △中,3

90sin 5

C A ∠==°,,则tan B 的值为( )

A .43

B .45

C .54

D .

34

【解析】本题考查三角函数的定义和勾股定理,在RT ΔABC 中,∠C=90°,则sin a A c =

,tan b

B a

=和222a b c +=;由3s i n 5A =知,如果设3a x =,则5c x =,结合222a b c +=得4b x =;∴44

tan 33

b x B a x ===,

所以选A .

例2

:104cos30sin 60(2)2008)-??+--=______.

【解析】本题考查特殊角的三角函数值.零指数幂.负整数指数幂的有关运算,

104cos30sin 60(2)2008)-??+--

=134122

??--= ???,故填3

2.

1. 某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( C )

A .8米 B

. C

D

:i h l =h

l

α

2. 一架5米长的梯子斜靠在墙上,测得它与地面的夹角是40°,则梯子底端到墙的距离为( B )

A.5sin40°B.5cos40°C.

5

tan40°

D.

5

cos40°

3. 如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平

线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是( B )

A

m B.4 m

C

.m D.8 m

4. 河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比是

面的铅直高度BC与水平宽度AC之比),则AC的长是( A )

A

.米 B. 10米

C.15米 D

5.如图,在矩形ABCD中,DE⊥AC于E,∠EDC∶∠EDA=1∶3,且AC=10,则DE的长度是( D )

A.3 B.5 C.2

5D.

22

5

6. 如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C处的俯角为45°,两栋楼之间的距离为30m,则电梯楼的高BC为 82.0 米(精确到

0.1).

1.414

1.732)

7. 如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯

角为30°,看这栋大楼底部C的俯角为60°,热气球A的高度为240米,求这栋大楼的高度.

解:过点A作直线BC的垂线,垂足为点D.

则90

CDA

∠=°,60

CAD

∠=°,30

BAD

∠=°,CD=240米.

在Rt ACD

△中,tan

CD

CAD

AD

∠=,

D

B

tan60

CD

AD

∴===

°

在Rt ABD

△中,tan

BD

BAD

AD

∠=,

tan3080

BD AD

∴===

·°.

∴BC CD BD

=-=240-80=160.

答:这栋大楼的高为160米.

8. 如图所示,城关幼儿园为加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为4米,点D、B、C在同一水平面上.

(1)改善后滑滑板会加长多少米?

(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.

(参考数据:141

.1

2=,732

.1

3=,449

.2

6=,以上结果均保留到小数点后两位.)解:(1)在Rt△ABC中,∠ABC=45°

∴AC=BC=AB·sin45°=2

2

2

2

4=

?

在Rt△ADC中,∠ADC=30°

∴AD= 2

4

2

1

2

2

30

sin

=

÷

=

o

AC

∴AD-AB=66

.1

4

2

4≈

-

∴改善后滑滑板会加长约1.66米.

(2)这样改造能行,理由如下:

∵989

.4

6

2

3

3

2

2

30

tan

=

÷

=

=

o

AC

CD

∴07

.2

2

2

6

2≈

-

=

-

=BC

CD

BD

∴6-2.07≈3.93>3

∴这样改造能行.

9

.求值

1

1

2|20093tan30

3

-

??

+--+

?

??

° 1.解:原式

= 2133

-++6

=

10. 计算:

2009

1

2sin603tan30(1)

3

??

-++-

?

??

°°

2.原式

=2311

23

?-?+-=0.

集合的简单练习题 并集合的知识点归纳

必修1 集合复习 知识框架: 1.1.1 集合的含义与表示 1.下列各组对象 ①接近于0的数的全体;②比较小的正整数全体;③平面上到点O 的距离等于1的点的全体; ④正三角形的全体;⑤2的近似值的全体.其中能构成集合的组数有( ) A .2组 B .3组 C .4组 D .5组 2.设集合M ={大于0小于1的有理数},N ={小于1050的正整数}, P ={定圆C 的内接三角形},Q ={所有能被7整除的数},其中无限集是( ) A .M 、N 、P B .M 、P 、Q C .N 、P 、Q D .M 、N 、Q 3.下列命题中正确的是( ) A .{x |x 2+2=0}在实数范围内无意义 B .{(1,2)}与{(2,1)}表示同一个集合 C .{4,5}与{5,4}表示相同的集合 D .{4,5}与{5,4}表示不同的集合 4.直角坐标平面内,集合M ={(x ,y )|xy ≥0,x ∈R ,y ∈R }的元素所对应的点是( ) A .第一象限内的点 B .第三象限内的点 C .第一或第三象限内的点 D .非第二、第四象限内的点 5.已知M ={m |m =2k ,k ∈Z },X ={x |x =2k +1,k ∈Z },Y ={y |y =4k +1,k ∈Z },则( ) A .x +y ∈M B .x +y ∈X C .x +y ∈Y D .x +y ?M 6.下列各选项中的M 与P 表示同一个集合的是( ) A .M ={x ∈R |x 2+0.01=0},P ={x |x 2=0} B .M ={(x ,y )|y =x 2+1,x ∈R },P ={(x ,y )|x =y 2+1,x ∈R } C .M ={y |y =t 2+1,t ∈R },P ={t |t =(y -1)2+1,y ∈R } D .M ={x |x =2k ,k ∈Z },P ={x |x =4k +2,k ∈Z } 7.由实数x ,-x ,|x |所组成的集合,其元素最多有______个. 8.集合{3,x ,x 2-2x }中,x 应满足的条件是______. 9.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是______. 10.用符号∈或?填空: ①1______N ,0______N .-3______Q ,0.5______Z ,2______R . ②2 1______R ,5______Q ,|-3|______N +,|-3|______Z . 11.若方程x 2+mx +n =0(m ,n ∈R )的解集为{-2,-1},则m =______,n =______. 12.若集合A ={x |x 2+(a -1)x +b =0}中,仅有一个元素a ,则a =______,b =______. 13.方程组?? ???=+=+=+321x z z y y x 的解集为______. 14.已知集合P ={0,1,2,3,4},Q ={x |x =ab ,a ,b ∈P ,a ≠b },用列举法表示集合Q =______. 15.用描述法表示下列各集合:

上海高一反三角函数典型例题

反三角函数典型例题 例1:在下列四个式子中,有意义的为__________: 解:(4)有意义。 (1)(2)arcsin 4 π ;(3)sin(arcsin 2);(4)arcsin(sin 2)。 点评:arcsin x ——x [1,1]∈-。 例2:求下列反正弦函数值 (1)= 解:3 π (2)arcsin 0= 解:0 (3)1arcsin()2-= 解:6π- (4)arcsin1= 解:2 π 点评:熟练记忆:0,1 2 ±、,,1±的反正弦值。 思考:1sin(arcsin )24 π +该如何求? 例3:用反正弦函数值的形式表示下列各式中的x (1)sin x = ,x [,]22ππ ∈- 解:x = 变式:x [,]2 π ∈π? 解:x [,]2π ∈π时,π-x [0,]2 π∈,sin(π-x)=sinx ∴π-x =,则x =π- 变式:x [0,]∈π? 解:x =x =π-(2)1sin x 4=-,x [,]22ππ∈- 解:1 x arcsin 4 =- 变式:1 sin x 4=-,3x [,2]2π∈π 解:3x [,2]2π∈π时,2π-x [0,]2 π∈,sin(2π-x)=-sinx =1 4 ∴2π-x =arcsin 14,则x =2π-arcsin 1 4 点评:当x [,]22ππ ∈-时,x arcsin a =;而当x [,]22ππ?-,可以将角转化到区间[,]22 ππ-上,

再用诱导公式处理对应角之三角比值即可。 练习: (1)sin x = ,x [,]22ππ ∈- 解:x 3π= (2)sin x =,x [0,]∈π 解:x arcsin =x =π-(3)3sin x 5=-,3x [,]22ππ∈ 解:3 x arcsin 5 =π+ 例4:求函数y 2arcsin(52x)=-的定义域和值域。 解:由152x 1-≤-≤,则x [2,3]∈,arcsin(52x)[,]22ππ-∈-,则y [,]∈-ππ。 变式:y sin x arcsin x =+ 解:x [1,1]∈-,y [sin1,sin1]22 ππ ∈--+ 思考:当3x [,]44 ππ ∈-时,求函数y arcsin(cos x)=的值域。 解:当3x [, ]44ππ∈-时t cos x [=∈,而y arcsin t =为增函数,则y [,]42 ππ∈-。 例5:求下列函数的反函数 (1) y sin x =,x [,]2 π∈π 解:y [0,1]∈,x [,0]2 π-π∈-且sin(x )sin x y -π=-=-,则x arcsin(y)-π=-, 则x arcsin y =π-,则反函数是1f (x)arcsin x -=π-,x [0,1]∈。 (2) y arcsin x =,x [0,1]∈ 解:y [0,]2π∈,x sin y =,则反函数是1f (x)sin x -=,x [0,]2 π∈。

高一三角函数题型总结

1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:①画直角三角形 ②利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2. 2. 3. 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 133 π= ;

1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) 33 (D)± 3 3.) 4. ) 5.) * 6.)

三角函数诱导公式 诱导公式可概括为把 απ ±?k 2 的三角函数值转化成角α的三角函数值。(k 指奇数或者偶数, α相当锐角) 口诀“奇变偶不变,符号看象限。”其中奇偶是指2 π 的奇数倍还是偶数倍,变与不变指函数名称的变化。 公式一:=+)2sin(απk =+)2c o s (απk =+)2t a n (απk

三角函数诱导公式练习题 1.若(),2,5 3 cos παππα<≤= +则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 5 4 - 2.sin (-6 π 19)的值是( ) A 3 6 )= . 10.α是第四象限角,,则αsin 等于________. 13 12 cos =α

三角函数经典例题

经典例题透析 类型一:锐角三角函数 本专题主要包括锐角三角函数的意义、锐角三角函数关系及锐角三角函数的增减性和特殊角三角函数值,都是中考中的热点.明确直角三角形中正弦、余弦、正切的意义,熟记30°、45°、60°角的三角函数值是基础,通过计算器计算知道正弦、正切随角度增大而增大,余弦随角度增大而减小. 1.在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,已知,BC=2,那 么( ) A.B.C.D. 思路点拨:由于∠ABC在Rt△ABC和Rt△BCD中,又已知AC和BC,故只要求出AB或CD即可. 解析: 解法1:利用三角形面积公式,先用勾股定理求出 ,∴. ∴. 解法2:直接利用勾股定理求出, 在Rt△ABC中,.答案:A 总结升华:求直角三角形中某一锐角三角函数值,利用定义,求出对应两边的比即可. 2.计算:(1)________; (2)锐角A满足,则∠A=________. 答案:(1);(2)75°. 解析:(1)把角转化为值.(2)把值转化为角即可. (1).

(2)由,得, ∴.∴A=75°. 总结升华: 已知角的三角函数,应先求出其值,把角的关系转化为数的关系,再按要求进行运算.已知一个三角函数值求角,先看看哪一个角的三角函数值为此值,在锐角范围内一个角只对应着一个函数值,从而求出此角. 3.已知为锐角,,求. 思路点拨:作一直角三角形,使为其一锐角,把角的关系转化为边的关系,借助勾 股定理,表示出第三边,再利用三角函数定义便可求出,或利用求出 ,再利用,使可求出. 解析: 解法1:如图所示,Rt△ABC中,∠C=90°,∠B=,由,可设,. 则, ∴. 解法2:由,得 , ∴. 总结升华:知道一锐角三角函数值,构造满足条件的直角三角形,根据比的性质用一不为0的数表示其两边,再根据勾股定理求出第三边,然后用定义求出要求的三角函数值.或 利用,来求.

高考集合知识点总结与典型例题

集合 一.【课标要求】 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主。 预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体 三.【要点精讲】 1.集合:某些指定的对象集在一起成为集合 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或 者不是A的元素,两种情况必有一种且只有一种成立;

互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。 2.集合的包含关系: (1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ?B (或B A ?); 集合相等:构成两个集合的元素完全一样。若A ?B 且B ?A ,则称A 等于B ,记作A =B ;若A ?B 且A ≠B ,则称A 是B 的真子集,记作A B ; (2)简单性质:1)A ?A ;2)Φ?A ;3)若A ?B ,B ?C ,则A ?C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ; (2)若S 是一个集合,A ?S ,则,S C =}|{A x S x x ?∈且称S 中子集A 的补集; (3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S 4.交集与并集:

反三角函数典型例题

精品文档 5 5 (1) sin x 解: (2) sin x [0,] 解: (3) sin x 处] 解: 3 ?胚或 arcs in 或 x 3 .3 arcsin .3 arcsin - 3 反三角函数典型例题 例2:求下列反正弦函数值 1 sin( arcs in )该如何求? 2 4 用反正弦函数值的形式表示下列各式中的 变式:x [一,]? 2 解: x [2,] 时,n —x 【°,2], sin( n — x) =sinx = £ ? n — x = arcsin —3 ,贝U x = n — arcsin — 3 5 5 解: x = arcsin — 3 或 x = n — arcsin —3 5 例1:在下列四个式子中,有意义的为 解:(4)有意 义。 (1) arcs in . 2 ; (2) arcsin _ ; (3) 点评:arcsinx 4 1,1]。 sin( arcs in 2) ; ( 4) arcsin(sin2)。 (1) arcsin - 2 (2) arcsin0 解:0 (3) arcsin(-) 2 点评: 1 熟练记忆:0,- 2 解:- 6 2, (4) arcs ini 1的反正弦值。 思考: (1)sinx £,x [ -,^] 解: .43 x = arcs in 5 变式:x [0, ]? ⑵ sin x - 4 变式:si nx 2 2 x [—,2 ] 2 解: .1 arcs in 4 3 解:x [ ,2 2 ]时,2 - x [0,2], 1 sin( 2 n — x) = — sinx =— 4 2 n — x = 1 山 arcs in ,贝U x = 2 n — arcs in — 点评:当 x [ 2, 2 ] 时, x arcsina ;而当 处理对应角之三角比值即可。 [舊],可以将角转化到区间[ 形]上,再用诱导公式 练习:

三角函数题型学霸总结(含答案)-

三角函数题型学霸总结(含答案) 阳光老师:祝你学业有成 一、选择题(本大题共30小题,共150.0分) 1.点在函数的图象上,则m等于 A. 0 B. 1 C. D. 2 【答案】C 【解析】 【分析】本题主要考查了正弦函数的性质,属于基础题由题意知,求得m 的值. 【解答】解:由题意知, 所以, 所以. 2.用五点法画,的图象时,下列哪个点不是关键点 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的作法,属于基础题. 熟练掌握五点法作图即可. 【解答】 解:用“五点法”画,的简图时, 横坐标分别为, 纵坐标分别为0,1,0,,0, 故选A. 3.函数y x,x的大致图象是

A. B. C. D. 【答案】B 【解析】 【分析】 本题主要考查三角函数的图像,属于基础题利用“五点法”画出函数图像即可得出答案. 【解答】 解:“五点法”作图: x0 0100 10121 故选B. 4.用“五点法”作出函数的图象,下列点中不属于五点作图中的五个关 键点的是 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的画法以及余弦函数的性质,属于基础题. 分别令,,,,得,3,4,3,2,即可得到五点,再对照选项,即可得到答案. 【解答】 解:,分别令,,,,得,3,4,3,2,

所以五个关键点为,,,,, 可知A不属于. 故选A. 5.已知函数的图象与直线 恰有四个公共点,,,,其中,则 A. B. 0 C. 1 D. 【答案】A 【解析】 【分析】 本题考查了三角函数图象的作法及利用导数求函数图象的切线方程,属于较难题. 由三角函数图象及利用导数求函数图象的切线方程可得:切点坐标为,切线方程为:,又切线过点,则,即,得解. 【解答】 解:由 得 其图象如图所示,

三角函数典型例题剖析与规律总结00

学科: 数学任课教师:黄老师授课时间:2013年3月日(星期) 1 :00-1 :00 姓名年级:教学课题三角函数典型例题剖析与规律总结 阶段 基础(√)提高()强化()课时计划共次课第次课 课前 检查作业完成情况:__________________ 建议_________________________________________________________ 教学过程一:函数的定义域问题 1.求函数1 sin 2+ =x y的定义域。 分析:要求1 sin 2+ = y的定义域,只需求满足0 1 sin 2≥ + x的x集合,即只需求出满足 2 1 sin- ≥ x的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周期上的适合条件的区间,然后两边加上πk2()Z k∈即可。 解:由题意知需0 1 sin 2≥ + x,也即需 2 1 sin- ≥ x①在一周期? ? ? ?? ? - 2 3 , 2 π π 上符合①的角为? ? ? ?? ? - 6 7 , 6 π π ,由此 可得到函数的定义域为? ? ? ?? ? + - 6 7 2, 6 2 π π π πk k()Z k∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()()1 ,0 log≠ > =a a x f y a 的函数,则其定义域由()x f确定。(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。 二.函数值域及最大值,最小值 (1)求函数的值域 例。求下列函数的值域 (1)x y2 sin 2 3- =(2)2 sin 2 cos2- + =x y x 分析:利用1 cos≤ x与1 sin≤ x进行求解。 解:(1) 1 2 sin 1≤ ≤ -x∴[]5,1 5 1∈ ∴ ≤ ≤y y (2) ()[].0,4 ,1 sin 1 1 sin 1 sin 2 sin 2 sin 22 2 2 cos- ∈ ∴ ≤ ≤ - - - = - + - = - + =y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。

集合知识点+练习题

第一章集合 §1.1集合 基础知识点: ⒈集合的定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合, 也简称集。 2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示, 而元素用小写的拉丁字母a,b,c…表示。 3.集合相等:构成两个集合的元素完全一样。 4.常用的数集及记法: 非负整数集(或自然数集),记作N; 正整数集,记作N*或N+;N内排除0的集. 整数集,记作Z;有理数集,记作Q;实数集,记作R; 5.关于集合的元素的特征 ⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。 如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。“中国古代四大 发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性; 而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元 素是不确定的. ⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。. 如:方程(x-2)(x-1)2=0的解集表示为{1, 2},而不是{1, 1, 2} ⑶无序性:即集合中的元素无顺序,可以任意排列、调换。 练1:判断以下元素的全体是否组成集合,并说明理由: ⑴大于3小于11的偶数;⑵我国的小河流; ⑶非负奇数;⑷方程x2+1=0的解; ⑸徐州艺校校2011级新生;⑹血压很高的人; ⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点 6.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于?”两种) ⑴若a是集合A中的元素,则称a属于集合A,记作a∈A; ⑵若a不是集合A的元素,则称a不属于集合A,记作a?A。 例如,(1)A表示“1~20以内的所有质数”组成的集合,则有3∈A,4?A,等等。 (2)A={2,4,8,16},则4∈A,8∈A,32?A.

(完整word版)反三角函数典型例题.docx

反三角函数典型例题 例 1:在下列四个式子中,有意义的为 __________: 解:( 4)有意义。 ( 1) arcsin 2 ;( 2) arcsin ;( 3) sin(arcsin 2) ;( 4) arcsin(sin 2) 。 4 点评: arcsin x —— x [ 1,1]。 例 2:求下列反正弦函数值 ( 1) arcsin 3 解: ( 2) arcsin0 解: 0 2 3 ( 3) arcsin( 1) 解: (4) arcsin1 解: 2 6 2 点评:熟练记忆: 0, 1 2 3 、 , , 的反正弦值。 2 2 2 1 思考: sin(arcsin 1 4) 该如何求? 2 例 3:用反正弦函数值的形式表示下列各式中的 x (1) sin x 3 , x [ , ] 3 5 解: x = arcsin 2 2 5 变式: x [ , ] ? 2 解: x [ , ] 时, π- x [0, 3 ] , sin(π- x)= sinx = 2 2 5 ∴ π- x = arcsin 3 ,则 x =π- arcsin 3 5 5 变式: x [0, ] ? 解: x =arcsin 3 或 x = π-arcsin 3 5 5 (2) sin x 1 , x [ , ] 解: x arcsin 1 4 2 2 4 变式: sin x 1 , x [ 3 ,2 ] 4 2 解: x [ 3 ] 时, 2π- x [0, ] , sin(2π- x)=- sinx = 1 ,2 4 2 2 ∴ 2π- x = arcsin 1 ,则 x =2π- arcsin 1 4 4 点评: 当 x [ , ] 时, x arcsina ;而当 x [ , ] ,可以将角转化到区间 [ , ] 上,再用诱导公式 2 2 2 2 2 2 处理对应角之三角比值即可。 练习: (1) sin x 3 [ , ] 解: x , x 3 2 2 2 (2) sin x 3 [0, ] 解: x arcsin 3 3 , x 或 x arcsin 3 3 3 (3) sin x 3 , x [ , 3 ] 解: x arcsin 3

初中三角函数知识点题型总结+课后练习

锐角三角函数知识点 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4 5、0 锐角三角函数题型训练 类型一:直角三角形求值 1.已知Rt △ABC 中,,12,4 3 tan ,90== ?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4.已知A ∠是锐角,17 8 sin = A ,求A cos ,A tan 的值 类型二. 利用角度转化求值:

1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B . 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则 tan EFC ∠的值为 ( ) A.34 B.43 C.35 D. 4 5 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若1tan 5 DBA ∠= ,则AD 的长为( )A .2 C .1 D .4. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD = 3 16求∠ B 的度数及边B C 、AB 的长. 例2.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,?=3 sin A (1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B . 例3.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5. 求:sin ∠ABC 的值. 对应训练 1.(2012?重庆)如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号) 2.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B . 类型四:利用网格构造直角三角形 对应练习: 1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______. 特殊角的三角函数值 例1.求下列各式的值 ?-?+?30cos 245sin 60tan 2=. 计算:3-1+(2π-1)0- 3 3 tan30°-tan45°= 0 30tan 2345sin 60cos 221 ??? ? ???-?+?+= ?-?+?60tan 45sin 230cos 2 tan 45sin 301cos 60?+? -? = B

集合知识点总结及习题培训资料

集合知识点总结及习 题

集合 123412n x A x B A B A B A n A ∈??? ????? ∈?∈?()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ??????????? ???????????≠∈?????=???=∈∈?=??=??=???真子集有个。、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。 真子集:若且(即至少存在但),则是的真子集。集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ????????=????=∈∈???=??=?=????????=???=+?=∈?=?=??==?=?,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ????? ?? ?? ???? ?????????? ???????? ?????????????????????? ??????????????????????=??????? 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.元素与集合的关系——(不)属于关系 (1)集合用大写的拉丁字母A 、B 、C …表示

反三角函数及最简三角方程.docx

标准实用 反三角函数及最简三角方程 一、知识回顾: 1、反三角函数: 概念:把正弦函数y sin x , x,时的反函数,成为反正弦函数,记作 22 y arcsin x . y sin x( x R) ,不存在反函数. 含义: arcsin x 表示一个角;角,;sin x . 22 反余弦、反正切函数同理,性质如下表. 名称函数式定义域值域奇偶性单调性 反正弦函数y arcsin x1,1 增, 2奇函数增函数 2 y arccosx arccos( x)arccosx 反余弦函数1,1 减0,减函数 非奇非偶 反正切函数y arctanx R增, 2奇函数增函数 2 y arc cot x arc cot( x)arc cot x 反余切函数R减0,减函数 非奇非偶 其中: ().符号 arcsin x 可以理解为-, ] 上的一个角弧度,也可以理解为 1[ 2 () 2 区间[- , ] 上的一个实数;同样符号 arccos x 可以理解为 [0 ,π 上的一个角2 ] 2

(弧度 ),也可以理解为区间 [0 ,π]上的一个实数; (2). y =arcsin x 等价于 sin y=x, y∈ [-,], y= arccos x 等价于 cos y 22 =x, x ∈[0, π], 这两个等价关系是解反三角函数问题的主要依据; (3).恒等式 sin(arcsin x)=x, x∈ [- 1, 1] , cos(arccos x)=x, x∈ [-1, 1], tan(arctanx)=x,x ∈ R arcsin(sin x) = x, x ∈ [ -,], arccos(cos x) = x, x ∈ [0, 22 π],arctan(tanx)=x, x∈(-,)的运用的条件; 22 (4).恒等式 arcsin x+arccos x=, arctan x+arccot x=的应用。 22 2、最简单的三角方程 方程方程的解集 a1x | x2k arcsin a, k Z sin x a a1x | x k 1 k arcsin a, k Z a1x | x2k arccos a, k Z cos x a a1x | x2k arccos a, k Z tan x a x | x k arctana, k Z cot x a x | x k arc cot a, k Z 其中: (1 ).含有未知数的三角函数的方程叫做三角方程。解三角方程就是确定三 角方程是否有解,如果有解,求出三角方程的解集; (2).解最简单的三角方程是解简单的三角方程的基础,要在理解三角方程的

三角函数题型分类总结

专题 三角函数题型分类总结 三角函数公式一览表 ............................................................................................................... 错误!未定义书签。 一 求值问题 ........................................................................................................................................................... - 1 - 练习 ................................................................................................................................................................. - 1 - 二 最值问题 ........................................................................................................................................................... - 2 - 练习 ................................................................................................................................................................. - 3 - 三 单调性问题 ....................................................................................................................................................... - 3 - 练习 ................................................................................................................................................................. - 3 - 四.周期性问题 ........................................................................................................................................................ - 4 - 练习 ................................................................................................................................................................. - 4 - 五 对称性问题 ....................................................................................................................................................... - 5 - 练习 ................................................................................................................................................................. - 5 - 六.图象变换问题 .................................................................................................................................................... - 6 - 练习 ................................................................................................................................................................. - 7 - 七.识图问题 ......................................................................................................................................................... - 7 - 练习 ................................................................................................................................................................. - 9 - 一 求值问题 类型1 知一求二 即已知正余弦、正切中的一个,求另外两个 方法:根据三角函数的定义,注意角所在的范围(象限),确定符号; 例 4 s i n 5 θ=,θ是第二象限角,求cos ,tan θθ 类型2 给值求值 例1 已知2tan =θ,求(1) θ θθθsin cos sin cos -+;(2)θθθθ2 2cos 2cos .sin sin +-的值. 练习 1、sin 330?= tan 690° = o 585sin = 2、(1)α是第四象限角,12 cos 13 α=,则sin α= (2)若4 sin ,tan 05 θθ=- >,则cos θ= . (3)已知△ABC 中,12 cot 5 A =-,则cos A = . (4) α是第三象限角,2 1)sin(=-πα,则αcos = )25cos(απ += 3、(1) 已知5 sin ,5 α= 则44sin cos αα-= .

初中三角函数知识点总结及典型习题)

锐角三角函数知识点总结及典型习题 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2 5、30°、45°、 6 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、的增减性: 当0°<α<90°时,tan α随α的增大而增大, 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 A 90 B 90∠-?=∠? =∠+∠得由B A 对边 邻边

仰角铅垂线 水平线 视线 视线 俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。用字母i 表示,即h i l = 。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 例1:已知在Rt ABC △中,3 90sin 5 C A ∠==°,,则tan B 的值为( )A .43 B .45 C .54 D .34 例2:104cos30sin 60(2)(20092008)-??+---=______. 1. 某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( )A .8米 B .83米 C . 83 3 米 D . 43 3 米 2. 一架5米长的梯子斜靠在墙上,测得它与地面的夹角是40°,则梯子底端到墙的距离为( ) A .5sin 40° B .5cos 40° C .5tan 40° D .5 cos 40° 3. 如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8m ,则乘电梯从点B 到点C 上升的高度h 是( ) A . 8 33 m B .4 m C .43m D .8 m 4. 河堤横断面如图所示,堤高BC=5米,迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ) A .53 米 B . 10米 C .15米 D .103米 5.如图,在矩形ABCD 中,D E ⊥AC 于E ,∠EDC ∶∠EDA=1∶3,且AC=10,则 DE 的长度是( )A .3 B .5 C .25 D . 2 2 5 6. 如图所示,小明在家里楼顶上的点A 处,测量 建在与小明家楼房同一水平线上相邻的电梯楼的高,在点 :i h l =h l α A B C D 1 h B C A A B

人教版初中数学锐角三角函数的经典测试题及答案解析

人教版初中数学锐角三角函数的经典测试题及答案解析 一、选择题 1.如图,在Rt ABC V 中,90ACB ∠=?,3tan 4B = ,CD 为AB 边上的中线,CE 平分ACB ∠,则AE AD 的值( ) A .35 B .34 C .45 D .67 【答案】D 【解析】 【分析】 根据角平分线定理可得AE :BE =AC :BC =3:4,进而求得AE =37 AB ,再由点D 为AB 中点得AD = 12AB ,进而可求得AE AD 的值. 【详解】 解:∵CE 平分ACB ∠, ∴点E 到ACB ∠的两边距离相等, 设点E 到ACB ∠的两边距离位h , 则S △ACE =12AC·h ,S △BCE =12 BC·h , ∴S △ACE :S △BCE = 12AC·h :12 BC·h =AC :BC , 又∵S △ACE :S △BCE =AE :BE , ∴AE :BE =AC :BC , ∵在Rt ABC V 中,90ACB ∠=?,3tan 4B = , ∴AC :BC =3:4, ∴AE :BE =3:4 ∴AE =37 AB , ∵CD 为AB 边上的中线, ∴AD =12 AB ,

∴3 6 7 17 2 AB AE AD AB ==, 故选:D. 【点睛】 本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE:BE=AC:BC 是解决本题的关键. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC上找一点B,取145 ABD ∠=o,500 BD m =,55 D ∠=o,要使A,C,E成一直线,那么开挖点E离点D的距离是() A.500sin55m o B.500cos55m o C.500tan55m o D. 500 cos55 m o 【答案】B 【解析】 【分析】 根据已知利用∠D的余弦函数表示即可. 【详解】 在Rt△BDE中,cosD= DE BD , ∴DE=BD?cosD=500cos55°. 故选B. 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.3.在半径为1的O e中,弦AB、AC32,则BAC ∠为()度.A.75B.15或30C.75或15D.15或45 【答案】C 【解析】 【分析】 根据题意画出草图,因为C点位置待定,所以分情况讨论求解. 【详解】 利用垂径定理可知: 32 AE.

相关文档
最新文档