石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用
石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用

任成,王小军,李永祥,王建龙,曹端林

摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

关键词:石墨烯;复合材料;纳米粒子;含能材料

Research and Application of Graphene composites

ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials.

Keywords: graphene; composites; nanoparticles; energetic materials

石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

1. 石墨烯复合材料的结构

石墨烯复合材料的结构有如图1所示的四种类型:(a)石墨烯负载的复合材料;(b)石墨烯包裹的复合材料;(c)石墨烯内嵌的复合材料;(d)基于石墨烯层状复合材料。石墨烯负载的复合材料是在石墨烯表面引入第二组分并在其表面进行外延伸展得到的。石墨烯包裹的复合材料是用石墨烯片将第二组分包裹得到的,可以更有效地防止第二组分的聚合。石墨烯内嵌的复合材料是将石墨烯纳米片作为填充物充分分散在第二组分的基体相中得到的。其中基体相可以是纳米材料,也可以是块体材料组成。在现阶段的研究中,石墨烯内嵌的复合材料的第二组分以聚合物居多,但一些无机化合物如陶瓷材料也可以嵌入石墨烯中形成石墨烯内嵌的功能陶瓷材料。由于石墨烯具有很大的比表面积和很高的导电率,使得这些陶瓷材料具有更好的性质和应用价值[11]。石墨烯层状复合材料是将第二组分和石墨烯片交替堆积而成,该结构可以使石墨烯与第二组分的接触面积最大化,并有利于电子的产生、传输和分离。

图1 石墨烯基复合材料的结构示意图:(a)石墨烯负载的复合材料;(b)石墨烯包裹的复合材料;(c)石墨烯内嵌的复合材料;(d)基于石墨烯的层状复合材料.

Fig.1 Schematic illustration of architectures of GN-based nanocomposites:(a)GN-supported nanocomposites;(b)GN-encapsulated nanocomposites; (c)GN-incorporated nanocomposites ;

(d)GN-based multilavered.

2. 石墨烯基复合材料的分类

石墨烯具有诸多优异的性能,如导电导热性好、韧性好、比表面积大等等,这些性能使得石墨烯基复合材料呈现出许多优异的特性。如以石墨烯为载体负载纳米粒子,可以提高这些粒子的催化性能、传导性能;利用石墨烯较好的韧性,将其添加到高分子中,可以提高高分子材料的机械性能和导电性能。按第二组分的不同,可将石墨烯复合材料分为石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料,本节将进行详细讨论。

2.1 石墨烯-纳米粒子复合材料

纳米粒子其独特的物理化学性质引起纳米科学工作的极大兴趣,但寻找合适的载体成为纳米粒子广泛应用的一个难题。石墨烯与其他碳材料(碳纳米管、富勒烯等)相比,表现出优异的电学、光学等物理化学性质,以及有较低的制备成本,使得石墨烯成为了纳米粒子的潜在载体。由于片层间范德华力的作用, 石墨烯往往存在着不可逆的团聚现象,而存在于石墨烯层间的纳米粒子正好起到分离邻近石墨烯片层、防止发生团聚的作用。近年来,人们创造性地将石墨烯与纳米粒子复合起来,形成了一个新的研究领域。可与石墨烯形成复合物的纳米粒子有很多,如负载金属纳米粒子(Pt,Au,Pd,Ag等)、氧化物纳米粒子(Cu2O,TiO2,SnO2等)以及硫化物纳米粒子(CdS)等。这些不同负载粒子的石墨烯复合材料也呈现出了许多不同的性质。Kim 等[12]成功的把粒径在2~5 nm之间的纳米银粒子分散在石墨烯/聚吡咯中,制备出了银-石墨烯/聚吡咯纳米粒子复合材料,表现出更好的电催化活性和比电容。Chen等[13]采用溶剂热法合成石墨烯/V2O5复合材料,粒径在20~40 nm之间,V2O5纳米颗粒被包裹在二维石墨烯中,制备出的石墨烯/V2O5复合材料与V2O5纳米颗粒相比,表现出更强电化学性能。此外,石墨烯/SnO2复合材料[14,15]、石墨烯/TiO2复合材料[16]、石墨烯/Co3O4复合材料[17]、石墨烯/MoO2复合材料[18]、石墨烯/Mn3O4复合材料[19]等石墨烯/金属氧化物复合材料相继涌现,与原金属氧化物纳米粒子相比,都具有更好的电学性能。陶丽华等[20]采用原位合成法制备了石墨烯/CdS量子点复合材料,结果显示,CdS量子点提高了石墨烯结构的稳定和层间传导性,从而相比于石墨烯表现出更优异的电化学性能。同时石墨烯/CdS 量子点复合材料不仅与电解液有良好的相容性, 而且还显著地提高了电池的可逆容量。

目前,石墨烯-纳米粒子复合材料的研究主要集中在一元纳米粒子的复合,

关于多元纳米粒子组合的报道还非常少,有待我们进一步研究。

2.2 石墨烯-聚合物复合材料

之前已经有许多关于碳基材料-聚合物复合材料的报道,特别是基于碳纳米线、碳纳米管和富勒烯-聚合物复合材料的研究,作为碳材料家族独特的一员,石墨烯同样可以作为添加材料或载体与聚合物进行复合。石墨烯由于其独特的结构和性能,在改善聚合物的热性能、力学性能和电性能等方面具有相当大的应用价值。

Brinson等[21]对功能化石墨烯/聚合物纳米复合材料做了系统的研究,他们发现:在聚丙烯腈中加入质量分数为1%的功能化石墨烯片,玻璃化转变温度既可提高约40℃;在聚甲基丙烯酸酯中加入质量分数为0.05%的功能化石墨烯片,玻璃化转变温度即可提高近30℃。这样一来大大提高了这2种聚合物的模量、强度及热稳定性,远远强于单层碳纳米管聚合物复合材料,大大改善了聚合物的热性能。添加适量的石墨烯也可以使基体聚合物的力学性能得到显著地提高,克服了一般无机填料使用量大,且不能兼顾刚性、耐热性、尺寸稳定性与韧性同时提高的缺点。Zhao等[22]通过溶液混合法制备出石墨烯/聚乙烯醇(PV A)复合材料,其石墨烯含量为1.8vol%,并研究其力学性能,结果发现:复合材料的抗拉强度提高了150%,杨氏模量提高了10倍左右。Vadukumpully等[23]制备出石墨烯/聚氯乙烯(PVC)复合材料,结果表明:在石墨烯含量为2wt%时,复合材料的抗拉强度提高了130%,杨氏模量提高了58%,同时也改变了聚合物的玻璃化转变温度。Zhang等[24]采用熔融共混法制备出石墨烯/聚对苯二甲酸复合材料,石墨烯的存在大幅度提高了复合材料的电导率,当石墨烯含量为3.0vol%时复合材料电导率可达到2.11S/m。Huang等[25]采用原位聚合法制备了石墨烯/聚烯烃纳米复合材料,结果表明:石墨烯含量为1.2vol%时复合材料电导率为3.92S/m,而石墨烯含量为10.2vol%时,电导率为163.1S/m。

2.3 石墨烯-碳基材料复合材料

石墨烯除了能够和纳米粒子、高聚物复合外,还可以与其他碳基材料(碳纳米管、富勒烯等)组装形成复合材料,这些碳基材料可以相互组合而呈现出一些优越的性能。郑加飞等[26]采用一种简单有效的水热法还原氧化石墨烯对碳纳米管-硫(CNT-S)纳米复合材料进行包覆,制备了石墨烯包覆CNT-S纳米复合材料。

这种材料抑制了多硫聚合物的扩散,电化学测试结果表明,这种包覆结构能显著提高CNT-S复合材料的锂硫电池性能。Chen等[27]采用一种原位化学气相沉积(CVRD)法制备出石墨烯/碳纳米管复合材料,分别进行2min、5min和1h的反应,制备出石墨烯上生长的碳纳米管长度不同的石墨烯/碳纳米管复合材料,结果表明:石墨烯上碳纳米管最短的复合材料电化学性能最佳,以该材料为电极制成的锂电池电容量也是最大的。易义武等[28]利用膨化石墨原位气相沉积法制备多层石墨烯/碳纳米管复合粉体,结果表明,复合粉体中碳纳米管的分散性明显优于一般化学气相沉积方法制备的碳纳米管,加入质量分数5%复合粉体的聚对苯二甲酸丁二醇酯(PBT)的表面电阻明显降低。

3. 石墨烯复合材料的应用

石墨烯由于其具有独特的二维结构使其成为一个制备复合材料非常理想的成分[29],而石墨烯内在的优异性能也使得石墨烯基复合材料呈现出许多优异的特性,并受到了许多研究者的关注。同时复合物的制备也拓宽了石墨烯材料的研究领域,使得石墨烯材料向实际应用方面更迈进了一步。

3.1 在催化领域的应用

由于石墨烯具有优异的导电性、导热性和结构稳定性等性能以及具有改性担载金属催化剂的作用,使得石墨烯基催化剂拥有了许多特殊的催化活性。Li等[30]通过还原氧化石墨烯和H2PtCl6制备出石墨烯/Pt纳米复合材料,电化学实验表明石墨烯/Pt比传统的Pt催化剂对甲醇氧化有更好的效果和稳定性。兰瑞家等[31]采用水热法制备出了石墨烯/TiO2复合材料,在紫外光照射下,石墨烯/TiO2复合材料催化降解甲基蓝水溶液的活性是TiO2的2.5倍,这种降解效率的提高主要是依赖于复合材料中的石墨烯可以传导光照TiO2产生的电子,提高了电子空穴对的分离效率。

3.2在电化学领域的应用

为了得到高比容超级电容器,一些研究组设计合成了多种石墨烯复合材料将其应用于电极材料,如:聚苯胺/石墨烯、MnO2/石墨烯等。但是石墨烯易发生团聚而不能有效利用,这也是石墨烯在电化学领域广泛应用的一个难题。Cheng 等[32]首先合成了石墨烯纸,在其表面电聚合聚苯胺得到聚苯胺/石墨烯,将其作为电极材料,得到电容量较大的电容器。Li等[33]通过一步法制备了SnO2/石墨烯复合

材料,这种复合材料在1 moL/L的电解质中的比电容达到43.4 F/g。徐超等[34]以氧化石墨烯和醋酸铜作为前驱体制备出了石墨烯/Cu2O复合材料,并表现出良好的电化学性能。

3.3 在生物医药领域的应用

石墨烯的部分双键被氧化以后转化为石墨烯氧化物,其所携带的羟基、羧基、环氧基、羰基等亲水性官能团,让石墨烯氧化物可以在水溶液或生理溶液中稳定存在,具有较高的水溶性,有望像溶液一样适应于静脉注射;另外,石墨烯还具备低毒性、比表面积大等特点,在药物载体中有潜在的应用价值。Hu等[35]采用一步合成法制备了普郎尼克PF127/石墨烯复合物,可以有效地负载阿霉素(DOX),负载率可达到289%,且在生理溶液中具有很高的稳定性和分散性。此复合材料几乎没有细胞毒性,负载DOX时可促进DOX转移到MCF-7细胞,从而对肿瘤细胞有更好的杀伤作用。目前石墨烯复合材料在生物医药领域的应用存在载药种类少和治愈范围小等缺点,其负载抗癌药物主要为盐酸阿霉素、三苯氧胺柠檬酸盐和喜树碱类等[36],未来可将石墨烯复合物应用于蛋白和基因药物靶向运输和治疗等更深层次方面。

3.4 在含能材料领域的应用

火炸药在国防、民用等各个领域都是不可替代的,所以它的安全性是很重要的,既要能稳定的存在又要便于检测。而石墨烯具有一定的钝感性和导电导热性,在含能材料领域有一定的应用价值,目前主要体现在炸药传感器[37]和包覆降感上。Guo等[38]制备出离子液体-石墨烯混合物(IL-G)的修饰电极,作为炸药传感器实现了对TNT的灵敏检测,结果表明:IL-G修饰的电极具有更低的本底电流,更高的灵敏度,更好的可重复性和更低的检测限度(0.5ng/ml)。本课题组做了石墨烯对奥克托今(HMX)的降感研究,发现包覆后奥克托今感度有一定程度的下降,增加了奥克托今的安全性。

4. 结束语

石墨烯以其独特的结构和性质一出现即成为材料领域研究热点。目前石墨烯复合材料的研究主要集中在石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料及其在催化、电化学、生物医药和含能材料等领域的应用研究上。其中石墨烯在含能材料领域的应用相对较少,结合石墨烯优异的

增强效果以及含能材料的性质,相信石墨烯在含能材料领域的应用将成为一个研究热点。

参考文献

[1] Meyer J C,Geim A K,Katsnelson M I,et a1.The structure of suspended graphene

sheets[J].Nature.2007,446(7131):60—63

[2] Novoselov K S,Jiang D,Schedin F,et a1.Two—dimensional atomic

crystals[J].Proceedings of the National Academy of Sciences,2005,102(30):1045l—10453

[3] Novoselov K S,Geim A K,Morozov S V,et a1.Electric field effect in

atomically thin carbon films[J].Science,2004,306(5696):666-669

[4] 唐多昌,李晓红,袁春华等.机械剥离法制备高质量石墨烯的初步研究[J].西

南科技大学学报,2010,25(3):16-18.

[5] Yu X Z,Hwang C G,Jozwiak C M,et a1. New synthesis method for the growth

of epitaxial graphene[J].Journal of Electron Spectroscopy and Related Phenomena,2011,184:100-106

[6] Liu Z C, Tu Z Q, Li Y F,et a1.Synthesis of three-dimensional graphene from

petroleum asphalt by chemical vapor deposition[J].Materials Letters,2014, 122:285-288

[7] Yu X Z, Hwang C G, Jozwiak C M,et a1.New synthesis method for the growth of

epitaxial graphene[J].Journal of Electron Spectroscopy and Related Phenomena, 2011,184:100-106

[8] Keita Konishi, Cui Z X, Takahiro Hiraki, et a1.Spin-injection into epitaxial

graphene on silicon carbide[J].Journal of Crystal Growth,2013,378:385-387 [9] M.P. Deosarkar, S.M. Pawar, S.H. Sonawane, et a1.Process intensi?cation of

uniform loading of SnO2 nanoparticles on graphene oxide nanosheets using a novel ultrasound assisted in situ chemical precipitation method[J].Chemical Engineering and Processing:Process Intensi?cation,2013,70:48-54

[10] 张华,任鹏刚.氧化石墨烯的化学还原研究进展[J].材料导报,2012,26

(12):72-75

[11] 江莞,范宇驰,刘霞,王连军.机械剥离法制备石墨烯及其在石墨烯/陶瓷

复合材料制备中的应用[J].中国材料进展,2011,30(1):12-20

[12] Ki-Seok Kima, Ick-Jun Kimb, Soo-Jin Park.In?uence of Ag doped graphene on

electrochemical behaviors and specific capacitance of polypyrrole-based nanocomposites[J].Synthetic Metals,2010,160:2355–2360

[13] Da Chen,Ran Yi, Shuru Chen,et al.Solvothermal synthesis of V2O5/graphene

nanocomposites for high performance lithium ion batteries[J].Materials Science and Engineering B,2014,185: 7-12

[14] Jian Zhu, Guanhua Zhang, Xinzhi Yu,et al.Graphene double protection strategy

to improve the SnO2 electrode performance anodes for lithium-ion batteries [J].Nano Energy,2014,3:80–87

[15] Hao Zhang, Jianchao Feng, Teng Fei,et al.SnO2 nanoparticles-reduced graphene

oxide nanocomposites for NO2sensing at low operating temperature[J].Sensors and Actuators B: Chemical,2014,190:472-478

[16] Ming Lei, Nan Wang, Lihua Zhu,et al.A peculiar mechanism for the

photocatalytic reduction of decabromodiphenyl ether over reduced graphen oxide–TiO2photocatalyst[J].Chemical Engineering Journal,2014,241:207-215 [17] Shuo Huang, Yuhong Jin, Mengqiu Jia.Preparation of graphene/Co3O4

composites by hydrothermal method and their electrochemical properties[J].

Electrochimica Acta,2013,95:139-145

[18] Qiwei Tang, Zhongqiang Shan, Li Wang,et al.MoO2–graphene nanocomposite

as anode material for lithium-ion batteries[J].Electrochimica Acta,2012, 79:148-153

[19] Li Li, Kuok Hau Seng, Zhixin Chen,et al.Synthesis of Mn3O4-anchored

graphene sheet nanocomposites via a facile,fast microwave hydrothermal method and their supercapacitive behavior[J].Electrochimica Acta,2013,87:801-808 [20] 陶丽华,蔡燕李在均等.石墨烯/CdS量子点复合材料的电化学性能研究

[J].无机材料学报,2011,6(9):912-916

[21] Brinson L C,Ramanthan T,et al.Functionalized graphene sheets for polymer

nanocomposites[J].Nature Nanotechnology,2008,3

[22] Zhao X, Zhang Q, Chen D, et al. Enhanced mechanical properties of graphene- based poly(vinyl alcohol) composites. Macromolecules,2010,43(5):2357-2363 [23] Vadukumpully S, Paul J, Mahanta N, et al. Flexible conducive graphene/poly (vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon,2011,49(1):198-205

[24] Zhang H, Zheng W, Yan Q, et al. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer,2010,51(5):1191-1196

[25] Huang Y, Qin Y, Wang N, et al. Reduction of graphite oxide with a grignard reagent for facile in situ preparation of Electrically conductive polyolefin/graphene nanocomposites.Macromol.Chem.Phys,2012,213(7):720-728

[26] 郑加飞,郑明波,李念武等.石墨烯包覆碳纳米管-硫(CNT-S)复合材料及锂

硫电池性能.[J].无机化学学报,2013,29(7):1355-1360

[27] Chen, S.Q, Chen P, Wang, Y . Nanoscale. 2011,3,4323

[28] 易义武,曾效舒,黄祎.PBT用多层石墨烯/碳纳米管复合导电剂的制备[J].

新型碳材料,2013,28(6):480-483.

[29] Li D,Kaner R B.Materials science-Graphene based materials.[J].Science,2008

320(5880):1170-1171

[30] Yueming Li, Longhua Tang, Jinghong Li.Preparation and electrochemical

performance for methanol oxidation of pt/graphene nanocomposites.[J].

Electrochemistry Communications.2009,11(4):846-849.

[31] 兰瑞家,李记太,周秋香等.Ti02/石墨烯复合材料的合成及其光催化性能

[J].河北大学学报,2013,6(33):608-613

[32] Zhang K.et al, Graphene/Polyaniline Nanofiber Composites as Supercapacitor

Electrodes[J]. Chem. Mater, 2010, 22(4): 1392-1401

[33] Li F H, Song J F, Yang H F, et al. One-step synthesis of graphene/SnO2

nanocomposites and its application in electrochemical supercapacitors[J].

Nanotechnology, 2009, 20(45): 455-602.

[34] Xu C, Wang X, Yang L, et al. Fabrication of a graphene-cuprous oxide composite.

J.Solid State Chem,2009,182(9):2486-2490

[35] Hu H, Yu J, Li Y, et al. Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery [J]. Journal of Biomedical Materials Research Part A, 2012,100A(1):141-148.

[36] 王晓敏,张伟花. 石墨烯衍生物在肿瘤治疗方面的研究进展[J].新型碳材料,2013,28(5):321-326.

[37] 方玉凤,程新路,张朝阳,周阳. 石墨烯基炸药传感器的研究进展[J]. 含能材料,2014,22(1):116-123.

[38] Guo C X, Lu Z S, Lei Y, et al. Lonic liquid-graphene composite for ultratrace explosive trinitrotoluene detection[J]. Electro-chemistry communication,

2010,12(9):1237-1240

石墨烯制备方法及应用的研究进展

石墨烯制备方法及应用的研究进展 邓振琪黄振旭 (郑州师范学院化学化工学院,河南郑州450044) 摘要:石墨烯因具有高的比表面积、突出的导热性能和力学性能及其非凡的电子传递性能等一系列优异的性质,引起了科学界新一轮的研究热点。本文总结近年石墨烯的研究现状,综述介绍石墨烯的制备方法和其应用的研究进展。 关键字:石墨烯;制备;应用 2004年,英国曼彻斯特大学Geim研究小组首成功地在实验中从石墨中分离出石墨烯[1],并提出了表征石墨烯的光学方法,对其电学性能进行了系统研究,发现石墨烯具有很高的载流子浓度、迁移率和亚微米尺度的弹道输运特性,从而掀起了石墨烯研究的热潮。 石墨烯是由碳原子以sp2杂化连接按照六边形紧密排列成蜂窝状晶格的二维晶体,其理论厚度仅为0.35nm,是目前所发现的最薄的二维材料[2]。是构造其他维度碳质材料的基本单元,它可以包裹形成零维富勒烯,也可以卷起来形成一维的碳纳米管或者层层堆叠构成三维的石墨。 石墨烯因其独特的二维晶体结构,从而具有优异的性能。如单原子层石墨烯材料理论表面积可达2630m2/g,半导体本征迁移率高达2×105cm2/(V·s),弹性模量约为1.0TPa,热传导率约为5000W/(m·K),透光率高达97.7%,强度高达 110GPa[3]。这些优异的性能使得石墨烯在纳米电子器件、传感器、电化学及复合材料等领域有光明的应用前景。 1.石墨烯的制备 现在制备石墨烯主要方法为微机械剥离法、基底生长法、化学气相沉淀法、氧化石墨还原法。另简单介绍液相或气相直接剥离法、电化学法、石墨插层法等方法。 1.1微机械剥离法 石墨烯最初的制备就是微机械剥离,机械剥离法就是通过机械力从具有高度定向热解石墨表面剥离石墨烯片层。Geim教授采用胶带剥离法可以认为是机械剥离法中的一个代表。Knieke等[4]利用湿法研磨法在室温下研磨普通石墨粉,成功的对石墨的片层结构进行了剥离,制备了单层和多层的石墨烯片。微机械剥离法制得的石墨烯具有最高的质量,适用于研究石墨烯的电学性质。但该方法低

石墨烯研究现状及应用前景

石墨烯材料研究现状及应用前景 崔志强 (重庆文理学院材料与化工学院,重庆永川402160) 摘要:近几年来, 石墨烯材料以其独特的结构和优异的性能, 在化学、物理和材料学界引起了轰动。本文引用大量最新的参考文献,阐述了石墨烯的制备方法如机械剥离法、取向附生法、加热 SiC 法、爆炸法、石墨插层法、热膨胀剥离法、电化学法、化学气相沉积法、氧化石墨还原法、球磨法等,分析了各种制备方法的优缺点。论述了石墨烯材料在透明电极、传感器、超级电容器、能源储存、复合材料等方面的应用,同时简要分析了石墨烯材料研究的现实意义,展望了其未来的发展前景。 关键词:石墨烯材料;制备方法;现实意义;发展现状;应用前景 中图分类号: TQ323 文献标识码:A 文章编号: Research status and application prospect of graphene materials Cui Zhiqiang (Faculty of materials and chemical engineering, Chongqing Academy of Arts and Sciences, Yongchuan, Chongqing 402160) Abstract: In recent years, graphene has caused a sensation in chemical, physical and material science due to its unique structure and excellent properties. Cited in this paper a large number of the latest references, expounds the graphene preparation methods such as layer method, thermal mechanical stripping method, orientation epiphytic method, heating SiC method, explosion, graphite intercalation expansion stripping method, electrochemical method, chemical vapor phase deposition method, graphite oxide reduction method, ball milling method, and analyze the advantages and disadvantages of various preparation methods. This paper discusses the application of graphene materials in transparent electrodes, sensors, super capacitors, energy storage and composite materials, and briefly analyzes the practical significance of the study of graphene materials, and gives a prospect of its future development. Keywords: graphene materials; preparation methods; practical significance; development status; application prospect 0 引言 1985 年英美科学家发现富勒烯[1]和1991 年日本物理学家Iijima 发现碳纳米管[2],加之英国曼彻斯特大学科学家于2004 年成功制备石墨烯[3]之后,金刚石(三维)、石墨(三维)、石墨烯(二维)、碳纳米管(一维)和富勒烯(零维)组成了一个完整的碳系材料“家族”。从理论上说,石墨烯是除金刚石外所有碳晶体的基本结构单元,如果从石墨烯上“剪”出不同形状的薄片,进一步就可以包覆成零维的富勒烯,卷曲成一维的碳纳米管,堆叠成三维的石墨,如图1 所示[4]。由于石墨烯优异的电学、热学、力学性能,近年来各国科研人员对其的研究日益增长,已经是材料科学领域的研究热点之一。2010 年诺贝尔物理学奖揭晓[5-6]之后,人们对石墨烯的研究和关注越来越多,新的发现不断涌现。在不断深入研究石墨烯的制备方法和性质的过程中,其应用领域也在不断扩大。由于石墨烯缺乏带隙以及在室温下的超高电子迁移率、低于银铜的电阻率、高热导率[7]等,在光电晶体管、生化传感器、电池电极材料和复合材料方面有着很高

石墨烯聚乳酸复合材料

Preparation of Polylactide/Graphene Composites From Liquid-Phase Exfoliated Graphite Sheets Xianye Li,1Yinghong Xiao,2Anne Bergeret,3Marc Longerey,3Jianfei Che1 1Key Laboratory of Soft Chemistry and Functional Materials,Nanjing University of Science and Technology, Nanjing210094,China 2Jiangsu Collaborative Innovation Center of Biomedical Functional Materials,Jiangsu Key Laboratory of Biomedical Materials,College of Chemistry and Materials Science,Nanjing Normal University, Nanjing210046,China 3Materials Center,Ales School of Mines,30319Ales Cedex,France Polylactide(PLA)/graphene nanocomposites were pre-pared by a facile and low-cost method of solution-blending of PLA with liquid-phase exfoliated graphene using chloroform as a mutual solvent.Transmission electron microscopy(TEM)was used to observe the structure and morphology of the exfoliated graphene. The dispersion of graphene in PLA matrix was exam-ined by scanning electron microscope,X-ray diffrac-tion,and TEM.FTIR spectrum and the relatively low I D/I G ratio in Raman spectroscopy indicate that the structure of graphene sheets(GSs)is intact and can act as good reinforcement fillers in PLA matrix.Ther-mogravimetric analysis and dynamic mechanical analy-sis reveal that the addition of GSs greatly improves the thermal stability of PLA/GSs nanocomposites.More-over,tensile strength of PLA/GSs nanocomposites is much higher than that of PLA homopolymer,increasing from36.64(pure PLA)up to51.14MPa(PLA/GSs-1.0). https://www.360docs.net/doc/5d4372426.html,POS.,35:396–403,2014.V C2013Society of Plastics Engineers INTRODUCTION Polylactide(PLA),a renewable,sustainable,biode-gradable,and eco-friendly thermoplastic polyester,has balanced properties of mechanical strength[1],thermal plasticity[2],and compostibility for short-term commod-ity applications[3,4].It is currently considered as a promising polymer for various end-use applications for disposable and degradable plastic products[5–8].Never-theless,improvement in thermal and mechanical proper-ties of PLA is still needed to pursue commercial success. To achieve high performance of PLA,many studies on PLA-based nanocomposites have been performed by incorporating nanoparticles,such as clays[9,10],carbon nanotubes[11–13],and hydroxyapatite[14].However, research on PLA-based nanocomposites containing gra-phene sheets(GSs)or graphite nanoplatelets has just started[15–17].GSs exhibit unique structural features and physical properties.It has been known that GSs have excellent mechanical strength(Young’s modulus of1,060 GPa)[18],electrical conductivity of104S/cm[19],high specific surface area of2,630m2/g[20],and thermal sta-bility[21].Polymer nanocomposites based on graphene show substantial property enhancement at much lower fil-ler loadings than polymer composites with conventional micron-scale fillers,such as glass[22]or carbon fibers [23],which ultimately results in lower filler ratio and simple processing.Moreover,the multifunctional property enhancement of nanocomposites may create new applica-tions of polymers. However,the incorporation of graphene into PLA matrix is restricted by cost and yield.Although the weak interactions that hold GSs together in graphite allow them to slide readily over each other,the numerous weak bonds make it difficult to separate GSs homogeneously in sol-vents and polymer matrices[24].Many methods have been reported for exfoliation of graphite,such as interca-lation with alkali metals[25]or oxidation in strong acidic conditions[26–29].Recently,exfoliation of graphite in liquid-phase was found to be able to give oxide-free GSs with high quality and yield at relatively low cost[30–35]. Correspondence to:Y.H.Xiao;e-mail:yhxiao@https://www.360docs.net/doc/5d4372426.html, or J.F.Che; e-mail:xiaoche@https://www.360docs.net/doc/5d4372426.html, Contract grant sponsor:Specialized Research Fund for the Doctoral Program of Higher Education of China;contract grant number: 20123219110010;contract grant sponsor:Natural Science Foundation of Jiangsu Province of China;contract grant number:BK2012845;contract grant sponsors:Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),contract grant sponsor:Financial support for short visit from Ales School of Mines,France. DOI10.1002/pc.22673 Published online in Wiley Online Library(https://www.360docs.net/doc/5d4372426.html,). V C2013Society of Plastics Engineers POLYMER COMPOSITES—2014

水热合成Fe2O3石墨烯纳米复合材料及其电化学性能研究

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第10Vol.26No.102012年10月Oct.,2012 收稿日期:2012-09-05 作者简介:季红梅(1982—),女,江苏启东人,讲师,工学硕士,研究方向:无机功能材料.水热合成Fe 2O 3/石墨烯纳米 复合材料及其电化学性能研究 季红梅1,于湧涛2,王露1,王静1,杨刚1 (1.常熟理工学院化学与材料工程学院,江苏常熟215500;2.吉林石化公司研究院,吉林吉林132021) 摘要:利用水热法成功合成了Fe 2O 3/石墨烯(RGO )锂离子电池负极材料.导电性能良好的石墨烯网络起到连接导电性能极差的Fe 2O 3和集流体的作用.电化学性能测试表明,180℃下得到的 Fe 2O 3/RGO 具有良好的比容量和循环稳定性.在不同倍率充放电过程中,初始放电比容量为1023.6mAh/g (电流密度为40mA/g ),电流密度增加到800mA/g 时,放电比容量维持在406.6 mAh/g ,大于石墨的理论放电比容量~372mAh/g.在其他较高的电流密度下比容量均保持基本不变.该Fe 2O 3/RGO 有望成为高容量、低成本、低毒性的新一代锂离子电池负极材料.关键词:Fe 2O 3;石墨烯;负极材料中图分类号:TM911文献标识码:A 文章编号:1008-2794(2012)10-0055-05 自从P.Poizot [1]等报道过渡金属氧化物可以作为锂离子电池负极材料这一研究后,金属氧化物负极便逐渐引起人们的重视.铁的氧化物具有比容量大、倍率性能好和安全性能高等优点,且原料来源丰富、价格低廉、环境友好,因此是一类很有发展潜力的动力锂离子电池负极材料.Fe 2O 3作为一种常温下最稳定的铁氧化合物,理论容量为1005mAh/g ,远高于石墨类材料的理论比容量,已经成为锂离子电池负极材料的一个研究热点.近年来,石墨烯由于其高的电传导性,大的比表面积,良好的化学稳定性和柔韧性而被尝试用于与活性锂离子电池负极材料复合,提升材料的电化学性能.比如,Cui Y [2]课题组在溶剂热条件下两步法得到Mn 3O 4与石墨烯的复合材料,改善了Mn 3O 4的比容量和循环性能.Co 3O 4,Fe 3O 4等金属氧化物材料与石墨烯复合也有被研究,本课题组在石墨烯和金属氧化物材料复合方面也做了大量的工作[3].本文通过水热法一步合成Fe 2O 3/石墨烯纳米复合材料,并研究了其电化学性能,合成过程中采用三乙烯二胺提供反应的碱性环境,并控制Fe 2O 3的粒子生长.1 实验 1.1试剂和仪器 三乙烯二胺(C 6H 12N 2);无水三氯化铁(FeCl 3);石墨;硝酸钠(NaNO 3);浓硫酸(H 2SO 4);高锰酸钾(KMnO 4);双氧水(H 2O 2)和盐酸(HCl ),以上试剂均为分析纯.实验用水为去离子水.日本理学H-600型透射电子显微镜;日本理学D/max2200PC 型X 射线衍射仪;德国Bruker Vector 22红外光谱仪;日本JEOL-2000CX 透射电镜;美国Thermo Scientific Escalab 250Xi 光电子能谱仪;LAND 电池

石墨烯的结构、制备、性能及应用研究进展

. . .. . . 报告题目:石墨烯的结构、制备、性能及应用研究进展 一、书目信息: 二、评分标准 1.格式规、容简明扼要。报告中引用的数据、观点等要注明出处20分 2. 报告结构合理,表述清晰20分 3. 石墨烯的结构、性能、制备方法概述正确、新(查阅5篇以上的文献)20分 4. 石墨烯的应用研究进展概述(文献)全、新(查阅5篇以上的文献)20分 5. 心得及进一步的研究展望真实,无抄袭与剽窃现象20分 三、教师评语 请根据写作容给定成绩,填入“成绩”部分。 注1:本页由报告题目、书目信息有学生填写,其余由教师填写。提交试卷时含本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规。注3:不符合规试卷需修改规后提交。 摘要 碳是自然界中万事万物的重要组成物质,也是构成生命有机体的主要元素。石墨和金刚石是两种典型的单质碳,也是最早为人们所熟知的两种碳的三维晶体结构,属于天然矿

密封线 石。除石墨和金刚石外,碳材料还包括活性炭、碳黑、煤炭和碳纤维等非晶形式。煤是重 要的燃料。碳纤维在复合材料领域有重要的应用。20 世纪80 年代,纳米材料与技术获得 了极大的发展。纳米碳材料也是从这一时期开始进入历史的舞台。1985 年,由60 个碳原 子构成的“足球”分子:C60被三位英美科学家发现。随后,C70、C86等大分子相继出现, 为碳家族添加了一大类新成员:富勒烯。富勒烯是碳的零维晶体结构,它们的出现开启了 富勒烯化学新篇章。三位发现者于1996 年获诺贝尔化学奖。1991 年,由石墨层片卷曲 而成的一维管状纳米结构:碳纳米管被发现。如今,碳纳米管已经成为一维纳米材料的典 型代表。发现者饭岛澄男于2008 年获卡弗里纳米科学奖。2004 年,一位新成员:石墨 烯,出现在碳材料的“家谱”中。石墨烯的发现者,两位英国科学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)于2010 年获诺贝尔物理学 奖。 关键词:碳材料复合材料晶体结构 1 石墨烯的结构 石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。 2 石墨烯的制备 2.1 物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得, 操作相对简单,合成的石墨烯的纯度高、缺陷较少。 2.1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt 等[1]于2004年用一种极为简单的微机械剥离法成功地从高定向热解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在 1 mm厚的高定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20 μm—2 mm、深 5 μm的微槽后,用光刻胶将其粘到玻璃衬底上,再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用德华力或毛细管力将单层石墨烯“捞出”。 2.1.2取向附生法—晶膜生长

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

石墨烯复合材料应用最新研究进展

2019年3月第46卷第3期 云南化工 Yunnan Chemical Technology Mar.2019 Vol.46,No.3 doi:10.3969/j.issn.1004-275X.2019.03.062 石墨烯复合材料应用最新研究进展 程扬帆 (湖北科技学院,湖北咸宁,437000) 摘要:介绍了石墨烯复合材料在国内外的应用前景及应用进展,着重介绍了利用石墨烯特性应用于电容储能、环境治理、导热散热性能和导电等多领域的研究。石墨烯复合材料的应用潜力巨大,具有非常广阔的市场前景。 关键词:石墨烯;复合材料;应用前景 中图分类号:TQ04文献标志码:A文章编号:1004-275X(2019)03-157-02 Recent Research Progress in the Application of Graphene Composites at Home and Abroad Cheng Yangfan (Hubei Institute of Science and Technology,Xianning,Hubei,437000) Abstract:This paper introduces the application p rospects and progress of graphene composites at home and abroad.It focuses on the application of graphene characteristics in capacitance energy storage, environmental management,thermal conductivity and heat dissipation,conductivity and other fields. Graphene composites have great potential and broad market prospects. Key words:Graphene;Compound material;Application prospect 1石墨烯复合材料及其应用前景 1.1定义与特性 石墨烯被称为“单层石墨片”。它是一种二维的结构,密集的碳原子与石墨的单原子层十分类似,是一种新型碳材料。石墨烯的多种优点造就它多种用途,比如它的比表面积大,可以用于吸附和环境治理;机械强度高可以用于航空航天等;载流子迁移率高可以用于半导体与电容等设备。应用的环境非常广泛,随着石墨烯新型材料国内外发展,石墨烯不但可以显著提升传统产业,还可以为高端制造业的发展提供推力。1.2国内外石墨烯复合材料发展趋势及应用前景 目前,世界上有很多关于石墨烯的讨论。2012年,有近2万篇关于石墨烯研究的论文被纳 入科学研究。中国和美国是前两个国家。与此同时,其他国家也积极参与石墨烯相关专利申请的布局。截至2013年6月,它已申请了3,000多项相关发明专利。从2006-2017年,国内和国际研究呈上升趋势。在“十一五”期间,石墨烯复合技术的发展还处于起步阶段,国内外研究的数量相对较少。在“十二五”期间,国外开展了研究,主要集中在石墨烯的制备和化合物的研究上。随后,石墨烯复合材料的研究进入了快速发展阶段。在过去两年中,研究数量已超过以前的总数。其中,国外研究数量急剧增加,工业化进程不断推进,国内则在重点领域不断扩展提升。 由于石墨烯的重要特性和巨大应用价值,全球多个国家将其定义到发展战略高度。比如亚太地区的日本和中国,美国、以及欧洲欧盟等区域国家。这其中不少国家投入的研究和开发金额达到十亿美元,专门用来研究用于石墨烯材料。美国科技发展战略同样包括石墨烯技术。各国企业也积极进行石墨烯产业的布局,相关开发和研究涉及多家公司,像比如洛克希德·马丁、波音、三星、IBM、杜邦、陶氏化学、索尼等巨头均在公司名单中[1]。 2石墨烯复合材料国内外应用进展 由于石墨烯具有多种独特的优点,将它作为复合材料的填充相,就可以增强材料的相应性能,这就为它的应用提供了多种方向。比如国内外相关研究应用于能量储存、液晶器件、电子器件,而在其他领域比如生物材料、传感材料和催化剂载体等也有较多的报道。随着对石墨烯复合材料研究的不断深入,它应用也越来越受到人们的重视。 2.1石墨烯储能复合材料应用 锂电池是当前用途最广泛的电池能源,锂电池整体性能提升的关键是开发新的电极材料。石墨烯作为一种新型碳质材料,加入到锂离子电池中能够大幅提高其导电性,因为它为锂离子电池解决了两个问题,大幅度提高能量密度与大幅度提高功率密度。相对应的,石墨烯就可以作为电池导电的添加剂了。国内也有报道将它作为复合电极材料的正负极[2]。 157--

石墨烯复合材料

石墨烯复合材料 石墨烯是单层碳原子通过sp2杂化形成的蜂窝点阵结构,属于二维原子晶体,此独特的空间结构,给石墨烯带来了优异的电学、力学、热学和比表面积大等性质。但是二维石墨烯由于片层之间具有较强的π-π作用和范德华力,使得石墨烯容易聚集形成石墨,限制了石墨烯在各个领域中的应用。因此,为了防止石墨烯的聚集和拓展石墨烯的应用,科研工作者将石墨烯与高分子或者无机纳米粒子进行复合,从而得到具有优异性能的复合材料。石墨烯的复合材料具有化学稳定性高、比表面积大,易回收等特点,在环境治理方面受到了科学家的青睐。 一、石墨烯复合材料的分类和制备 1、石墨烯-高分子复合材料 石墨烯-高分子复合材料,石墨烯的独特的结构和性能,对于改善高分子的导电性、热性能和吸附能力等方面有非常大的应用价值。制备石墨烯-高分复合材料最直接的方法是将高分子溶液与石墨烯的溶液混合,其中高分子和填充物在溶剂中的溶解能力是保证最佳分散度的重要因素。因此,在溶液混合时,可以将石墨基质表面功能化来提高它在多种溶剂中的溶解度。例如,异氰酸

苯酯修饰的GO在在聚苯乙烯的DMF溶液中表现出了较好的溶解度。 2、石墨烯-无机纳米粒子复合材料 无机纳米粒子存在着易于团簇的问题,并且选择合适的载体也是其广泛应用需要解决的问题。石墨烯具有多种优异的性能,并且具有较大的比表面积,可以成为无机纳米材料的载体。无机纳米粒子可以将易于团簇的石墨烯片层分开,防止团簇,从而两者形成石墨烯-无机纳米粒子新型的复合材料,这些材料广泛的应用于检测、催化和气体存储等方面。目前已报道的有负载的金属纳米粒子Ag、Au、氧化物纳米粒子ZnO和Fe3O4等。 3、其它石墨烯复合材料 石墨烯不仅仅可以和高分子、无机纳米材料复合,还可以同时结合高分子、纳米粒子和碳基材料中的一种或者两种,形成多元的含有石墨烯的复合材料。这类材料具有多功能性,用于超级电容器或者传感器等。 二、石墨烯复合材料在水治理的应用 1、吸附作用 碳材料中活性碳和碳纳米管被广泛的应用于水净化领域,将石墨烯与其它化合物进行复合,这些复合材料在吸附污染物上有非常高的效率,可以应用于染料、多芳香环烃和汽油的吸附。比如利用磁性-壳聚糖-石墨烯的复合材料可以大大提高去除溶液中的亚甲基蓝的效率,吸附能力达到

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

石墨烯的结构、制备、性能及应用研究进展

石墨烯的结构、制备、性能及应用研究进展

姓名:学号: 20150700 密封线 报告题目:石墨烯的结构、制备、性能及应用研究进展 一、书目信息: 二、评分标准

姓名:学号: 20150700 密封线

姓名:学号: 20150700 密封线 2. 报告结构合理,表述清晰 20分 3. 石墨烯的结构、性能、制备方法概述正确、 新(查阅5篇以上的文献) 20分 4. 石墨烯的应用研究进展概述(文献)全、新 (查阅5篇以上的文献) 20分 5. 心得及进一步的研究展望真实,无抄袭与剽窃现象 20分 三、教师评语 请根据写作内容给定成绩,填入“成绩”部分。

密封线 注1:本页由报告题目、书目信息有学生填写,其余由教师填写。提交试卷时含本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规范。注3:不符合规范试卷需修改规范后提交。 摘要 碳是自然界中万事万物的重要组成物质,也是构成生命有机体的主要元 素。石墨和金刚石是两种典型的单质碳,也是最早为人们所熟知的两种碳的 三维晶体结构,属于天然矿石。除石墨和金刚石外,碳材料还包括活性炭、 碳黑、煤炭和碳纤维等非晶形式。煤是重要的燃料。碳纤维在复合材料领域 有重要的应用。20 世纪80 年代,纳米材料与技术获得了极大的发展。纳米 碳材料也是从这一时期开始进入历史的舞台。1985 年,由60 个碳原子构成 的“足球”分子:C60被三位英美科学家发现。随后,C70、C86等大分子相继 出现,为碳家族添加了一大类新成员:富勒烯。富勒烯是碳的零维晶体结构, 它们的出现开启了富勒烯化学新篇章。三位发现者于1996 年获诺贝尔化学 奖。1991 年,由石墨层片卷曲而成的一维管状纳米结构:碳纳米管被发现。 如今,碳纳米管已经成为一维纳米材料的典型代表。发现者饭岛澄男于2008 年获卡弗里纳米科学奖。2004 年,一位新成员:石墨烯,出现在碳材料的“家 谱”中。石墨烯的发现者,两位英国科学家安德烈·盖姆(Andre Geim)和 康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)于2010 年获诺贝尔物理 学奖。 关键词:碳材料复合材料晶体结构 1 石墨烯的结构 石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石

石墨烯项目申报材料

石墨烯项目 申报材料 规划设计/投资分析/产业运营

石墨烯项目申报材料说明 2016年8月,国务院出台的《十三五国家科技创新规划》明确重点发展以石墨烯等为代表的先进碳材料。2017年1月,工信部、发改委、科技部、财政部联合发布了《新材料产业发展指南》,对石墨烯、超导材料等提出了任务要求,提出大力发展石墨烯产业。2017年4月,科技部发布《十三五材料领域科技创新》,明确指出了石墨烯碳材料技术发展领域:单层薄层石墨烯粉体、高品质大面积石墨烯薄膜工业制备技术,柔性电子器件大面积制备技术,石墨烯粉体高效分散、复核与应用技术,高催化活性炭及材料应用技术。 该石墨烯项目计划总投资5133.17万元,其中:固定资产投资4044.47万元,占项目总投资的78.79%;流动资金1088.70万元,占项目总投资的21.21%。 达产年营业收入7693.00万元,总成本费用5895.79万元,税金及附加87.16万元,利润总额1797.21万元,利税总额2132.26万元,税后净利润1347.91万元,达产年纳税总额784.35万元;达产年投资利润率35.01%,投资利税率41.54%,投资回报率26.26%,全部投资回收期5.31年,提供就业职位106个。

坚持“实事求是”原则。项目承办单位的管理决策层要以求实、科学 的态度,严格按国家《建设项目经济评价方法与参数》(第三版)的要求,在全面完成调查研究基础上,进行细致的论证和比较,做到技术先进、可靠、经济合理,为投资决策提供可靠的依据,同时,以客观公正立场、科 学严谨的态度对项目的经济效益做出科学的评价。 ...... 报告主要内容:项目基本情况、项目建设及必要性、市场分析预测、 建设规划方案、选址分析、土建工程、工艺说明、环境保护说明、项目职 业安全、风险评价分析、项目节能情况分析、实施安排、项目投资规划、 项目经济评价分析、总结说明等。

石墨烯在复合材料中的应用

石墨烯在复合材料中的应用 龚欣 (东南大学机械工程学院南京211189) 摘要:介绍了石墨烯与有机高聚物、无机纳米粒子以及其它碳基材料的复合物,同时展望了这些材料在相关领域中的应用前景. 关键词:石墨烯纳米复合材料 2004年至今, 关于石墨烯的研究成果已在SCI检索期刊上发表了超过2000篇论文, 石墨烯开始超越碳纳米管成为了备受瞩目的国际前沿和热点.基于石墨烯的纳米复合材料在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出许多优良性能,具有广阔的应用前景.目前研究的石墨烯复合材料主要有石墨烯/聚合物复合材料和石墨烯/无机物复合材料两类,其制备方法主要有共混法、溶胶-凝胶法、插层法和原位聚合法.本文将对石墨烯的纳米复合材料及其性能等方面进行简要的综述. 一、基于石墨烯的复合物 利用石墨烯优良的特性与其它材料复合可赋予材料优异的性质.如利用石墨烯较强的机械性能,将其添加到高分子中,可以提高高分子材料的机械性能和导电性能;以石墨烯为载体负载纳米粒子,可以提高这些粒子在催化、传感器、超级电容器等领域中的应用. 1.1 石墨烯与高聚物的复合物 功能化后的石墨烯具有很好的溶液稳定性,适用于制备高性能聚合物复合材料.根据实验研究,如用异氰酸酯改性后的氧化石墨烯分散到聚苯乙烯中,还原处理后就可以得到石墨烯-聚苯乙烯高分子复合物.该复合物具有很好的导电性,添加体积分数为1%的石墨烯时,常温下该复合物的导电率可达0.1S/M,可在导电材料方面得到的应用. 添加石墨烯还可显著影响高聚物的其它性能,如玻璃化转变温度(Tg)、力学和电学性能等.例如在聚丙稀腈中添加质量分数约1%的功能化石墨烯,可使其Tg 提高40℃.在聚甲基丙烯酸甲酯(PMMA)中仅添加质量分数0.05%的石墨烯就可以将其Tg提高近30℃.添加石墨烯的PMMA比添加膨胀石墨和碳纳米管的PMMA具有更高的强度、模量以及导电率.在聚乙烯醇(PVA)和PMMA中添加质量分数0.6% 的功能化石墨烯后,其弹性模量和硬度有明显的增加.在聚苯胺中添加适量的氧化石墨烯所获得的聚苯胺-氧化石墨烯复合物的电容量(531F/g)比聚苯胺本身的电容量(约为216F/g)大1倍多,且具有较大的拉伸强度(12.6MPa).这些性能为石墨烯-聚苯胺复合物在超级电容器方面的应用创造了条件. 石墨烯在高聚物中还可形成一定的有序结构.通过还原分散在Nafition膜中

相关文档
最新文档