基于8255集成电路的测试的设计与实现

基于8255集成电路的测试的设计与实现
基于8255集成电路的测试的设计与实现

郑州科技学院

《微机原理与接口技术》课程设计

题目基于8255集成电路的测试的设计

与实现

学生姓名

郑州科技学院

微机原理与接口技术课程设计任务书专业计算机科学与技术班级2012级1班

学号201215002 姓名姜丽丽

一、设计题目基于8255集成电路的测试的设计与实现

二、设计任务与要求

(1)8255支持的结构与功能;

(2)8255的编程;

(3)8255的工作方式;

(4)8255集成电路的测试。

三、参考文献

[1] 微机原理及接口技术

[2] 微机原理及接口技术实验指导书

[3] 谭博学苗汇静主编. 集成电路原理及应用(第二版)电子工业出版社。

[4] 汇编语言程序设计中国水利水电出版社相伟主编

[5]网上资料

四、设计时间

2015 年1 月5 日至2015 年1 月11 日

指导教师签名:

2015 年 1 月 5 日

目录

1 引言 (1)

1.1 课题的研究背景及意义 (1)

1.2 国内外集成电路测试系统现状 (2)

1.2课程设计的目的 (4)

2 设计方案与论证 (5)

2.1 本设计所要解决的主要问题 (5)

3 设计原理及功能说明 (6)

3.1工作原理 (6)

3.2 测试原理图 (7)

3.3功能说明 (8)

3.4程序主要代码 (9)

4 调试与结果测试 (11)

5 总结 (14)

附录1:总体电路原理图 (17)

附录2:元器件清单 (18)

摘要

随着集成电路日益广泛的应用,其相关的测试技术也显得愈发重要。为了保证集成电路的功能和性能参数符合技术要求,在集成电路的设计验证、产品检验以及现场维护等方面都需要对集成电路进行测试。而测试设备是必不可少的工具,因此研究它们的测试技术和开发测试设备具有重要的意义。

本文所设计的集成电路测试的核心,构建集成电路的测试,该测试能够通过程序对集成芯片插座进行控制和测试,可以完成对74LS00系列芯片的测试。测试仪使用了串口通信方式的LCD液晶显示器,以便节省出更多的接口供测试更多引脚的集成电路。针对不同型号的集成电路和GND位置不同,在电路中使用了P渠道引脚来作为Vcc切换开关。测试设计了总线标准接口,能够实现与PC机的联机。通过对大量的TTL集成电路的分析,建立了测试。通过编写测试程序,最终以速度快、准确率高的测试结果实现了测试74LS00系列芯片的任务。

论文阐述此次设计的背景及意义、集成电路测试系统现状、本文要解决的主要问题,对系统总体方案进行描述,详细说明整个硬件系统的构成和叙述测试结果[1]。

通过对实验电路和程序进行测试和试运行,结果证明达到了设计要求。以集成电路的测试,硬件电路简单可靠,软件测试精确快速。并且具有体积小、重量轻、成本低等优点。

关键词:集成电路,功能测试,LCD夜晶屏幕,74LS00芯片

1 引言

随着“软件无线电”技术和集成电路技术的飞速发展,用集成控制方法从一个参考频率源产生多种频率的技术——集成电路被广泛应用。具体体现在相对带宽宽、频率转换时间短、频率分辨率高、输出相位连续、可产生宽带正交信号及其他多种调制信号、可编程和全控制化、控制灵活方便等方面,并具有极高的性价比。现已广泛应用于通讯、导航、雷达、遥控遥测、电子对抗以及现代化的仪器仪表工业等领域。美国AD 公司推出的高集成度的采用先进的CMOS技术的集成电路[2]。

AD9850是高稳定度的集成电路合成器件,内部数据输入寄存器、可编程控制系统、高性能数/模转换器(DAC)及高速比较器,能实现可编程编程控制的集成电路和时钟发生器,如接上精密时钟源,AD9850可产生一个频谱纯净、频率和相位都可编程控制的正弦信号。AD9850中包含高速比较器,正弦波也可直接用作频率信号源,也可通过比较器转换成方波,作为时钟输出。

本文主要介绍了集成电路和 74LS00芯片的工作原理、主要特点及应用设计。

1.1 课题的研究背景及意义

集成电路是二十世纪发展起来的新型高技术产业之一,也是二十一世纪全面进入信息化社会的必要前提和基础。自1958年德克萨斯仪器公司制造出第一款集成电路以来,集成电路产业一直保持着惊人的发展速度,在信息化时代的今天,集成电路的发展以及应用显得尤为引人注目。从电子管、晶体管、中小规模集成电路、超大规模集成电路,发展到当

今市场主流的专用集成电路,乃至现处于飞速发展阶段的系统及芯片,集成电路始终沿着速度更快、集成度更高、规模更大的方向不断发展。到目前为止,集成电路仍然基本上遵循着摩尔定律发展,即集成度几乎每18个月增长一倍。

随着集成规模的进一步扩大,集成电路的应用领域日益扩大,无论是在军事方面的高科技应用,还是在人们日常生活方面的普通应用,集成电路都发挥着举足轻重的作用,因此,集成电路的可靠性显得越来越重要。为了保证集成电路的功能和性能参数符合技术要求,发挥其在整个电路系统中的重要作用,在集成电路的设计验证、产品检验以及现场维护等方面都需要对集成电路进行测试,测试技术已经成为谋求集成电路生存与发展的一门支撑技术[3]。

无论是元件还是电路和系统,由于制造工艺的限制、使用寿命以及工作条件等影响,故障的产生是不可避免的,所以集成电路的测试便成为亟需解决的问题。尤其是在教学过程中,学生要熟悉并掌握某些型号集成电路芯片的逻辑功能及使用方法,就必须要反复进行实验,在经过大量的实验以后,芯片肯定会由于各种原因而产生故障,若是更换新的芯片,会过于浪费,因此这势必会成为教学过程中的障碍。

本论文将设计一种简易测试集成电路芯片的仪器,根据其逻辑功能的真值表,测试其功能,判断其是否能正常工作,据此还可进行对已损坏芯片进行维修。这不仅能解决集成电路芯片教学过程中的有关问题,节约成本,更能在测试过程中使学生更加深刻了解集成电路相关知识。

1.2 国内外集成电路测试系统现状

目前有两种集成电路测试系统,一种是整板测试,称板级测试系统。另一种是对单个芯片测试称芯片级测试系统。

电路板的测试可分为带微处理器的电路板的测试和不带微处理器的电路板的测试,即CPU板和普通电路板的测试。芯片级测试又分在线测试和离线测试。所谓在线测试是指对焊接在电路板上的各种芯片做逻辑测试和故障诊断;而离线测试是对脱离电路板的芯片进行测试和故障判断。

在单个芯片测试系统中,有专门用来测试芯片的仪器,此类仪器设计较为复杂,技术含量高,操作也要求比较专业。另一种测试系统是在使用过程中将测试芯片作为辅助功能的。目前国内有一款仪器就属于这种类型,它是南京西尔特公司生产的型号为SUPERPRO/3000U的通用编程器。编程器是一个把可编程的集成电路写上数据的工具,编程器主要用于存储器(含BIOS)之类的芯片的编程(或称刷写)。

基本配置48脚万能驱动电路。所选购的适配器都是通用的(插在DIP48锁紧座上),即支持同封装所有类型器件,48脚及以下DIP器件无需适配器直接支持。在主机上以PEP3000驱动扩展器替换标准DIP48驱动模块后万能驱动电路路数达到100,则直至100脚的器件均可使用通用适配器(有些器件也可选用专用适配器,直接插在DIP48插座上,则无需换装PEP3000)。通用适配器保证快速新器件支持。I/O电平由DAC控制,直接支持低达1.5V的低压器件。

更先进的集成电路极大抑制工作噪声,配合IC厂家认证的算法,无论是低电压器件、二手器件还是低品质器件均能保证极高的编程良品率。编程结果可选择芯片的不同而不同,保证结果持久稳固。

在其编写程序的主要功能的基础上,还可测试标准TTL/COMS电路,并能自动判断型号。通过向被测芯片发送信号检验其输出电平,再根据事先存入资源库的芯片逻辑功能真值表来判断其型号。

通用编程器另外一个重要特点是具有管脚接触不良检测功能。平时锁紧座处于悬空状态,放入任何IC都不会因为原有的电压造成短路或者

烧坏IC。当进行编程等操作时,通用编程器首先采用独特的专用总线,利用微弱的信号检测管脚接触状况。只有接触良好才施加所需电压,并且判断器件的ID代码,只有ID代码正确后才进行编程操作;如果接触不良,立刻连续图形显示接触不良状况(集成电路系列产品特有的功能),直到接触良好才进行操作[4]。

在图形显示器件接触不良的时候,可以形象的看到器件每一个管脚的接触状况。特别是器件有一些管脚处于接触良好与接触不良之间的状态,如果不用连续的图形显示,例如仅仅一次的数字显示,是不能很好地发现问题的,如果遇到这种情况,与管脚相应的LCD灯会不断闪烁,并提示“接触不良”字样。同时通用编程器特有的管脚接触不良检测功能,有效防止了因为器件放反、部分管脚短路、接触不良等原因所造成的损失。

1.2 课程设计的目的

通过对四与非门(74LS00)集成电路芯片的测试,了解测试一般数字集成电路方法,进一步熟悉可编程并行接口8255 的使用。

课程设计注重提高学生应用能力、创新能力。

在掌握了基本的实验方法和实验技能且理论教学完成的基础上,要求学生通过一周的集中工作,初步锻炼综合运用所学知识的能力,通过讨论与合作,完成一项完整的设计工作。更深入的了解微机芯片的用法和程序的完成过程,调试方法及技巧。通过这个环节来加深对《微机原理与接口技术》所学内容的理解和融会贯通。

2 设计方案与论证

2.1 本设计所要解决的主要问题

基于8255A集成电路测试属于芯片级集成电路逻辑功能测试系统,主要采用功能验证测试法产生测试矢量,离线完成20脚以下TTL74/54等系列芯片的测试。为此,在本文中要解决的问题主要有:

(1)测试自动化,20脚测试插座固定,测试范围不受被测器件的输入、输出、电源和地的位置的限制。

(2)同型号大批量器件测试简捷方便,效率很高。

(3)能测试TTL74/54系列的门电路,译码器等器件。

(4)可查阅测试数据库内所有芯片的逻辑功能,作为电子手册使用。

(5)整机电源电压为+5V,供电方式为直流稳压电源。

(6)可脱机工作,携带方便,轻巧美观。

综上所述,我们将从测试系统工作原理出发,借鉴一些成熟的经验,查阅了大量的资料,经过分析比较,确立了总体方案和构建硬件系统;通过对大量TTL集成电路的统计和分析,利用功能验证测试算法建立了测试数据库,编制了测试程序,最终完成整个集成电路的设计。

3 设计原理及功能说明

3.1 工作原理

8255芯片有三种工作方式:基本输入/输出方式(方式0)、选通工作方式(方式1)、双向传送方式(方式2)。

这次测试的工作方式是方式0:

方式0相当于三个独立的8位简单接口,各端口既可设置为输入口,也可设置为输出口,但不能同时实现输入及输出。C端口可以是一个8

位的简单接口,也可以分为两个独立的4位端口。方式0常用于连接简单外设(适于无条件或查询方式)。常使A端口和B端口作为8位数据的输入或输出口,使C口的某些位作状态输入[5]。

测试原理:由于每个集成电路都有8个输入端和4个输出端,因此我们可设置8255A的端口A与B工作在方式0,且A口作输出,其8位分别与集成电路的8个输入端相连,这样便可测试这3类集成电路,对于门电路的识别,只要每个门电路的二个输入端从00变化到11,通过读取其输出值,便可判断出门电路的类型,如表1所示:

表3-1 集成电路的输出值

输入输出门电路A口B口低4位输入

2位输入8位输出74LS00

0 0 00000000 1111

0 1 01010101 1111

1 0 10101010 1111

1 1 11111111 0000

3.2 测试原理图

图3-1 流程图

3.3 功能说明

8255作为主机与外设的连接芯片,必须提供与主机相连的3个总线接口,即数据线、地址线、控制线接口。同时必须具有与外设连接的接口A、B、C口。由于8255可编程,所以必须具有逻辑控制部分,因而8255内部结构分为3个部分:与CPU连接部分、与外设连接部分、控制部分[6]。

(1)与CPU连接部分

根据定义,8255能并行传送8位数据,所以其数据线为8根D0~D7。由于8255具有3个通道A、B、C,所以只要两根地址线就能寻址A、B、C口及控制寄存器,故地址线为两根A0~A1。此外CPU要对8255进行读、写与片选操作,所以控制线为片选、复位、读、写信号。各信号的引脚编号如下:

①数据总线DB:编号为D0~D7,用于8255与CPU传送8位数据。

②地址总线AB:编号为A0~A1,用于选择A、B、C口与控制寄存器。

③控制总线CB:片选信号、复位信号RST、写信号、读信号。当CPU要对8255进行读、写操作时,必须先向8255发片选信号选中8255芯片,然后发读信号或写信号对8255进行读或写数据的操作。

(2)与外设接口部分

根据定义,8255有3个通道A、B、C与外设连接,每个通道又有8根线与外设连接,所以8255可以用24根线与外设连接,若进行开关量控制,则8255可同时控制24路开关。各通道的引脚编号如下:

①A口:编号为PA0~PA7,用于8255向外设输入输出8位并行数据。

②B口:编号为PB0~PB7,用于8255向外设输入输出8位并行数据。

③C口:编号为PC0~PC7,用于8255向外设输入输出8位并行数据,当8255工作于应答I/O方式时,C口用于应答信号的通信。

(3)控制器

8255将3个通道分为两组,即PA0~PA7与PC4~PC7组成A组,PB0~PB7与PC0~PC3组成B组。相应的控制器也分为A组控制器与B组控制器,各组控制器的作用如下:

①A组控制器:控制A口与上C口的输入与输出。

②B组控制器:控制B口与下C口的输入与输出。

3.4 程序主要代码[7]

data segment

ioport equ 0d400h-0280h

io8255a equ ioport+288h

io8255b equ ioport+28ah

io8255c equ ioport+28bh

se db 00000000b,01010101b,10101010b,11111111b ;检测时发送的数据

ac0 db 00001111b,00001111b,00001111b,00000000b

;74LS00正确时检测时接收的数据

outbuf db 'THE CHIP IS OK',07h,0ah,0dh,'$'

news db 'THE CHIP IS BAD',07h,0ah,0dh,'$'

data ends

code segment

assume cs:code,ds:code

start: mov ax,data

mov ds,ax

mov dx,io8255c ;对8255进行初始化编程

mov al,89h ;使A口输出,C口输入

out dx,al

mov di,offset ac0 ;DI中存放接收数据的缓冲区首址

mov si,offset se ;SI中存放发收数据的缓冲区首址

mov cx,05h ;发送四个字节

again: dec cx

jz exit ;如果四个数值都相等,则显示提示信息 mov dx,io8255a

mov al,[si]

mov bl,[di]

out dx,al ;发送数据

inc si

inc di

mov dx,io8255b

in al,dx ;读芯片的逻辑输出

and al,0fh

cmp al,bl

je again ;若正确就继续

error: mov dx,offset news ;若有错,芯片有问题

mov ah,09h ;显示错误的提示信息

int 21h

jmp ppp

exit: mov dx,offset outbuf;显示正确的提示信息

mov ah,09h

int 21h

ppp: mov ah,4ch ;返回

int 21h

code ends

end start

4 调试与结果测试

开关量状态的检测。例如,在某一系统中,有8个开关K7~K0,要求不断检测它们的通断状态,并随时在发光二级管LED7-LED0上显示出来。开关断开,相应的LED点亮;开关合上,LED熄灭。可用8255A构成的硬件电路,来实现上述功能。

无按键按下时,由于接到+5V的上拉电阻的作用,列线被置成高电平;某件按下后,该键所在的列线被和行线接通,如向被按下键所在行线输出低电平信号,对应列线也将为低电平;当从B口读取列线信号时,便能检测到该列线上的低电平;读取B口的状态时,还能读到行线上的低电平信号;根据读入的行和列状态中低电平的位置,便能确定那个键被按压下。

调试结果:

图4-1端口PA0、PA1输出,端口PC0输入

图中8255A的PA0和PA1端口与被测试对象的各输入端相连,PC0口与各输出端相连接。

图4-2端口PA2、PA3输出,端口PC1输入

图中8255A的PA2和PA3端口与被测试对象的各输端相连,PC1口与各输出端相连接。

图4-3端口PA4、PA5输出,端口PC2输入

图中8255A的PA4和PA5端口与被测试对象的各输入端相连,PC2口与各输出端相连接。

图4-4端口PA6、PA7输出,端口PC3输入

图中8255A的PA6和PA7端口与被测试对象的各输入端相连,PC3口与各输出端相连接。

8255A测试集成电路中芯片74LS00,由此可见芯片是好的。

5 总结

8255芯片使用灵活,通用性强,而且使用成本低、性能稳定,得到了广泛的应用。在这一周的实验过程中碰到了很多的难题和障碍,我认识到平时基础知识的重要性,只有能够熟练的掌握才能在实验过程中得心应手,否则一步错则整个试验都会陷入困境,因而,严谨的态度是试验成功的重要保障!

通过这次课程设计,我们对各个芯片有了进一步的了解,对各个芯片的功能有了更深刻的认识和体会,平时上课的理论知识只是停留在理论的层面,只有通过了这样的试验才能更好的体会到,做到了理论和实际的相结合,使理论知识真正运用到了实践中去。在课程设计过程中,同组人员之间相互合作,共同研究使我更加坚信了团体的力量。在团体的共同协作和努力下,任何的难题都可以被解决!

经过1个星期的课程设计,完成任务的效果和预想中有很大的出入,以为是一个简单的实验,也没有查阅资料,直到调试的时候,来编程,才发现有困难!即时大框架做好了,也很可能失败,很多小细节时我们不容忽视的。就拿刚开始来说,编完之后调试,有五十多个错误,看着蒙了,其实检查检查都是一些书写错误。调试成功链接却没有效果,完全不知道从哪里改起!经过老师的重新改正才真正完成明白了以后工作做什么事都不是一蹴而就的,需要逐步发现错误还要避免弯路才可以做成。

这次设计对我综合运用所学知识的能力提高不小,以前上课做的实验都是很简单的编程,跟硬件结合也没有这么复杂,实现的功能都比较简单,可是这次要实现的功能相对来说是比较复杂的。而且可能实现一个目的不止一个途径,一个方法行不通的时候要找其他的方法,一条路走到老并不适合。这次试验通过亲自动手动脑也发现任何复杂的东西都

是以简单的东西为基础的,所以平时的基本功很重要。更清楚的告诉我们里理论源于实际,而实践是以理论为基础的!

经过这次设计明白了很多,收获很多。首先,在平时的学习中一定要一丝不苟,每一个小细节都应该明白为什么,因为往往成败就在这些小细节上;其次,在平时的学习中我们应该多注意一些实际应用中的东西,比如各种芯片的用法、功能,各种软件的使用等等。毕竟理论的学习是为了为实践服务的。另外,在很多时候我们都应该记住创新,在弄懂别人的东西的之后,我们需要静下心来钻研,以求更加完美的东西,进一步创新,敢于创新。遇到问题的时候更加要沉下心来,不能浮躁,要认真一步步分析、找到每一个不清楚的地方,尽力独立解决为题。

总之,这次设计实践在很大程度上提高了我们的动手能力,加深了我们队理论知识的理解,进一步加深了对专业知识和理论知识学习的认识和理解,使自己的设计水平和对所学的知识的应用能力以及分析问题解决问题的能力得到全面提高。

我们大家在实验的时候都团结合作,遇到问题时候一起探讨,增强了我们的合作精神。

最后,感谢老师的悉心指导以及同学们的热心帮助!

参考文献

[1]专著.王忠民.微机原理与接口技术[M] 人民邮电出版社 2007-6

[2]专著.微机原理及接口技术实验指导书 [M] 自动教研室 2014-12

[3]专著.谭博学,苗汇静主编.集成电路原理及应用[M] 电子工业出版社

2011-6

[4]专著.相伟主编.汇编语言程序设计[M] 中国水利水电出版社 2006-11

[5]专著.郑学坚,周斌编著.微型计算机原理及应用[M] 西安电子科技大学出版社2009-09

[6]专著.沈复兴,陈利永编著.电子技术基础[M] 电子工业出版社 2001-1-1

[7]网上资料

集成电路封装与测试_毕业设计论文

毕业设计(论文)集成电路封装与测试

摘要 IC封装是一个富于挑战、引人入胜的领域。它是集成电路芯片生产完成后不可缺少的一道工序,是器件到系统的桥梁。封装这一生产环节对微电子产品的质量和竞争力都有极大的影响。按目前国际上流行的看法认为,在微电子器件的总体成本中,设计占了三分之一,芯片生产占了三分之一,而封装和测试也占了三分之一,真可谓三分天下有其一。封装研究在全球范围的发展是如此迅猛,而它所面临的挑战和机遇也是自电子产品问世以来所从未遇到过的;封装所涉及的问题之多之广,也是其它许多领域中少见的,它需要从材料到工艺、从无机到聚合物、从大型生产设备到计算力学等等许许多多似乎毫不关连的专家的协同努力,是一门综合性非常强的新型高科技学科。 媒介传输与检测是CPU封装中一个重要环节,检测CPU物理性能的好坏,直接影响到产品的质量。本文简单介绍了工艺流程,机器的构造及其常见问题。 关键词:封装媒介传输与检测工艺流程机器构造常见问题

Abstract IC packaging is a challenging and attractive field. It is the integrated circuit chip production after the completion of an indispensable process to work together is a bridge device to the system. Packaging of the production of microelectronic products, quality and competitiveness have a great impact. Under the current popular view of the international community believe that the overall cost of microelectronic devices, the design of a third, accounting for one third of chip production, packaging and testing and also accounted for a third, it is There are one-third of the world. Packaging research at the global level of development is so rapid, and it faces the challenges and opportunities since the advent of electronic products has never been encountered before; package the issues involved as many as broad, but also in many other fields rare, it needs to process from the material, from inorganic to polymers, from the calculation of large-scale production equipment and so many seem to have no mechanical connection of the concerted efforts of the experts is a very strong comprehensive new high-tech subjects . Media transmission and detection CPU package is an important part of testing the physical properties of the mixed CPU, a direct impact on product quality. This paper describes a simple process, the structure of the machine and its common problems. Keyword: Packaging Media transmission and detection Technology process Construction machinery Frequently Asked Questions

集成电路测试

第一章 集成电路的测试 1.集成电路测试的定义 集成电路测试是对集成电路或模块进行检测,通过测量对于集成电路的输出回应和预期输出比较,以确定或评估集成电路元器件功能和性能的过程,是验证设计、监控生产、保证质量、分析失效以及指导应用的重要手段。 .2.集成电路测试的基本原理 输入Y 被测电路DUT(Device Under Test)可作为一个已知功能的实体,测试依据原始输入x 和网络功能集F(x),确定原始输出回应y,并分析y是否表达了电路网络的实际输出。因此,测试的基本任务是生成测试输入,而测试系统的基本任务则是将测试输人应用于被测器件,并分析其输出的正确性。测试过程中,测试系统首先生成输入定时波形信号施加到被测器件的原始输入管脚,第二步是从被测器件的原始输出管脚采样输出回应,最后经过分析处理得到测试结果。 3.集成电路故障与测试 集成电路的不正常状态有缺陷(defect)、故障(fault)和失效(failure)等。由于设计考虑不周全或制造过程中的一些物理、化学因素,使集成电路不符合技术条件而不能正常工作,称为集成电路存在缺陷。集成电路的缺陷导致它的功能发生变化,称为故障。故障可能使集成电路失效,也可能不失效,集成电路丧失了实施其特定规范要求的功能,称为集成电路失效。故障和缺陷等效,但两者有一定区别,缺陷会引发故障,故障是表象,相对稳定,并且易于测试;缺陷相对隐蔽和微观,缺陷的查找与定位较难。 4.集成电路测试的过程 1.测试设备 测试仪:通常被叫做自动测试设备,是用来向被测试器件施加输入,并观察输出。测试是要考虑DUT的技术指标和规范,包括:器件最高时钟频率、定时精度要求、输入\输出引脚的数目等。要考虑的因素:费用、可靠性、服务能力、软件编程难易程度等。 1.测试界面 测试界面主要根据DUT的封装形式、最高时钟频率、ATE的资源配置和界面板卡形等合理地选择测试插座和设计制作测试负载板。

集成电路封装考试答案

集成电路封装考试答案 https://www.360docs.net/doc/5e5086747.html,work Information Technology Company.2020YEAR

名词解释: 1.集成电路芯片封装: 利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引用接线端子并通过可塑性绝缘介质灌装固定,构成整体立体结构的工艺。 2.芯片贴装: 3.是将IC芯片固定于封装基板或引脚架芯 片的承载座上的工艺过程。 4.芯片互联: 5.将芯片与电子封装外壳的I/O引线或基 板上的金属布线焊区相连接。 6.可焊接性: 指动态加热过程中,在基体表面得到一个洁净金属表面,从而使熔融焊料在基体表面形成良好润湿能力。 7.可润湿性: 8.指在焊盘的表面形成一个平坦、均匀 和连续的焊料涂敷层。 9.印制电路板: 10.为覆盖有单层或多层布线的高分子复 合材料基板。 11.气密性封装: 12.是指完全能够防止污染物(液体或固 体)的侵入和腐蚀的封装。 13.可靠性封装: 14.是对封装的可靠性相关参数的测试。 15.T/C测试: 16.即温度循环测试。17.T/S 测试: 18.测试封装体抗热冲击的能力。 19.TH测试: 20.是测试封装在高温潮湿环境下的耐久 性的实验。 21.PC测试: 22.是对封装体抵抗抗潮湿环境能力的测 试。 23.HTS测试: 24.是测试封装体长时间暴露在高温环境 下的耐久性实验。封装产品长时间放置在高温氮气炉中,然后测试它的电路通断情况。 25.Precon测试: 26.模拟包装、运输等过程,测试产品的 可靠性。 27.金线偏移: 28.集成电路元器件常常因为金线偏移量 过大造成相邻的金线相互接触从而产生短 路,造成元器件的缺陷。 29.再流焊: 30.先将微量的铅锡焊膏印刷或滴涂到印 制板的焊盘上,再将片式元器件贴放在印制板表面规定的位置上,最后将贴装好元器件分印制板放在再流焊设备的传送带上。

集成电路封装和可靠性Chapter2-1-芯片互连技术【半导体封装测试】

UESTC-Ning Ning 1 Chapter 2 Chip Level Interconnection 宁宁 芯片互连技术 集成电路封装测试与可靠性

UESTC-Ning Ning 2 Wafer In Wafer Grinding (WG 研磨)Wafer Saw (WS 切割)Die Attach (DA 黏晶)Epoxy Curing (EC 银胶烘烤)Wire Bond (WB 引线键合)Die Coating (DC 晶粒封胶/涂覆) Molding (MD 塑封)Post Mold Cure (PMC 模塑后烘烤)Dejunk/Trim (DT 去胶去纬) Solder Plating (SP 锡铅电镀)Top Mark (TM 正面印码)Forming/Singular (FS 去框/成型) Lead Scan (LS 检测)Packing (PK 包装) 典型的IC 封装工艺流程 集成电路封装测试与可靠性

UESTC-Ning Ning 3 ? 电子级硅所含的硅的纯度很高,可达99.9999 99999 % ? 中德电子材料公司制作的晶棒( 长度达一公尺,重量超过一百公斤 )

UESTC-Ning Ning 4 Wafer Back Grinding ?Purpose The wafer backgrind process reduces the thickness of the wafer produced by silicon fabrication (FAB) plant. The wash station integrated into the same machine is used to wash away debris left over from the grinding process. ?Process Methods: 1) Coarse grinding by mechanical.(粗磨)2) Fine polishing by mechanical or plasma etching. (细磨抛光 )

集成电路测试原理及方法

H a r b i n I n s t i t u t e o f T e c h n o l o g y 集成电路测试原理及方法简介 院系:电气工程及自动化学院 姓名: XXXXXX 学号: XXXXXXXXX 指导教师: XXXXXX 设计时间: XXXXXXXXXX

摘要 随着经济发展和技术的进步,集成电路产业取得了突飞猛进的发展。集成电路测试是集成电路产业链中的一个重要环节,是保证集成电路性能、质量的关键环节之一。集成电路基础设计是集成电路产业的一门支撑技术,而集成电路是实现集成电路测试必不可少的工具。 本文首先介绍了集成电路自动测试系统的国内外研究现状,接着介绍了数字集成电路的测试技术,包括逻辑功能测试技术和直流参数测试技术。逻辑功能测试技术介绍了测试向量的格式化作为输入激励和对输出结果的采样,最后讨论了集成电路测试面临的技术难题。 关键词:集成电路;研究现状;测试原理;测试方法

目录 一、引言 (4) 二、集成电路测试重要性 (4) 三、集成电路测试分类 (5) 四、集成电路测试原理和方法 (6) 4.1.数字器件的逻辑功能测试 (6) 4.1.1测试周期及输入数据 (8) 4.1.2输出数据 (10) 4.2 集成电路生产测试的流程 (12) 五、集成电路自动测试面临的挑战 (13) 参考文献 (14)

一、引言 随着经济的发展,人们生活质量的提高,生活中遍布着各类电子消费产品。电脑﹑手机和mp3播放器等电子产品和人们的生活息息相关,这些都为集成电路产业的发展带来了巨大的市场空间。2007年世界半导体营业额高达2.740亿美元,2008世界半导体产业营业额增至2.850亿美元,专家预测今后的几年随着消费的增长,对集成电路的需求必然强劲。因此,世界集成电路产业正在处于高速发展的阶段。 集成电路产业是衡量一个国家综合实力的重要重要指标。而这个庞大的产业主要由集成电路的设计、芯片、封装和测试构成。在这个集成电路生产的整个过程中,集成电路测试是惟一一个贯穿集成电路生产和应用全过程的产业。如:集成电路设计原型的验证测试、晶圆片测试、封装成品测试,只有通过了全部测试合格的集成电路才可能作为合格产品出厂,测试是保证产品质量的重要环节。 集成电路测试是伴随着集成电路的发展而发展的,它为集成电路的进步做出了巨大贡献。我国的集成电路自动测试系统起步较晚,虽有一定的发展,但与国外的同类产品相比技术水平上还有很大的差距,特别是在一些关键技术上难以实现突破。国内使用的高端大型自动测试系统,几乎是被国外产品垄断。市场上各种型号国产集成电路测试,中小规模占到80%。大规模集成电路测试系统由于稳定性、实用性、价格等因素导致没有实用化。大规模/超大规模集成电路测试系统主要依靠进口满足国内的科研、生产与应用测试,我国急需自主创新的大规模集成电路测试技术,因此,本文对集成电路测试技术进行了总结和分析。 二、集成电路测试重要性 随着集成电路应用领域扩大,大量用于各种整机系统中。在系统中集成电路往往作为关键器件使用,其质量和性能的好坏直接影响到了系统稳定性和可靠性。 如何检测故障剔除次品是芯片生产厂商不得不面对的一个问题,良好的测试流程,可以使不良品在投放市场之前就已经被淘汰,这对于提高产品质量,建立生产销售的良性循环,树立企业的良好形象都是至关重要的。次品的损失成本可以在合格产品的售价里得到相应的补偿,所以应寻求的是质量和经济的相互制衡,以最小的成本满足用户的需要。 作为一种电子产品,所有的芯片不可避免的出现各类故障,可能包括:1.固定型故障;2.跳变故障;3.时延故障;4.开路短路故障;5桥接故障,等等。测试的作用是检验芯片是否存在问题,测试工程师进行失效分析,提出修改建议,从工程角度来讲,测试包括了验证测试和生产测试两个主要的阶段。

集成电路封装考试答案

名词解释: 1.集成电路芯片封装: 利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引用接线端子并通过可塑性绝缘介质灌装固定,构成整体立体结构的工艺。 2.芯片贴装: 是将IC芯片固定于封装基板或引脚架芯片的承载座上的工艺过程。 3.芯片互联: 将芯片与电子封装外壳的I/O引线或基板上的金属布线焊区相连接。 4.可焊接性: 指动态加热过程中,在基体表面得到一个洁净金属表面,从而使熔融焊料在基体表面形成良好润湿能力。 5.可润湿性: 指在焊盘的表面形成一个平坦、均匀和连续的焊料涂敷层。 6.印制电路板: 为覆盖有单层或多层布线的高分子复合材料基板。 7.气密性封装: 是指完全能够防止污染物(液体或固体)的侵入和腐蚀的封装。 8.可靠性封装: 是对封装的可靠性相关参数的测试。 9.T/C测试: 即温度循环测试。10.T/S 测试: 测试封装体抗热冲击的能力。 11.TH测试: 是测试封装在高温潮湿环境下的耐久性的实验。 12.PC测试: 是对封装体抵抗抗潮湿环境能力的测试。 13.HTS测试: 是测试封装体长时间暴露在高温环境下的耐久性实验。封装产品长时间放置在高 温氮气炉中,然后测试它的电路通断情况。 14.Precon测试: 模拟包装、运输等过程,测试产品的可靠性。 15.金线偏移: 集成电路元器件常常因为金线偏移量过大造成相邻的金线相互接触从而产生短路,造成元器件的缺陷。 16.再流焊: 先将微量的铅锡焊膏印刷或滴涂到印制板的焊盘上,再将片式元器件贴放在印制 板表面规定的位置上,最后将贴装好元器件 分印制板放在再流焊设备的传送带上。

简答: 1.芯片封装实现了那些功能? 传递电能、传递电路信号、提供散热途径、结构保护与支持 2.芯片封装的层次 五个层次:零级层次:在芯片上的集成电路元器件间的连线工艺 第一层次:芯片层次的封装 第二层次:将第一个层次完成的封装与其他电子元器件组成的一个电路卡的工艺 第三层次:将第一个层次完成的封装组装成的电路卡组合成在一个主电路板上使之成为一个部件或子系统的工艺 第四层次:将数个子系统组装成一个完整电子产品的工艺过程 3.简述封装技术的工艺流程 硅片减薄、硅片切割、芯片贴装、芯片互联、成型技术、去飞边毛刺、切筋成形、上焊锡、打码 4.芯片互联技术有哪几种?分别解释说明 打线健合技术(WB):将细金属线或金属按顺序打在芯片与引脚架或封装基板的焊垫上形成电路互联。 载带自动键合技术(TAB):将芯片焊区与电子封装外壳的I/O或基板上的金属布线焊区用具有引线图形成金属箔丝连接的技术工艺。 倒装芯片键合技术(FCB):芯片面朝下,芯片焊区与基板焊区直接相连的一种方法。5.常用的芯片贴装有哪三种?请对这三种芯片贴装方法做出简单说明。 共晶粘贴法:Au-Si共晶合金粘贴到基板上 焊接粘贴法:Pb-Sn合金焊接 导电胶粘贴法:在塑料封装中最常见的方法是使用高分子聚合物贴装到金属框架上 6.请说明热压焊和超声焊的工艺原理,并指出优缺点。 将细金属线按顺序打在芯片与引脚的封装基板的焊垫上而形成电路互连。 超声焊:优点为键合温度低、键合尺寸较小且导线回绕高度较低,缺点为必须沿着金属线回绕的方向排列 热压焊:优点为导线可以球形接点为中心改变位置 7.厚膜技术的概念 使用网印与烧结方法,用以制作电阻、电容等电路中的无源元件。 8.薄膜制备的技术有哪几种?请举例说明。 溅射、蒸发、电镀、光刻工艺 9.通过厚膜与薄膜技术的比较分析,简述它们各自的优缺点 薄膜技术使用光刻工艺形成的图形具有更窄、边缘更清晰的线条。这一特点促进了薄膜技术在高密度和高频率的使用。薄膜工艺比厚膜工艺成本高,多层结构的制造极为困难,受限于单一的方块电阻率。 10.助焊剂的主要成分是什么? 活化剂、载剂、溶剂、和其他特殊功能的添加物。

集成电路封装与测试复习题 - 答案

一、填空题 1、将芯片及其他要素在框架或基板上布置,粘贴固定以及连接,引出接线端子并且通过可塑性绝缘介质灌封固定的过程为狭义封装 ;在次基础之上,将封装体与装配成完整的系统或者设备,这个过程称之为广义封装。 2、芯片封装所实现的功能有传递电能;传递电路信号;提供散热途径;结构保护与支持。 3、芯片封装工艺的流程为硅片减薄与切割、芯片贴装、芯片互连、成型技术、去飞边毛刺、切筋成形、上焊锡、打码。 4、芯片贴装的主要方法有共晶粘贴法、焊接粘贴法、导电胶粘贴发、玻璃胶粘贴法。 5、金属凸点制作工艺中,多金属分层为黏着层、扩散阻挡层、表层金保护层。 6、成型技术有多种,包括了转移成型技术、喷射成型技术、预成型技术、其中最主要的是转移成型技术。 7、在焊接材料中,形成焊点完成电路电气连接的物质叫做焊料;用于去除焊盘表面氧化物,提高可焊性的物质叫做助焊剂;在SMT中常用的可印刷焊接材料叫做锡膏。 8、气密性封装主要包括了金属气密性封装、陶瓷气密性封装、玻璃气密性封装。 9、薄膜工艺主要有溅射工艺、蒸发工艺、电镀工艺、

光刻工艺。 10、集成电路封装的层次分为四级分别为模块元件(Module)、电路卡工艺(Card)、主电路板(Board)、完整电子产品。 11、在芯片的减薄过程中,主要方法有磨削、研磨、干式抛光、化学机械平坦工艺、电化学腐蚀、湿法腐蚀、等离子增强化学腐蚀等。 12、芯片的互连技术可以分为打线键合技术、载带自动键合技术、倒装芯片键合技术。 13、DBG切割方法进行芯片处理时,首先进行在硅片正面切割一定深度切口再进行背面磨削。 14、膜技术包括了薄膜技术和厚膜技术,制作较厚薄膜时常采用丝网印刷和浆料干燥烧结的方法。 15、芯片的表面组装过程中,焊料的涂覆方法有点涂、 丝网印刷、钢模板印刷三种。 16、涂封技术一般包括了顺形涂封和封胶涂封。 二、名词解释 1、芯片的引线键合技术(3种) 是将细金属线或金属带按顺序打在芯片与引脚架或封装基板的焊垫上

8255芯片

8255A的内部结构,由三部分电路组成:与CPU的接口电路、内部控制逻辑电路和与外设连接的输入/输出接口电路。 D7~D0(data bus):三态、双向数据线,与CPU数据总线连接,用来传送数据。 (chip select):片选信号线,低电平有效时,芯片被选中。 A1, A0(port address):地址线,用来选择内部端口。 (read):读出信号线,低电平有效时,允许数据读出。 (write):写入信号线,低电平有效时,允许数据写入。 RESET(reset):复位信号线,高电平有效时,将所有内部寄存器(包括控制寄存器)清0。 PA7~PA0(port A):A口输入/输出信号线。

PB7~PB0(port B):B口输入/输出信号线。 PC7~PC0(port C):C口输入/输出信号线。 VCC:+5V电源。GND:电源地线。 8255A的工作方式 方式0:基本输入输出方式 适用于无条件传送和查询方式的接口电路 方式1:选通输入输出方式 适用于查询和中断方式的接口电路 方式2:双向选通传送方式 适用于与双向传送数据的外设 适用于查询和中断方式的接口电路 8255A初始化编程 8255A的A,B,C三个端口的工作方式是在初始化编程时,通过向8255A的控制端口写入控制字来设定的。 8255A由编程写入的控制字有两个:方式控制字和置位/复位控制字。方式控制字用于设置端口A, B, C的工作方式和数据传送方向;置位/复位控制字用于设置C口的PC7~PC0中某一条口线PC i(i=0~7)的电平。两个控制字公用一个端口地址,由控制字的最高位作为区分这两个控制字的标志位。 (1)方式控制字的格式 8255A工作方式控制字的格式如图7.11所示。 D0:设置PC3~PC0的数据传送方向。D0=1为输入;D0=0为输出。 D1:设置B口的数据传送方向。D1=1为输入;D1=0为输出. D2:设置B口的工作方式。D2=1为方式1;D2=0为方式0。 D3:设置PC7~PC4的数据传送方向。D3=1为输入;D3=0为输出。 D4:设置A口的数据传送方向。D4=1为输入;D4=0为输出。 D6D5:设置A口的工作方式。D6D5=00为方式0,D6D5=01为方式1,D6D5=10或11为方式2。 D7:方式控制字的标志位,恒为1。 例如,将8255A的A口设定为工作方式0输入,B口设定为工作方式1输出,C口没有定义,

集成电路测试技术四

集成电路测试技术 测试概论 可测性设计技术

DFT) 雷鑑铭RCVLSI&S 扫描前综合:主要在综合中介绍。在这一步中综合工具会

Multiplexed Flip-Flop 使用一个可选择的数据输入端来实现串行移位的能力。在功能模式时,扫描使能信号选择系统数据输入;在扫描模式时,扫描使能信号选择扫描数据输入。扫描输入的数据来自扫描输入端口或者扫描链中前一个单元的扫描输出端口。为测试使能端,控制数据的输入。 时选通测试模式,测试数据从端输入;时为功能模式,这时系统数据从端输入。 Multiplexed Flip-Flop 扫描形式为工艺库普遍支持的一种模式。 Multiplexed Flip-Flop 结构 扫描 扫描形式使用一个特定的边沿触发测试时钟来提供串行移位的能力。在功能模式时,系统时钟翻转,系统数据在系统时钟控制下输入到单元中;扫描移位时,测试时钟翻转,扫描数据在测试时钟控制下进入到单元中。 为系统时钟,翻转时系统数据从D 钟,翻转时扫描数据从端输入。 Clocked-Scan 雷鑑铭 编译器支持三种变化的扫描形式:单边锁存,双边锁存和时钟控制单边锁存和双边锁存变化都要用到典型的LSSD 扫描单元,如上图所示。该单元含有一对主从锁存器。 主锁存器有两个输入端,能够锁存功能数据或者扫描数据。在功能模式下,系统主时钟控制系统数据的输入;在扫描模式下,测试主时钟控制从数据输入端到主锁存器的数据传输。从时钟控制数据从主锁存器到从锁存器的传输。 典型的LSSD 、扫描测试的步骤 1 各步骤的功能如下: 扫描输入阶段:在这一阶段中,数据串行加入到扫描输入端;当时钟沿到来时,该扫描数据被移入到扫描链。同时,并行输出被屏蔽。 并行测试:这一周期的初始阶段并行输入测试数据,此周期的末段检测并行输出数据。在此周期中时钟信号保持无效,CUT 并行捕获:这一阶段时钟有一次脉冲,在该脉冲阶段从扫描链中捕获关键并行输出数据。CUT 态。捕获到的数据用于扫描输出。 第一次扫描输出:此阶段无时钟信号,出端对扫描链输出值采样,检测第一位扫描输出数据。扫描输出阶段:扫描寄存器捕获到的数据串行移出,在每一周期在扫描输出端检测扫描链输出值。扫描测试是基于阶段的测试过程,典型的测试时序分SI 交叠,待测芯片的测试状态控制信号于有效状态。第一次扫描输出阶段时钟信号保持无效,出端之后每一扫描移位阶段都有一时钟信号,测试机也会采样一次SO 的状态;在最后一个扫描移位阶段用于产生并行输出的有效数

集成电路封装的发展现状及趋势

集成电路封装的发展现 状及趋势 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

序号:39 集成电路封装的发展现状及趋势 姓名:张荣辰 学号: 班级:电科本1303 科目:微电子学概论 二〇一五年 12 月13 日

集成电路封装的发展现状及趋势 摘要: 随着全球集成电路行业的不断发展,集成度越来越高,芯片的尺寸不断缩小,集成电路封装技术也在不断地向前发展,封装产业也在不断更新换代。 我国集成电路行业起步较晚,国家大力促进科学技术和人才培养,重点扶持科学技术改革和创新,集成电路行业发展迅猛。而集成电路芯片的封装作为集成电路制造的重要环节,集成电路芯片封装业同样发展迅猛。得益于我国的地缘和成本优势,依靠广大市场潜力和人才发展,集成电路封装在我国拥有得天独厚的发展条件,已成为我国集成电路行业重要的组成部分,我国优先发展的就是集成电路封装。近年来国外半导体公司也向中国转移封装测试产能,我国的集成电路封装发展具有巨大的潜力。下面就集成电路封装的发展现状及未来的发展趋势进行论述。 关键词:集成电路封装、封装产业发展现状、集成电路封装发展趋势。 一、引言 晶体管的问世和集成电路芯片的出现,改写了电子工程的历史。这些半导体元器件的性能高,并且多功能、多规格。但是这些元器件也有细小易碎的缺点。为了充分发挥半导体元器件的功能,需要对其进行密封、扩大,以实现与外电路可靠的电气连接并得到有效的机械、绝缘等

方面的保护,防止外力或环境因素导致的破坏。“封装”的概念正事在此基础上出现的。 二、集成电路封装的概述 集成电路芯片封装(Packaging,PKG)是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连线,引出接线端并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺。此概念称为狭义的封装。 集成电路封装的目的,在于保护芯片不受或少受外界环境的影响,并为之提供一个良好的工作条件,以使集成电路具有稳定、正常的功能。封装为芯片提供了一种保护,人们平时所看到的电子设备如计算机、家用电器、通信设备等中的集成电路芯片都是封装好的,没有封装的集成电路芯片一般是不能直接使用的。 集成电路封装的种类按照外形、尺寸、结构分类可分为引脚插入型、贴片型和高级封装。 引脚插入型有DIP、SIP、S-DIP、SK-DIP、PGA DIP:双列直插式封装;引脚在芯片两侧排列,引脚节距,有利于散热,电气性好。 SIP:单列直插式封装;引脚在芯片单侧排列,引脚节距等特征与DIP基本相同。

3D封装集成电路测试挑战的ATE解决方案

ATE solutions to 3D-IC test challenges The rea diness of Advantest’s V93000 Scott Chesnut scott.chesnut@https://www.360docs.net/doc/5e5086747.html, Robert Smith robert.j.smith@https://www.360docs.net/doc/5e5086747.html, Florent Cros florent.cros@https://www.360docs.net/doc/5e5086747.html, Lakshmikanth Namburi lakshmikanth.namburi@https://www.360docs.net/doc/5e5086747.html, Advantest America San Jose, California USA Abstract—Three dimensional integrated circuits (3D-IC) require that automatic test equipment develop capability to address the challenges brought on by these structures. Such capability is found in test solutions which provide multiple clock domains, granular hardware porting per 3DIC layer, powerful test languages to control this hardware and collaborative software development environments. Advantest’s introduction of clock domain per pin, multi-port, concurrent test, and protocol aware software, MEMS probes, and SmarTest program manager address the test challenges of 3DIC in an effective effectively. They allow production solutions to be architected to the degree of granularity required by the development teams. Keywords—Protocol aware, Clock domain per pin, multi-port hardware, concurrent test framework, Protocol aware, SmarTest program manager, PLL Keep Alive, 3DIC TSV, 25uM pitch, MEMS Probes, ATE, BIST, JTAG, Pico Ampere Meter, interposer, spatial translation, MEMS, planarity, probes, cantilever, beam. I.I NTRODUCTION 3D chips are multi-system entities whose test challenges dwarf those presented by yesterday’s System in a Package (SiP) and/or System On a Chip (SOC). Substantial infrastructure must be readied in order to position any Automatic Test Equipment (ATE) to succeed in a production test environment. A good approach to understanding what the real challenges are would be to eliminate those with already known solutions. Past efforts to reduce test time, increase test coverage, and coordinate the software efforts of large groups of test engineers have solved 2D related production test problems. While these solutions had been developed for reasons other than 3DIC/TSV production test, we find they may lend themselves well to the task. Many of the perceived 3DIC/TSV test problems actually already have solutions. What follows is a description of how the existing features of Advantest’s V93000 might address many of these challenges. A.Test Program Software Maintenance – SmarTest Program Manager. Historically, a chip had one function. As more functions where added they became systems on a chip and then the migration to system in a package occurred. 3DIC systems in a stack add even greater complexity. Whether 3D stacks are assembled from Known Good Die (KGD) or Pretty Good Die (PGD) it can be assumed that “some” level of test will occur at both the chip level and then the stack level. Without assurance that chip layers are somewhat functional, a single layer’s defect can result with failing of the entire stack. Test costs become prohibitive as many good die are lost due to a single bad layer. Testing die before and after stack assembly requires use of variations of the same test program. One program version is used for the single die, another for the assembled stack. This is because test at the chip level will target its subcomponents while test at the stack level will exercise mission mode system level performance. It is likely that the same program be used for both activities with the difference being in how it perceives its current purpose. That is, a well architected test program can receive instructions from an operator or prober/handler and branch into chip or stack level test. Whether testing PGD, KGD, on the chip or stack level, use of the same program to test both reduces the correlation burden between chip test and assembled stack test. Proper maintenance of these program variations will require tighter book keeping than in the past. 3D structures, being built from multiple separate chip layers have associated with them legions of test, product and design engineers responsible for performance of each layer. Large groups of people who, while in the past never had reason to collaborate, in the future will find it absolutely necessary. Since each layer represents man years of test development effort, the test programs of each engineering group will have

8255A芯片

8255A芯片 Intel 8086/8088 系列的可编程外设接口电路(Programmable Peripheral Interface)简称 PPI,型号为8255(改进型为8255A及 8255A-5),具有24条输入/输出引脚、可编程的通用并行输入/输出接口电路。它是一片使用单一+5V电源的40脚双列直插式大规模集成电路。8255A 的通用性强,使用灵活,通过它CPU可直接与外设相连接。 8255A在使用前要写入一个方式控制字,选择A、B、C三个端口各自的工作方式,共有三种; 方式0 :基本的输入输出方式,即无须联络就可以直接进行的 I/O方式。其中A、B、C口的高四位或低四位可分别设置成输入或输出。 方式1 :选通I/O,此时接口和外围设备需联络信号进行协调,只有A 口和B口可以工作在方式1,此时C口的某些线被规定为A口或B口与外围设备的联络信号,余下的线只有基本的I/O功能,即只工作在方式0. 方式2:双向I/O方式,只有A口可以工作在这种方式,该I/O线即可输入又可输出,此时C口有5条线被规定为A口和外围设备的双向联络线,C口剩下的三条线可作为B口方式1的联络线,也可以和B口一起方式0的I/O线。 8255A是一个并行输入、输出器件,具有24个可编程设置的I/O口,包括3组8位的I/O为PA口、PB口、PC口,又可分为2组12位的I/O口:A组包括A口及C口高4位,B组包括B口及C组的低4位。 A口可以设置为方式0、方式1、方式2,B口与C口只能设置为方式0或方式1. 8253A芯片 可编程定时/计数器是 intel 82583-PTT 就是软件和硬件技术的结合 功能:一片上有3个独立的16位计数通道 每个计数通道都可按二进制计数或十进制计数 每个计数器的计数速率可高达2mhz 每个通道有6种工作方式,可由程序设置和改变 所有的输入输出都与ttl兼容

集成电路封装与系统测试

集成电路封装与系统测试课程实验报告电子、集成专业 (2014—2015学年第一学期) 课程名称集成电路封装与系统测试 课程类别□必修□√限选 班级 学号 姓名 任课教师 考试日期

目录 一、实验目的......................................................... - 2 - 二、实验原理......................................................... - 2 - BC3199集成电路测试系统简介 ..................................... - 2 -测试电路原理图................................................... - 3 -测试参数分析..................................................... - 3 -测量输出电压Vo ............................................. - 3 - 测量电源电压调整率.......................................... - 4 - 测量负载电压调整率.......................................... - 4 - 三、实验设备......................................................... - 4 - 四、实验步骤......................................................... - 4 - 焊制电路板...................................................... - 4 -建立LM7805测试程序............................................. - 5 -测试数据及结果.................................................. - 5 - 五、实验结论......................................................... - 6 - 六、心得体会......................................................... - 6 -附录:............................................................... - 7 -

集成电路封装测试题 期末2017

1、引线键合技术的分类及结构特点? 答: 1、热压焊:热压焊是利用加热和加压力,使焊区金属发生塑性形变,同时破坏压 焊界面上的氧化层,使压焊的金属丝与焊区金属接触面的原子间达到原子的引 力范围,从而使原子间产生吸引力,达到“键合”的目的。 2、超声焊:超声焊又称超声键合,它是利用超声波(60-120kHz)发生器产生的能量, 通过磁致伸缩换能器,在超高频磁场感应下,迅速伸缩而产生弹性振动经变幅 杆传给劈刀,使劈刀相应振动;同时,在劈刀上施加一定的压力。于是,劈刀 就在这两种力的共同作用下,带动Al丝在被焊区的金属化层(如Al膜)表面迅 速摩擦,使Al丝和Al膜表面产生塑性形变。这种形变也破坏了Al层界面的氧 化层,使两个纯净的金属面紧密接触,达到原子间的“键合”,从而形成牢固 的焊接。 3、金丝球焊:球焊在引线键合中是最具有代表性的焊接技术。这是由于它操作方 便、灵活,而且焊点牢固,压点面积大,又无方向性。现代的金丝球焊机往往 还带有超声功能,从而又具有超声焊的优点,有的也叫做热(压)(超)声焊。可实 现微机控制下的高速自动化焊接。因此,这种球焊广泛地运用于各类IC和中、 小功率晶体管的焊接。 2、载带自动焊的分类及结构特点? 答:TAB按其结构和形状可分为 Cu箔单层带:Cu的厚度为35-70um, Cu-PI双层带 Cu-粘接剂-PI三层带 Cu-PI-Cu双金属 3、载带自动焊的关键技术有哪些? 答:TAB的关键技术主要包括三个部分: 一是芯片凸点的制作技术; 二是TAB载带的制作技术; 三是载带引线与芯片凸点的内引线焊接和载带外引线的焊接术。制作芯片凸点除作为TAB内引线焊接外,还可以单独进行倒装焊(FCB) 4.倒装焊芯片凸点的分类、结构特点及制作方法? 答:蒸镀焊料凸点:蒸镀焊料凸点有两种方法,一种是C4 技术,整体形成焊料凸点; 电镀焊料凸点:电镀焊料是一个成熟的工艺。先整体形成UBM 层并用作电镀的导电层,然后再用光刻胶保护不需要电镀的地方。电镀形成了厚的凸点。 印刷焊料凸点:焊膏印刷凸点是一种广泛应用的凸点形成方法。印刷凸点是采用模板直接将焊膏印在要形成凸点的焊盘上,然后经过回流而形成凸点钉头焊料凸点:这是一种使用标准的球形导线键合技术在芯片上形成的凸点方法。可用Au 丝线或者Pb 基的丝线。 化学凸点:化学镀凸点是一种利用强还原剂在化学镀液中将需要镀的金属离子还原成该金属原子沉积在镀层表面形成凸点的方法。

相关文档
最新文档