加酸核桃红枣复合饮料加工工艺研究(1)

加酸核桃红枣复合饮料加工工艺研究(1)
加酸核桃红枣复合饮料加工工艺研究(1)

第33卷 第9期西北农林科技大学学报(自然科学版)V o l.33N o.9 2005年9月Jour.of N o rthw est Sci2T ech U niv.of A gri.and Fo r.(N at.Sci.Ed.)Sep.2005加酸核桃红枣复合饮料加工工艺研究Ξ

张京芳,陈思思

(西北农林科技大学林学院,陕西杨凌712100)

[摘 要] 以红枣、核桃为原料,探讨加酸核桃红枣复合饮料的加工工艺,研究该复合蛋白饮料的稳定技术和最佳配方。结果表明,核桃仁去皮的适宜条件是在100℃下用10g L N aOH浸泡3m in,藻酸丙二醇酯(PGA)与单甘酯是该酸性复合饮料较理想的稳定剂,该复合饮料最佳配方是:枣汁与核桃浆体积比为2∶1,每升复合饮料加入蔗糖40g,蛋白糖3g,单甘酯1g,柠檬酸3g,磷酸二氢钠1.5g及PGA4g,其适宜的杀菌条件是100℃下煮沸杀菌15m in。

[关键词] 核桃;红枣;复合饮料;稳定性

[中图分类号] T S275.4 [文献标识码] A[文章编号] 167129387(2005)0920081205

核桃仁和红枣营养丰富,富含功能性成分[1,2]。近年来对红枣、核桃的加工利用越来越多,红枣除用于鲜食外,还可加工成蜜枣、干枣、枣粉、枣汁等。核桃仁除直接食用外,也可制成核桃乳、蜜制核桃仁、核桃粉等加工品。当前人们对饮料的要求越来越高,更趋以将营养、安全、保健融为一体。在植物蛋白饮料中加入果汁,既可以增加饮品的营养,又能掩盖某些蛋白饮料的不良风味,改善其口感[1,3]。若将核桃仁加工成单纯的核桃汁,则汁液粘稠,风味单一。而配以风味独特的枣汁,再调制成酸性饮料,不但风味爽口,而且营养合理。截止目前,尚未见到将核桃、红枣复合制成酸性蛋白饮料的研究报道。本试验以红枣、核桃仁为原料,使两者在营养、口感、风味等方面进行互补,研究加酸红枣核桃复合蛋白饮料的加工工艺,探讨其稳定技术及工艺配方,以期为该酸性复合饮料的工厂化生产提供工艺参数和理论依据,并为核桃、红枣资源的充分利用提供新的思路。

1 材料与方法

1.1 材 料

原辅材料 红枣、核桃、白砂糖、蛋白糖、羟甲基纤维素钠(C M C)、藻酸丙二醇酯(PGA)、黄原胶、单甘酯、蔗糖酯(食品级)、柠檬酸、磷酸二氢钠(分析纯)和果胶酶(诺和诺德公司提供)。

主要仪器 打浆机(H P2550A)、胶体磨(250型)、均质机(GXB60268)。

1.2 方 法

1.2.1 工艺流程 本试验的工艺流程为:

核桃→去外壳→挑选→浸泡→去皮→磨浆→过滤→核桃浆γ

红枣→挑选清洗→烘烤→破碎→浸提→澄清→过滤→澄清汁η

→调配→均质→灌装→脱气→杀菌→冷却→成品

1.2.2 核桃浆的制备 核桃浆的制备步骤为:①挑选浸泡。取优质核桃仁,用清水浸泡8~10h,核桃仁和水的质量比为1∶2。②去皮。将核桃仁用100℃,10g L N aOH溶液处理3m in,再用冷水冲洗。

③磨浆。加入核桃仁8倍质量的热水打浆,采用孔径1mm的筛布过滤后,胶体磨细磨。

1.2.3 枣汁的制备 枣汁的制备步骤为:①选料清洗。选优质干枣,流动水冲洗2~3次。②烘烤。在60~80℃温度下烘烤1~2h,至红枣发出焦香味。③保温提汁。将红枣适当破碎,加红枣质量10倍的水,再加入0.1mL L Pectinex Sm ash,于45℃下浸提8~10h,用孔径2mm筛网过滤后,向滤液中加入0.5mL L Pectinex5XL,在40℃下保温8h,过滤得澄清枣汁[4]。

1.3 试验内容

1.3.1 核桃仁去皮试验 (1)碱液浓度对去皮效果的影响。选优质核桃仁,用清水浸泡8~10h,核桃仁和水质量比为1∶2,然后将核桃仁置于温度为70

Ξ[收稿日期] 2004212227

[作者简介] 张京芳(1965-),女,陕西合阳人,副教授,博士,主要从事食品加工工艺与功能成分分析研究。

℃,质量浓度分别为10,20,30和40g L的N aOH 溶液中(溶液质量为核桃仁的2倍),分别浸泡1,2, 3,4,5m in,观察核桃仁的去皮情况。(2)碱液温度及处理时间对去皮效果的影响。选优质核桃仁,用清水浸泡8~10h,核桃仁和水质量比为1∶2,再将核桃仁置于质量浓度为10g L、温度分别为40,60,80和100℃的N aOH溶液中(溶液质量为核桃仁的2倍),分别浸泡2,3,4,4.5,5.0,5.5,6.0,6.5,7.0 m in,观察核桃仁的去皮情况。

1.3.2 稳定剂选择试验 (1)单一稳定剂对酸性核桃红枣复合饮料的稳定效果。取1L核桃红枣复合饮料(其中含枣汁600mL,核桃浆300mL,蔗糖40 g,蛋白糖3g,单甘酯1g,磷酸二氢钠1.5g),当柠檬酸加入量分别为1,2和3g时,分别将1,2和3 g L的黄原胶、C M C及2,3,4g L的PGA加入到此复合饮料中,观察不同稳定剂在不同浓度下对酸性核桃红枣复合饮料的稳定效果。(2)复合稳定剂对酸性核桃红枣复合饮料的稳定效果。取1L核桃红枣复合饮料(含枣汁600mL,核桃浆300mL,蔗糖40g,蛋白糖3g,单甘酯1g,磷酸二氢钠1.5g),当柠檬酸加入量分别为1,2和3g时,加入4g黄原胶和PGA复合稳定剂(其中黄原胶和PGA的质量比分别是1∶3,1∶4,1∶5),观察复合稳定剂对酸性核桃红枣复合饮料的稳定效果。(3)乳化剂对酸性核桃红枣复合饮料的稳定效果。取1L核桃红枣复合饮料(含枣汁600mL,核桃浆300mL,蔗糖40g,蛋白糖3g,PGA4g,柠檬酸3g,磷酸二氢钠1.5g),分别将2,3g L单甘酯,1,2g L蔗糖酯及1g L单甘酯+1g L蔗糖酯组成的复合乳化剂加入到此复合饮料中,观察不同乳化剂在不同浓度下对酸性核桃红枣复合饮料的稳定效果。

1.3.3 杀菌温度和杀菌时间对酸性核桃红枣复合饮料稳定性的影响 将酸性核桃红枣复合饮料分别在85,100℃的热水中杀菌10,15和20m in,观察杀菌温度和时间对饮料稳定性的影响。

1.3.4 离心沉淀率[5]的测定 取25mL酸性核桃红枣复合饮料,于3000r m in条件下离心10m in,将沉淀物烘干至恒重,以沉淀物质量占总固形物质量的百分比表示离心沉淀率。

1.3.5 酸性核桃红枣饮料配方优选试验 在以上稳定剂选择试验的基础上,取PGA和柠檬酸的加入量分别为4,3g L,进行表1所示的4因素3水平正交试验,采用L9(34)正交设计表,请10名同学进行品评,根据产品的色泽、香味、口感、组织状态评分,选出最优配方,并测定离心沉淀率。

表1 配方因素优选试验因素水平表

T able1 L evel and facto rs of o rthogonal test

水平L evel 枣汁和核桃浆体积比

Jujube juice∶w alnut

A

蔗糖 (g?L-1)

Sucro se

B

蛋白糖 (g?L-1)

A lbum ent candy

C

单甘酯 (g?L-1)

Glycerin

mono stearate

D

11∶13011 22∶14022 33∶15033

2 结果与分析

2.1 核桃仁去皮试验

2.1.1 碱液浓度对去皮效果的影响 试验结果表明,碱液浓度越高,核桃仁去皮所需时间越短,但腐蚀程度越严重。核桃仁在70℃,10g L N aOH溶液中处理5m in,能去皮且无腐蚀现象,当N aOH质量浓度达到20g L以上时,虽核桃仁去皮所需时间缩短,但核桃仁受到腐蚀。因此,N aOH质量浓度以10

g L为宜。

2.1.2 碱液温度及处理时间对去皮效果的影响 将核桃仁置于质量浓度10g L的N aOH溶液中,在不同温度下处理不同时间,观察去皮情况。结果发现,碱液温度越高,核桃仁去皮所需时间越短。核桃仁在40℃的N aOH溶液中处理7m in时,仍不易去皮;60℃下处理5.5m in,核桃仁不易去皮且有少许腐蚀;当温度升至80℃,处理4.5m in时,核桃仁虽易去皮,但有明显的腐蚀现象;100℃下处理3m in,无腐蚀现象且易去皮;100℃下处理4m in,虽更易去皮但会产生腐蚀作用。因此,核桃仁去皮适宜的N aOH溶液温度为100℃,处理时间为3m in。

综合以上试验结果可知,核桃仁碱液去皮的工艺条件为:在100℃,质量浓度10g L N aOH溶液中处理3m in,再用冷水冲洗。

2.2 稳定剂选择试验

核桃乳蛋白饮料常发生脂肪上浮,蛋白质颗粒下沉等不良现象。另外,加入呈酸性的枣汁及柠檬酸后,也会使蛋白质发生变性而沉淀。要解决这一问

28西北农林科技大学学报(自然科学版)第33卷

题,需选用合适的稳定剂以提高复合饮料的稳定性。2.2.1 单一稳定剂对复合饮料的稳定效果 研究

加入不同浓度柠檬酸时,不同浓度C M C 、黄原胶及

PGA 对酸性核桃红枣复合饮料稳定性的影响。

结果发现,当柠檬酸加入量分别为1,2和3g L ,C M C 用量为1g L 时,该复合饮料明显分层;C M C 用量

为2g L 时,饮料在杀菌前有少许絮状物,杀菌后蛋

白质絮状物下沉;C M C 用量为3g L 时,饮料杀菌前有许多絮状沉淀,说明加入C M C 并未改进饮料的稳定性。黄原胶、PGA 对酸性核桃红枣复合饮料稳定性的影响情况如表2,3所示。

表2 黄原胶对酸性核桃红枣复合蛋白饮料稳定性的影响

T able 2 Effect of Xanthan gum on stability of the acidic jujube 2w alnut compound p ro tein beverage

柠檬酸

(g ?L -1)

C itric acid

黄原胶

(g ?L -1)Xanthan gum 1

2

3

1混合后立即出现分层现象

I mm ediately separated after m ixing

杀菌后有絮状物

F loccule after disinfecting

2d 后出现絮状下沉F loccule sedi m ent 2

ed 2days after disinfecting

2混合后立即出现分层现象

I mm ediately separated after m ixing

杀菌后有絮状物

F loccule after disinfecting

2d 后出现絮状下沉F loccule sedi m ent 2ed 2days after disinfecting

3

混合后立即出现分层现象

I mm ediately separated after m ixing

杀菌前有絮状物

F loccule after disinfecting

3d 后出现絮状下沉F loccule sedi m ent 2ed 3days after disinfecting

表3 PGA 对酸性核桃红枣复合蛋白饮料稳定性的影响

T able 3 Effect of PGA on stability of the acidic jujube 2w alnut compound p ro tein beverage

柠檬酸

(g ?L -1)

C itric acid

PGA

(g ?L -1)2

3

4

1有絮状物

F loccule

1d 后沉淀

Sedi m ented 1day after disinfecting

下层有少许沉淀物

Sedi m ent low er the compound juice

2有絮状物

F loccule

上层有许多块状物

F loccule upper the compound juice

下层有少许沉淀物

Sedi m ent low er the compound juice

3

表面有许多块状物

F loccule on the surface

上层有许多块状物

F loccule upper the compound juice

稳定Stability

由表2,3可知,黄原胶加入浓度为3g L 时,复合饮料稳定性虽有所改善,但此时黄原胶的使用量已超过国家标准GB 376021996允许黄原胶的最大使用量(1g L );随PGA 加入量逐渐增大,饮料的稳定性也随之增强,当PGA 加入量为4g L 时,饮料稳定效果最好,且在国家标准GB 2760296允许的范围内。

2.2.2 复合稳定剂对复合饮料的稳定效果 黄原胶与PGA 的质量比为1∶3,1∶4,1∶5时,分别加

入1,2和3g L 柠檬酸,观察发现饮料均有明显分层现象,可见复合稳定剂不及单一稳定剂PGA 的效果好。

2.2.3 乳化剂对复合饮料的稳定效果 从表4可

以看出,单独使用单甘酯的效果较单独使用蔗糖酯或使用单甘酯与蔗糖酯组成的复合乳化剂效果好,所以选用单甘酯为酸性核桃红枣复合饮料的乳化剂。

表4 乳化剂对酸性核桃红枣复合蛋白饮料稳定性的影响

T able 4 Effect of em ulsifier on stability of the acidic jujube 2w alnut compound p ro tein beverage 乳化剂Em ulsifier

用量 (g ?L -1)Amount

效果R esult

单甘酯Glycerin mono stearate 23

无油脂上浮N o fat floating 无油脂上浮N o fat floating 蔗糖酯Sucro se fatty acid ester

1

 

2油圈较厚,放置2d 上浮

T h ick fat circle ,floating 2days after disinfecting 油圈较厚,放置2d 上浮

T h ick fat circle ,floating 2days after disinfecting 单甘酯+蔗糖酯

Glycerin mono stearate +Sucro se fatty acidester

1+1

油圈薄,放置4d 上浮

T h in fat circle ,floating 4days after disinfecting

2.4 加样顺序对复合饮料稳定性的影响

通过试验,加样顺序可简要表示为:PGA +单甘酯+糖→核桃浆←枣汁←柠檬酸+磷酸二氢钠。若将PGA 直接加入核桃浆,会有结块现象;若将核

桃浆加入枣汁,则立即分层。

2.5 杀菌温度和杀菌时间对复合饮料稳定性的影

酸性蛋白饮料通常采用热杀菌法,杀菌时间过

3

8第9期张京芳等:加酸核桃红枣复合饮料加工工艺研究

长或过短,温度控制不当均达不到最佳杀菌效果。试验发现,在85℃杀菌10,15和20m in,酸性核桃红枣复合饮料的稳定天数仅有2~3d;而在100℃杀菌10,20m in也只能稳定3~5d;只有100℃下杀菌15m in的稳定时间最长,可达210d以上,所以本试验选用的杀菌条件为100℃下杀菌15m in。

2.6 配方优选试验

表5极差分析表明,各因素对饮料影响顺序应为A>D>C>B,最佳配方是A2B2C3D1,即枣汁和核桃浆体积比为2∶1,蔗糖40g L,蛋白糖3g L,单甘酯1g L,A2B2C3D1的离心沉淀率为28%,为以上配方中的最小值,说明此配方饮料中蛋白质的稳定性最好,此时该复合饮料的pH值为3.8。

表5 配方优选试验结果

T able5 D esign of o rthogonal test and test data 试验号

T est num ber A B C D

离心沉淀率 %

P reci p ita2

ting rate

感官评分

Senso ry

value

11(1∶1)1(30)1(1)1(1)356.5 21(1∶1)2(40)2(2)2(2)328.5 31(1∶1)3(50)3(3)3(3).386.0 42(2∶1)1(30)2(2)3(3)298.0 52(2∶1)2(40)3(3)1(1)289.0 62(2∶1)3(50)1(1)2(2)288.5 73(3∶1)1(30)3(3)2(2)447.0 83(3∶1)2(40)1(1)3(3)535.0 93(3∶1)3(50)2(2)1(1)416.5 K12121.52022

K225.522.52324

K318.5212219

R2.30.51.01.7

注:感官评分采用10分制。

N o te:T en m ark s w as adop ted.

3 讨 论

3.1 核桃仁去皮方法的探讨

核桃仁皮中含有纤维素、单宁等物质,若有少量残留于饮料中,会使饮料风味苦涩,颜色发暗,且形成褐色沉淀[6,7]。因此,在核桃仁深加工过程中,必须解决核桃仁的去皮问题。以往的去皮工艺主要采用碱液处理、加热法和冷热交替法。加热法处理的时间较长,会使色素渗透到核桃仁内部,从而影响核桃乳的色泽;冷热交替法处理后,核桃仁皮较硬,不易去除;用碱液处理核桃仁后,皮易剥离,但如果处理不当会导致核桃仁发黄,易被腐蚀,所以必须采用适宜的碱液浓度、碱液温度和处理时间,才能达到理想的去皮效果。本试验发现,若碱液质量浓度过小、处理时间过短、温度太低,则核桃仁去皮不彻底;但若碱液质量浓度过大、处理时间过长、温度太高又会对核桃仁造成腐蚀。本试验结果表明,碱液去皮的适宜条件为100℃下用10g L N aOH溶液浸泡3m in。3.2 酸性核桃红枣复合饮料稳定性的探讨

3.2.1 稳定剂对复合饮料稳定性的影响 酸性红枣核桃复合蛋白饮料是以水为分散介质,以蛋白质、脂肪为分散相的宏观分散体系,处于复杂的不稳定状态,既有蛋白质形成的悬浮液,又有脂肪形成的乳浊液,还有糖、盐等形成的真溶液,存放时间稍长会出现蛋白质颗粒聚沉和脂肪上浮现象。添加适量的乳化稳定剂,是提高植物蛋白饮料稳定性的主要方法之一[8,9]。食品乳化剂通常是非离子型表面活性剂,其分子内部既有亲水基团,又有疏水基团,当其加入到饮料中后,其分子向着水油表面定向吸附,降低了表面张力,从而可有效防止脂肪上浮和乳液中粒子间的相互聚合,最终达到稳定效果[10]。本试验结果表明,4g L的PGA和1g L的单甘酯是酸性核桃红枣复合饮料的理想稳定剂。

3.2.2 pH值对复合饮料稳定性的影响 蛋白质在其等电点附近易发生沉淀,植物蛋白的等电点一般为

4.0~6.0。有研究表明,核桃蛋白的等电点为:主等电点pH值4.2,次等电点pH值3.4;当pH值为3.8时,核桃蛋白基本处于溶解状态[11]。本试验按最佳配方得到饮料的pH值为3.8,避开了核桃蛋白的等电点,所以蛋白质未发生变性沉淀。

3.2.3 加样顺序对饮料稳定性的影响 加样顺序对饮料稳定性有至关重要的影响。因为磷酸二氢钠

48西北农林科技大学学报(自然科学版)第33卷

对枣汁中的金属离子具有螯合作用,能够防止枣汁中的钙、镁等离子与核桃浆中的蛋白质粒子作用而产生沉淀,所以应先将柠檬酸与磷酸二氢钠混合溶解后,再加入到枣汁中;PGA 和单甘酯与蔗糖混合后,充分溶解于40~50℃的水中,边搅拌边加入到核桃浆中,充分搅匀,再将枣汁缓慢加入核桃浆中,注意应边搅拌边加入,若顺序颠倒,则会出现蛋白质沉淀或分层现象。3.3 杀菌条件的探讨

蛋白质受高温作用会发生变性,若温度过高或

长时间处于高温下,蛋白质会发生不可逆变性,使产品稳定性降低。因此,合理地确定杀菌条件对蛋白饮料的质量控制非常重要。本试验得到的是酸性蛋白饮料,所以采用常压热杀菌法。本试验发现,100℃下杀菌15m in ,产品具有较好的稳定性和较长的货架期。

4 结 论

(1)加酸核桃红枣复合饮料的加工工艺流程为:

蔗糖+PGA +单甘酯→溶解——↓

核桃→去外壳→挑选→浸泡→去皮→磨浆→过滤→核桃浆γ红枣→挑选清洗→烘烤→破碎→浸提→澄清→过滤→澄清汁η

→调配→均质→灌装→脱气→杀菌→冷却→成品

柠檬酸、磷酸二氢钠→溶解——↑

(2)碱液去皮的最佳工艺条件为:100℃下用

10g L 的N aOH 溶液浸泡3m in 。

(3)酸性核桃红枣复合饮料的最佳配方为:枣汁∶核桃浆的体积比为2∶1,蔗糖40g L ,蛋白糖3g L ,单甘酯1g L ,柠檬酸3g L ,磷酸二氢钠1.5g L ,PGA 4g L 。

(4)加料顺序为柠檬酸与磷酸二氢钠混合溶解

后加入枣汁中,糖、单甘酯、PGA 混合溶解加入核桃

浆中,再将枣汁缓慢加入到核桃浆液中,并不断地进行充分搅拌。

(5)杀菌条件为常压下100℃杀菌15m in 。

[参考文献]

[1] 李卫明,王兰君.植物蛋白质加工工艺与配方[M ].北京:中国轻工业出版社,1998.[2] 张苏勤.复方滋补大枣饮料的研制[J ].四川食品工业科技,1994,(4):18-19.[3] 秦卫东.含果汁植物蛋白饮料稳定性研究[J ].食品工业科技,2000,21(1):47-48.[4] 张亚莉.澄清枣汁加工工艺研究[J ].陕西西安:陕西师范大学出版社,2002.

[5] 钟 芳,麻建国,许时婴,等.松子饮料制备工艺初探[J ].食品科学,2001,22(1):47-50.[6] 周 英,马少怀.核桃仁保健饮料的生产工艺[J ].食品工业科技,2000,21(6):58-59.[7] 刘金福,王浩田.核桃乳饮料生产工艺研究[J ].天津农学院学报,2000,(3):39-41.[8] 罗 平.饮料分析与检验[M ].北京:中国轻工业出版社,1993.39-41.

[9] 刘福林,杨文侠,李应彪,等.植物蛋白饮料稳定性的探讨[J ].饮料加工,1999,2(1):39-41.

Studies on p rocessing techno logy of the acidic ju jube 2w alnu t com pound p ro tein beverage

ZHANG J i ng -fang ,CHEN Si -si

(College of Forestry ,N orthw est A &F U niversity ,Y ang ling ,S haanx i 712100,Ch ina )

Abstract :A cidic ju jube 2w alnu t com pound p ro tein beverage ,m ade of ju jube and w alnu t ,is a k ind of com pound vegetab le p ro tein beverage .T he p rocessing techno logy w as studied in the pap er .T he m ain re 2su lts are listed as fo llow s :T he op ti m um conditi on fo r rem oving sk in of w alnu t is 100℃,10g L hydrox ide sodium fo r 3m in .T he ideal stab ilizers are PGA and glycerin m ono stearate .T he best rati o of ju jube ju ice

and w alnu t slu rry is 2∶1(V V ),cane sugar 40g L ,album en candy 3g L ,glycerin m ono stearate 1g L ,citric acid 3g L ,N aH 2PO 41.5g L ,PGA 4g L .A nd the op ti m um conditi on of sterilizing is 100℃fo r 15m in .

Key words :w alnu t ;ju jube ;com pound beverage ;stab ility

5

8第9期张京芳等:加酸核桃红枣复合饮料加工工艺研究

国内外茶饮料加工技术研究进展

中国茶饮料生产及技术研究现状 一、中国茶饮料生产现状 (一)市场现状 我国在20世纪7O年代末就已开始研制茶饮料,80年代以来,在与碳酸饮料、矿泉水、果蔬汁饮料等的竞争中有了较快的发展,90年代中后期,一些大型食品企业纷纷参与茶饮料的开发与生产,如统一、可口可乐、联合利华、娃哈哈、健力宝、乐百氏、椰树、汇源等,使我国茶饮料生产成燎原之势。截止2005年,中国约有茶饮料生产企业近40家,其中大中型企业有l5家,上市品牌多达100多个,有近50个产品种类。市场上常见的茶饮料主要有康师傅、统一、哇哈哈、农夫等品牌的乌龙茶、绿茶、花茶等茶水系列产品。而与此同时,中国茶饮料消费市场的发展速度更是惊人,几乎以每年30%的速度增长,占中国饮料消费市场份额的20%,超过了果汁饮料而名列饮料市场的第三位,大有赶超碳酸饮料之势。 (二)加工现状 为解决茶饮料加工的技术问题。茶叶或其它食品饮料研究工作者进行大量深入细致的研究,试图从茶饮料加工的各个环节进行控制,这主要包括;原料选择、浸提、过滤、抗氧化剂或其它添加剂的添加、包装、灭菌、贮藏等技术。 茶饮料的研究与开发必须以纯茶饮料为落脚点,在引导消费者从饮用可乐、矿泉水等非茶饮料向茶饮料过渡的时期,风味茶饮料的推出固然重要,但必须特别注意要以茶为主,要突出茶的特色和风昧,以免误导。茶饮料出现的混浊沉淀主要是由茶叶内含成分引起的,也是茶饮料风昧物之所在。采用一些物理方法如选用含多酚量低的品种作原料,改善包装的质量和贮藏条件可能更有利于饮料茶原色原昧的保持。此外,我国茶叶的流通体制也存在许多弊端,这种体制更加不能适应饮料茶的要求。因此,研制与开发茶饮料,必须改变流通环节过多、贮运期过长的弊病,尽量缩短产品到达消费者手中的时间,以防饮料茶的品质劣变。 二、不同风味茶饮料的加工工艺

食品工程毕业论文-红枣-胡萝卜复合饮料的加工工艺研究

毕业论文 论文题目: 红枣-胡萝卜复合饮料的加工工艺研究所在学院:食品工程分院 专业班级: 学生: 指导教师: 二0一五年四月

目录 题目 (1) 摘要及关键词 (1) 一、试验材料与设备 (2) (一)试验材料 (2) (二)试验器材 (2) 二、试验方法 (2) (一)工艺流程 (2) (二)操作要点 (2) 1. 红枣汁的制备 (3) 2. 胡萝卜汁的制备 (3) 3. 红枣-胡萝卜复合饮料配方优选 (3) 4. 不同稳定剂对红枣-胡萝卜复合饮料稳定性研究 (4) 三、结果与分析 (4) (一)酶法提取枣汁条件的确定 (4) (二)红枣-胡萝卜复合饮料最佳配方的确定 (4) (三)稳定剂对复合饮料稳定性的影响 (5) (四)产品检验结果 (5) 1.感官评定结果 (6) 2.理化指标检验结果 (6) 3.微生物指标检验结果 (6) 四、结论 (8) 参考文献 (8) 致谢 (9)

红枣-胡萝卜复合饮料的加工工艺研究 摘要:为了确定红枣-胡萝卜复合饮料的最佳工艺条件,以红枣和胡萝卜为原料,用酶法提取枣汁,通过正交试验确定枣汁的最佳浸提条件和红枣-胡萝卜复合饮料的最佳配方,在红枣-胡萝卜复合饮料中分别加入CMC(羧甲基纤维素钠)、黄原胶、海藻酸钠3种稳定剂,研究稳定剂对复合饮料的影响。经过试验得出结论,枣汁提取的最佳工艺条件为:加水量为枣重的5倍,果胶酶用量0.20%,在50℃下提取4h。红枣-胡萝卜复合饮料的最佳配方为:红枣汁40%,胡萝卜汁45%,蔗糖 8%,柠檬酸 0.10%。选择海藻酸钠作为红枣-胡萝卜复合饮料的稳定剂,其适宜用量为0.15%。该复合饮料色泽红润,口感细腻,酸甜适口,具有浓郁的胡萝卜和红枣的复合香气,是集营养和保健于一体的天然饮品。 关键词:红枣汁,胡萝卜汁,复合饮料,加工工艺 Red jujube - carrot compound beverage processing technology research Abstract: in order to determine the optimum process conditions of red jujube - carrot compound beverage of red jujube and carrot as raw material, using enzymatic extraction of jujube juice, jujube juice through orthogonal experiment the optimum extraction conditions and jujube beta-carotene the best formula of compound beverage, respectively in jujube - carrot compound beverage joining CMC (carboxymethyl cellulose sodium), xanthan gum, sodium alginate 3 kinds of stabilizer, study the influence of stabilizer to compound beverage. After experiment concluded that the optimum process conditions of jujube juice extraction as follows: the water content of jujube weight Keywords:red jujube juice, carrot juice, compound beverage, processing technology

茶饮料制作方法的简要说明

茶饮料制作方法的简要说明 1、流行制作方法:茶叶——浸提(85℃/15`)——粗滤(80℃)——迅速冷却(5℃)——精滤(5℃)——调配(80℃)——高温杀菌(90℃/15`)——灌装(88℃)封盖 2、北京市营养源研究所孙庆文、侯庆的制作方法:茶叶——浸提(>85)——粗滤(80℃)——澄清处理(80℃)——调配(80℃)——精滤(75℃))——杀菌(90℃)——灌装(88℃)封盖 3、方法1和2的主要区别:方法1:高温浸提,冷却出浑后精滤澄清,最后再提高温度灭菌;方法2:浸提后保持自然温降,高温澄清,最后也高温杀菌。 4、方法2的优势:澄清透明度高,澄清状态稳定。节能效果显著。 1 、关于茶饮料的澄清

茶饮料的品质,是指茶饮料的茶滋味、茶香、茶色、卫生和澄清透明等诸方面。澄清透明是其中很重要的一个组成部分。如果一种茶饮料产品的澄清透明度较高,就会在消费者和经销商眼中显得品质很优秀。如果一种茶饮料产品的澄清透明度较低,就会在消费者和经销商眼中显得品质较低劣,甚至被认为是已经变质。在某种程度上,茶饮料的澄清透明程度甚至会严重影响到它在市场中的销量和销价。经过比较,我们认为:在目前阶段,澄清透明度最好的茶饮料是统一乌龙茶。它就像品质最醇厚的葡萄酒一样清澈透亮,赢得了最多的消费人群的青睐。 茶饮料的生产成本,是指原料、包装、人工、水、电、蒸汽消耗等诸方面。其中水电汽能源的消耗是生产成本中一个重要组成部分。在传统的茶饮料生产工艺中,进行澄清处理需要的能源消耗量是很巨大的。 2、茶饮料传统澄清工艺的原理 在传统的茶饮料生产工艺中,所消耗的大部分能耗是为了进行茶饮料的澄清处理。

苹果汁饮料加工工艺研究

苹果汁饮料加工工艺研究 摘要:以浓缩苹果汁为原料,经过稀释、调配、护色、杀菌等重点工序处理,生产苹果汁饮料。通过正交试验,确定产品的最佳生产配方,同时比较了半胱氨酸、亚硫酸氢钠、Vc 对苹果汁饮料的护色效果。试验得出,苹果汁饮料的最佳生产配方为:柠檬酸0.15%,柠檬酸钠0.20%,单宁酸0.06%,白砂糖6%,浓缩苹果汁16%。半胱氨酸、亚硫酸氢钠、Vc 3种物质对苹果汁饮料的护色效果存在较大差异,综合考虑产品的质量安全,选择0.60%Vc为最佳护色剂。 关键词:苹果汁;饮料;配方;护色 Study on the Technology of Apple Juice Beverage Abstract:Concentrated apple juice was used as the raw material in this experiment, apple juice beverage was produced through dilution, blending, color protection, sterilization and other key processes. By using orthogonal test, the best formula of the apple juice beverage was determined, and then the color protection effects of three color protection agents Cys, NaHSO3 and Vc on the apple juice beverage were compared. The best formula of the apple juice beverage was composed of 0.20%citric acid, 0.20%sodium citrate, 0.06%tannic acid, 6%white sugar and 16%concentrated apple juice. Besides, there was a big difference among the three kinds of' color protection agents in the color protection effects on the apple juice beverage. Considering the quality safety of the product, 0.60%Vc was chosen as the best color protection agent. Key words:apple juice; beverage; formula; color protection 0 引言

果蔬汁加工技术地研究进展

果蔬汁饮料现状及加工技术研究 摘要:果蔬制汁后较原果易于贮藏,发展果蔬汁产业有利于减少果蔬原料损失且提 高了附加值。近年来,我国果蔬汁的加工技术取得了一定的进步。本文综述了近年 果蔬汁饮料加工领域的新技术和果蔬饮料行业现状,以及果蔬加工的发展方向。 关键词:果蔬汁;加工技术;现状;发展方向 引言 GB10789—1996 指出,用新鲜或冷藏水果为原料,经加工制成的制品称为果汁及果汁饮料类产品,主要分为果汁、果浆、浓缩果汁、浓缩果浆、果肉饮料、果汁饮料、果粒果汁饮料、水果饮料浓浆及水果饮料;蔬菜汁及蔬菜汁饮料的定义则是以新鲜或冷藏蔬菜(包括可食的根、茎、叶、花、果实,食用菌,食用藻类及蕨类)等原料,用机械方法将蔬菜加工,在制得的汁液中加入食盐或白砂糖等调制而成的制品,可分为蔬菜汁饮料、复合果蔬汁和发酵果蔬汁饮料3类。 据美国全球行业分析公司的报道,由于消费者的健康和营养意识增强,全球果蔬汁消费持续增长。北美和欧盟将是果蔬汁主要消费市场,约占全球消费总量的60%,但增幅最大的消费市场将在亚太地区。在众多饮料品种中,果蔬汁成为最有竞争力的种类之一。 我国果汁与蔬菜汁饮料行业均起步于20世纪80年代初期,作为一种新型饮品, 既具水果和蔬菜所含的丰富营养成分,又易于保藏。由于果蔬汁产业具有明显的经济效益和社会效益,国家在“十五”,“十一五”科技攻关重大专项和国家 863 项目中,专门设置了果蔬汁加工的课题。例如:苹果深加工关键技术与设备的研究开发;蔬菜汁产业化关键工艺技术研究与产品开发;优质鲜榨苹果汁和浑浊型苹果汁加工关键技术与产业化开发;浓缩果汁质量控制技术研究等。 1 果蔬汁的加工技术 1.1 果蔬饮料的工艺流程 果蔬原料→选果→清洗→破碎→榨汁→调配→过滤→均质→脱气→灭菌→灌装→封口→喷淋→杀菌→装箱→成品。

加酸核桃红枣复合饮料加工工艺研究(1)

第33卷 第9期西北农林科技大学学报(自然科学版)V o l.33N o.9 2005年9月Jour.of N o rthw est Sci2T ech U niv.of A gri.and Fo r.(N at.Sci.Ed.)Sep.2005加酸核桃红枣复合饮料加工工艺研究Ξ 张京芳,陈思思 (西北农林科技大学林学院,陕西杨凌712100) [摘 要] 以红枣、核桃为原料,探讨加酸核桃红枣复合饮料的加工工艺,研究该复合蛋白饮料的稳定技术和最佳配方。结果表明,核桃仁去皮的适宜条件是在100℃下用10g L N aOH浸泡3m in,藻酸丙二醇酯(PGA)与单甘酯是该酸性复合饮料较理想的稳定剂,该复合饮料最佳配方是:枣汁与核桃浆体积比为2∶1,每升复合饮料加入蔗糖40g,蛋白糖3g,单甘酯1g,柠檬酸3g,磷酸二氢钠1.5g及PGA4g,其适宜的杀菌条件是100℃下煮沸杀菌15m in。 [关键词] 核桃;红枣;复合饮料;稳定性 [中图分类号] T S275.4 [文献标识码] A[文章编号] 167129387(2005)0920081205 核桃仁和红枣营养丰富,富含功能性成分[1,2]。近年来对红枣、核桃的加工利用越来越多,红枣除用于鲜食外,还可加工成蜜枣、干枣、枣粉、枣汁等。核桃仁除直接食用外,也可制成核桃乳、蜜制核桃仁、核桃粉等加工品。当前人们对饮料的要求越来越高,更趋以将营养、安全、保健融为一体。在植物蛋白饮料中加入果汁,既可以增加饮品的营养,又能掩盖某些蛋白饮料的不良风味,改善其口感[1,3]。若将核桃仁加工成单纯的核桃汁,则汁液粘稠,风味单一。而配以风味独特的枣汁,再调制成酸性饮料,不但风味爽口,而且营养合理。截止目前,尚未见到将核桃、红枣复合制成酸性蛋白饮料的研究报道。本试验以红枣、核桃仁为原料,使两者在营养、口感、风味等方面进行互补,研究加酸红枣核桃复合蛋白饮料的加工工艺,探讨其稳定技术及工艺配方,以期为该酸性复合饮料的工厂化生产提供工艺参数和理论依据,并为核桃、红枣资源的充分利用提供新的思路。 1 材料与方法 1.1 材 料 原辅材料 红枣、核桃、白砂糖、蛋白糖、羟甲基纤维素钠(C M C)、藻酸丙二醇酯(PGA)、黄原胶、单甘酯、蔗糖酯(食品级)、柠檬酸、磷酸二氢钠(分析纯)和果胶酶(诺和诺德公司提供)。 主要仪器 打浆机(H P2550A)、胶体磨(250型)、均质机(GXB60268)。 1.2 方 法 1.2.1 工艺流程 本试验的工艺流程为: 核桃→去外壳→挑选→浸泡→去皮→磨浆→过滤→核桃浆γ 红枣→挑选清洗→烘烤→破碎→浸提→澄清→过滤→澄清汁η →调配→均质→灌装→脱气→杀菌→冷却→成品 1.2.2 核桃浆的制备 核桃浆的制备步骤为:①挑选浸泡。取优质核桃仁,用清水浸泡8~10h,核桃仁和水的质量比为1∶2。②去皮。将核桃仁用100℃,10g L N aOH溶液处理3m in,再用冷水冲洗。 ③磨浆。加入核桃仁8倍质量的热水打浆,采用孔径1mm的筛布过滤后,胶体磨细磨。 1.2.3 枣汁的制备 枣汁的制备步骤为:①选料清洗。选优质干枣,流动水冲洗2~3次。②烘烤。在60~80℃温度下烘烤1~2h,至红枣发出焦香味。③保温提汁。将红枣适当破碎,加红枣质量10倍的水,再加入0.1mL L Pectinex Sm ash,于45℃下浸提8~10h,用孔径2mm筛网过滤后,向滤液中加入0.5mL L Pectinex5XL,在40℃下保温8h,过滤得澄清枣汁[4]。 1.3 试验内容 1.3.1 核桃仁去皮试验 (1)碱液浓度对去皮效果的影响。选优质核桃仁,用清水浸泡8~10h,核桃仁和水质量比为1∶2,然后将核桃仁置于温度为70 Ξ[收稿日期] 2004212227 [作者简介] 张京芳(1965-),女,陕西合阳人,副教授,博士,主要从事食品加工工艺与功能成分分析研究。

茶饮料制作方法的简要说明完整版

茶饮料制作方法的简要 说明 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

茶饮料制作方法的简要说明 1、流行制作方法:茶叶——浸提(85℃/15`)——粗滤(80℃)——迅速冷却(5℃)——精滤(5℃)——调配(80℃)——高温杀菌(90℃/15`)——灌装(88℃)封盖 2、北京市营养源研究所孙庆文、侯庆的制作方法:茶叶——浸提(>85)——粗滤(80℃)——澄清处理(80℃)——调配(80℃)——精滤(75℃))——杀菌(90℃)——灌装(88℃)封盖 3、方法1和2的主要区别:方法1:高温浸提,冷却出浑后精滤澄清,最后再提高温度灭菌;方法2:浸提后保持自然温降,高温澄清,最后也高温杀菌。 4、方法2的优势:澄清透明度高,澄清状态稳定。节能效果显着。 1、关于茶饮料的澄清

茶饮料的品质,是指茶饮料的茶滋味、茶香、茶色、卫生和澄清透明等诸方面。澄清透明是其中很重要的一个组成部分。如果一种茶饮料产品的澄清透明度较高,就会在消费者和经销商眼中显得品质很优秀。如果一种茶饮料产品的澄清透明度较低,就会在消费者和经销商眼中显得品质较低劣,甚至被认为是已经变质。在某种程度上,茶饮料的澄清透明程度甚至会严重影响到它在市场中的销量和销价。经过比较,我们认为:在目前阶段,澄清透明度最好的茶饮料是统一乌龙茶。它就像品质最醇厚的葡萄酒一样清澈透亮,赢得了最多的消费人群的青睐。 茶饮料的生产成本,是指原料、包装、人工、水、电、蒸汽消耗等诸方面。其中水电汽能源的消耗是生产成本中一个重要组成部分。在传统的茶饮料生产工艺中,进行澄清处理需要的能源消耗量是很巨大的。 2、茶饮料传统澄清工艺的原理 在传统的茶饮料生产工艺中,所消耗的大部分能耗是为了进行茶饮料的澄清处理。 影响茶饮料澄清度的主要原因,是茶液的冷后浑现象。形成茶液中的冷后浑现象的主要因素是茶乳酪,它在高温时溶解,温度降低时变为不溶,形成冷后浑。我们日常饮茶时,

碳酸饮料的生产工艺流程

碳酸饮料的生产工艺流程 一、碳酸饮料的基本特征 [30min] (一)碳酸饮料的定义:指含有CO2的软饮料的总称 (二)分类 1.果汁型碳酸饮料:指含有2.5%及以上的天然果汁。 2.果味型碳酸饮料:以香料为主要赋香剂,果汁含量低于2.5%。3.可乐型碳酸饮料:含有可乐果、白柠檬、月桂、焦糖色素。4.其它型碳酸饮料:乳蛋白碳酸饮料、冰淇淋汽水等。 (三)CO2在水中的溶解度 1.CO2在碳酸饮料中的作用。 2.CO2在液体中的溶解度。 影响因素有: (1)液体的温度。 (2)环境绝对压力。 (3)液体与CO2接触的面积和时间。 (4)CO2的纯度。 (四)碳酸饮料生产主要设备 1.水处理设备(澄清、过滤净化、消毒等,前面水处理已讲过)。2.糖浆调配设备(化糖锅、夹层锅、配料缸)。 3.碳酸化设备:CO2气调压站、水冷却器、汽水混合机)。4.洗瓶设备。

5、灌装设备。 二、碳酸饮料的生产工艺 净化←CO2。 (一)工艺流程(一次灌装法) 水源→水处理→冷却脱气→净化→定量调和→冷却混合灌装→压盖→检查→成品→白砂糖→称得→溶解→过滤→糖浆调和检验←消毒←清洗←容器。 (二)糖浆的制备与凋和 1.糖的溶解: (1)冷溶法。 (2)热溶法。 2.调和糖浆的调配 加入顺序:原糖浆(加甜味剂)→加防腐剂→加酸味剂→加果汁→香精→色素→水(碳酸水)。 (三)碳酸化过程 1.CO2气调压站; 2. 水冷却器; 3. 汽水混合机(碳酸化罐)。 (四)灌装、杀菌、检验 1.洗瓶; 2. 灌装; 3. 杀菌;

4、冷却、检验。 三、碳酸饮料生产常见的制裁量问题及解决办法 小结:碳酸饮料生产工艺及设备。 介绍指含有二氧化碳的软饮料,通常由水、甜味剂、酸味剂、香精香料、色素、二氧化碳气及其他原辅料组成,俗称汽水。 一、生产工艺流程-二次灌装 饮用水→水处理→冷却→气水混合←CO2糖浆→调配→冷却→灌浆→灌水→密封→混匀→检验→成品容器→清洗→检验。 二次灌装法流程示意图。 二次灌装法是先将调味糖浆定量注入容器中,然后加入碳酸水至规定量,密封后再混合均匀。又称为现调式灌装法、预加糖浆法或后混合(postmix)法 一、生产工艺流程-一次灌装 饮用水→水处理→冷却→气水混合←CO2糖浆→调配→冷却→→→混合→灌装→密封→检验容器-→-清洗-→-→-检验将调味糖浆与水预先按照一定比例泵入汽水混合机内,进行定量混合后再冷却,然后将该混合物碳酸化后再装入容器。又称为预调式灌装法、成品灌装法或前混合(premix)法。 糖浆的制备 溶糖分间歇式和连续式,间歇式又分为冷溶和热溶(蒸汽加热和热水)。

茶饮料的加工技术摘要

茶饮料的加工技术研究进展 茶饮料是指茶叶经预处理、浸提、澄清、调配、罐装、灭菌等工序处理后,制成地具有茶汤风味的制品。现代茶饮料于20世纪60年代起源于美国,随后陆续传到日本、欧洲及我国XX等地。我国对茶饮料的研究起步较晚,开始于20 世纪80年代中后期,主要产品有茶汽水、茶可乐、凉茶等,但未形成气候,直到20 世纪90 年代中期,XX旭日集团向全国推出了冰茶、暖茶,其强大的广告宣传使广大消费者认识了旭日升冰茶,也真正接受了茶饮料。随后,一些大型食品企业纷纷参与茶饮料的开发与生产中,使得茶饮料生产异常火爆。1997年我国的茶饮料产量为20万t,1998年为40万t,1999年为80万t,2000年达150万t,2002年达300万t,已成为继碳酸饮料、饮用水之后的第三大软饮料。在品种方面,主要有3种,即调味茶、纯茶和混合茶。国外所称的冰茶就是一种调味茶,是加入茶成分的果味饮料或果汁饮料。混合茶是将茶叶提取物同其他一些食品原料混合而得到的一种茶产品,如乳酸菌茶饮料、罗望子茶饮料、红景天乌龙茶饮料等。 近几年来,茶饮料在我国饮料市场所占的地位越来越重要,生产工艺得到了不断的改善,生产技术也有了较大的提高,尤其是茶饮料在澄清、包装、灭菌、护色护香等方面都有了较大的改善。国内外在饮料生产中开发出许多高新技术,如膜分离技术、酶技术、微波技术、非热杀菌技术、无菌灌装技术、芳香物质回收技术、冷冻干燥技术等,这些技术有望部分替代传统茶饮生产技术,解决茶饮料生产上现存的一些技术难题,如营养物质的损失、芳香物质逸散、后混浊的产生等问题,从而提高茶饮料的品质。本文就目前茶皂素饮料加工技术的研究进展作一简单的综述。 一、萃取技术 茶饮料萃取技术是茶饮料加工过程中最关键的环节之一,其技术研究主要围绕于萃取效率和品质保存两个方面。已有的研究表明,影响茶饮料萃取效率和品质的因素很多,主要有萃取方式、茶叶的形状和大小、萃取温度、萃取时间、茶水比例、水质条件等。近年来,茶饮料萃取技术在如何提高萃取效率、更好地提高茶饮料的品质方面取得了许多新的突破和进展。 目前常用的茶饮料萃取方法主要有以下三种:(1)批次浸出式萃取法;(2)浇渗式萃取法;(3)逆流连续萃取法。逆流连续萃取法不仅萃取效率高,可以连续作业,所需人工成本低,而且能萃取高浓度茶汤,是三种方法中相对较好的。近年来,XX对应用于茶饮料的逆流连续萃取技术及设备进行了大量研究,利用逆流连续萃取设备可获得高达15— 20°Brix的茶汤。逆流连续萃取技术可以免除茶汤的浓缩过程,不仅可以降低成本,还减少了因浓缩而出现的茶汤色香味品质劣变,非常适合用于茶浓缩汁和速溶茶的生产。 低温缓程萃取技术的应用,对于茶饮料的萃取起到积极的作用。日本学者研究认为高温

果汁悬浮饮料的技术难点及稳定性探讨

果汁悬浮饮料的技术难点及稳定性探讨果汁悬浮饮料常见的问题及造成原因 果汁饮料的悬浮性问题一直是困扰饮料生产的技术难题。在果汁饮料中,既有果肉微粒形成的悬浮物,又有果胶、蛋白质等形成的真溶液,甚至还有脂类物质形成的乳浊液、悬浮物。 乳浊液的微粒与饮料汁液之间存在较大的密度差,这是不稳定的主要原因。理想的果汁悬浮饮料其外观应该是: 汁液澄清,果粒悬浮均匀或果肉混合均匀,无明显分层现象。果汁饮料易出现的不稳定现象主要包括: 分层(creaming)、沉淀(sediment)和絮凝(flocculation0。 目前许多厂家的果汁悬浮饮料的稳定性较差,原因有多方面。从原料上应该注意生产上每批原料来源应进料保持一致,原料榨汁工艺如果处理不好,会造成粗纤维含量较高,易引起沉淀。带果粒和果肉的果汁保持均一的质地很重要,要使悬浮物稳定,就要使其沉降速度尽可能降至零。悬浮物的下沉速度遵循斯托克斯公式: V=2gr2(ρ1-ρ2)/9η V——沉降速度; g——重力加速度; r——悬浮物颗粒半径; ρ1——悬浮颗粒密度; ρ2——分散介质的密度; η——分散介质粘度 从斯托克斯公式可以看出,饮料配方中的糖度很关键,因为在整个分散介质体系中,天然的果汁与悬浮物的密度(ρ1)很大,只有人为地添加糖分(一

般为蔗糖)才能增加分散体系的密度(ρ2),从而减少分散体系与悬浮物之间的密度差。在实际生产中,果汁的糖度一般控制在10~12°Brix之间,对于含有果肉和果粒的悬浮饮料来说,在此糖度下还不足以悬浮住密度较大的悬浮物,因此需添加适量的稳定剂起到增稠和悬浮稳定效果。在大多数情况下,由于稳定剂的使用量和复配比例不当很容易造成产品在货架期内出现分层和沉淀,因此选择和使用好的稳定剂并掌握合适的复配比例是影响果肉悬浮效果的关键。 悬浮稳定剂选择的关键点以及方案 以上提到了影响悬浮稳定性的几方面因素,在开发产品的过程中,除了考虑产品的稳定性之外,还必须兼顾口感。在添加稳定剂的同时不能使体系过于稠厚而牺牲口感。一个稳定体系的果汁饮料还应该做到口感饱满而清爽,不粘口,风味自然。目前果汁产品的pH值大多为 3.6~ 3.8之间,糖度在10~12°Brix之间,总酸为2~3g/L(以一水柠檬酸计)之间。因此在选择稳定剂时应充分考虑果汁PH体系范围,并结合果汁和悬浮果粒和果肉的添加量,果肉粒度大小来选择合适的胶体,尽量做到既能体系稳定而又口感清爽。 果汁饮料中最常用的悬浮稳定剂有: 羧甲基纤维素钠(CMC)、藻酸丙二醇酯(PGA)、黄原胶、果胶、瓜尔豆胶、琼脂,以及近年来崭露头角的结冷胶。在胶体的使用方面,一般采用复配胶比用单一胶的效果好能够充分发挥不同胶体的协同增效作用。 笔者在长期的研究和应用过程中发现,由于价格因素,在实际生产中,悬浮体系中应用最为广泛的应该是CM C、xx胶、瓜尔豆胶及xx,而PG A、果胶以及结冷胶虽然悬浮效果明显但价格较高,因此较少单独使用,一般都与其他胶体复配使用。黄原胶具有较高的粘度,较大的热稳定性和耐酸性,与多种稳定剂有良好的兼容性,黄原胶的假塑性使其运用于果汁饮料中不会产生粘质基胶质感,是广泛采用的悬浮和增稠的胶体。瓜尔豆胶本身不具有

各式茶饮料生产工艺流程

我国各式茶饮料开始生产工艺流程,茶饮料在国际上被称为“新时代饮料”。从长远的观点看,是可以与碳酸饮料相抗衡的产品,其特点是天然、保健且能解渴,符合现代人崇尚天然、追求健康保健的消费心理需求。 从一些主要地区看,世界茶饮料的增长速度很快。美国的软饮料是以碳酸饮料为主的。但20世纪90年代以来,茶饮料一直处于增长之势(如下表所示): 茶饮料消费在西欧尽管每个国家发展不一致,但总体也是处于上升趋势。如瑞士目前已达到每人一年32升。欧洲茶饮料消费情况如下表: 日本开发茶饮料较早,1983年开始大量生产乌龙茶,1985年开始生产红茶,以后品种不断丰富,其大部分产品是不加糖的纯茶饮料。生产情况具体见下表: 日本每人年均消费茶饮料约22升。我国与之比较有很大的差距。尽管我国工业化生产茶饮料已有三四年的历史,也具备了一定的产量,但仍处于起步阶段。随着人们饮用瓶装水习惯的逐渐形成,茶饮料将拥有更大的发展空间。 国内外液态茶饮料的生产流程依不同的产品(如纯茶饮料、果味奶茶、茶汽水等)和不同的包装方式而不同。但是用茶叶为原料的茶浸出液的制备工艺基本上是一致的。 萃取工艺流程:从茶叶中萃取茶汤的浓度因为原料、工艺设备、生产的产品不同而各有差异,水与茶叶的比例一般为1~15∶100。如果浓度大易产生白色沉淀。为降低成本及避免成品在销售时产生混浊,一般是以1%的茶叶进行萃取,萃取温度为70~95℃,萃取时间为5~30分钟,萃取后用250目尼龙布过滤除渣。萃取形式有3种代表形式———夹层锅式、篮笼式、咖啡抽取器式。夹层锅萃取时将热水放入带搅拌器的锅内加热至规定温度投入茶叶,搅拌到一定时间后翻转夹层锅倒出茶萃取液进行过滤。该形式的特点是温度时间易控制,搅拌出料方便,萃取充分。篮笼式萃取是将放有茶叶的篮笼在热水槽内靠设备吊起放下起到搅拌作用进行萃取,不足之处是萃取不完全,茶叶渣取出不便,茶叶易产生涩味。咖啡抽取器式萃取就是喷淋式,是将茶叶放在网上,用规定温度的热水从顶部喷淋萃取,待茶叶充分浸渍后从底部获得茶汤,其优点是易排渣,但不能搅拌,萃取终点不易判别。 日本和我国台湾等地多以茶叶为原料,直接萃取茶中可溶性部分。而欧美国家多采用速溶茶为原料,以净水稀释为茶饮料。在我国生产速溶茶的厂家是福建漳州大闽食品有限公司,该公司采用膜浓缩技术和真空干燥技术,降低了香气和滋味的损失,解决了沉淀混浊问题。用这种方式生产的茶饮料投资少,见效快,易上马,技术指标好控制,产品质量有保证。 影响茶饮料品质的因素主要有: 1.水质。水是茶饮料的主要组成部分,其品质对茶饮料影响甚大。一般说,水中的钙、镁、铁、氯等离子影响茶汤的色泽和滋味,会使茶饮料发生混浊,形成茶乳。当水中的铁离子含量大于5pp m(百万分之5)时,茶汤将显黑色并带有苦涩的味道;氯离子含量高时会使茶汤带腐臭味。茶叶中的植物鞣质与多种金属离子可以反应,并可生成多种颜色。所以自来水是决不能直接用来生产茶饮料的。生产品质较佳的茶饮料必须用去除离子的纯净水———pH值在6. 7~7.2,铁离子小于2ppm,永久硬度的化学物质含量要小于3ppm。 2.原料。茶叶可分为绿花、红茶、乌龙茶、黑茶、白茶、黄茶六大类,各类茶风味各异。成品茶由于

苹果汁饮料加工工艺研究

苹果汁快料加工工艺研老 摘要:以浓编苹采计为虑料,经过稀祥.调配.护色、杀苗等重点工序处理,生产苹采计饮蚪。通过正交洪瞼,确灾产芫的呆佳生产紀方,同肘比较了丰洗氣酸.亚或酸乳钠.Vc 对苹采计饮料的护色飒果。试瞼得出.苹果汁块料的呆佳生产紀方为:柠樣酸0.15%,柠樣酸钠0.20%,单字酸0.06%,自砂無6%,浓编苹果计16%o半旎氨馥、亚硫馥丸钠. Vc 3科杨施对苹果汁饮料的护色败果存在较丸差异,综合考虑产%的质量妥全.建择0.60%Vc为呆住护色和。 关健词:苹果汁;饮料;紀方;护色 Study on the Technology of Apple Juice Beverage Abstract: Concentrated apple juice was used as the raw material in this experiment, apple juice beverage was produced through dilution. blending, color protection, sterilization and other key processes. By using orthogonal test, the best formula of the apple juice beverage was determined, and then the color protection effects of three color protection agents Cys. NaHSOj and Vc on the apple juice beverage were compared. The best formula of the apple juice beverage was composed of 0.20%citric acid. 0.20%$odium citrate, 0.06%tannic acid, 6%white sugar and 16%concentrated apple juice. Besides, there was a big difference among the three kinds of color protection agents in the color protection effects on the apple juice beverage. Con sidering the quality safety of the product, 0?60%Vc was chose n as the best color protection age nt. Key words:apple juice; beverage; formula; color protection 0 fit 随着人氏生活水平的提高,人们对水系的蒲發需求逐漸呈現多元化。由于果汁抉料具冇食用方便、卫生的优点.逮受国外市场欢迎2】。据不兜全统计,欧矣等发达国彖人均年请歩果汁块料量达40 kg以上,我国累计烤求量在100万t以上,且以每年35%的速度增长,说朗果计饮料A.我国冇舟良好的发展询景炉7】。

果蔬汁饮料的研究现状和发展趋势

饮料工艺学课程论文果蔬汁饮料的研究现状及发展趋势 姓名: 学号: 班级: 成绩:

果蔬汁饮料的研究现状和发展趋势 摘要:我国是水果和蔬菜生产大国,产量均居世界第一位。发展果蔬汁产业可以提高果蔬的附加值,具有明显的经济和社会效益。近年来,我国果蔬汁的加工技术取得了一定的进步。介绍了近年果蔬汁饮料加工领域的新技术,以及果蔬加工的发展方向。 关键词:果蔬汁;加工技术;发展方向 引言: 果蔬GB10789—1996 指出,用新鲜或冷藏水果为原料,经加工制成的制品称为果汁(浆)及果汁饮料(品)类产品,主要分为果汁、果浆、浓缩果汁、浓缩果浆、果肉饮料、果汁饮料、果粒果汁饮料、水果饮料浓浆及水果饮料;蔬菜汁及蔬菜汁饮料的定义则是以新鲜或冷藏蔬菜(包括可食的根、茎、叶、花、果实,食用菌,食用藻类及蕨类)等原料,用机械方法将蔬菜加工,在制得的汁液中加入食盐或白砂糖等调制而成的制品,可分为蔬菜汁饮料、复合果蔬汁和发酵果蔬汁饮料3 类 1据美国全球行业分析公司(Global Industry Ana-lysts,Inc). 的报道,由于消费者的健康和营养意识增强,全球果蔬汁消费持续增长,预计到2010 年全球果蔬汁消费量将达到530×108L。北美和欧盟将是果蔬汁主要消费市场,占全球消费总量的60%,但增幅最大的消费市场将在亚太地区。在众多饮料品种中果蔬汁成为最有竞争力的种类之一 2 20 世纪80 年代初、中期,水果饮料浓浆是果汁类饮料的唯一产品。80 年代末90 年代初,以山楂为原料的“果茶”果肉饮料在我国的河北省、天津市辽宁省和河南省等地迅猛发展,全国有几十家企业在生产“果茶”。90 年代中期,以芒果汁为主,菠萝汁为辅的果肉饮料、混合果汁饮料成为饮料的热点 3我国蔬菜汁的发展是与果汁同时起步的,20 世纪80年代对番茄汁、胡萝卜汁及白菜汁等蔬菜汁的加工工艺进行了探索性的研究工作。到了90 年代,开始用酶法澄清、酶法液化和超滤等加工技术,对胡萝卜、冬瓜、萝卜、南瓜、芹菜、大蒜等清汁、混汁和复合汁进行工艺研究。现已形成果蔬、根茎菜、绿叶菜为主要原料的蔬菜汁、蔬菜浓缩浆、特种蔬菜饮料等 3 个系列产品的雏形体系 4由于果蔬汁产业具有明显的经济效益和社会效益,国家在“十五”,“十一五”科技攻关重大专项和国家863 项目中,专门设置了果蔬汁加工的课题。例如:苹果深加工关键技术与设备的研究开发;蔬菜汁产业化关键工艺技术研究与产品开发;优质鲜榨苹果汁和浑浊型苹果汁加工关键技术与产业化开发;浓缩果汁质量控制1果蔬饮料研制、生产及市场销售现状 1果蔬饮料的分类、代表性产品种类 1.1含碳酸气果汁饮料 主要品种有柑橘、柠檬、杨梅、樱桃、香蕉、沙棘、猕猴桃、刺梨、醋栗等作原

茶饮料加工的关键工艺原理与热灌装的工艺流程和工艺要点

茶饮料加工的关键工艺原理与热灌装的工艺流程和工 艺要点 摘要:茶叶因其强大的保健作用正受到全球的普遍关注,茶饮料的生产及消费由于适应现代社会快节奏的要求,发展特别迅速,已成为软饮料的一个重要种类。传统的采用沸水冲泡、慢慢品尝的饮茶方式已不能适应现代化生活快节奏的要求,所以国内外众多的企业与研究单位都在积极进行茶饮料机器深度加工的研发工作,不少部门已经取得丰硕的结果,如日本、英国的果味和美国的冰茶等。 1.1关键工艺原理 在浸提时,为了避免浸提液中儿茶素等成分被氧化而发生褐变,可添加适当的L-抗坏血酸,以保证茶饮料的品种的稳定同时兼顾了茶饮料的适口性,同时L——抗坏血酸还可以抑制氧化作用的产生。浸没后盈率去茶渣,迅速冷却,以免提液温度高而逸散香气成分,然后再精滤。在调配时,精滤的茶浸没提液稀释至适当的浓度,按制品的类型要求加入糖,香精等配料。调配后过滤,除去可能存在的沉淀物,经过板式换热器加热至85-95度进行热灌装,应采用优质涂料铁罐或玻璃瓶进行灌装,避免铁及其其他金属与茶饮料接触,造成饮料中的多元酚类物质与铁等金属元素间的反应导致成品色泽变黑,冲入氮气置换容器中的残存气体后密封或抽真空后密封。茶饮料的PH在4.5以上时,要采用高压杀菌。单一茶饮料采用121度,3-113min或者115度,15min杀菌处理,均可有效杀灭饮料中的肉毒杆菌芽孢,达到预期杀菌效果[1]。 2.1 热灌装的工艺流程 茶叶→热浸提→过滤→茶浸提液→调配→过滤→加热灌装→密封→杀菌→冷却→检验[1] 热灌装是将产品高温杀菌后以90度左右的温度灌装到瓶子里,旋好盖后,用物料本身的温度对瓶子和盖进行最后杀菌。这样产品保持高温状态较长,对其口感营养造成的破坏较多。 热灌装是相当于传统的饮料加工工艺而言的,对于非碳酸化饮料,传统的生产工艺是将预热的或冷的产品灌装入(罐)内,封盖后按一定的杀菌公式进行巴氏杀菌或高温杀菌,然后冷却干燥制成产品,热灌装则首先对产品进行UHT杀菌或HTST杀菌,在80度到95度的温度下进行灌装,封盖后利用产品本身的温度对包装容器内壁及瓶盖进行杀菌。国外于80年代即将这种工艺广泛应用于软饮料

复合果蔬汁饮料的详细分析

复合果蔬汁饮料之未来愿景分析: 提起饮料大家并不陌生,但提起“复合果蔬汁饮料”恐怕一部分人要在脑海中画个问号了。近几年复合型果蔬汁饮料及果蔬汁饮料在发达国家发展较快,国外市场流行品种较为繁多,根据行业专家分析,未来复合果蔬汁饮料必将成为一道异军突起的新潮流,功能型饮料的发展亦将成为未来的热点。功能型复合果蔬汁饮料含有丰富的矿物质元素及其他天然营养成分,不含有或较少含有合成的食品添加剂,不同产品具有不同的功效,得到了大家广泛的认可。不管你现在是否足够了解,复合果蔬汁饮料确实已经成为那些追求健康与养生人们的新宠。 复合果蔬汁饮料之适用人群分析: 相比普通饮料而言,复合果蔬汁饮料是经过工业萃取的纯天然果蔬浓缩物,我们平常喝的饮料基本含有的水果含量非常非常之少,多数的是水的成为,喝起来的感觉就是解渴的,但是创造出不同的口味迎合不同人的需求,相比心能源复合果蔬汁这类饮料,果蔬的营养含量来说,远远不及后者。一般复合果蔬汁饮料都是水溶性的果蔬营养剂,所以非常适合那些对营养吸收不怎么好的人群,主要是中老年人和新陈代谢不好的人群饮用。 复合果蔬汁饮料之生产配料分析:(下面仅以市场高端浓缩型果蔬汁饮料之一心能源作为分 复合果蔬汁饮料之果蔬浓缩分析: 水溶性番茄浓缩物:fruitflow可以帮助维持正常的血小板聚集,有助于血流健康,且无副作用。 浓缩枣汁:枣香浓郁,口感纯正,含有丰富的蛋白质、糖类,胡萝卜素、B族维生素、维生

素C及钙、磷、铁等矿物质。 黑莓浓缩汁:含有花青素类抗氧化活性物质,且含丰富的维生素C和钙、铁、锌、硒等矿物质。 梨浓缩汁:清甜可口,口感纯正,含丰富的蛋白质、糖类,维生素A,胡萝卜素,钙、磷、铁等矿物质。 枸杞浓缩汁:含有丰富的枸杞多糖、蛋白质、氨基酸、类胡萝卜素、卫生速度B1、B2、C,钙、磷、铁等矿物质。 甘蔗浓缩汁:含丰富的糖类,如蔗糖、葡萄糖和果糖,还含有人体所需的维生素B1、B2、B6和维生素C,丰富的铁含量。 复合果蔬汁饮料之萃取工艺分析: 产品均通过HACCP、GMP认证。生产厂房占地110000平方米,自动化生产线,全生产线长达110米,10万级净化车间,完全符合国家食品生产标准,生产环境有保障。采用净化水设备,全生产线以纯净水配置产品、清洗机器设备,确保产品口味一致、安全性高,所有产品均采用UHT高温瞬间灭菌工艺,确保产品营养价值不流失;原料、半成品、终成品全过程质量控制,确保产品安全。

番茄汁饮料加工工艺研究

摘要 以番茄为主要原料,利用高温瞬时杀菌、热破碎、真空浓缩以及冷冻澄清等技术,经过糖、酸的成分调整,生产出的番茄汁,迎合了广大消费者的要求。番茄汁所含的多种微量元素尤其是番茄红素具有较高的营养价值和药用价值,适合各类消费人群,尤其是女性消费者,具有广阔的发展空间。 关键词 番茄汁高温瞬时杀菌果胶酶均质热破碎

1 绪论 随着经济的飞速发展,人们对生活水平的不断提高,出于健康和营养的目的,人们对食品的要求也越来越高。生活习惯的改变,特别是现代医学和营养膳食结构的改变,人们对饮料的花色品种、质量要求越来越高,消费趋向营养、健康。果蔬汁饮料作为方便营养食品越来越受消费者的欢迎。而番茄汁由于其含有较多的营养物质深受人们喜爱,其营养价值高,含有丰富的多种维生素和矿物质。用番茄制作的番茄汁饮料,原料易得,成本低廉,是山楂汁、柑橘汁软包装饮料成本的1/3~1/2,其成汁率高,每100千克番茄,可榨取番茄汁80~90千克。市场潜力大具有广阔的发展前景。 1.1概述 1.1.1番茄的简述 番茄别名西红柿、番柿、狼桃、洋柿子、金苹果、爱情果等,为双子叶植物纲茄科番茄属一年生草本植物。 番茄原产于南美洲的秘鲁,厄瓜多尔等国的热带雨林,大约与明朝时通过“丝绸之路”从西方传入中国,因色红形似柿子,故称西红柿,距今大约600年的栽培历史,不过在当时只作为一种观赏植物来种植。明人所著的《广群芳谱》中称它为“番柿”,书中介绍:“番柿一名六月柿,茎似蒿,高四、五,花似榴,一枝结四、五实货或三、四实,堪作观,大伞火珠,未足喻,草本也,来自西番,故名。”并且说它“生食之刺人喉”。直到十九世纪末,番茄才作为蔬菜被大众接受,我国人民普遍食用番茄,也不过百余年历史。 番茄适应性强,易栽培,产量高,目前已经成为我国主要的蔬菜品种之一。其种类很多,按果形可分为圆球形、梨形、扁球形,椭圆形等;按果皮颜色可分为红色、粉色和黄色三种。我国栽培的品种主要有北京早红、青岛早红和武昌大红等。品质以形状周正、成熟适度、酸甜可口、果肉肥厚、无裂口、无挤压、无虫咬为佳。它既是蔬菜又具备水果的特征,素有“菜中之果”和“平民水果之王”的美誉。

果汁饮料生产工艺应注意什么

果汁饮料生产工艺应注意什么 目前全世界都兴起饮用纯果汁饮料,国内大大小小的果汁厂雨后春笋般应运而生。 这使国人不需走进百果园,不需等到水果成熟的季节,在家里就可以方便地品尝各种果汁饮料的风味。 对于生产企业来讲,如何解决好果汁饮料钓生产技术是—个常新的课题。那么,果汁饮料生产过程中应注意什么? 水果原料的选择厂家若直接选用成熟度适合和同种水果最香甜的新鲜水果来生产,这样做会复杂化,麻烦很多,所以可以选择大厂家生产的浓缩果汁、果酱来生产,这样会简单、方便得多,质量也有保证。 如果选用新鲜水果来生产,就要注意水果的成熟度,成熟的水果才会芬芳香甜,最香甜的水果的成熟度在八至九成的时候,太熟了也不适合生产,会产生一种不愉快的熟臭味。番石榴酱的生产就是最好的例子,未成熟的番石榴硬似石头,难以破碎且无味道;成熟度合适的番石榴易生产,且整个车间都充满番石榴芳香的气味;过熟的番石榴既生虫,又发出一种让人非常难受的似在烈日下曝晒烂果发出的味道。所以第一关选择原料的成熟度和同种水果的不同品种很重要。 防残留农药首先要了解加工的水果是否经过喷洒农药来灭虫。如

确实喷过则要采取除农残措施。方法是用0.3%—0.6%的稀盐酸浸泡20分钟→上毛刷喷淋机→流动清水漂洗。这样做可以把水果表皮的残留农药去除干净。注意防止乙烯利超标现在很多饮料厂都喜欢自己制造芒果酱来生产芒果饮料,因芒果多是用乙烯催熟,所以芒果表皮及果肉均会含有大量的乙烯,稍不注意就会使产品的乙烯利超标而不合格,还会危害消费者的健康。一种很有效的方法是:臭氧跟踪中和法。削了头尾的成熟芒果先浸泡在第一反应池,该池的水是先流经会产生臭氧的电水管,使水含有一定量的臭氧。此时的微量臭氧既可把芒果表皮的果肉的乙烯中和干净,又可以把芒果表皮的细菌彻底消灭。2003年笔者为韩国商人生产浓缩芒果汁时采用止法,经我国省一级的商检及韩国的商检都证明产品的乙烯含量不超标。 高压均质十分重要高压均质不单是为了产品亲和性好,不产生沉淀,也不单是为了使产品口感细腻,高压均质的最主要目的在于将水果的多种酯类芳香颗粒进一步细化,使人们饮用时感觉非常芳香,怪不得生产饮料的行家经常说:“果汁行业的竞争实质是均质效果的竞争。”海南某集团公司为了生产优质的芒果汁等饮料,不惜重金从美国引进60MPa以上的高压均质机,笔者亲口体验过其均质后的效果,均质前口感香味不觉得怎么样,但均质后不单口感细腻,而且香味增加了几倍。

相关文档
最新文档