HC-SR04原理图

FL2440核心板原理图_2013-1-16

12345678 D D C C B B A A Title Number Revision Size 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768 69 70 71 72 737475767778798081 82 83 84 85 86878889909192939495 96 97 9899 100CON1 12345678910 1112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100CON2 GND ADDR0 ADDR1 ADDR2 ADDR3ADDR4ADDR5ADDR6ADDR7ADDR8ADDR9ADDR10ADDR11ADDR12 ADDR13ADDR14ADDR15ADDR16ADDR17ADDR18ADDR19ADDR20GND ADDR21ADDR22DATA0DATA1DATA2DATA3DATA4DATA5DATA6DATA7DATA8DATA9DATA10DATA11DATA12DATA13DATA14DATA15NGCS0NGCS1NGCS2NGCS3NGCS4NGCS5NWBE0NWBE1NWBE2NWBE3NOE NWE NWAIT NGCS7GND WP_SD EINT18/NCD_SD SDCLK SDCMD SDDATA0SDDATA1SDDATA2SDDATA3GND TXD0RXD0NCTS0NRTS0TXD1RXD1NRTS1/TXD2NCTS1/RXD2EINT17/GPG9EINT9/IRQ_LAN EINT0/GPF0EINT1/GPF1EINT2/GPF2EINT3/GPF3EINT4/GPF4EINT5/GPF5EINT6/GPF6EINT7/GPF7EINT8/GPG0EINT16/GPG8GND VDD5V VDD5V VDD5V VDD_RTC IICSCL GND IICSDA CAMDATA0 CAMDATA1CAMDATA2CAMDATA3CAMDATA4CAMDATA5CAMDATA6CAMDATA7CAMPCLK CAMVSYNC CAMHREF CAMCLKOUT CAMRESET VD0 VD1VD2VD3VD4VD5VD6VD7VD8VD9VD10VD11VD12VD13VD14VD15VD16VD17VD18VD19VD20VD21VD22VD23 GND GPC1/VCLK GPC2/VLINE GPC3/VFRAME GPC4/VM GPB1/TOUT1 GPG4/EINT12/LCD_PWREN GPC0/LEND GPC7/LCDVF2 GPC6/LCDVF1 GPC5/LCDVF0AIN0AIN1AIN2AIN3 AIN4/TSYM AIN5/TSYP AIN6/TSXM AIN7/TSXP GPB2/L3MODE GPB3/L3DATA GPB4/L3CLOCK I2SLRCK I2SSCLK CDCLK GND GND I2SSDI I2SSDO GPE11GPE12GPE13 GPG2/EINT10GPG3/EINT11GPG5/EINT13GPG6/EINT14GPG7/EINT15GPG11/EINT19GPG12/EINT20GPG13/EINT21GPG14/EINT22GPG15/EINT23 CLKOUT0CLKOUT1 GPB0/TOUT0GPB5GPB6GPB7GPB8GPB9GPB10TMS TDO TDI TCK NTRST NRSTOUT/GPA21NRESET GND GND D0_N D0_P D1_N D1_P

超声波模块程序详解

int Trigpin = 7; //定义模块触发引脚 int Echopin = 5; //定义模块接收引脚 float Distance; //定义距离变量 void setup() { pinMode(Echopin,INPUT) ; pinMode(Trigpin,OUTPUT); Serial.begin(9600);//启动串口功能 } void loop() { Distance = Measurement();//调用测量函数,将采得的值给变量Distance Serial.print(Distance);//在端口输出距离 Serial.println("cm");//输出单位,并换行 delay(2000); } float Measurement() { float distance;//定义一个局部变量 digitalWrite(Trigpin,LOW); //初始化触发引脚 delayMicroseconds(2); digitalWrite(Trigpin,HIGH);//给触发引脚一个信号,使模块发出声波 delayMicroseconds(10); digitalWrite(Trigpin,LOW);//结束声波信号 distance = (pulseIn(Echopin,HIGH)*17)/1000;//计算距离 return distance;//将算得的距离返回给变量distance }

伺服舵机+超声波模块 #include int Trigpin = 7; //定义模块触发引脚 int Echopin = 5; //定义模块接收引脚 float Distance; //定义距离变量 Servo myservo3; void setup() { myservo3.attach(3); pinMode(Echopin,INPUT) ; pinMode(Trigpin,OUTPUT); Serial.begin(9600);//启动串口功能 } void loop() { myservo3.write(0); delay(2000); Distance = Measurement();//调用测量函数,将采得的值给变量Distance Serial.print(Distance);//在端口输出距离 Serial.println("cm");//输出单位,并换行 myservo3.write(90); delay(2000); Distance = Measurement();//调用测量函数,将采得的值给变量Distance Serial.print(Distance);//在端口输出距离 Serial.println("cm");//输出单位,并换行 myservo3.write(178); delay(2000); Distance = Measurement();//调用测量函数,将采得的值给变量Distance Serial.print(Distance);//在端口输出距离 Serial.println("cm");//输出单位,并换行 }

基于51单片机的超声波测距系统

基于51单片机的超声波测距系统 贾源 完成日期:2011年2月22日

目录 一、设计任务和性能指标 (3) 1.1设计任务 (3) 1.2性能指标 (3) 二、超声波测距原理概述 (4) 2.1超声波传感器 (5) 2.1.1超声波发生器 (5) 2.1.2压电式超声波发生器原理 (5) 2.1.3单片机超声波测距系统构成 (5) 三、设计方案 (6) 3.1AT89C2051单片机 (7) 3.2超声波测距系统构成 (8) 3.2.1超声波测距单片机系统 (9) 图3-1:超声波测距单片机系统 (9) 3.2.2超声波发射、接收电路 (9) 图3-1:超声波测距发送接收单元 (10) 3.2.3显示电路 (10) 四.系统软件设计 (11) 4.1主程序设计 (11) 4.2超声波测距子程序 (12) 4.3超声波测距程序流程图 (13) 4.4超声波测距程子序流程图 (14) 五.调试及性能分析 (14) 5.1调试步骤 (14) 5.2性能分析 (15) 六.心得体会 (15) 参考文献 (16) 附录一超声波测系统原理图 (18) 附录二超声波测系统原理图安装图 (19) 附录三超声波测系统原理图PCB图 (20) 附录四超声波测系统原理图C语言原程序 (21) 参考文献 (26)

一、设计任务和性能指标 1.1设计任务 利用单片机及外围接口电路(键盘接口和显示接口电路)设计制作一个超声波测距仪器,用LED数码管把测距仪距测出的距离显示出来。 要求用Protel 画出系统的电路原理图,印刷电路板,绘出程序流程图,并给出程序清单。 1.2性能指标 距离显示:用三位LED数码管进行显示(单位是CM)。 测距范围:25CM到 250CM之间。误差:1%。

MOS管及简单CMOS逻辑门电路原理图

MOS管及简单CMOS逻辑门电路原理图 现代单片机主要是采用CMOS工艺制成的。 1、MOS管 MOS管又分为两种类型:N型和P型。如下图所示: 以N型管为例,2端为控制端,称为“栅极”;3端通常接地,称为“源极”;源极电压记作Vss,1端接正电压,称为“漏极”,漏极电压记作VDD。要使1端与3端导通,栅极2上要加高电平。 对P型管,栅极、源极、漏极分别为5端、4端、6端。要使4 端与6端导通,栅极5要加低电平。 在CMOS工艺制成的逻辑器件或单片机中,N型管与P型管往往是成对出现的。同时出现的这两个CMOS管,任何时候,只要一只导通,另一只则不导通(即“截止”或“关断”),所以称为“互补型CMOS管”。 2、CMOS逻辑电平 高速CMOS电路的电源电压VDD通常为+5V;Vss接地,是0V。 高电平视为逻辑“1”,电平值的范围为:VDD的65%~VDD(或者~VDD)

低电平视作逻辑“0”,要求不超过VDD的35%或0~。 +~+应看作不确定电平。在硬件设计中要避免出现不确定电平。 近年来,随着亚微米技术的发展,单片机的电源呈下降趋势。低电源电压有助于降低功耗。VDD为的CMOS器件已大量使用。在便携式应用中,VDD为,甚至的单片机也已经出现。将来电源电压还会继续下降,降到,但低于VDD的35%的电平视为逻辑“0”,高于VDD的65%的电平视为逻辑“1”的规律仍然是适用的。 3、非门 非门(反向器)是最简单的门电路,由一对CMOS管组成。其工作原理如下:A端为高电平时,P型管截止,N型管导通,输出端C的电平与Vss保持一致,输出低电平;A端为低电平时,P型管导通,N型管截止,输出端C的电平与V一致,输出高电平。 4、与非门

超声波模块实验报告

超声波模块编程控制 实验报告 院、系机械与电气工程学院 专业班级机械125班第五组 姓名李泉军同组人赵凯,徐思琪,郭明开,韦耀辰

实验日期2014 年11 月21 日 一、实验原理 通过超声波发射装置发出超声波,根据接收器接到超声波时的时间差就可以知道距离了。这与雷达测距原理相似。超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。(超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2) 二、超声波工作原理简介 (1) 采用IO口TRIG触发测距,给至少10us的高电平信号; (2)模块自动发送8个40khz的方波,自动检测是否有信号返回; (3)有信号返回,通过IO口ECHO输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。测试距离=(高电平时间*声速(340M/S))/2; 本模块使用方法简单,一个控制口发一个10US以上的高电平,就可以在接收口等待高电平输出.一有输出就可以开定时器计时,当此口变为低电平时就可以读定时器的值,此时就为此次测距的时间,方可算出距离.如此不断的周期测,即可以达到你移动测量的值

三、系统硬件电路图及实物照片 超声波测距电路图 显示距离10cm

四、系统软件程序流程图及程序清单

N Y Y Y N N Y Y 程序清单: //晶振9.6MHZ ,默认8分频,计时步距8/9.6=0.833333us #include #include] ‘开始 初始化IO 口,初始化中断(上升沿触发) PB2口激活超声波模块 检测Echo 回响信号 INT0上升沿引发了中断? INT0下降引发了中断? 设为下降沿触发中断,打开定时器(64分频,普通模式) PB1是否为 高电平? PB1是否为低电平? 设为上升沿触发中断, 关闭定时器,读取 TCNT0的值 TCNT0清零 计算距离(单位:厘米) 采用5161BS 数码管串联 显示两位数

超声波测距电路图

超声波测距电路图超声波测距电路原理和制作 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。 二、超声波测距原理 1、超声波发生器 为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。 2、压电式超声波发生器原理

压电式超声波发生器实际上是利用压电晶体的谐振来工作的。超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 3、超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 图1 超声波传感器结构 这就是所谓的时间差测距法。< 三、超声波测距系统的电路设计 图2 超声波测距电路原理图 本系统的特点是利用单片机控制超声波的发射和对超声波自发射至接收往返时间的计时,单片机选用8751,经济易用,且片内有4K的ROM,便于编程。电路原理图如图2所示。其中只画出前方测距电路的接线图,左侧和右侧测距电路与前方测距电路相同,故省略之。

与门电路和与非门电路原理

什么就是与门电路及与非门电路原理? 什么就是与门电路 从小巧的电子手表,到复杂的电子计算机,它们的许多元件被制成集成电路的形式,即把几十、几百,甚至成干上万个电子元件制作在一块半导体片或绝缘片上。每种集成电路都有它独特的作用。有一种用得最多的集成电路叫门电路。常用的门电路有与门、非门、与非门。 什么就是门电路 “门”顾名思义起开关作用。任何“门”的开放都就是有条件的。例如.一名学生去买书包,只买既好瞧又给买的,那么她的家门只对“好瞧”与“结实”这两个条件同时具备的书包才开放。 门电路就是起开关作用的集成电路。由于开放的条件不同,而分为与门、非门、与非门等等。 与门 我们先学习与门,在这之前请大家先瞧图15-16,懂得什么就是高电位,什么就是低电位。 图15-17甲就是我们实验用的与用的与门,它有两个输入端A、B与一个输出端。图15-17乙就是它连人电路中的情形,发光二极管就是用来显示输出端的电位高低:输出端就是高电位,二极管发光;输出端就是低电位,二极管不发光。

实验 照图15-18甲、乙、丙、丁的顺序做实验。图中由A、B引出的带箭头的弧线,表示把输入端接到高电位或低电位的导线。每次实验根据二极管就是否发光,判定输出端电位的高低。 输入端着时,它的电位就是高电位,照图15-18戊那样,让两输人端都空着,则输出瑞的电位就是高电位,二极管发光。 可见,与门只在输入端A与输入端B都就是高电位时,输出端才就是高电位;输入端A、B只要有一个就是低电位,或者两个都就是低电位时,输出端也就是低电位。输人端空着时,输出端就是高电位。 与门的应用

图15-19就是应用与门的基本电路,只有两个输入端A、B同低电位间的开关同时断开,A与B才同时就是高电位,输出端也因而就是高电位,用电器开始工作。 实验 照图15-20连接电路。图中输入端与低电位间连接的就是常闭按钮开关,按压时断开,不压时接通。 观察电动机在什么情况下转动。 如果图15-20的两个常闭按钮开关分别装在汽车的前后门,图中的电动机就是启动汽车内燃机的电动机,当车间关紧时常闭按钮开关才能被压开,那么这个电路可以保证只有两个车门都关紧时汽车才能开动。 与非门,与非门就是什么意思 DTL与非门电路: 常将二极管与门与或门与三极管非门组合起来组成与非门与或非门电路,以消除在串接时产生的电平偏离, 并提高带负载能力。

超声波测距仪的工作原理2

超声波测距 (程序原理图安装图) 概述 超声波测距学习板,可应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。要求测量范围在0.27~4.00m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。 超声波测距原理 超声波发生器内部结构有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波本时,将压迫压电晶片作振动,将机械能转换为电信号,就成为超声波接收器。在超声探测电路中,发射端得到输出脉冲为一系列方波,其宽度为发射超声的时间间隔,被测物距离越大,脉冲宽度越大,输出脉冲个数与被测距离成正比。超声测距大致有以下方法:①取输出脉冲的平均值电压,该电压(其幅值基本固定)与距离成正比,测量电压即可测得距离;②测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔t,故被测距离为S=1/2vt。本测量电路采用第二种方案。由于超声波的声速与温度有关,如果温度变化不大,则可认为声速基本不变。如果测距精度要求很高,则应通过温度补偿的方法加以校正。超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。 CJ-3A超声波学习板采用AT89C51或AT89S51单片机,晶振:12M,单片机用P1.0口输出超声波换能器所需的40K方波信号,利用外中断0口监测超声波接收电路输出的返回信号,显示电路采用简单的4位共阳LED数码管,断码用 74LS244,位码用8550驱动. 超声波测距的算法设计: 超声波在空气中传播速度为每秒钟340米(15℃时)。X2是声波返回的时刻,X1是声波发声的时刻,X2-X1得出的是一个时间差的绝对值,假定X2-X1=0.03S,则有340m×0.03S=10.2m。由于在这10.2m 的时间里,超声波发出到遇到返射物返回的距离,

超声波传感器原理及应用

[日期:2007-06-05] 来源:作者:[字体:大中小] 超声波发射原理是把铁磁材料置于交变磁场中,产生机械振动,发射出超声波。 接收原理是当超声波作用在磁致材料上时,使磁滞材料磁场变化,使线圈产生感应电势输出。 超声波传感器原理与应用 2008-04-18 02:40 超声波传感器原理及应用 信息来源:转载https://www.360docs.net/doc/5f5474934.html,发布时间:2008-01-02字号:小中大 关键字:超声波传感器 1、遥控开关超声波遥控开关可控制家用电器及照明灯。采用 2、液位指示及控制器由于超声波在空气中有一定的衰减,则发送到液面及从液面反射回来的信号大小与液位有关,液面位置越高,信号越大;液面越低则信号就小。接收到的信号经BG1、BG2放大,经D1、D2整流成直流电压。当4.7KΩ上的电压超过BG3的导通电压时,有电流流过BG3,电流表有指示,电流大小与液面有关。A点与上图A点相连接。当液位低于设置值时,比较器输出为低电平。BG 不导通,若液位升到规定位置,比较器翻转,输出高电平。BG导通,J吸合,可通过电磁阀将输液开关关闭,以达到控制的目的(高位控制)。 超声波传感器 信息来源:https://www.360docs.net/doc/5f5474934.html,/ca.htm发布时间:2007-11-27字号:小中大 关键字:超声波传感器传感器压电陶瓷超声传感器超声波距离传感器 超声波传感器的测距系统设计图

信息来源:中国超声波发布时间:2008-03-17字号:小中大 关键字:超声波传感器 安全避障是移动机器人研究的一个基本问题。障碍物与机器人之间距离的获得是研究安全避障的前提,超声波传感器以其信息处理简单、价格低廉、硬件容易实现等优点,被广泛用作测距传感器。本超声波测距系统选用了senscomp公司生产的polaroid6500系列超声波距离模块和600系列传感器,微处理器采用了atmel公司的at89c51。本文对此超声波测距系统进行了详细的分析与介绍。 1、超声波传感器及其测距原理 超声波是指频率高于20khz的机械波[1]。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应[1]的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。 超声波测距的原理一般采用渡越时间法tof(timeofflight)[2]。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离,即 1、硬件电路设计 我们设计的超声波测距系统由polaroid600系列传感器、polaroid6500系列超声波距离模块和at89c51单片机构成。

用51单片机设计超声波测距系统的设计原理和电路(附源程序)

基于51单片机的超声波测距仪说明书 引言 超声波测距仪,可使用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。利用超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制。 一、性能要求 该超声波测距仪,要求测量范围在0.08-3.00m,测量精度1cm,测量时和被测物体无直接接触,能够清晰稳定地显示测量结果。 二、工作原理及方案论证 超声波传感器及其测距原理 超声波是指频率高于20KHz的机械波。用超声波传感器产生超声波和接收超声波,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器.超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。 超声波测距的原理一般采用渡越时间法TOF(timeofflight)。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源和障碍物之间的距离。 根据要求并综合各方面因素,采用AT89C52单片机作为主控制

器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器完成,超声波测距仪的系统框图如下图所示: 图1 超声波测距仪系统设计框图 三、系统硬件部分 硬件部分主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。 1.单片机系统及显示电路 单片机采用AT89C52来实现对CX20106A红外接收芯片和TCT40-10系列超声波转换模块的控制。单片机通过P1.1引脚发射脉冲控制超声波的发送,然后单片机不停的检测外中断0口INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器和障碍物之间的距离。显示电路采用简单实用的4位共阳LED数码管,段码用74LS244驱动,位码用PNP三极管驱动。 单片机系统及显示电路如下图所示:

与门电路和与非门电路原理

什么是与门电路及与非门电路原理? 什么是与门电路 从小巧的电子手表,到复杂的电子计算机,它们的许多元件被制成集成电路的形式,即把几十、几百,甚至成干上万个电子元件制作在一块半导体片或绝缘片上。每种集成电路都有它独特的作用。有一种用得最多的集成电路叫门电路。常用的门电路有与门、非门、与非门。 什么是门电路 “门”顾名思义起开关作用。任何“门”的开放都是有条件的。例如?一名学生去买书包,只买既好看又给买的,那么他的家门只对“好看”与“结实”这两个条件同时具备的书包才开放。 门电路是起开关作用的集成电路。由于开放的条件不同,而分为与门、非门、与非门等等。 与门 我们先学习与门,在这之前请大家先看图15-16,懂得什么是高电位,什么是低电位。 图15-17甲是我们实验用的与用的与门,它有两个输入端A、E和一个输出端。图15-17乙是它连人电 路中的情形,发光二极管是用来显示输出端的电位高低:输出端是高电位,二极管发光;输出端是低电位,二极管不发光。 实验 照图15-18甲、乙、丙、丁的顺序做实验。图中由A、B引出的带箭头的弧线,表示把输入端接到高电位或低电位的导线。每次实验根据二极管是否发光,判定输岀端电位的高低。

输入端着时,它的电位是高电位,照图15-18戊那样,让两输人端都空着,则输岀瑞的电位是高电位, 二极管发光。 可见,与门只在输入端A与输入端E都是高电位时,输岀端才是高电位;输入端A、E只要有一个是低电位,或者两个都是低电位时,输岀端也是低电位。输人端空着时,输岀端是高电位。 与门的应用 图15-19是应用与门的基本电路,只有两个输入端A、E同低电位间的开关同时断开,A与E才同时是高电位,输出端也因而是高电位,用电器开始工作。 实验 照图15-20连接电路。图中输入端与低电位间连接的是常闭按钮开关,按压时断开,不压时接通 观察电动机在什么情况下转动。 如果图15-20的两个常闭按钮开关分别装在汽车的前后门,图中的电动机是启动汽车内燃机的电动机, 当车间关紧时常闭按钮开关才能被压开,那么这个电路可以保证只有两个车门都关紧时汽车才能开动。与非门,与非门是什 么意思

超声波测距电路图

超声波测距电路图 超声波测距电路原理和制作 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。 二、超声波测距原理 1、超声波发生器 为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。

2、压电式超声波发生器原理 压电式超声波发生器实际上是利用压电晶体的谐振 来工作的。超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。 3、超声波测距原理 超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 图1 超声波传感器结构 这就是所谓的时间差测距法。< 三、超声波测距系统的电路设计 图2 超声波测距电路原理图

3.1 MOS逻辑门电路解析

3逻辑门电路 3.1 MOS逻辑门电路 3.2TTL逻辑门电路 *3.3射极耦合逻辑门电路 *3.4砷化镓逻辑门电路 3.5逻辑描述中的几个问题 3.6逻辑门电路使用中的几个实际问题* 3.7用VerilogHDL描述逻辑门电路

3.逻辑门电路 教学基本要求: 1.了解半导体器件的开关特性。 2.熟练掌握基本逻辑门(与、或、与非、或非、异或门)、三态门、OD门(OC门)和传输门的逻辑功能。 3.学会门电路逻辑功能分析方法。 4.掌握逻辑门的主要参数及在应用中的接口问题。

3.1 MOS逻辑门 3.1.1数字集成电路简介 3.1.2逻辑门的一般特性 3.1.3MOS开关及其等效电路 3.1.4CMOS反相器 3.1.5CMOS逻辑门电路 3.1.6CMOS漏极开路门和三态输出门电路3.1.7CMOS传输门 3.1.8CMOS逻辑门电路的技术参数

1 . 逻辑门:实现基本逻辑运算和复合逻辑运算的单元电路。 2. 逻辑门电路的分类 二极管门电路 三极管门电路 TTL 门电路 MOS 门电路 PMOS 门 CMOS 门 逻辑门电路 分立门电路 集成门电路 NMOS 门 3.1.1 数字集成电路简介

1.CMOS 集成电路: 广泛应用于超大规模、甚大规模集成电路 4000系列 74HC 74HCT 74VHC 74VHCT 速度慢 与TTL 不兼容 抗干扰 功耗低 74LVC 74VAUC 速度加快 与TTL 兼容 负载能力强 抗干扰 功耗低 速度两倍于74HC 与TTL 兼容 负载能力强 抗干扰 功耗低 低(超低)电压 速度更加快 与TTL 兼容 负载能力强 抗干扰功耗低 74系列 74LS 系列 74AS 系列 74ALS 2.TTL 集成电路: 广泛应用于中、大规模集成电路 3.1.1 数字集成电路简介

超声波测量距(原理图+实物图+程序)

-LE D

#include //器件配置文件#include //传感器接口 sbit RX = P3^2; sbit TX = P3^3; //按键声明 sbit S1 = P1^4; sbit S2 = P1^5; sbit S3 = P1^6; //蜂鸣器 sbit Feng= P2^0; //变量声明 unsigned int time=0; unsigned int timer=0; unsigned char posit=0; unsigned long S=0;

unsigned long BJS=50;//报警距离80CM //模式 0正常模式 1调整 char Mode=0; bit flag=0; unsigned char const discode[] ={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x40,0xff/*-*/}; //数码管显示码0123456789-和不显示unsigned char const positon[4]={0xfd,0xfb,0xf7,0xfe}; //位选 unsigned char disbuff[4] ={0,0,0,0}; //数组用于存放距离信息 unsigned char disbuff_BJ[4] ={0,0,0,0};//报警信息 //延时100ms(不精确) void delay(void) { unsigned char a,b,c; for(c=10;c>0;c--) for(b=38;b>0;b--)

超声波测距模块使用说明

超声波测距资料 超声波测距模块连线: 我们将超声波测距模块用红色,绿色两根导线引出,红色线(超声波测距模块电源脚)接5208K实验仪+5V,绿色线(超声波测距模块接地脚)接5208K实验仪GND.打开5208K实验仪电源, 超声波测距模块初始化显示27.将超声波发射接收头对准障碍物,数码管将显示超声波测距模块与障碍物之间的距离。 超声波测距学习板,可应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。 超声波学习板采用AT89S51单片机晶振为12M,单片机用P1.0口输出超声波换能器所需的40K方波信号,利用外中断监测超声波接收电路输出的返回信号,显示电路采用简单的4位共阳LED数码管,段码驱动用74LS244集成电路,位码用S8550三极管驱动。 超声波测距的算法原理: 超声波在空气中传播速度为每秒钟340米(15℃时)。X2是声波返回的时刻,X1是声波发声的时刻,X2-X1得出的是一个时间差的绝对值,假定X2-X1=0.03S,则距离为340mx0.03S=10.2米。这就是超声波探头到反射物体之间的距离。

产品性能特点: 成品板上自带:超声波收发传感器、接收放大电路、四位LED数码显示、四位按键(四个按钮和蜂鸣器属于功能预留,程序中无定义),电源部分自带整流、滤波、稳压电路,允许交流7~15V或者直流9~16V输入,经过实际测试,测量范围可达27~250厘米,测量精度为1厘米。 下图是超声波测距学习板的元件布局图,

以下是部分汇编源程序 ;/////////////////////////////////////////////////////// ; USE BY :超声波测距器 ; IC :AT89C51 ; TEL : ; OSCCAL :XT (12M) ; display :共阳LED显示 ;/////////////////////////////////////////////////////// ;测距范围7CM-11M,堆栈在4FH以上,20H用于标志 ;显示缓冲单元在40H-43H,使用内存44H、45H、46H用于计算距离; VOUT EQU P1.0 ; 红外脉冲输出端口 speak equ p1.1 ;******************************************** ;* 中断入口程序 * ;******************************************** ; ORG 0000H

超远距离超声波模块(适合自制)

一、需求分析 能在测距范围上弥补GP2D12 的不足,将距离延伸到80cm以外;可以提供给大学生和爱好者DIY,具有学习功能;方便自己随时修改程序,使学习的作用得以充分发挥;成品具有一定的使用价值,可方便的应用于小车等需要测距的装置上。 二、概要设计 图1 工作原理框图

总体设计参照SensComp公司,框图中,单片机为核心控制部分,根据设定的工作方式,产生40kHz方波,经过驱动电路驱动超声波发生器发出一簇信号。单片机此时开始计时。 接收回路为谐振回路,将收到的微弱回波信号检出,送信号放大电路放大,收到产生脉冲输出送单片机中断端,单片机收到中断信号后停止计时,计算出距离值,保存等待读出或直接经UART送出。接收过程中,单片机定时控制放大电路的增益,逐渐提高,以适应距离越 远越弱的回波信号。 核心器件为STC12LE4052、TL852、16mm超声波收、发器。采用5V供电,因为5V是最常见的工作电压,便于日后将传感器应 用于装置中。 为了减小干扰,选用了3.3V供电的单片机,使用目前常用的1117-3.3三端稳压器将5V降到3.3V,减小电源扰动的影响,增加可靠性。 下面分步介绍各个部分的电路原理。 首先是超声波发首先是超声波发射部分。射部分。

图中,Send_Ctrl、Cut_Off端由STC12LE4052控制。此单片机的I/O口可设置为推挽输出模式(这是经典51不具备的),拉电流、灌电流均可达20mA,保证了D882有足够的驱动能力和快速的通断 性能。 变压器的次级电感与发射器(发射器为容性,一般为2400p左右)构成谐振回路,好处是提高了发射效率,但副作用是发射后的余波时间较长,导致近距离的回波被淹没。所以电路中设计了2种余波抑制电路。一个是R6,通过增加谐振回路的损耗加速余波结束,这种方式不需要控制,但由于同时也消耗了发射的功率,所以阻值不能太小,导致衰减效果不明显(此部分读者可自行试验)。

超声波传感器原理

超声波传感器原理 [日期:2007-06-05]来源:作者:[字体:大中小]超声波发射原理是把铁磁材料置于交变磁场中,产生机械振动,发射出超声波。 接收原理是当超声波作用在磁致材料上时,使磁滞材料磁场变化,使线圈产生感应电势输出。 超声波传感器原理与应用 2008-04-1802:40

polaroid6500系列超声波距离模块的硬件电路如图2所示: tl851是一个经济的数字12步测距控制集成电路。内部有一个420khz的陶瓷晶振,6500系列超声波距离模块开始工作时,在发送的前16个周期,陶瓷晶振被8.5分频,形成49.4khz的超声波信号,然后通过三极管q1和变压器t1输送至超声波传感器。发送之后陶瓷晶振被4.5分频,以供单片机定时用。tl852是专门为接收超声波而设计的芯片。因为返回的超声波信号比较微弱,需要进行放大才能被单片机接收,tl852主要提供了放大电路,当tl852接收到4个脉冲信号时,就通过rec 给tl851发送高电平表明超声波已经接收。 2.3at89c51单片机 本系统采用at89c51来实现对polaroid600系列传感器和polaroid6500系列超声波距离模块的控制。单片机通过p1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测int0引脚,当int0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。超声波测距的硬件示意图如图3所示:

3、系统软件设计 系统程序流程图如图4所示: 工作时,微处理器at89c51先把p1.0置0,启动超声波传感器发射超声波,同时启动内部定时器t0开始计时。由于我们采用的超声波传感器是收发一体的,所以在发送完16个脉冲后超声波传感器还有余震,为了从返回信号识别消除超声波传感器的发送信号,要检测返回信号必须在启动发射信号后2.38ms才可以检测,这样就可以抑制输出得干扰。当超声波信号碰到障碍物时信号立刻返回,微处理器不停的扫描int0引脚,如果int0接收的信号由高电平变为低电平,此时表明信号已经返回,微处理器进入中断关闭定时器。再把定时器中的数据经过换算就可以得出超声

MOS管及简单CMOS逻辑门电路原理图

MOS 管及简单CMOS 逻辑门电路原理图 现代单片机主要是采用CMO 工艺制成的。 1、MOS 管 MOS 管又分为两种类型:N 型和P 型。如下图所示: V DD 4 5 I c 6 =Vss P 型MOS 管 以N 型管为例,2端为控制端,称为“栅极”;3端通常接地,称为 “源极”;源极电压记作Vss , 1端接正电压,称为“漏极”,漏极电压记作VDD 要使1端与3端导通,栅极2 上要加高电平。 对P 型管,栅极、源极、漏极分别为 5端、4端、6端。要使4 端与6端 导通,栅极5要加低电平。 在CMO 工艺制成的逻辑器件或单片机中,N 型管与P 型管往往是 成对出 现的。同时出现的这两个 CMO 管,任何时候,只要一只导通,另一只则 不导通(即“截止”或“关断”),所以称为“互补型—CMO 管”。. 2、CMO 逻辑电平 高速CMO 电路的电源电压 VDD S 常为+5V; Vss 接地,是0V 。 高电平视为逻辑“ 1”,电平值的范围为:VDD 勺65%-VDD 或者VDD-1.5V ? VDD 低电平视作逻辑“ 0”,要求不超过 VDD 的35%或 0?1.5V 。 +1.5 V ?+3.5V 应看作不确定电平。在硬件设计中要避免出现不确定电平。 近年来,随着亚微米技术的发展,单片机的电源呈下降趋势。低电源电压有 助于降低功耗。VDD 为3.3V 的CMO 器件已大量使用。在便携式应用中, VDC 为 2.7V ,甚至1.8V 的单片机也已经出现。将来电源电压还会继续下降,降到0.9V , 但低于VDD 的 35%勺电平视为逻辑“ 0”,高于VDD 勺65%勺电平视为逻辑“ 1” 的规律仍然是适用的。 VDD Vss

基本门电路

基本门电路 一、实验目的 1.了解TTL 门电路的原理、性能和使用方法; 2.掌握基本门电路逻辑功能; 3.熟悉基本运算单元、半加器和全加器的逻辑关系和功能。 二、实验原理 在数字电路中,门电路是实现某种逻辑关系的最基本的单元,任何复杂的组合电路和时序电路都可用逻辑门通过适当的组合连接而成。因此,掌握逻辑门的工作原理,熟练、灵活地使用逻辑门,是学习数字电路的基础。本实验在数字学习机上进行,其各种逻辑电路都是由集成TTL 门电路构成,逻辑关系用正逻辑分析。 1.与门 逻辑功能为当输入端A 与B 均为“1”时,输 出才为“1”,其逻辑函数式为 B A F ?= 2.或门 逻辑功能为当输入端A 或B 有一端为“1”时, 输出为“1”,其逻辑函数式为 B A F += 3.异或门 其逻辑功能为当输入信号A 、B 相同时,输 出为“0”,当两个输入信号不同时,输出为“1”。 其逻辑函数式为 B A B A B A F ⊕=+= 4.半加器 半加器是求同一位上的两个加数和的运算单元。这个和称为半加和或本位和。逻辑表达式为 n n n n n n n B A B A B A S ⊕=+=' n n n B A C =' 式中,n A ,n B 分别表示两个加数在第n 位上的数码,'n S 为本位和,' n C 为该位向高一位的进位。 5.全加器 全加器是在半加器的基础上,能够实现两 个加数的某一位加法运算全功能的逻辑电路。 它不仅能求本位和,而且可以同时将从低位来 的进位也加进去。全加器电路由两个半加器和 一个或门构成,逻辑表达式为 1'1'-++=n n n n n C S C S S 1' -+=n n n n n C S B A C 式中,n S 表示全加和,1-n C 表示低位全加器输 出的进位数,n C 表示本位全加进位数,' n S 表示 半加和。 图20-1 与门电路 F 图20-2 或门电路 F 图20-3 异或门电路 F 图20-4 有异或门的半加器 C 'n S 'n An Bn 图20-5 全加器逻辑图 1

相关文档
最新文档