2015中再财险精算岗笔试

2015中再财险精算岗笔试

地点在清华建筑馆报告厅,是一个很大的阶梯教室,不同岗位的分开坐,因为试题专业题部分是不一样的,据说好几年都是在这里了。我一定要吐槽一下那里真的很冷……一定要穿着外套答题,不然手抖得写不出字!

不废话了,进入正题。时间两个半小时,题目分三块,综合知识,英语和专业题。综合知识是30道行测和申论,真的是和国考一样的申论!!!有三道小题一道大作文。英语是4篇阅读,一道选词填空的文章,5句中翻英,和一道作文!!!(尼玛又是作文)专业题是四道答题,第一道是算IBNR ,分别是链梯法和BF,第二道是算佣金的,如果我没猜错的话,应该是用Sliding Scale的方法算的,第三第四道都是算超额再保险的纯保费,其中第三道是根据风险曲线算的,第四道是根据ILF算的,我只能说,还好两个月前考了CAS8,还有那么一点点印象,能写出点东西来,所以我先把专业题都做了。然后做了行测和申论的前三个小题,然后开始做英语阅读,然而,难度实在太大,根本看不懂,所以我又先去写了翻译和英语作文……反正到最后就是申论大作文没写,英语阅读都是蒙的,英语作文随便写了几句,写得比较全的可能就只有专业题………………时间肯定是不够的了,就看自己擅长那部分就认真点做吧。还有就是因为题目会一下子全发下来,一定要整理好,中途不要换来换去地做题,这样也是在浪费时间。能说的就是这么多,要说什么经验技巧是没有了,大家可以通过题目自己想想做好准备吧……

保险精算试题

共 4 页 第 1 页 保险精算复习自测题(90分钟) 选择题(20分) 1.(20)购买了一种终身生存年金,该年金规定第一年初给付500元,以后只要生存每年初增加100元,该生存年金的精算现值为( )。 A... .. 2020400100()a I a + B.2020400100()a I a + C... .. 2020500100()a I a + D.2020500100()a I a + 2. UDD 假设 若q 50=0.004,在UDD 假设下0.5p 50等于( )。 3. 每次期初支付10000元,一年支付m 次,共支付n 年的生存年金的精算现值表示为( )。 A.() ..:10000m x n m a B.() :10000m x n ma C.() ..:10000m x n nm a D.() :10000m x n nm a 4.关于(x )的一份2年定期保险,有如下条件:(1)0.02(1)x k q k +=+ 0,1k =(2)0.06i =(3)在死亡年末支付额如下: k 1k b + b1 1 b2 若 z 是死亡给付现值的随机变量则()E Z 等于( )。

共 4 页 第 2 页 填空题(20分) 1.按缴费方式和保险金的给付方式,把寿险分为 、 、 。 2.若一个人在x 岁时死亡,此时随机变量T (30)= ,K(50)= 。 3. = ,35:]1000n n V 。 4.日本采用的计算最低现金价值的方法是 。 5.专业英语:Nominal interest 中文意思是 。 6.生存年金精算现值的计算方法 和 。 7.假设i=5%,现向银行存入1万元,在以后的每年末可取出 元。 8.假设40l =A ,50l =B ,则1040q = 。 9.责任准备金的两种计算方法为 、 。 1 20:] 1000t t V

保险精算习题及答案

保险精算习题及答案 第一章:利息的基本概念 练习题 21(已知,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,atatb,,,, 在时刻8的积累值。 2((1)假设A(t)=100+10t, 试确定。 iii,,135 n(2)假设,试确定。 An,,1001.1iii,,,,,,135 3(已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 4(已知某笔投资在3年后的积累值为1000元,第1年的利率为,第2年的利率为,i,10%i,8%12第3年的利率为,求该笔投资的原始金额。 i,6%3 5(确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 2226(设m,1,按从大到小的次序排列与δ。 vbqep,,,xx 7(如果,求10 000元在第12年年末的积累值。 ,,0.01tt 8(已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。 t9(基金A以每月计息一次的年名义利率12%积累,基金B以利息强度积累,在时刻t (t=0),两笔,,t6 基金存入的款项相同,试确定两基金金额相等的下一时刻。

10. 基金X中的投资以利息强度(0?t?20), 基金Y中的投资以年实际利率积累;现分别,,,0.010.1tit 投资1元,则基金X和基金Y在第20年年末的积累值相等,求第3年年末基 金Y的积累值。 11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。 A. 7.19 B. 4.04 C. 3.31 D. 5.21 12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。 A.7 225 B.7 213 C.7 136 D.6 987 第二章:年金 练习题 nmvviaa,,,1(证明。,,mn 1 2(某人购买一处住宅,价值16万元,首期付款额为A,余下的部分自下月起每月月初付1000元,共付10年。年计息12次的年名义利率为8.7% 。计算购房首 期付款额A。 3. 已知 , , , 计算。 a,5.153a,7.036a,9.180i71118 4(某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其 每年生活费用。 5(年金A的给付情况是:1,10年,每年年末给付1000元;11,20年,每年年末 给付2000元;21,30年,每年年末给付1000元。年金B在1,10年,每年给付额为K元;11,20年给付额为0;21,30年,每年

人寿保险精算经验总结

第一章人寿保险的主要类型 一、普通型人寿保险 定期寿险:以死亡为给付条件且期限固定。 优点:保费低廉 可以无现金价值,可续保性,可转换性 终身寿险:以死亡为给付条件且期限为终身。 优点:可得到永久保障,有退费权利,获得退保现金价值 分类:普通终身寿险、限期交费终身寿险、趸交终身保险 两全保险:以死亡或生存为给付条件的。储蓄性极强。 定期死亡险与生存险的结合,净保费由危险保费和储蓄保费组成。 年金保险:以生存为给付条件,按约定分期给付生存保险金,且给付间隔不超过一年。 ◆交费方式:趸交年金、期交年金 ◆给付开始日期:即期年金、延期年金 终身年金 ◆给付方式:最低保证年金确定给付年金(规定了最低保证年数) 退还年金(退还购买金额与领取金额的差额) 定期生存年金 个人年金 ◆被保险人数联合年金(均生存为给付条件) 最后生存者年金(至少一个生存为给付条件,给付金

额不变) 联合及生存者年金(至少一个生存为给付条件,给付 金额随被保险人减少调整) ◆给付额是否变动:定额年金、变额年金 二、新型人寿保险 (1)分红保险 ?分红保险、非分红保险以及分红保险产品与其附加的非分红保险产品必须分设帐户、独立核算。 采用固定费用率的,相应的附加保费收入和佣金、管理费用等不列入分红保险帐户; 采用固定死亡率方法的,相应的死亡保费收入和风险保额给付等不列入分红保险帐户 ?特点: ○1保单持有人享受经营成果。至少将当年可分配盈余的70%分配给客户 ○2保单持有人承担一定风险 ○3定价精算假设比较保守 ○4保险给付、退保金中含有红利 ?保单红利 利源:利差益、死差益、费差益、失效收益、资产增值、预期利润、残疾给付等与实际给付的差额 分配:满足公平性原则和可持续性原则 分配方式:现金红利、增额红利

第12章--保险精算

第十二章保险精算 本章要点 1.保险精算是以数学、统计学、金融学、保险学及人口学等学科的知识和原理,去解决商业保险和社会保障业务中需要精确计算的项目,如研究保险事故的出险规律、保险事故损失额的分布规律、保险人承担风险的平均损失及其分布规律、保险费和责任准备金等保险具体问题的计算。 2.保险精算的基本任务。在寿险精算中,利率和死亡率的测算是厘定寿险成本的两个基本问题。非寿险精算始终把损失发生的频率、损失发生的规模以及对损失的控制作为它的研究重心。保险精算的首要任务是保险费率的确定,但这并不是保险精算的全部。伴随着金融深化的利率市场化,保险基金的风险也变为精算研究的核心问题。在这方面要研究的问题包括投资收益的敏感性分析和投资组合分析、资产和负债的匹配等。 3.保险精算的基本原理。保险精算其最基本的原理可简单归纳为收支相等原则和大数法则。所谓收支相等原则,就是使保险期内纯保费收入的现金价值与支出保险金的现金价值相等。所谓大数法则,是用来说明大量的随机现象由于偶然性相互抵消所呈现的必然数量规律的一系列定理的统称。 4.在非寿险精算实务中,确定保险费率的方法主要有观察法、分类法和增减法。 5.在一定的要求之下,“大数”由下面的公式来测定: 6.自留额与分保额的决策。假定在原有业务上,赔偿基金为P1,赔偿金额标准差为Q1,则。现将另外接受n个保险单位,保额为x元,纯费率为q,则合并业务后要使K1+2仍维持K1的值,则应有: 当q十分小时,可近似得到: 即要维持原有的财务稳定性,对于新接受的业务,如果保险金额在x以下,则可全部自留;对于保险金额超过x的新业务,自留额以x为限,超过部分予以分保。 7.寿险精算的计算原理及公式。 8.理论责任准备金及其计算。 9.实际责任准备金及其计算。 第一节保险精算概述 一、保险精算的概念和基本任务 所谓精算,就是运用数学、统计学、金融学及人口学等学科的知识和原理,去解决工作中的实际问题,进而为决策提供科学依据。

最新保险精算第二版习题及答案

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8 ,1 25300*100 (5)300180300*100300*100(8)(64)508 180180 a b a a b a b a a a b ===+=?===?=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---= ===== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---= ===== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5 年后的积累值。 11132153500(3)500(13)6200.08800(5)800(15)1120 500(3)500(1)6200.0743363800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1)(0)794.1 A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值:

保险精算第1章习题答案

第1章 习题答案 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 解: 100)0(100)0(.k )0(2=+?==b a a A 或者由1)0(=a 得1=b 180)15(100)5(100)5(2=+?=?=a a A 得032.0=a 以第5期为初始期,则第8期相当于第三期,则对应的积累值为: 4.386)13032.0(300)3(2=+??=A 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 解:(1)A(0)=100;A(1)=100+10×1=110;A(2)=120;A(3)=130;A(4)=140;A(5)=150 ; ; 。 (2)A(0)=100;;;;; 。 ; ; 。 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 解:单利条件下: 得; 则投资800元在5年后的积累值:; 在复利条件下: 得 则投资800元在5年后的积累值:。 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率

为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 解: 得元。 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 解:(1) 元 (2) 得 10000元在第3年年末的积累值为: 元 6.设m >1,按从大到小的次序排列,,,与。 解:,所以,。 ,在的条件下可得。 ,在的条件下可得 。 对其求一阶导数得得 对其求一阶导数,同理得。 由于,所以,同理可得。 综上得: 7.如果0.01t t δ=,求10 000元在第12年年末的积累值。 解:元 8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。 解:注意利用如下关系:则 则根据上述关系可得:

保险精算李秀芳1-5章习题答案

第一章 生命表 1.给出生存函数()22500 x s x e -=,求: (1)人在50岁~60岁之间死亡的概率。 (2)50岁的人在60岁以前死亡的概率。 (3)人能活到70岁的概率。(4)50岁的人能活到70岁的概率。 ()()()10502050(5060)50(60) 50(60) (50) (70)(70) 70(50) P X s s s s q s P X s s p s <<=--= >== 2.已知生存函数S(x)=1000-x 3/2 ,0≤x ≤100,求(1)F (x )(2)f(x)(3)F T (t)(4)f T (f)(5)E(x) 3. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求q 65。 ()() ()5|605606565(66)650.1895,0.92094(60)(60)65(66) 0.2058 (65) s s s q p s s s s q s -= ===-∴= = 4. 已知Pr [T(30)>40]=0.70740,Pr [T(30)≤30]=0.13214,求10p 60 Pr [T(30)>40]=40P30=S(70)/S (30)=0.7074 S (70)=0.70740×S(30) Pr [T(30)≤30]=S(30)-S(60)/S(30)=0.13214 S(60)=0.86786×S(30) ∴10p 60= S(70)/S (60) =0.70740/0.86786=0.81511

5.给出45岁人的取整余命分布如下表: 求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。 (1)5q 45=(0.0050+0.0060+0.0075+0.0095+0.120)=0.04 6.这题so easy 就自己算吧 7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整) (1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人 (1)l 39=l 36×3P 36=l 36(1-3q 36)=1500×(1-0.0055)≈1492 (2)4d 36=l 36×4q 36=1500×(0.005+0.00213)≈11 (3)l 36×9|5q 36=l 36×9P 35×5q 45=1500×(1-0.02169)×0.02235=1500×0.021865≈33 8. 已知800.07q =,803129d =,求81l 。 808081 8080800.07d l l q l l -= == 808081 808080 0.07d l l q l l -= == 9. 015.060=q ,017.061=q ,020.062=q , 计算概率612P ,60|2q .

保险精算试卷及答案

保险精算试卷 1. A.104 B.105 C.106 D.107 E.108 2. (A) 77,100 (B) 80,700 (C) 82,700 (D) 85,900 (E) 88,000 3.Lucky Tom finds coins on his way to work at a Poisson rate of 0.5 coins per minute. The denominations are randomly distributed: (i) 60% of the coins are worth 1; (ii) 20% of the coins are worth 5; (iii) 20% of the coins are worth 10. Calculate the variance of the value of the coins Tom finds during his one-hour walk to work. (A) 379 (B) 487 (C) 566 (D) 670 (E) 768 game. If 4.A coach can give two ty pes of training, “ light” or “heavy,” to his sports team before a the team wins the prior game, the next training is equally likely to be light or heavy. But, if the team loses the prior game, the next training is always heavy. The probability that the team will win the game is 0.4 after light training and 0.8 after heavy training. Calculate the long run proportion of time that the coach will give heavy training to the team.

保险精算

保险精算(寿险)模拟教学系统 第一章前言 一、系统概述 本技术白皮书主要阐述保险精算系统的项目背景和使用现状以及建设目标、总体解决方案,从多个 角度描述本系统的优势和特点,并结合产品特点提出适合贵校的系统总体框架。 本设计方案是公司组织多名在保险行业有多年从业经验的精算师开发而成,是目前国内专业精算软件 中唯一针对高校保险专业而开发的教学系统。 本系统可以为金融实验室构建一个精算实训平台,是保险精算信息化处理、操作和管理平台,充分利 用科技手段实现精算理论教学和精算实际应用相结合的目标。 二、发展趋势 9 0 年代以来,保险精算在中国保险业得到了很大的发展,这种发展不仅表现在保险精算算法上,还 表现在保险教育上,目前国内综合性高校相继开办保险精算专业或保险精算课程,教授保险精算理论知识, 部份高校还开设培养保险精算专业研究生,而且更主要的发展体现在保险精算从理念接受、学习借鉴和探 索阶段,开始向着保险业乃至相关行业的实际操作和应用阶段迈进,即精算理论与技术在中国保险实务中 得到了不同程度的应用。 三、开发背景 随着保险精算信息处理技术的发展,为了适应新形势的要求,各高校基于保险专业教学的需要,开始 希望有一套保险精算软件系统来构建一个模拟保险精算实验室,模拟整个精算过程、结果,让学生有一个 完善、实用、真实的实践环境,去检验所学到的保精算理论知识。正是基于这种市场需求,公司I T 技术 专家、美国/ 香港/ 大陆注册精算师及知名财经高校保险精算教授等核心开发力量共同合作,历经一年时 间开发了本系统,以满足高校保险精算教学需求。 通过对本系统的实训操作,可以促使学生关注最新的信息技术,训练学生的实际操作能力,为金融专 业及其它相关专业的学生走向社会提供一个理论结合实际的实习环境。 本系统是金融保险人才培养和科学研究的重要工具。为了培养面向2 1 世纪的新型实用人才,本系统 提供的真实的操作环境,使学生在掌握理论知识的同时熟悉实际操作过程,改变其知识结构,培养保险行 业真正需要的实用性人才,增强学生的社会就业竞争力。 第二章解决方案 一、概述

保险精算第二版习题及答案

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 800元在28%i =,第3为 t (t=0),i 积累; 11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。 A. 7.19 B. 4.04 C. 3.31 D. 5.21 12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。 A.7 225 B.7 213 C.7 136 D.6 987 第二章:年金 练习题 1.证明() n m m n v v i a a -=-。

2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付10年。年计息12次的年名义利率为8.7% 。计算购房首期付款额A 。 3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。 4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其每年生活费用。 5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知10 1 2 v = ,计算K 。 6. 化简() 1020101a v v ++ ,并解释该式意义。 5 。 n 年每年,那么v=( 2. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求60q 。 3. 已知800.07q =,803129d =,求81l 。 4. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。求生存函数s(x)在20岁、21岁和22岁的值。 5. 如果221100x x x μ= ++-,0≤x ≤100, 求0l =10 000时,在该生命表中1岁到4岁之间的死亡人数为( )。 A.2073.92 B.2081.61 C.2356.74 D.2107.56

保险精算习题及答案

第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8 ,1 25300*100(5)300 180300*100300*100(8)(64)508 180180 a b a a b a b a a a b ===+=?===?=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---= ===== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---= ===== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 11132153500(3)500(13)6200.08800(5)800(15)1120 500(3)500(1)6200.0743363800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1)(0)794.1 A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。

保险精算练习题

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 4.假设1000元在半年后成为1200元,求 ⑴ )2(i ,⑵ i, ⑶ )3(d 。 解:⑴ 1200)2 1(1000) 2(=+?i ;所以 4.0)2(==i ⑵2 )2()2 1(1i i +=+;所以44.0=i ⑶n n m m n d d i m i ---=-=+=+)1()1(1)1() (1)(; 所以, 13)3()1()3 1(-+=-i d ;34335.0)3(=d 5.当1>n 时,证明: i i d d n n <<<<) () (δ。 证明:①) (n d d < 因为,Λ+?-?+?-?=-=-3)(3 2)(2) (10)()()(1)1(1n d C n d C n d C C n d d n n n n n n n n n ) (1n d ->所以得到, )(n d d <; ② δ<) (n d )1() (m n e m d δ - -=;m m C m C m C m e n n n m δ δ δ δ δ δ - >-?+?-?+- =- 1)()()(14 43 32 2 Λ 所以, δ δ =- -<)]1(1[) (m m d n ③) (n i <δ i n i n n +=+1]1[)(, 即,δ=+=+?)1ln()1ln()(i n i n n 所以, )1()(-?=n n e n i δ m m C m C m C m e n n n n δ δ δ δ δ δ + >+?+?+?++ =1)( )( )( 144 33 22 Λ

δ δ =-+>]1)1[() (n n i n ④ i i n <)( i n i n n +=+1]1[) (,)(2)(2)(10)(1)(1]1[n n n n n n n n i n i C n i C C n i +>+?+?+?=+Λ 所以, i i n <) ( 6.证明下列等式成立,并进行直观解释: ⑴n m m n m a v a a +=+; 解:i v a n m n m ++-= 1, i v a m m -= 1,i v v i v v a v n m m n m n m +-=-=1 所以,n m n m m m n m m a i v v v a v a ++=-+-=+1 ⑵n m m n m s v a a -=-; 解: i v a n m n m ---= 1,i v a m m -= 1,i v v s v n m m n m --= - 所以,n m n m m m n m m a i v v v s v a --=-+-=-1 ⑶ n m m n m a i s s )1(++=+; 解: i i s m m 1)1(-+=,i i i i i i s i m n m n m n m )1()1(1)1() 1()1(+-+=-++=++ 所以,n m m n m m n m m s i i i i a i s ++=+-++-+=++)1()1(1)1()1( ⑷ n m m n m a i s s )1(+-=-。

保险精算学 参考书籍

精算学习书目 [1]王晓军,孟生旺主编保险精算原理与实务(第三版)/2014-07-01 /中国人 民大学出版社 [2]范兴华,邹公明编著,保险精算学通论,北京:清华大学出版社,2007.1 F840/19 [范兴华, 邹公明, 2007] [3]杨全成主编,陈飞跃李一鸣副主编,保险精算技术,复旦大学出版社,2006 年7月第一版 [杨全成, 2006] [4]张博著精算学/北京大学经济学教材系列出版社:北京大学出版 社出版时间:2005年11月 [5]周渭兵著中国新型农村养老保险制度精算研究/2014-05-01 /经济科学出 版社 [6]S.G.凯利森著;尚汉冀译,利息理论,上海:上海科学技术出版社,1995.11 F84-51/3/1 5 本 [凯利森, 1995] [7]刘占国主编,利息理论,北京:中国财政经济出版社,2006.11 F032.2/3 [8]N.L.鲍尔斯等著;余跃年,郑韫瑜译,精算数学,上海:上海科学技术出版社 /1996.6 544页,大32开 [9]中国精算师资格考试全真模拟试题邹公明主编上海:上海财经大学出版 社,2005.8 F84-44/2 [10]精算数学N.L.鲍尔斯等著;余跃年,郑韫瑜译上海:上海科学技术出 版社,1996.6 [11]精算学基础第1卷:复利数学李晓林编著北京:中国财政经济出版 社,1999.6 [12]精算学基础第2卷:风险统计基础李晓林编著北京:中国财政经济出 版社,1999.6 [13]社会保障精算理论与应用张思锋,雍岚,封铁英等编著北京:人民 出版社,2006. [14]寿险精算基础杨静平编著北京:北京大学出版社,2002.10 [15]寿险精算数学卢仿先张琳主编北京:中国财政经济出版社,2006.12 [16]寿险精算实务李秀芳主编北京:中国财政经济出版社,2006.11 [17]卓志主编,李恒琦等副主编保险精算通论出版时间:2006年05 月 [18]李秀芳,曾庆五主编保险精算(第二版)——21世纪高等学校金融 学系列教材出版社:中国金融出版社出版时间:2005年01月 [19]周渭兵著社会养老保险精算理论、方法及其应用出版社:经济管 理出版社出版时间:2004年12月 [20]曾庆五,陈迪红,黄大庆编著保险精算技术出版社:东北财经大学出版 社出版时间:2002年06月 [21]保险精算/21世纪高等院校教材出版社:科学出版社出版时间:2004 年08月 [22]李秀芳主编寿险精算实务出版社:中国财经出版社出版时间: 2006年11月

保险精算李秀芳章习题答案

第一章生命表 1.给出生存函数() 2 2500 x s x e- =,求: (1)人在50岁~60岁之间死亡的概率。 (2)50岁的人在60岁以前死亡的概率。 (3)人能活到70岁的概率。(4)50岁的人能活到70岁的概率。 2.已知生存函数S(x)=1000-x3/2 ,0≤x≤100,求(1)F(x)(2)f(x)(3)F T (t)(4)f T (f)(5)E(x) 3. 已知Pr[5<T(60)≤6]=0.1895,Pr[T(60)>5]=0.92094,求q 65 。 4.已知Pr[T(30)>40]=0.70740,Pr[T(30)≤30]=0.13214,求 10p 60 Pr[T(30)>40]=40P30=S(70)/S(30)=0.7074 S(70)=0.70740×S(30) Pr[T(30)≤30]=S(30)-S(60)/S(30)=0.13214 S(60)=0.86786×S(30) ∴ 10p 60= S(70)/S(60)=0.70740/0.86786=0.81511 5.给出45岁人的取整余命分布如下表: 求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。

(1)5q 45=(0.0050+0.0060+0.0075+0.0095+0.120)=0.04 6.这题so easy 就自己算吧 7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整) (1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人 (1)l 39=l 36×3P 36=l 36(1-3q 36)=1500×(1-0.0055)≈1492 (2)4d 36=l 36×4q 36=1500×(0.005+0.00213)≈11 (3)l 36×9|5q 36=l 36×9P 35×5q 45=1500×(1-0.02169)×0.02235=1500×0.021865≈33 8. 已知800.07q =,803129d =,求81l 。 9. 015.060=q ,017.061=q ,020.062=q , 计算概率612P ,60|2q . 612 P =(1-q 61)(1-q 62)=0.96334 60|2q =612P .q 62=0.01937 10. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。求生存函数s(x)在20岁、21岁和22岁的值。 13.设01000l =,1990l =,2980l =,…,9910l =,1000l =,求:1)人在70岁至80岁之间死亡的概率;2)30岁的人在70岁至80岁之间死亡的概率;3)30岁的人的取整平均余命。 18. 19.

保险精算期末复习试题

1 假设某人群的生存函数为()1,0100100 x S x x =-≤≤ 求: 一个刚出生的婴儿活不到50岁的概率; 一个刚出生的婴儿寿命超过80岁的概率; 一个刚出生的婴儿会在60~70岁之间死亡的概率; 一个活到30岁的人活不到60岁的概率。 2 已知给出生存函数()20S x = ,0100x ≤≤,计算(75),(75)F f ,()75μ 3、已知 10000(1)100 x x l =- 计算下面各值: (1)30203030303010,,,d p q q (2)20岁的人在50~55岁死亡的概率。 (3)该人群平均寿命(假定极限年龄为100)。 4、设 ()1 , 0100100 0.1x S x x i =- ≤≤= 求:第一问: 130:101 (2)()t A Var z () 第二问: 30:101 (2)()t A Var z () 5、设(x)投保终身寿险,保险金额为1元,保险金在死亡即刻赔付,签单时,(x)的剩余寿命的密度函数为 1 , 060(t)60 0 , T t f ?<≤?=???其它 计算 0.90.91(2)() (3)Pr()0.9. x t A Var z z ξξ≤=()的 6、假设(x )投保延期10年的终身寿险,保额1元。保险金在死亡即刻赔付。已知0.040.06(),0x S x e x δ-==≥, 求:10t (1) (2)Var(z )x A ,

7、90岁的人生存情况如下表。求 1、死亡年末给付1000元的趸缴浄保费 8、现年30岁的人购买了一份递减的5年定期寿险保单。保险金于死亡年末给付,第一个保单年度内死亡,则给付5万元;第二个保单年度内死亡,则给付4万元——;第5个保单年度内死亡,则给付1万元,设年利率为6%,用中国人寿保险业经验生命表非养老金业务男表计算其趸缴纯保费。 9、假设有100个相互独立的年龄为x 岁的被保险人都投保了保险金额10元的终身寿险,随机变量T 的概率密度是()()0.04,0t T f t e t μμμ-==≥.保险金于被保险人死亡时给付,保险金给付是从某项基金中按利息强度0.06δ=计息支付.试计算这项基金在最初()0t =时的数额至少为多少时,才能保证从这项基金中足以支付每个被保险人的死亡给付的概率达到95% 10、 假定寿命服从[0,110]上的均匀分布,且0.05δ=,计算(30)所购买的终身连续生存年金。用三种方法计算。 11、有一种终身年金产品,每年连续给付生存年金1000元。 现在开发一种新产品,在原来年金给付的基础上增加死亡即刻给付X 万元。 假定利息力为5%,求:当死亡赔付定为多大时,该产品赔付现值的方差最小? 12、 在死亡力为常数0.04,利息力为常数0.06的假定下,求 (1)x a (2)T a 的标准差 (3) T a 超过x a 的概率。 13、 8x a =,25x a =,0.05δ= 14、 设一现值变量为,0(),()n T a T x n Y a T x n ≤≤??=?>?? 计算()x n E Y a - 15—20题 课本45页课后习题。

保险精算第二版习题及答案

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8,125 300*100(5)300180 300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=?= ==?=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---====== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---====== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 11132153500(3)500(13)6200.08 800(5)800(15)1120 500(3)500(1)6200.0743363 800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1) (0)794.1A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。

保险精算的基本原理及其应用

保险精算的基本原理及其应用 摘要 保险精算是指运用数学、保险学、统计学、金融学以及人口学等学科的知识与原理,去解决商业保险与各种社会保障业务中需要精确计算的项目,如死亡率的测定、生命表的构造、费率的厘定、准备金的计提以及业务盈余分配等,以此保证保险经营的稳定性和安全性。保险精算通常可分为寿险精算和非寿险精算两类。 关键字:大数定律、产品定价、精算应用

一、保险精算的基本原理 精算起源于保险业,是保险公司经营不可或缺的核心技术之一。保险公司只有运用精算技术进行保险产品定价、准备金评估、风险管理等,才能在科学基础上实现保险业务的稳健经营,有效防范风险。 保险精算的基本原理与保险的基本原理相类似,都运用了概率论的知识以及大数定律。不过保险精算作为保险经营的基础性定价环节所必须的技术壁垒,在这些知识的运用上更加侧重于计算以及统计,从数理理论的角度上进行体系的架构。保险精算中运用的大数定律有切比雪夫大数定律和贝努利大数定律。 切比雪夫大数定律是指:设X1,X2,…,Xn是由相互独立的随机变量所构成的序列,每一随机变量都有有限的方差,并且它们有公共上界,即: Var(X1)≤C,Var(X2)≤C,…,Var(Xn)≤C 则对于任意的Ξ>O,都有: 切比雪夫大数定律阐述的是大量随机因素的平均效果与其数学期望有较大偏差的可能性越来越小的规律。从风险的角度看,它表明,如果以Xi表示第i 个风险单位的未来损失,则当n很大时,n个风险单位未来损失和以概率1接近它们的期望值。这就是保险人把未来损失的期望值作为纯保险费的主要根据。 在保险学中的解释即为,当保险人承保了n个相互独立的保险标的后,尽管每个风险单位的实际损失Xi不会等于其期望值E(Xi),但当保险标的数n足够 大时,保险标的的平均损失与其损失的平均期望值几乎相等。换言之,如果保险人按照每个风险单位的未来损失期望值作为纯保险费来收取,则当其聚集风险单位足够多时,这些纯保险费将足够支付保险人未来作出的损失赔偿。这就为保险基金的积累和保险赔偿准备金的提取提供了数理理论基础。 贝努利大数定律指的是在事件A发生的概率为P的n次贝努利模型中,令μn以表示A发生的次数,则对Ξ>0,有:

保险精算第二版习题及标准答案

保险精算第二版习题及答案

————————————————————————————————作者:————————————————————————————————日期:

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8 ,1 25300*100(5)300 180300*100300*100(8)(64)508 180180 a b a a b a b a a a b ===+=?===?=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---= ===== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---= ===== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5 年后的积累值。 11132153500(3)500(13)6200.08800(5)800(15)1120 500(3)500(1)6200.0743363800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1)(0)794.1 A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值:

相关文档
最新文档