实验讲义-用VSM测量磁性测量磁性能(吉林大学)

实验讲义-用VSM测量磁性测量磁性能(吉林大学)
实验讲义-用VSM测量磁性测量磁性能(吉林大学)

实验讲义

用振动样品磁强计测量 铁氧体永磁磁性能

吉林大学物理实验中心

第一节 预备知识

一 物质磁性

磁性是在自然界所有物质中广泛存在的一种物理性质。任何物质放在磁场H 中,都会或多或少地被磁化。通常用磁极化强度J 或磁化强度M (J 、M 为单位体积内的磁矩,M J 0μ=)表示磁化状态,即磁化的方向和磁化程度的大小。H M χ=,χ为磁化率。磁感应强度H J B 0μ+=或)(0H M B +=μ。

依据χ的正负和大小,物质磁性体可以分为抗磁性,顺磁性,铁磁性,反铁磁性,亚铁磁性和磁性玻璃等。 1.抗磁性

抗磁性物质没有固有的原子磁矩,磁矩是被磁场感应出来的,所以磁矩方向与磁场方向

相反,即磁化率χ是负的。抗磁性物质磁化率χ的数值很小,约为10-6。在一般实验室条件下,χ与H 和温度T 无关。在超导体内,0)(0=+=M H B μ,因此1?=χ。这个现象称为Meissner 效应。

2.顺磁性

顺磁性物质中原子或离子具有固有磁矩,磁矩间相互作用很弱,没有外磁场时,磁矩在热扰动作用下混乱排列,宏观磁化强度为零。在磁场中,磁矩受到力矩的作用向磁场方向转动,在磁场方向显现出宏观的磁化强度,所以顺磁性磁化率为正。然而由于磁矩在外磁场中的位能远比热能小,磁化很弱,χ大小约为5610~10??。在一般实验室的磁场中,χ与H 无关,但与温度满足Curie 定律T C =χ 或Curie-Weiss 定律C

T C θχ?=,C 和C θ分别为Curie 常数和顺磁Curie 温度。 3. 铁磁性

铁磁性物质具有固有磁矩,并且磁矩之间存在较强的相互作用,虽然不存在外磁场,所有的磁矩也都沿着同一方向排列,形成自发磁化。为了降低退磁场能,铁磁体内部分成多个磁畴。在磁畴内,所有磁矩平行排列,自发磁化到饱和值s J 。不同磁畴的磁化方向不同,没有磁化的样品总体磁化强度为零。磁畴之间存在畴壁,在畴壁内沿着厚度方向磁矩从一个磁畴的磁化方向逐步过渡到近邻磁畴的磁化方向。铁磁体的磁化主要是通过畴壁位移和磁矩转动两个过程进行。

铁磁性的磁化率χ大的多,约为7

10~10。χ对H 和T 的依赖关系很复杂,一般用J (或M 、B )与H 的关系 )(H J (或)(H M 、)(H B )描写其磁性。

由图1可以看出,J 不是H 的单值函数,而是与H 变化的历史有关;存在磁滞现象,J 的变化落后于H 的变化。热退磁的样品按曲线a (称为初始磁化曲线)磁化饱和后,减小磁化场H ,磁极化矢量J 并不按原路返回,而是比磁场H 的变化滞后(曲线b )。当H 减小到零时,样品还保留着一定的磁极化强度r J ,r J 称为剩磁。只有在反向加上一定的磁场

c i

H ,磁极化强度才降为零,c i H 称为内禀矫顽力。继续增大反向磁场,样品逐渐在反向

趋近饱和。改变磁场从负的最大值到正的最大值,J 按着与曲线b 对称的曲线c 变化,曲线b 和c 构成的闭合曲线叫磁滞回线。在第二象限(J >0, H <0),从(0,r J )到(c i H ?,0)的一段曲线称为退磁曲线。由公式H J B 0μ+=或)(0H M B +=μ可以得到与)(H J 相似

的)(H B 曲线。在)(H B 的初始磁化曲线上,H

B

=μ称为磁导率。磁导率是衡量软磁材料

性能的一个重要的指标。在)(H B 的磁滞回线上,0=H 处的r B 也称为剩磁,r r J B =,

0=B 处的磁场的绝对值称为矫顽力c H , c H

积的绝对值)(BH (该点下的面积)称为该点的磁能积,max )(BH 为一系列)(BH 值中的最大值,叫最大磁能积。最大磁能积代表了磁体单位体积内存储的能量,是衡量永磁材料性能的一个重要指标。

图1,铁磁性样品的初始磁化曲线(a )和磁滞回线(b 、c )

随着温度的提高,磁畴内原子磁矩的平行排列被热运动破坏,自发磁极化强度s J 减小,在Curie 温度c T 处近似为零。在高于c T 的温度呈现顺磁性,满足Curie-Weiss 定律。 常温下只有过渡族金属Fe 、Co 、Ni 和稀土金属Gd 具有铁磁性。其它铁磁性物质大部分是含有上述四种金属元素的合金和化合物,如SmCo 5、Nd 2Fe 14B 等永磁材料和坡莫(Fe -Ni )等软磁材料。 4.反铁磁性

反铁磁性物质的原子有固有磁矩,有两个或多个次晶格。在同一个次晶格内原子磁矩平行排列,不同次晶格的原子磁矩取向相反,总磁矩等于零。反铁磁性存在Néel 温度N T ,在N T 以下,χ随温度的升高增加,

在N T 以上变为顺磁性,满足Curie-Weiss 定律N

T T C

+=χ,

因此χ在N T 处存在最大值。反铁磁性的磁化率χ约为14

10~10??。

5. 亚铁磁性

亚铁磁性的磁矩排布和反铁磁性类似,在一个次晶格内磁矩平行排列,不同次晶格间磁

矩反平行,但次晶格的磁矩大小不同,不能完全互相抵消,自发磁化强度不等于零,显示出的宏观磁性与铁磁性类似,但饱和磁化强度一般小于铁磁性。当温度提高到Néel 温度N T 时转变为顺磁性。这种顺磁性的)(T χ关系比较复杂。

具有亚铁磁性的典型材料有尖晶石铁氧体、磁铅石铁氧体、石榴石铁氧体及重稀土-3d 过渡金属化合物。 6. 磁性玻璃

在这种磁性物质中,磁矩即不平行也不反平行排列,是无规则的非共线结构。属于这个磁性的有散铁磁性,散亚铁磁性,散反铁磁性,自旋玻璃等。

具有自发磁化的铁磁性、亚铁磁性、散铁磁性、散亚铁磁性统称为强磁性。目前能够应用的磁性材料绝大部分是磁化强度大、磁性转变温度高的强磁性物质。3d 、4f 磁性元素是这些材料的基本组成。抗磁性、顺磁性、反铁磁性、散反铁磁性等弱磁性物质,以及磁化强度小或磁性转变温度低的强磁性物质还没有被应用。

二,磁性材料 1, 软磁材料

软磁材料是这样一种磁性材料,加上磁场时,它们很容易被磁化;去掉磁场,又很容易退磁。这类材料主要应用于电机、变压器等要求磁通密度(B )随磁化场的变化而变化的场合,因此对这类材料的要求主要是高磁导率、低矫顽力、低损耗。因为交变的磁场会产生涡流,因此要求软磁材料有尽可能高的电阻率以降低损耗。常用的软磁材料有纯Fe 、Fe -Si 合金、坡莫合金(Fe -Ni )、非晶和纳米晶合金以及Mn-Zn 和Ni -Zn 铁氧体等。

2,永磁材料

与软磁材料相反,对永磁材料的要求是饱和磁化去掉磁化场后,能够保留尽可能多的磁性。因此除了要求高的饱和磁化强度s J 外,还要求有尽可能高的矫顽力c i H 和较好的方形度,从而得到高的最大磁能积max )(BH 。max )(BH 代表单位体积内存储的磁场能量。永磁体常用于永磁磁路,在给定气隙中产生磁场。当气隙的体积和永磁体的体积确定后,气隙中磁场强度的平方与max )(BH 成正比。因此max )(BH 是衡量永磁体性能的最重要的参数。常用的永磁材料有永磁铁氧体,铝镍钴,SmCo 5、Sm-Co-Cu-Fe-Zr 和Nd-Fe-B 等稀土永磁。

实验 用振动样品磁强计测量磁性材料磁性能

实验目的:

1 了解振动样品磁强计的测量原理,了解锁相技术概念,鞍点的概念及鞍点调整方法,掌握VSM 定标方法。

2 掌握软磁、永磁材料的概念及两类材料主要技术特征和测量、数据处理方法。

实验原理

振动样品磁强计(VSM )是一种磁性测量常用的仪器,在科研和生产中有着广泛的应用。它是利用小尺寸样品在磁场中做微小振动,使临近线圈感应出电动势而进行磁性参数测量的系统。与一般的感应法不同,VSM 不用对感应信号进行积分,从而避免了信号漂移。另一个优点是磁矩测量灵敏度高,最高达到10-7emu ,对`测量薄膜等弱磁信号更具优势。

如果一个小样品(可近似为一个磁偶极子)在原点沿Z 轴作微小振动,放在附近的一个小线圈(轴向与Z 轴平行)将产生感应电压:

km t m G e g ==ωωδcos

其中7

2

0200)5(43

r x r z NA

G ?=μπ,为线圈的几何因子。ω为振动频率,δ为振幅, m 为样品的磁矩,N 、A 为线圈的匝数和面积。原则上,可以通过计算确定出g e 和m 之

间的关系k ,

从而由测量的电压得到样品的磁矩。但这种计算很复杂,几乎是不可能进行的。实际上是通过实验的方法确定比例系数k ,即通过测量已知磁矩为m 的样品的电压g e ,得到m

e k g =

,这一过程称为定标。定标过程中标样的具体参数(磁矩、体积、形状和位置等)

越接近待测样品的情况,定标越准确。

VSM 测量采用开路方法,磁化的样品表面存在磁荷,表面磁荷在样品内产生退磁场NM ,N 为退磁因子,与样品的具体形状有关。所以在样品内,总的磁场并不是磁体产生的磁场H ,而是NM H ?。测量的曲线要进行退磁因子修正,把H 用NM H ?来代替。

样品放置的位置对测量的灵敏度有影响。假设线圈和样品按图4放置,沿x 方向离开中心位置,感应信号变大;沿y 和z 方向离开中心位置,感应信号变小。中心位置是x 方向的极小值和y 、z 方向的极大值,是对位置最不敏感的区域,称为鞍点。测量时,样品应放置在鞍点,这样可以使由样品具有有限体积而引起的误差最小。

图4,线圈放置位置 图5,鞍区示意图

基本的VSM 由磁体及电源、振动头及驱动电源、探测线圈、锁相放大器和测量磁场用的霍耳磁强计等几部分组成,在此基础上还可以增加高温和低温系统,实现变温测量。

振动头用来使样品产生微小振动。振动频率应尽量避开50Hz 及其整数倍,以避免产生干扰。为了使振动稳定,还要采取稳幅措施。在振动杆上固定一块永磁体,永磁体与样品一同振动。当振动幅度发生变化时,放置在永磁体附近的一对探测线圈会探测到这一变化并反馈给驱动电源,驱动电源根据反馈信号对振动幅度作出调整,使振幅稳定。驱动方式有机械驱动、电磁驱动和静电驱动几种。

图6,VSM 结构示意图

磁体有超导磁体、电磁铁和亥姆赫兹线圈等几种。前两种能产生很强的磁场,用来测量高矫顽力的永磁材料。亥姆赫兹线圈产生的磁场很小,但磁场的灵敏度很高,适于测量软磁材料。磁矩m 的测量由探测线圈和锁相放大器组成,锁相放大器有很高的放大倍数,保证了VSM 有较高的灵敏度。磁场的测量采用霍耳磁强计。将m 和H 信号送给计算机,由计算机进行数据的处理,并对测量过程进行自动化控制。

软磁材料经常与线圈组成电感器件,如变压器、磁头等,材料内磁通以一定频率快速变化,其动态参数电感量一般用交流电桥或Q 表等测量。但软磁材料的静态参数,如饱和磁化强度Bs 、矫顽力c i H 等仍然是基本的性能指标。此外软磁材料也大量地应用于永磁磁路或电磁铁等静态和准静态磁路中,静态磁性能的测量也相当重要的。振动样品磁强计可以用来测量软磁材料的s M 、c i H 等静态参数。通过测量材料的初始磁化曲线,可以得到饱和磁化强度s M ,

初始磁导率i μ和最大磁导率max μ。通过磁滞回线的测量,可以得到矫顽力c i H 。 永磁材料的全部技术参数都可以由VSM 测量得到。永磁材料的技术参数(剩磁、矫顽

力和磁能积等)可以由磁滞回线反映出来,温度特性可以由不同温度下的磁滞回线给出。

实验装置

软磁和永磁材料的矫顽力有显著的差别,实验装置有所不同。

软磁材料的矫顽力c i H 比较小,最多为几个Oe ,因此用亥姆赫兹线圈作为产生磁场的磁体。此外用亥姆赫兹线圈也可以保证有足够的磁场分辨率。为了保证磁场零点附近的连续性,电源采用特殊设计的连续过零扫描电源。软磁样品为磁磁控溅射方法制备的Fe 薄膜,测量磁场处于膜面内。因为是薄膜样品,退磁因子N 近似为零,不用作退磁因子修正。用与软磁样品相似的Ni 箔定标。

因为永磁材料的矫顽力比较高,磁体采用电磁铁。待测的永磁样品为球形Ba 铁氧体(退磁因子为1),定标用的Ni 球也为球形。

实验内容

(一)软磁样品测量 1 确定鞍点位置

给亥姆赫兹线圈加上10Oe 磁场,沿三个方向移动样品,观察m 信号的变化,绘出曲线,找到鞍点位置。使样品处于鞍点位置。 2 定标

用电子天平称出与待测样品形状相同的Ni 箔,算出磁矩(镍的比磁化强度为54.56emu/g )。把Ni 箔放在样品架上,调整电压表的衰减,使读数为镍箔磁矩的计算值。 3测量

把待测样品放在样品架上,逐点测量样品的比磁化强度m δ~磁场关系曲线,通过密度转换为相应的初始磁化曲线和磁滞回线。

4在初始磁化曲线上计算磁导率(微分),找出初始磁导率和最大磁导率。在磁滞回线上读出矫顽力。

(二)永磁样品测量 1 定标

方法与实验一的定标方法相同。

2逐点测量初始磁化曲线和退磁曲线。 3数据处理

(1)由理论密度,将比磁化强度转化为磁化强度 (2)退磁因子修正。方法实验原理。

(3)从退磁曲线读出剩磁r M 、内禀矫顽力c i H 。 (4)根据)(0H M B +=μ作)(H B 曲线。

(5)从)(H B 曲线上读出剩磁r B 、矫顽力c H ,逐点计算第二象限的磁能积)(BH ,作

)(BH ~B 曲线,找出最大磁能积max )(BH

VSM 实验注意事项:

1注意磁矩和磁场的方向

2调整要仔细,不要过调,不可逆

思考题

1,哪些因素会影响磁矩测量精度?

2,有那些因素影响max )(BH 值的大小? 3,剩磁高是否就意味着max )(BH 大? 4,矫顽力的大小怎样影响max )(BH ?

参考文献

1《铁磁学》中册,钟文定,科学出版社,1998年 2《铁磁学》,郭颐诚,人民教育出版社,1965年

数据处理

一、原始数据

V (m V )

H (Oe)

二、定标

磁性样品每一H 下的的比磁化强度:

?=col(b)×(54.56×0.0671)/(1.5×0.0158)

m /g (e m u /g )

H (Oe)

三、将比磁化强度转化为磁化强度:

g emu

kg

Am 3331010?? 铁氧体密度:5000kg/m 3 col(b)×50003

m

kg m A

col(b)×

1000

Gs

M (G s )

H (Oe)

四、退磁因子修正

M N H H ×?=′ col(a)=col(a)-0.33×col(b)

H (Oe)

B (Gs)

数据处理

原始数据:col(a)-col(b)

col(a)单位:Oe

col(b)单位:mV

将col(b)转化为Gs:col(b)=col(b)*(54.56*0.0671)*5000*3.14*4/(1.5*0.0158*1000) 退磁因子修正:col(a)=col(a)-0.33*col(b)

磁能积:col(c)=--(col(a)+col(b))*col(a)*0.000001 (单位:MGOe)

众所周知纳米线的形状各向异性倾向于使得磁矩沿长轴排列并导致其易磁化方向平行于轴向

磁概念

永磁材料:永磁材料被外加磁场磁化后磁性不消失,可对外部空间提供稳定磁场。钕铁硼永磁体常用的衡

量指标有以下四种:

剩磁(Br)单位为特斯拉(T)和高斯(Gs) 1Gs =0.0001T

将一个磁体在闭路环境下被外磁场充磁到技术饱和后撤消外磁场,此时磁体表现的磁感应强度我们称之为

剩磁。它表示磁体所能提供的最大的磁通值。从退磁曲线上可见,它对应于气隙为零时的情况,故在实际

磁路中磁体的磁感应强度都小于剩磁。钕铁硼是现今发现的Br最高的实用永磁材料。

磁感矫顽力(Hcb)单位是安/米(A/m)和奥斯特(Oe)或1 Oe≈79.6A/m

处于技术饱和磁化后的磁体在被反向充磁时,使磁感应强度降为零所需反向磁场强度的值称之为磁感矫顽

力(Hcb)。但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。(对

外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。钕铁硼的矫顽力一般是11000Oe

以上。

内禀矫顽力(Hcj)单位是安/米(A/m)和奥斯特(Oe)1 Oe≈79.6A/m

使磁体的磁化强度降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。内禀矫顽力是衡量磁体抗退

磁能力的一个物理量,如果外加的磁场等于磁体的内禀矫顽力,磁体的磁性将会基本消除。钕铁硼的Hcj

会随着温度的升高而降低所以需要工作在高温环境下时应该选择高Hcj的牌号。

磁能积(BH)单位为焦/米3(J/m3)或高?奥(GOe) 1 MGOe≈7. 96k J/m3

退磁曲线上任何一点的B和H的乘积既BH我们称为磁能积,而B×H的最大值称之为最大磁能积(BH)max。磁能积是恒量磁体所储存能量大小的重要参数之一,(BH)max越大说明磁体蕴含的磁能量越大。设计磁路时要尽可能使磁体的工作点处在最大磁能积所对应的B和H附近。

各向同性磁体:任何方向磁性能都相同的磁体。

各向异性磁体:不同方向上磁性能会有不同;且存在一个方向,在该方向取向时所得磁性能最高的磁体。烧结钕铁硼永磁体是各向异性磁体。

取向方向:各向异性的磁体能获得最佳磁性能的方向称为磁体的取向方向。也称作 “取向轴”,“易磁化轴”。磁场强度:指空间某处磁场的大小,用H表示,它的单位是安/米(A/m)。

磁化强度:指材料内部单位体积的磁矩矢量和,用M表示,单位是安/米(A/m)。

磁感应强度:磁感应强度B的定义是:B=μ0(H+M),其中H和M分别是磁化强度和磁场强度,而μ0是真空导磁率。磁感应强度又称为磁通密度,即单位面积内的磁通量。单位是特斯拉(T)。

磁通:给定面积内的总磁感应强度。当磁感应强度B均匀分布于磁体表面A时,磁通Φ的一般算式为Φ =B×A。磁通的SI单位是麦克斯韦。

相对磁导率:媒介磁导率相对于真空磁导率的比值,即μr= μ/μo。在CGS单位制中,μo=1。另外,空气的相对磁导率在实际使用中往往值取为1,另外铜、铝和不锈钢材料的相对磁导率也近似为1。

磁导:磁通Φ与磁动势F的比值,类似于电路中的电导。是反映材料导磁能力的一个物理量。

磁导系数Pc :又为退磁系数,在退磁曲线上,磁感应强度Bd与磁场强度Hd的比率,即Pc =Bd/Hd,磁导系数可用来估计各种条件下的磁通值。对于孤立磁体Pc只与磁体的尺寸有关,退磁曲线和Pc线的交点就是磁体的工作点,Pc越大磁体工作点越高,越不容易被退磁。一般情况下对于一个孤立磁体取向长度相对越大Pc越大。因此Pc是永磁磁路设计中的一个重要的物理量。

圆线圈与亥姆霍兹线圈轴线上磁场的测量

圆线圈与亥姆霍兹线圈轴线上磁场的测量 加灰色底纹部分是预习报告必写部分 圆线圈和亥姆霍兹线圈磁场描绘是一般综合性大学和工科院校物理实验教学大纲中重要实验之一。通过该实验可以使学生学习并掌握对弱磁场的测量方法,验证磁场的迭加原理,按教学要求描绘出磁场的分布图。本实验仪器选用先进的玻莫合金磁阻传感器,测量圆线圈和亥姆霍兹线圈磁场。该传感器与传统使用的探测线圈、霍尔传感器相比,具有灵敏度高、抗干扰性强、可靠性好及便于安装等诸多优点,可用于实验者深入研究弱磁场和地球磁场等,是描绘磁场分布的最佳升级换代产品。 【实验目的】 1. 了解和掌握用一种新型高灵敏度的磁阻传感器测定磁场分布的原理; 2. 测量和描绘圆线圈和亥姆霍兹线圈轴线上的磁场分布,验证毕—萨定理; 【实验仪器】 1.516FB 型磁阻传感器法磁场描绘仪(见图5)套(共2件): 2.仪器技术参数: ① 线圈有效半径:cm 0.10R =,单线圈匝数: 匝100N =; ② 数显式恒流源输出电流:mA 0.199~0连续可调;稳定度为字1%2.0±; ③ 数显式特斯拉计:μT 1 ,μT 1999~0 2 ,μT 1.0 ,μT 9.199~0 1分辨率量程分辨率量程; ④ 测试平台:mm 160300?; ⑤ 交流市电输入: Hz 50 %,10V 220AC ±。 【实验原理】 1. 磁阻效应与磁阻传感器: 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

磁性测量实验指导书

磁性材料的磁性测量 一、实验目的 1. 了解固体磁性的来源。 2. 学习使用振动样品磁强计(VSM)测量材料的磁性。 二、实验原理概述 1. 目的意义 磁性是物质普遍存在的性质,任何物质在磁场作用下都有一定的磁化强度。磁性材料在电力、通讯、电子仪器、汽车、计算机和信息存储等领域有着十分广泛的应用。本实验通过对磁性材料磁性能的测量,加深对磁性材料基本特性的理解。 2. 固体的磁性 按磁性进行分类,大体可分为下述五种 (1)顺磁性。这类物质具有相互独立的磁矩,在没有外场作用下相互杂乱取向,故不显示宏观磁性。而在外场作用下,原来相互独立杂乱分布的磁矩将在一定程度上沿磁场方向取向,使这类物质表现出相应的宏观磁性。磁场越强则宏观磁性越强,而当外磁场去除后,其宏观磁性消失。 (2)抗磁(逆磁)性。此类物质无固有磁矩,在外磁场作用下产生感应磁性。磁场消失则宏观磁性随之消失。 (3)反铁磁性。此类物质内具有两种大小相等而反向取向的磁矩,故合成磁矩为零,使物质无宏观磁性。 (4)亚铁磁性。此类物质内存在两种大小不相等但反向耦合在一起的磁矩,故不能相互完全抵消,使该类物质表现出强磁特性。 (5)铁磁性。此类物质内的磁矩均可互相平行耦合在一起,因而表现出强磁特性。 3.磁特性的检测方法 振动样品磁强计可以测出在不同的环境下材料多种磁特性。由于其具有很多优异特性而被磁学研究者们广泛采用,使VSM成为检测物质内禀磁特性的标准通用设备。设被测样品的体积为V,由于样品很小,当被磁化后,在远处可将其

视为磁偶极子:如将样品按一定方式振动,就等同于磁偶极场在振动。于是,放置在样品附近的检测线圈内就有磁通量的变化,产生感生电压。将此电压放大并记录,再通过电压-磁矩的已知关系,即可求出被测样品的磁化强度。 三、实验设备及材料 1. 仪器:振动样品磁强计Lake Shore 7404型VSM 2. 材料:磁性样品 四、实验内容及步骤 1. 实验步骤 (一)校准系统 1.磁矩偏移量校准(Moment Offset) ①将空杆装在振动头上; ②从“calibration”菜单中点击“Moment Offset”; ③按照对话框提示进行Moment Offset的校准。 注意:在进行该项校准时不能选中“atuorange”栏。 2.磁矩增益量校准(Moment Gain) ①在样品杆上装入含有镍标准样品的样品杯,打开振动头; ②从“calibration”菜单中点击“Moment Gain”; ③在Moment Gain Calibration类型中选择“Single point calibration”; ④对话框中在相应的栏输入“6.92”emu 和“5000”G; ⑤调节样品鞍点; ⑥按照对话框提示步骤进行校准。 注意:在进行该项校准时不需要选中“atuorange”栏。 (二)测量样品 1. 根据所测试样品性质和形状选择相应的样品杆和样品杯;并将含有样品的样品杆安装在振动头上; 2. 调节样品鞍点; 3. 为该测量样品选择合适的量程或选中“atuorange”栏; 4. 从“experiments”菜单中选择“News experiment”,对实验进行命名,根据所需测量的数据(曲线)选择实验类型和实验条件;

磁场测量的原理和元件

磁场测量的原理和元件 磁场是无形的,在实际检测中,通常是将磁场转换成电信号然后实现自动化处理,从而实现无形磁场的可视化。磁电转换原理和元件有以下几种: 1.感应线圈 感应线圈的原理:通过线圈切割磁力线产生感应电压,而感应电压的大小与线圈匝数、穿过线圈的磁通变化率或者线圈切割磁力线的速度成线性关系。感应线圈测量的是磁场的相对变化量,并对空间域上的高频率磁场信号更敏感。 2.磁通门 磁通门传感器是利用被测磁场中高导磁铁芯在交变磁场的饱和激励下,其磁感应强度与磁场强度的非线性关系来测量的弱磁场的一种传感器,其原理是建立在法拉第电磁感应定律和某些材料的磁化强度M与磁场强度H的非线性关系上。使用磁通门传感器的仪器有磁通门高斯计,如磁通门高斯计GF600,能精确测量微弱的磁场,仪表无须调零,是测量弱磁场最好的选择,但磁通门传感器不能长期暴露在高磁场环境下,使用环境应低于100G(10mT)。 3.霍尔传感器 霍尔传感器是根据霍尔效应制作的一种磁场传感器,测量绝对磁场大小。 霍尔效应从本质上讲是运动的带点粒子在磁场中收到洛伦兹力作用引起的偏转,从而形成霍尔电势V=K H①·I·B。以霍尔传感器开发出来的仪器有霍尔效应高斯计,常用的有手持式高斯计G100,具有精度高、温度补偿功能强、零点漂移小和磁场测量反应速度快等优点。 4.磁敏电阻 磁阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。 常用的元件有磁敏电阻、磁敏二极管、磁敏三极管等。 5.磁共振法 原子核磁性的直接和精密的测量是利用核磁共振的方法。核磁共振是原子核磁矩系统在相互垂直的恒定磁场B和角频率ω的交变磁场的同时作用下,满足ω=γ②B时,原子核系统对交变磁场产生强烈吸收(共振吸收)现象。 除了上述介绍的几种方法外,还有磁光克尔效应法、磁膜测磁法、磁致收缩法、磁量子隧道效应法、超导效应法等。 ①元件的灵敏度,它表示在单位磁场和单位控制电流下霍尔电势的大小 ②为原子核的磁旋比,即原子核的磁矩与角动量之比。

《大学物理实验》2-11实验十一 亥姆霍兹线圈磁场测定

实验十一 圆线圈和亥姆霍兹线圈磁场测定 亥姆霍兹线圈是一对相同的、共轴的、彼此平行的各有N 匝的圆环电流。 当它们的间距正好等于其圆环半径R 时,称这对圆线圈为亥姆霍兹线圈。在亥姆霍兹线圈的两个圆电流之间的磁场比较均匀。在生产和科研中经常要把样品放在均匀磁场中作测试,利用亥姆霍兹线圈是获得一种均匀磁场的比较方便的方法。 一、实验目的 1.学习和掌握弱磁场测量方法, 2.验证磁场迭加原理, 3.描绘载流圆线圈和亥姆霍兹线圈轴线磁场分布。 二、实验原理 (1)根据毕奥—萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点(如图1所示)的磁感应强度为: 2 0223/2 2()R B N x μ?= +I ? (1) 式中0μ为真空磁导率, R 为线圈的平均半径,x 为圆心到该点P 的距离,为线圈匝数,N I 为通过线圈的电流强度。因此,圆心处的磁感应强度0B 为: I N B ?= 200μ (2) (2)亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈(如图2所示),两线圈内的电流方向一致,大小相同,线圈之间的距离正好等于圆形线圈的半径d R 。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,设x 为亥姆霍兹线圈中轴线上

某点离中心点处的距离,则亥姆霍兹线圈轴线上任意一点的磁感应强度为: O ?? ???????????????????????++??????????????++=??2/3222/322 202221x R R x R R NIR B μ (3) 而在亥姆霍兹线圈上中心O 处的磁感应强度B 为: ' 00 3/285N I B R μ??= (4) 三、实验仪器 FD—HM—Ⅰ圆线圈和亥姆霍兹线圈实验平台, 毫特斯拉计,三位半数字电流表及直流稳流电源组合仪一台;传感器探头, 电源线 1根,连接线 4根,不锈钢直尺 1把,铝合金靠尺1把。 图3 实验装置图 1-毫特斯拉计,2-电流表,3-直流电流源,4-电流调节旋钮, 5-调零旋钮,6-传感器插头, 7-固定架, 8-霍耳传感器, 9-大理石台面, 10、线圈, 注:A、B、C、D 为接线柱 四、实验内容和步骤 1.仪器调试 (1)开机后应预热10分钟,再进行测量; (2)将两个线圈和固定架按照图3所示简图安装。大理石台面(图3中9所示有网格线的平面)应该处于线圈组的轴线位置。根据线圈内外半径及沿半径方向支架厚度,

磁性基本测量方法

1 磁性基本测量方法 磁性测量 组织结构不敏感量(内禀参量、本征参量) 组织结构敏感量(非本征参量) 物质结构与相关现象 交变磁场条件下的磁参数测量 M S 、T C 、K 1、λS 等 M r 、B r 、H C 、μ、χ等 磁畴结构、磁矩取向、各种磁效应(磁热、磁光、磁电、磁致伸缩、磁共振等)

2 冲击法测磁性材料参数 O :标准环形试样; N :磁化线圈; n :测量线圈;G :冲击检流计; A :直流电流表;M :标准互感器; K 1、K 2:双掷开关;R 1、R 2:可变电阻 Ni H =在N 线圈中通以电流i ,则在N 中产生磁场: N :磁化线圈匝数 :试样平均周长 试样被磁化,磁感应强度为B K 1突然换向(在极短时间τ秒内) H H H B B B →+→+:-:-B S φ=磁通量: S :试样的截面积 冲击法测磁原理图 (磁化曲线和磁滞回线)

3 r :测量回路中的总折合电阻 磁通量的变化,引起线 圈n (匝数为n )中产生 感生电动势: d dB n nS d d φε=-=-ττ在测量回路(由n 、M 、G 、R 3、R 4组成)中产生瞬时电流: 0i r ε=由冲击检流计测出其电量Q : B 000B nS Q i d d dB 2nSB/r r r Q C τ τ-ε?=τ=τ=-=-???=α????Cr B 2nS α=-α:冲击检流计的偏转角; C :冲击检流计常数

4 Cr 的求法: di M d 'ε=-τ K 2合上标准互感器M 的线路,M 主线圈上的电流i : 其副线圈两端产生的感应电动势为: 0i '→M :互感器的互感系数 测量回路中的感生电流: 0i r 'ε'=通过检流计的电量(相应偏转角为α0): i 00000M M Q C i d d d i r r r 'ττ'ε'''=α=τ=τ=-τ=-???0Mi Cr '=-αCr :测量回路的冲击常数 在不同H 条件下,测出B ,可绘出磁化曲线。 测量磁滞回线的基本原理与此相同。

10讲义(磁场描绘)

10讲义(磁场描绘)

实验 磁场的描绘与测量 【实验目的】 1.了解感应法测量磁场的原理. 2.研究载流圆线圈轴向磁场的分布,加深对毕 奥-萨伐尔定律的理解. 3.描绘载流圆线圈轴向平面上的磁力线和亥姆 霍兹线圈的磁场均匀区. 【实验仪器】 亥姆霍兹线圈,探测线圈,磁场描绘仪信号源, 交流毫伏表,数字万用表,坐标纸等. 【实验原理】 1. 载流圆线圈轴线上磁场的分布 根据毕奥一萨伐尔定律,载流圆线圈轴线r r P dB ' x α α α α dB o 图1 B x 图2

上任一点P(见图1)的磁感应强度为: 322012I X B R R μ-????=+?? ??????? (1) 式中I 为圆线圈中的电流强度,R 为线圈的半径,X 为P 点至圆心点的距离,μ0叫真空磁导率(μ0 =4π×10-7N·A -2).B ~x 曲线如图2所示. 显然,在圆心处(X=0)的磁感应强度为 00I B 2R μ=,所以, 32201B X B R -????=+?? ??????? (2) 2.磁场的测量 测量磁场的方法有多种,本实验采用感应 法,当线圈中输入交变电流时,其周围空间必定 有变化磁场,可利用探测线圈置于交变磁场中所 产生的感应电动势来量度磁场的大小,当线圈内 通以正弦交变电流时,则在空间形成一个正弦交 变的磁场,磁感应强度为:

B 的方向一致时,感应电动势为最大值: 2m U B = 所以,m B 与U 成正比. 因此,我们可利用毫伏表读数的最大值来测 定磁场的大小,为了减小系统误差,我们采用比 较法进行测量. 轴线上任意一点的U 值与圆心处的0 U 值之比为 322001U B X U B R -????==+?? ??????? (5) 由此可见,0U U 与0 B B 的变化规律完全相同,实验若能证明 32201U X U R -????=+?? ???????,也就证明了32201B X B R -????=+?? ???????, 便验证了毕奥一萨伐尔定律的正确性. 磁感应强度是一矢量,因此磁场的测量不仅 要测量磁场的大小,还要测出它的方向.磁场的 方向如何确定呢?磁场的方向,本来可用毫伏表 读数最大值时所对应的探测线圈法线方向来表

螺线管磁场讲义

霍尔效应法测定螺线管 轴向磁感应强度分布 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普斯金大学研究生霍尔于1879年发现的,后被称为霍尔效应。随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。若能测量霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广阔的应用前景。了解这一富有实用性的实验,对日后的工作将有益处。 一、实验目的 1.掌握测试霍尔元件的工作特性。 2.学习用霍尔效应法测量磁场的原理和方法。 3.学习用霍尔元件测绘长直螺线管的轴向磁场分布。 二、实验原理 1.霍尔效应法测量磁场原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。对于图(1)(a)所示的N型半导体试样,若在X方向的电极D、E上通以电流Is,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力 F B v e g (1)其中e为载流子(电子)电量,为载流子在电流方向上的平均定向漂移速率,B为磁感应强度。 无论载流子是正电荷还是负电荷,F g的方向均沿Y方向,在此力的作用下,载流子发生便移,则在Y方向即试样A、A′电极两侧就开始聚积异号电荷而在试样A、A′两侧产生一个电位差V H,形成相应的附加电场E—霍尔电场,相应的电压V H称为霍尔电压,电极A、A′称为霍尔电极。电场的指向取决于试样的导电类型。N型

磁性物理实验指导书

磁性物理实验 讲义 磁性物理课程组编写 电子科技大学微电子与固体电子学院 二O一二年九月

目录 一、起始磁导率温度特性测量和居里温度测试计算分析 (1) 二、电阻率测试及磁损耗响应特性分析 (3) 三、磁致伸缩系数测量与分析 (6) 四、磁化强度测量与分析 (9) 五、磁滞回线和饱和磁感应强度测量 (11) 六、磁畴结构分析表征 (12)

一、起始磁导率温度特性测量和居里温度测试计算分析 (一) 、实验目的: 了解磁性材料的起始磁导率的测量原理,学会测量材料的起始磁导率,并能够从自发磁化起源机制来分析温度和离子占位对材料起始磁导率和磁化强度的影响。 (二)、实验原理及方法: 一个被磁化的环型试样,当径向宽度比较大时,磁通将集中在内半径附近的区域分布较密,而在外半径附近处,磁通密度较小,因此,实际磁路的有效截面积要小于环型试样的实际截面。为了使环型试样的磁路计算更符合实际情况,引入有效尺寸参数。有效尺寸参数为:有效平均半径r e ,有效磁路长度l e ,有效横截面积A e ,有效体积V e 。矩形截面的环型试样及其有效尺寸参数计算公式如下。 ???? ??-=21 1 211ln r r r r r e (1) ???? ??-=21 12 11ln 2r r r r l e π (2) ???? ??-=2112 211ln r r r r h A e (3) e e e l A V = (4) 其中:r 1为环型磁芯的内半径,r 2为环型磁芯的外半径,h 为磁芯高度。 利用磁芯的有效尺寸可以提高测量的精确性,尤其是试样尺寸不能满足均匀磁化条件时,应用等效尺寸参数计算磁性参数更合乎实际结果。材料的起始磁导率(i μ)可通过对环型磁心施加线圈后测量其电感量(L )而计算得到。计算公式如式(5)所示。 2 0i e e A N L l μμ= (5)

磁场(教学讲义)

磁 场 第1、2课时 磁场、磁场对电流的作用 授课时间: 考点1. 磁场的基本概念 1. 磁体的周围存在磁场。 2. 电流的周围也存在磁场 3. 变化的电场在周围空间产生磁场(麦克斯韦)。 4. 磁场和电场一样,也是一种特殊物质 5. 磁场不仅对磁极产生力的作用, 对电流也产生力的作用. 6. 磁场的方向——在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所 指的方向,就是那一点的磁场方向. 7. 磁现象的电本质:磁铁的磁场和电流的磁场一样,都是由电荷的运动产生的. 考点2. 磁场的基本性质 磁场对放入其中的磁极或电流有磁场力的作用.(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。 1. 磁极和磁极之间有磁场力的作用 2. 两条平行直导线,当通以相同方向的电流时,它们相互吸引,当通以相反方向的电流时, 它们相互排斥 3. 电流和电流之间,就像磁极和磁极之间一样,也会通过磁场发生相互作用. 4. 磁体或电流在其周围空间里产生磁场,而磁场对处在它里面的磁极或电流有磁场力的作 用. 5. 磁极和磁极之间、磁极和电流之间、电流和电流之间都是通过磁场来传递的 考点3。磁感应强度(矢量) 1.在磁场中垂直于磁场方向的通电导线,所受的安培力F 安跟电流I 和导线长度L 的乘积 IL 的比值叫做磁感应强度l I F B 安= ,(B ⊥L ,LI 小) 2.磁感应强度的单位:特斯拉,简称特,国际符号是T m A N 1T 1?= 3.磁感应强度的方向: 就是磁场的方向. 小磁针静止时北极所指的方向,就是那一点的磁场方向.磁感线上各点的切线方向就是这点的磁场的方向.也就是这点的磁感应强度的方

磁性测量实验(直流&交流)实验报告

磁性测量实验 软磁直流静态磁性测量 (用冲击/扫描法测量磁性材料的磁化曲线及磁滞回线) 一、 实验原理 1、 静态磁性参数 如果不计及磁化时间效应,磁性材料在稳恒磁场作用下所定义和测量得到的磁参数就是所谓的静态磁参数。磁化曲线记录了材料磁化过程的磁化信息,而磁滞回线则表征和包含了磁性材料的全部磁性信息,有磁性材料身份证之称。下左图C 为磁化曲线,A 和B 为初始和最大磁化率,M 和H 分别为磁化强度和外磁场。下右图为典型磁性材料的磁滞回线,B s 、B r 、B r /B s 、H c 、(BH)max 、μ0和μM 分别为饱和磁感应强度、剩余磁感应强度、矩形比、矫顽力、最大磁能积、初始磁导率和最大磁导率。 2、 测量方法 本实验课采用冲击法和磁场扫描法这两种方法来进行。两种方法由于磁化速度的不同,在磁场方面数据稍有不同,而磁感方面的数据则差不多。在进行一些饱和场不高或矫顽力小的试样测试时用冲击法;而矫顽力较大的磁滞材料是用扫描法。本实验中提供两种不同矫顽力大小的磁性材料。整个测量过程完全由微机控制,实验者可根据自己的要求选择不同的测量方法和输入参数来完成测量。 二、 实验内容及步骤 1、 直流冲击法 A. 启动测量程序,进入测量程序主菜单。 B. 测量前的准备工作 H H B M B A C

在进行正式测量之前,用户必须输入样品的有关参数。主要包括“样品参数” 和“测试条件”。样品参数有“截面积、磁路长度、磁化匝数和测量匝数”。由于输 入参数随测量磁性材料变化而不同,因此具体的输入参数可向实验指导老师咨询。 C.正式测量 如果步骤B中设定的参数无误,就可以开始测量了。通过点击相应功能模块就可以完成测量工作。 2、磁场扫描法 磁场扫描法与冲击法类似,材料参数和测量参数的选择可参考冲击法类似步骤。 三、实验结果 1.直流冲击法 实验样品为坡莫合金。由测量所得数据绘出样品的磁化曲线,如下图: μm =133.279 m?/m 实验所得曲线为S型,符合经验。实验测得样品初始磁导率μ0=30.789m?/m,最大磁导率μm=133.279m?/m。 2.磁场扫描法 实验样品为铁氧体。扫描法测出的是样品的磁滞回线,本实验共测两组。其中一组从B=0起测,另一组在测量前没有退磁,获得了饱和磁滞回线。如下图所示。

磁场的描绘-

磁场的描绘- -实验十六磁场的描绘 一、实验目的 1(研究载流圆线圈轴向磁场的分布。 2(描绘亥姆霍兹线圈的磁场均匀区。 3(学习电磁感应法测量磁场的原理和方法。 二、实验仪器及材料 DH4501型亥姆霍兹线圈磁场实验仪(图16-1)。 图16-1 DH4501型亥姆霍兹线圈磁场实验仪 三、实验原理 1(载流圆线圈轴线上磁场的分布 根据毕奥-萨伐尔定律,通电载流圆线圈当其线圈截面尺寸与圆线圈半径相比可忽略不计时,它轴线上的某点的磁感应强度: 2NIR00, (16-1) B,223/22(R,x) -7 式中R为半径,N为线圈匝数,x为轴上某点到圆心O的距离, μ=4π×10H/m。轴线上磁00 场的分布如图16-2所示。本实验装置N=400匝,R=105 mm。 0 2(亥姆霍兹线圈的磁场分布 亥姆霍兹线圈是由线圈匝数N、半径R、电流I及方向均相同的两圆线圈串联组成,如图16-3所示。两圆线圈平面彼此平行且共轴,二者中心间距离等于它们

的半径R。设x为亥姆霍兹线圈中轴线上某点离两线圈中心O处的距离,根据毕奥-萨伐尔定律和磁场叠加原理,则亥姆霍兹线圈轴线上任意一点的磁感应强度为: 33,,2211RR,,,, 222222,,BxBxBxNIRRxNIRRx()()()()(),,,,,,,,1200,,,, 2222,,,,33,,,,2222,,,,1RR,,,,,,222。 (16,NIRRxRx,,,,,,,,,,,,0,,,,222,,,,,,,,,,,,,,,, -2) 在x,0处(即两线圈中点处)的磁感应强度B(0)为: NINI8,,00 (16-3) B(0),,0.71553/2RR5 计算表明,当时,B和B间相对差别约万分之一,因此亥姆霍兹线圈能产生比较x,(R10)0 均匀的磁场。在生产和科研中,若所需磁场不太强时,常用这种方法来产生较均匀的磁场。 图16-2 载流圆线圈轴线上磁场的分布图16-3 亥姆霍兹线圈磁场分布 3(电磁感应法测磁场

实验38 磁性材料磁滞回线测定

大学物理实验教案 实验名称:磁性材料磁滞回线测定 1 实验目的 1)了解用示波器测量动态磁滞回线的原理和方法; 2)了解磁性材料的基本磁化特性; 3)掌握磁化曲线和磁滞回线的测量方法; 4)进一步熟悉数字示波器的使用。 2 实验仪器 DM-1型磁滞回线测试仪 数字示波器 微型计算机 3 实验原理 磁性材料在工程、电力、信息、交通等领域有着广泛的应用,测定磁滞回线是电磁学中的一个重要内容,是研究和应用磁性材料最有效的方法之一。 铁磁物质具有保持原先磁化状态的性质,铁磁体在反复磁化的过程中,它的磁感应强度的变化总是滞后于它的磁场强度,这种现象叫磁滞。这是铁磁物质的一个重要特征。 铁磁材料被磁化后,磁场强度H 减小时,磁感应强度B 的不沿原曲线变化,当磁场强度H 减少到零时,磁感应强度B 仍保留一定的数值,这称之为剩磁r B 。继续减小磁场强度H ,当H 达到某一负值时,磁感应强度B 变为零,此时的磁场强度H 称为矫顽力C H 。在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示。当磁化磁场作周期的变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线(如图38-1所示),它表示铁磁材料的一个基本特征。它的形状、大小,均有一定的实用意义。比如材料的磁滞损耗就与回线面积成正比磁滞回线所包围的面积表示在铁磁物质通过一个磁化循环过程中所消耗的能量,叫做磁滞损耗。 当从初始状态H =0、B =0开始改变磁场强度H ,在磁场强度H 从小到大的单调增加过程中,不同磁化电流所对应的磁滞回线正顶点的连线叫基本磁化曲线。 退磁方法,从理论上分析,要消除剩磁r B ,只要通一反向电流,使外加磁场刚好等于铁磁材料的矫顽力C H 就可以了,但是通常不知道矫顽力C H 的大小,所以无法确定所通反向电流的大小。我们可以从磁滞回线中得到启示,如果是铁磁材料磁化达到饱和,然后不断改变磁化电流的方向,与此同时逐渐减小磁化电流,一直减小到零,这样就可以达到退磁的目的。 图 38 –1磁滞回线 利用示波器测动态磁滞回线的原理电路如图38-2所示。将样品制成闭合的环形,其上均匀地绕以磁化线圈1N 及副线圈2N 。交流电压1u 加在磁化线圈上,线路中串联了一取样电阻1R 。将1R 两端地电压1u 加到示波器的X 输入端上。副线圈2N 与电阻2R

磁性材料测量(1)—磁测量导论

磁测量导论 磁性测量的范围不仅仅局限于磁性材料测试或磁场测量。直接或间接测量磁性参数,例如磁场强度H、磁感应强度B、磁导率μ、磁化系数Χ、磁致伸缩系数λ,常用于科学和技术的其他领域中,像古地磁学、磁考古学、矿山探测、位移或距离检测、电流检测、材料无损检测和医学诊断等。磁场测量实际应用是无限的,例如可以使用磁致伸缩传感器测试其他物质的数量,如酸度pH值、血凝固度、蓖麻油(蓖麻毒素)浓度甚至沙门氏菌的存在。 尽管磁和电的测量需要类似的“工具”(两者都是通过电压或电流确定),但磁场测量通常更加复杂甚至更加不明确。多年来,仍假设磁性材料磁化由磁场强度H和磁感应强度B两个参数表示。然而,几年前的公认结论(国际标准紧随其后)是与磁感应强度相比,为少数人熟知的名词——极化强度J(J=B-μ0H)能更准确地描述材料的磁化状态。此外,现在有些专家认为更好的采用磁化强度M来描述磁性材料。在磁性材料磁场测量上有两个学派:一个是通过应用安培定律(通过测量励磁电流)间接测量;另一个通过测量线圈(应用法拉第电磁感应定律)直接测量。在真正选择测量磁场的传感器时,目前仍在讨论是测量磁场强度H还是磁感应强度B。因此,与建立了明确术语的电参量测量相比,磁性测量有许多基本问题仍在讨论中。 在电气测量方面,电流与电压之间存在简单关系,可表达为欧姆定律。如图1.1所示测试样品,电势差由供电电压V表示,电流用I表示,电流值取决于材料的电阻率ρ,电阻为R=ρL/A(L是样品长度,A是横截面积)。根据欧姆定律,电流为I=V/R,在电场E作用情况下,更精确地反映材料电阻率ρ的是电流密度J。 由图1.1还可得出,磁性材料的响应由磁场强度H作用下的磁导率μ表示,流过线圈的电流I产生H,也就是线圈中产生了磁通Φ。换句话说,磁场强度H作用下材料的磁导率μ可由磁通量密度(即磁感应强度)B=Φ/A表示。磁感应强度通常由二次侧n 匝线圈感应电压来测量——电压值取决于磁感应强度的导数。在励磁磁场强度H和响应磁感应强度B之间,有相对简单的关系B=μH……(1.2),但是通常磁性材料的测量

磁场的描绘实验33

实验33 磁场描绘 二、载流圆线圈及亥姆霍兹线圈磁场的测定 了解载流圆线圈的磁场是研究一般载流回路的基础。本实验用感应法测定圆线圈的交流 磁场,从而掌握低频交变磁场的测定方法。以及了解如何用探测线圈确定磁场方向。 【实验目的】 1.研究载流圆线圈轴线上磁场的分布,加深对毕奥—萨伐尔定律的理解; 2.掌握感应法测磁场的原理和方法; 3.考查亥姆霍兹线圈的磁场的均匀区; 【实验仪器】 亥姆霍兹线圈、低频信号发生器(或磁场描绘仪专用电源)、万用表(或交流毫伏表)、 探测线圈和毫米方格纸等。 ZE-1型磁场描绘仪参数:圆线圈,N=640匝, R=10㎝;亥姆霍兹线圈距离,R=10㎝; 探测线圈,N 0=1200匝,d=4㎜,D=12.8㎜,L=6㎜。 【实验原理】 1.载流圆线圈轴线上的磁场分布 设圆线圈的半径为R ,匝数为N ,在通以电流I 时,则线圈轴线上一点P 的磁感应强度 2 /32202/32220)1(2)(2R x R IN x R N IR B +=+=μμ (3-193) 式中0μ为真空磁导率,x 为P 点坐标,原点在线圈中心.这就是线圈轴线上磁场B 与 x 的定量关系式. 2.亥姆霍兹线圈轴线上的磁场分布 亥姆霍兹线圈是由一对半径R 、匝数N 均相同的四线圈组成,二线圈彼此平行而且共 轴,线圈间距离正好等于半径R 如图3-118所示,坐标原点取在二线圈中心联线的中点O . 给二线圈通以同方向、同大小的电流I ,它们对轴上任一点P 产生的磁场的方向将一致.P 点处的磁感应强度等于在A 线圈和B 线圈在P 点产生的磁感应强度的和,应为: 图3-118亥姆霍兹线圈 图3-119 亥姆霍兹线圈轴线上B x -R x 曲线

实验三 磁性材料的VSM测量

实验三、磁性材料的VSM 测量 一、实验目的 1.了解VSM 仪器的测量原理。 2.了解VSM 的操作要领和注意事项。 3.了解样品磁性测量的方法。 二、实验设备 天平、VSM 等。 三、原理说明 VSM 系统的主体部件是由直流线绕磁铁、振动器和感应线圈组成。装在振动杆上的样品位于磁极中央感应线圈中心连线处,在感应线圈的范围内垂直磁场方向振动。图1是VSM 的结构简图,图2是VSM 的实物图。振动样品磁强计的原理就是将一个小尺度的被磁化了的样品视为磁偶极子并使其在原点附近作等幅振动,利用电子放大系统,将处于上述偶极场中的检测线圈中的感生电压进行放大检测,再根据已知的放大后的电压和磁矩关系求出被测磁矩。 图2 VSM 实物图 设磁化场沿x 轴向,而样品S 沿z 向作等幅振动。在磁铁极头端面处对称放置匝数为N 、截面为S 的检测线圈,其对称轴垂直于z 轴。则可得到穿过第n 匝内dsn 面积元的磁通为: 5n n n n n z r 4Z MX 3ds )r (H d π= =φ 而n n φ∑=φ,由此可得出检测线圈内的总感生电压为: n 7n n 2 n n n 0ds r )z 5r (X ∑t ωcos ωa π4M 3dt φd )t (ε∫== 其中a 0为样品的振幅,ω为振动频率。从方程可以得到,检测线圈中的感生电势正比于样品总磁矩M 及其振动频率ω和振幅a 0,同时和线圈的匝数、大小形状及线圈和样品间的距离有

关。因此,将线圈的几何因素及与样品的间距固定,样品的振幅和频率也固定,则感生电压仅和样品的总磁矩成正比。经过定标以后,就可根据感生电压的大小推知样品的总磁矩:将该磁矩除以样品体积或质量,就可得出该样品的单位质量或单位体积的磁矩。如果将高斯计的输出信号和感生电压分别输入到X-Y记录仪的两个输入端,就可以得到样品的磁滞回线。 四、实验步骤 1.开机预热30分钟 ①打开电源,打开电脑,启动VSM软件。 ②观察了解仪器的结构。 ③学习仪器的原理和测量方法。 2.仪器校准 ①取下样品,磁矩调零。 ②磁场对中,使得正向加磁场的剩磁约80 Oe,反向磁场的剩磁约-80 Oe。 ③用已知质量、磁矩的纯镍球定标。 3.样品测量 ①增加磁场,将待测样品反复磁化多次。 ②将样品固定到样品杆,粗测磁矩。 ③确定所用磁场大小、磁矩量程。 ④测量样品的磁滞回线。 4.根据测量结果,绘出样品的磁滞回线,由此确定样品饱和磁化强度、矫顽力等参数。 五、思考题 1.VSM如何实现磁矩测量的? 2. 正是测试前磁矩是如何定标的? 3.为何要进行磁场零点调节?如果不调零,对测量结果有何影响?

电磁感应法测交变磁场_讲义

电磁感应法测交变磁场 在工业、国防、科研中都需要对磁场进行测量,测量磁场的方法有不少,如冲击电流计法、霍耳效应法、核磁共振法、天平法、电磁感应法等等,本实验介绍电磁感应法测磁场的方法,它具有测量原理简单,测量方法简便及测试灵敏度较高等优点。 一、实验目的 1.了解用电磁感应法测交变磁场的原理和一般方法,掌握201FB 型交变磁场实验仪及测试仪的使用方法。 2.测量载流圆形线圈和亥姆霍兹线圈的轴向上的磁场分布。 3.了解载流圆形线圈(或亥姆霍兹线圈)的径向磁场分布情况。 4.研究探测线圈平面的法线与载流圆形线圈(或亥姆霍兹线圈)的轴线成不同夹角时所产生的感应电动势的值的变化规律。 二、实验仪器 FB201-Ⅰ型交变磁场实验仪,信号频率可调范围30~200Hz ,信号输出电流,单 个圆线圈可 900mA ≥ ,两个圆线圈串联400mA ≥。亥姆霍兹线圈每个400匝,允许最大电流1A 。 三、实验原理 1.载流圆线圈与亥姆霍兹线圈的磁场: (1)载流圆线圈中心轴线上的磁场分布: 一半径为R ,通以电流I 的圆线圈,轴线上磁场的公式为 : 2 /3222 00)(2X R R I N B +???= μ (1) 式中0N 为圆线圈的匝数,X 为轴上某一点到圆心O '的距离,70410/,H m μπ-=? 磁场的分布图如图1所示。

本实验取匝400N 0=,A 400.0I =,m 107.0R =,圆心O '处0X =,可算得磁感应强度为:T 10940.0B 3-?= , T 10328.1B 2B 3m -?== (2)亥姆霍兹线圈中心轴线上的磁场分布: 两个相同圆线圈彼此平行且共轴,通以同方向电流I ,理论计算证明:线圈间距a 等于线圈半径R 时,两线圈合磁场在轴上(两线圈圆心连线)附近较大范围内是均匀的,这对线圈称为亥姆霍兹线圈,如图2所示。这种均匀磁场在科学实验中应用十分广泛,例如,显像管中的行、场偏转线圈就是根据实际情况经过适当变形的亥姆霍兹线圈。 2.用电磁感应法测磁场的原理: 设均匀交变磁场为(由通交变电流的线圈产生) t B B m sin ω?= 磁场中一探测线圈的磁通量为 t B S N m sin cos ωθ????=Φ 式中:N 为探测线圈的匝数,S 为该线圈的截面积,θ为B 与线圈法线夹角。如图3所示。线圈产生的感应电动势为 t B S N dt d m cos cos ωθωε?????=Φ - = t m cos ωε?-= 式中θωεcos ????=m m B S N 是线圈法线和磁场成θ角时,感应电动势的幅值。当 0=θ ,m B S N ???=ωεmax ,这时的感应电动势的幅值最大。如果用数字式毫伏表测量 此时线圈的电动势,则毫伏表的示值(有效值)max U 应为 2 max ε, 则 ω ω ε??= ??= S N U S N B max max max 2 (2) 由(2)式可算出B 来。 3.探测线圈的设计: 实验中由于磁场的不均匀性,探测线圈又不可能做得很小,否则会影响测量灵敏度。一般设计的线圈长度L 和外径 D 有D 3 2L = 的关系,线圈的内径d 与外径D 有3D d ≤的 关系(本实验选m 012.0D = ,800N =匝的线圈)。线圈在磁场中的等效面积,经过理论计算,可用下式表示:

磁化率的测定实验报告

华 南 师 范 大 学 实 验 报 告 课程名称 结构化学实验 实验项目 磁化率的测定 一、【目的要求】 1.掌握古埃(Gouy )磁天平测定物质磁化率的实验原理和技术。 2.通过对一些配位化合物磁化率的测定,计算中心离子的不成对电子数.并判断d 电子的排布情况和配位体场的强弱。 二、【实验原理】 (1)物质的磁性 物质在磁场中被磁化,在外磁场强度H(A ·m-1)的作用下,产生附加磁场。这时该物质内部的磁感应强度B 为: B =H +4πI = H +4πκH (1) 式中,I 称为体积磁化强度,物理意义是单位体积的磁矩。式中κ=I/H 称为物质的体积磁化率。I 和κ分别除以物质的密度ρ可以得到σ和χ,σ=I/ρ称为克磁化强度;χ=κ/ρ称为克磁化率或比磁化率。χm=Κm/ρ称为摩尔磁化率。这些数据是宏观磁化率。在顺磁、反磁性研究中常用到χ和χm ,帖磁性研究中常用到I 、σ。 物质在外磁场作用下的磁化有三种情况 1.χm <o ,这类物质称为逆磁性物质。 2.χm >o ,这类物质称为顺磁性物质。 (2)古埃法测定磁化率 古埃法是一种简便的测量方法,主要用在顺磁测量。简单的装置包括磁场和测力装置两部分。调节电流大小,磁头间距离大小,可以控制磁场强度大小。测力装置可以用分析天平。 样品放在一个长圆柱形玻璃管内,悬挂在磁场中,样品管下端在磁极中央处,另一端则在磁场为零处。 样品在磁场中受到一个作用力。 df=κHAdH 式中,A 表示圆柱玻璃管的截面积。 样品在空气中称重,必须考虑空气修正,即 dF=(κ-κ0)HAdH κ0表示空气的体积磁化率,整个样品的受力是积分问题: F= )()(2 1d )(202000 H H A H HA H H --= -? κκκκ (2) 因H 0<<H,且可忽略κ0,则 F= 22 1 AH κ (3) 式中,F 可以通过样品在有磁场和无磁场的两次称量的质量差来求出。 F= g )m -m (空样?

大学物理实验讲义实验 用霍尔效应法测量磁场

实验16用霍尔效应法测量磁场 在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范 围可从~10 15-3 10T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。 一般地,霍尔效应法用于测量10~104 -T 的磁场。此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。 用半导体材料制成的霍尔器件,在磁场作用下会出现显着的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。了解这一富有实用性的实验,对于日后的工作将有益处。 【实验目的】 1. 了解霍尔效应产生的机理。 2. 掌握用霍尔器件测量磁场的原理和基本方法。 3. 学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。 4. 研究通电长直螺线管内轴向磁场的分布。 【仪器用具】 TH-H/S 型霍尔效应/螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。 【实验原理】 1. 霍尔效应产生的机理 置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。特别是在半导体样品中,霍尔效应更加明显。 霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。对于图1-1(a )所示的N 型半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,试样中载流子(电子)将受到洛仑兹力大小为: evB F g =(1-1) 则在Y 方向,在试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场——霍尔电场。电场的指向取决于试样的导电类型,对N 型半导体试样,霍尔电场逆Y 方向,P 型半导体试样,霍尔电场则沿Y 方向,即有: 当S I 沿X 轴正向、B 沿Z 轴正向、H E 逆Y 正方向的试样是N 型半导体。

相关文档
最新文档