轧机钢板厚度自动控制的液压系统设计

轧机钢板厚度自动控制的液压系统设计
轧机钢板厚度自动控制的液压系统设计

内容提要

本设计是冷连轧机上使用的钢板厚度自动控制系统。主要作用是对连扎机的压下量进行精确微小的调整,用来消除轧件和工艺方面的因素影响轧制力而造成的厚度偏差。对于轧制钢板的厚度精度进行控制调整,确保成品钢板的精度控制在规定的范围内。液压AGC是厚度自动控制的简称,液压AGC采用了液压执行元件(压下缸)的AGC,国内成为液压压下系统。AGC是现在板带轧机的关键系统,其功能是不管板带偏差的各种扰动因素如何变化,都能自动调节压下缸的位置,即轧机的工作辊间隙,从而是出口板厚恒定,保证产品的目标厚度、同板差、异板差达到性能指标要求。

本设计是从研究冷连扎机的执行部件入手,借鉴原系统图的设计方案,针对实际情况,综合理论知识和实践经验,绘制了连扎液压厚度自动控制部分原理图。系统图完成后,本人对伺服系统进行了设计计算,选择元件和管路计算。最后完成机架部分的阀台和油箱泵站的有关设计。本文从研究当前液压系统的国内现状和发展趋势入手,以节能减排,创新,绿色,可持续发展为起点,提出解决方案。相信AGC技术将向着高频化、高响应、高稳定性和高精度方向发展。高性能的伺服阀,比例伺服阀和高精度测量装置也将出现,这将会给液压技术带来新一轮的革命。

目录

内容提要 ................................................... I 1 绪论 (1)

1.1 概述 (1)

2 系统原理设计 (3)

2.1 系统原理 (3)

2.2 伺服控制系统的原理及其组成 (3)

2.3 伺服系统的设计步骤 (4)

3 液压系统的计算及元件的选择 (5)

3.1 液压缸基本参数的确定与计算 (5)

3.2 伺服阀的选择 (7)

3.3 泵与电机的选择 (8)

3.4 联轴器的选择 (10)

3.5 液压阀的选择 (10)

3.6 液压辅件的计算与选择 (13)

4 阀的设计 (21)

4.1 液压泵站主泵阀块设计 (21)

4.2 机架阀块设计 (21)

5 油箱与泵站的设计 (22)

5.1 油箱的设计 (22)

5.2 泵站的设计 (25)

结论 (29)

参考文献 (30)

致谢 (31)

1 绪论

1.1 概述

1.1.1 课题国内背景:

钢板的冷轧机作为一种生产工艺经过了多种演变,它由单机架非可逆单张轧制,发展到成卷可逆轧制,冷轧机由单击架逐步发展成三机架、四机架、五机架乃至六机架的连扎机,最后出现了全连续轧机。冷轧机使用二辊、三辊、四辊、多辊等各种辊系组成的轧机,其中以四辊轧机应用最为广泛。

近年来,冷轧带板生产有了很大的发展,工业生产对冷轧薄板的需求量越来越大,对成品质量的要求也越来越高。厚度偏差是冷轧板带最重要的尺寸精度指标之一。影响板带厚度精度的主要因素有:来料本身的性能的变化所引起的厚度波动;轧制工艺条件的影响;张力的影响;轧制速度的影响等。常用的厚度控制方法有调整压下、调整张力和调整轧制速度。调整厚度是厚度控制的最主要方法,常用于消除由于影响轧制力的因素造成的厚差。

1.1.2 课题功能:

液压压下系统是控制大型复杂、负载力大、扰动因素多、扰动关系复杂、控制精度和响应速度要求很高的设备。采用高精度仪表并由大中型工业控制计算机系统控制的电液伺服系统。

AGC[3]是厚度自动控制的简称,液压AGC采用了液压执行元件(压下缸)的AGC,国内成为液压压下系统。AGC是现在板带轧机的关键系统,其功能是不管板带偏差的各种扰动因素如何变化,都能自动调节压下缸的位置,即轧机的工作辊间隙,从而是出口板厚恒定,保证产品的目标厚度、同板差、异板差达到性能指标要求。

1.1.3 发展趋势:

液压技术是实现现代化传动与控制的关键技术之一,世界各国对液压工业的发展都给予很大重视。世界液压元件的总销售额为350亿美元。据统计,世界各主要国家液压工业销售额占机械工业产值的2%~3.5%[4],而我国只占1%左右,这充分说明我国液压技术使用率较低。

由于液压技术广泛应用了高科技成果,如:自控技术、计算机技术、微电子技术、可靠性及新工艺新材料等,使传统技术有了新的发展,也使产品的质量、水平有一定的提高。尽管如此,走向21世纪的液压技术不可能有惊人的技术突破,应当主要靠

现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。其主要的发展趋势将集中在以下几个方面:

[1]减少损耗,充分利用能量

液压技术在将机械能转换成压力能及反转换过程中,总存在能量损耗。为减少能量的损失,必须解决下面几个问题:减少元件和系统的内部压力损失,以减少功率损失;减少或消除系统的节流损失,尽量减少非安全需要的溢流量;采用静压技术和新型密封材料,减少摩擦损失;改善液压系统性能,采用负荷传感系统、二次调节系统和采用蓄能器回路。

[2] 泄漏控制

泄漏控制包括:防止液体泄漏到外部造成环境污染和外部环境对系统的侵害两个方面。

今后,将发展无泄漏元件和系统,如发展集成化和复合化的元件和系统,实现无管连接,研制新型密封和无泄漏管接头,电机油泵组合装置等。无泄漏将是世界液压界今后努力的重要方向之一。

[3]新材料、新工艺的应用

新型材料的使用,如陶瓷、聚合物或涂敷料,可使液压的发展引起新的飞跃。为了保护环境,研究采用生物降解迅速的压力流体,如采用菜油基和合成脂基或者水及海水等介质替代矿物液压油。铸造工艺的发展,将促进液压元件性能的提高,如铸造流道在阀体和集成块中的广泛使用,可优化元件内部流动,减少压力损失和降低噪声,实现元件小型化。

[4] 国外研究液压的最新方向是液压轴,所谓液压轴就是油缸上集成了伺服阀、传感器、伺服放大器、控制器等等,然后用总线将众多的油缸连接起来,实现协调控制,这样就没有了液压阀站,只有能源站,可以大大减少设计工作量,大大提高液压的自动化水平,这就是目前国际上研究发展的潮流。而中国已经研究成功的数字液压缸已经达到和超越了目前国外希望实现的目标,已经实现了液压轴的目的,并且是数字化的,已经在一系列领域应用成功,表现了极高的性价比。

综上所述,液压各方面技术的提高会使液压伺服阀系统应用更为广泛,液压AGC 技术会更完善。AGC技术将向着高频化、高响应、高稳定性和高精度方向发展。高性能的伺服阀,比例伺服阀和高精度测量装置也将出现,这将会给液压技术带来新一轮的革命。

1.1.4 存在问题:

现有的液压伺服和液压比例技术在与计算机结合上不是十分方便。另外,伺服系统的高频振动和伺服阀的零漂、死区的影响,会使控制精度降低,从而使板材的质量也受到不良影响。具体有以下几个方面:

⑴液压元件:特别是精密的液压控制元件(如电液伺服阀)抗污染能力差,对工作油液清洁度要求高。污染的油液会使阀磨损而降低其性能,甚至被堵塞而不能正常工作。这是液压伺服系统发生故障的主要原因。

⑵油液的体积弹性模量随油温和混入油中的空气含量而变化。油液的粘度也随油温的变化而变化,因此油温变化时对系统的性能有很大的影响。

⑶当液压元件的密封设计、制造和使用不当时,容易引起外漏,造成环境污染。

⑷液压伺服元件制造精度要求高,成本高。

⑸液压能源的获得和远距离传输都不如电气系统方便。

2 系统原理设计

2.1系统原理

由于液压伺服控制系统具有许多的优点,如执行元件快速行好,抗负载刚度大等,而这些正是现代带材轧机所需要的,同时,为了提高精度采用闭环控制。

用测厚仪测得板材实际厚度与给定厚度比较,将偏差以电压的形式通过伺服阀达到控制液压缸的动作,调整轧机的轧辊辊缝,从而控制板材的厚度。

2.2伺服控制系统的原理及其组成

伺服系统也叫随动系统,是控制系统的一种。在这中系统中,输出量能够自动、快速、准确的复现输入量的变化规律。与此同时还起到信号的功率放大作用,因此也是个功率放大装置。由液压拖动装置作动力源构成的伺服系统叫做液压伺服系统。液压伺服系统的原理是液压流体动力的反馈装置,即利用反馈装置连接得到偏差信号,再利用反馈去控制液压能源输入到系统中的能量,使系统向着减少偏差的方向变化,从此使系统的实际输出与期望值相等。

液压伺服系统是一个控制能源输出的装置,在其中输入量与输出量之间自动而连续的保持一定的符合一致的关系,并且利用两个量之间的差来控制能源的输出。

实际的液压伺服系统无论多复杂,都是一些基本元件所组成的。

图2.1 液压伺服系统基本组成

液压伺服系统由四个基本组成部分:偏差检测仪、转换放大、放大机构和控制对

象。

2.3 伺服系统的设计步骤

2.3.1 进行负载匹配

所谓负载匹配:是指伺服系统的驱动特性与负载特性的相互联系的安排,伺服系

统的驱动特性为所表达抛物线

v =[6] (2.1) 式中 A ―――活塞的有效面积(2m )

f ―――缸的总推力(N )

v ―――运动速度m/s

S P ---供油压力 (Pa)

NL Q ―――伺服阀无载流量(3m )

伺服系统的负载特性为所表达的椭圆

k f m b m ωω?=±-= ? [7] (2.2)

式中 b ―――阻尼系数(N ·/m)

f ―――所需的推力(N )

k―――负载弹簧刚度(N/m)

m―――移动质量(kg)

v―――运动速度(m/s)

γ―――振幅(m)

―――原频率(rad/s)

进行负载匹配时,要把两条曲线画在同一个f-v或P-Q平面上,并令驱动特性包围负载特性。进行负载匹配的目的是要确定液压泵站、液压缸、电液伺服阀等部分基本参数。

2.3.2选定电液伺服阀和伺服放大器

选择电液伺服阀时考虑以下因素:

供油压力:所选伺服阀的供油压力不得低于系统的供油压力;

额定流量:选择伺服阀时要使阀的额定流量留有一定的余量;

固有频率:伺服阀的90度相位频率宽至少应为系统频率的三倍;

设计液压泵站

分析系统动态性能

系统调试

3 液压系统的计算及元件的选择

3.1 液压缸基本参数的确定与计算

3.1.1 控制模式分析

由于压下力很大,且精度和稳定性要求很高。因此,APC系统一般采用三通阀―――不对称控制模式,既用四通伺服阀当三通阀用,压下缸活塞腔受控,活塞杆腔恒定低压。低压(0.5MPa-1MPa)的作用是轧制时防止活塞杆腔空吸并吸入灰尘;换辊时使活塞杆腔的压力为3-6MPa用于快速提升压下缸。

压下缸的位置在上支撑辊轴承座与压下螺丝(或牌坊顶面)之间时,压下缸倒置。即活塞杆不动,缸体动。这样的好处是使接触面积变大且稳定性好,但在快抬时压力增大。

3.1.2 压下缸参数的确定

⑴系统供油压力Ps:因压下力很大,为避免压下缸尺寸、伺服阀流量和供油系统

的参数与尺寸的过大,拟取经济压力。考虑到液压元件及伺服阀的额定压力系列,并考虑到可靠性和维护水平:取Ps =28MPa 。

⑵负载压力l P :由于压力很大这里不可能按常规即最大功率传输条件取

l P =2/3Ps ;但它也不能过大,应保证伺服阀上有足够的压降,以确保伺服阀的控制能力。

l P =23

s P =18.67MPa ≈18Mpa (3.1) ⑶压下缸行程S :压下缸行程可根据来料最的厚度、压下率、成品最小厚度及辊

隙状态的过钢要求等加以确定,取S=75mm 。

⑷压下缸背压Pr:压下控制状态,取Pr=1MPa 。

⑸活塞直径D 和活塞杆直径d 的确定:

压下力: r P c l r F A P A =-[15] (3.2)

c A ――活塞腔工作面积

r A ――活塞杆腔工作面积

令面积比: Ac Ar

α= (3.3) 得: (Pr/)

F Ac Pl α=-[12] (3.4)

由F=6000KN, Pl =18MPa, Pr =1MPa, 并取α=4

得: 3

6650001011018104

Ac ?=??-=281.69310-?2m 则

D 59.90210-?m

圆整D, 取D=700mm

则 d=D-100=600mm

由以上各式可得到:

2324211 3.14(70010)3846.51044

Ac D m π--==???=? (3.5) 2324211 3.14(60010)28261044

Ar d m π--==???=? (3.6)

3.2 伺服阀的选择

3.2.1 伺服阀的简介

电液伺服阀是电液伺服系统的关键元件,它既是系统中电气控制部与液压执行元

件之间的接口,又是实现用小信号控制大功率的放大元件。它具有控制精度高、响应速度快、体积小、以及能够适应连续信号控制和脉冲信号控制等优点。电液伺服阀的特点直接影响整个系统的特性,应得到设计者的高度重视。电液伺服阀又是各类液压元件中最精密、最贵重、最娇气的元件,对系统的实施与运行,特别是对油液的污染的控制,提出极严格的要求。

电液伺服阀的作用是微弱的电气信号取控制功率较大的液压输出(压力和流量)。其主要参数有供油压力、额定流量和额定电流。一般可以把电液伺服阀看成振荡环节,它的频带宽度和阻尼比影响系统的动态特性。

3.2.2 伺服阀参数的确定

⑴负载流量由关键工作点的负载速度l V 及负载力L F 确定伺服阀的负载流量L q 和

负载压力l P :

343103846.51069.24/min L l C q VA L --==???= (3.7)

取l P =21MPa

⑵伺服阀的输出流量v q :v q 应根据所需的负载流量L q 留出15%的余量进行估算

选定。需要快速应好的情况需要留出30%左右的余量。即:

v q =(1.15-1.30) L q (3.8)

v q =(1.15-1.30)L q =(79.8-90.0)L/min

由L q 和v q 计算在供油压力为Ps 时的伺服阀空载流量:

l s s v p p p q q -=0=21

2828-v q (3.9) =(159.6-180.0)L/min

⑷将o q 换算成伺服阀样本上规定的额定供油压力n P 下的空载额定流量n q :

n q q = 取n P =21MPa

则 n q =(138.2-155.9)/min

⑸选定伺服阀的规格:查样本选伺服阀时,应满足两个条件:

系统的供油压力在伺服阀样本规定的“供油压力范围内”;

伺服阀的额定流量应在计算所得n q 中选取,过大伺服阀会导致系统精度及性能

的下降,阀的价格也高。

根据这两个条件,从样本上选取力士乐公司系列机械和电反馈二级伺服阀,型号:

4WSE2ED16-2X150B8ET315K8EV

基本参数:

额定流量: vn q (P ?=7MPa )=150L/min

回油压力:峰值压力<10,静态<1

工作压力: 10―31.5MPa

每个线圈额定电流: =n I 50ma

信号类型: 模拟

液压油:符合DIN51 524标准的矿物油(HL,HLP )

使用环境温度: -20℃―60℃

3.3 泵与电机的选择

3.3.1 液压泵的选择

主要根据系统的工况来选择液压泵。泵的主要参数有压力、流量、转速和效率。

一般在固定设备系统中,正常工作压力为额定压力的80%左右;要求工作可靠性较高的系统或运动设备,系统的工作压力为泵的额定压力的60%左右。泵的流量又大于系统工作的最大流量。为了延长泵的寿命,泵的最高压力与最高转速不宜同时使用。

⑴主泵及电机的选择

① 确定液压泵的最大工作压力P P :

1P P P P ≥+?∑ (3.10)

1P ――缸的最大工作压力 为21MPa

P ?∑――从液压泵出口到液压缸或马达入口之间总的管路损失。管路简

单,流速不大的取0.2-0.5MPa;复杂管路取0.5-1.5MPa 。此处取 P ?∑=

1MPa

② 确定液压泵的流量vp q :

多个液压缸同时工作时,泵的输出流量为:

max ()vp v q K q ≥∑[15]

K —系统泄漏系数 取1.1-1.3,此处取K=1.1

vp q ≥1.1×300=330L/min

③ 选择液压泵的规格:根据以上求得的P P 和vp q 值,按系统中拟立的的液压

泵形式,从样本中选择相应的液压泵。为使液压泵有一定的压力储备,所选泵的

额定压力一般要比最大工作压力大25%-60%,泵的额定压力为:

N P =26-34MPa (高压系统取小值,低压系统取大值)

则,从样本中查得,选用了力士乐公司的轴向柱塞泵:A4VSO250DR/30R-PPB13N00N

性能参数:

排量:250ml/r 额定压力:35MPa

最大压力:42MPa 最大转速:1900r/min

最大流量:375L/min 最大功率:277 KW

④ 确定液压泵的驱动功率及电机的选择:

工作循环中,若液压泵的压力和流量比较稳定,液压泵驱动功率有下式计算:

P p P q P =P

η[16] (3.11) P P -系统的最大工作压力 为28MPa;

p q -液压泵的最大流量 为375L/min

P η-液压泵的效率 取0.85

则 P P =205.8KW

由样本查取得:Y 系列电动机,型号:Y315M2A-4B35

性能参数:

额定功率:220KW 转速:1480r/min 效率:92%

3.3.2辅泵及其电动机得选择

辅泵主要是给主泵供油、压下缸在压下时为有杆腔背压,同时使油箱中得油液强

制冷却。考虑到排量问题,所以选择柱塞泵。

取泵的工作压力1MPa,流量要满足于主泵的吸油,选择A2FLO25063R-PB06

性能参数:

排量:250ml/r 最高转速:1500r/min

最大允许364 l/min 流量364 l/min

最大功率219KW

电机功率:P P = 85

.06010003645.1???=10.7KW

选择Y 系列电动机:Y160L1-4B35

性能参数:

额定功率:15KW 转速:1460r/min 效率:88%

3.4 联轴器的选择

通过弹性连接可以防止泵的震动传给其它元件,并且也可以避免泵的震动加剧。

所以选择NL 型弹性柱销联轴器

⑴主泵联轴器:T=9550N

P =9550×220÷1480=1419.6N ·m (3.12) 考虑到电机和泵的轴颈

则选择 NL7 额定转矩:6300 N ·m

⑵辅泵联轴器:T=9550N

P =9550×15÷1460=98.1 N ·m 则选择 NL3 额定转矩:630 N ·m

3.5 液压阀的选择

根据系统的工作压力和通过阀的最大流量选取。控制阀的流量一般要选得比实际

通过的流量大一些,必要时也允许有20%以内的过流量。

液压传动系统分为开环和闭环两种形式。

开环系统:液压泵从油箱内吸油,经过控制部分将高压油输送到工作机构,低压

油从工作机构又流回油箱。

闭环系统:油泵吸油管直接与执行元件的回油管连通,形成一个封闭的循环系统。

元件均有内部泄漏,要损失一部分液压油。为补偿漏油,必须设置一组较小型的辅助供油装置,这样一来系统的组成比较复杂,散热条件不好,因此不宜采用。

1.液压系统的组成

设计一个完整的液压传动统,总要有以下各部分组成:

(1) 动力部分:将原动机的机械能转换为流体介质压力能的元件,即液压泵。

(2) 控制调节部分:他们对系统内的流体起着流动、运动速度和压力进行控

制,这就是液压阀。

(3) 执行部分:将流体介质的压力能转换为机械能的元件,也就是液压缸或

液压马达。

(4) 辅助部分:液压传动除元件以外,还要有一些辅助设备和附件等,

如油箱、滤油器、连接件、梳头观和压力表。

2.液压传动回路设计

回路设计时要注意压力测量点的合理选择。当液压系统总有多个执行元件时,有时要采用防干扰回路。

设计想法:为保证伺服阀正常工作,需要在其前回路加高精度滤油器滤油,加蓄能器减少脉动及元件同时动作时对其影响:为防止压力冲击对泵的影响,在其回路前加的单向阀:为保证整个系统正常工作防止因压力过高造成元件破损,加溢流阀,保证整个系统不超压,此外溢流阀其安全作用。

此外,为减小压力脉动对伺服阀的影响,通常在阀前加装以小型蓄能器;因为液压缸为运动部件,其余系统的连接应为软管及方便更换的快管接头;大型蓄能器为了充气方便应用截止阀与系统管路连接;为了保护压力表,应在其前端加带阻尼孔的压力表开关;为了提高泵的寿命,在进油口要加吸油滤油器;其附属元件如液位计、温度计、加热器、空气滤清器;因为各元件及系统管路需要清洗,所以特别设计附属冲洗机构。综合考虑,系统原理图可具体表示如下图:

图3.1系统原理图

3.5.1电磁溢流阀

电磁溢流阀式电磁换向阀与先导式溢流阀的组合,用于系统的多级压力控制或卸荷。为了减少卸荷时的液压冲击,可在电磁阀和溢流阀间加缓冲器。

在液压系统中,溢流阀可作定压阀,用以维护系统压力恒定,实现远程调压或多级调压;作安全阀,防止液压系统过载;作制动阀,对执行机构进行缓冲、制动;作背压阀,给系统加载或提供背压;它还可以与电磁阀组成电磁溢流阀,控制系统卸荷。

电磁溢流阀除了具有溢流阀的基本功能外,还应满足以下要求[11]:

⑴建压时间短;

⑵具有通电卸荷或断电卸荷的功能;

⑶卸荷时间短和无明显液压冲击;

⑷具有内控加载和外控多级加载功能。

根据实际压力和流量选用溢流阀:

①泵出口作为卸荷阀用:

②主泵出口:DBW20A-15X/315-EG24N9K4

辅泵出口:DBW20A-15X/50-EG24N9K4

3.5.2电液换向阀

电液换向阀由电磁换向阀和液压换向阀组成。其中电磁换向阀起先导控制作用,液动换向阀控制主回路,电液换向阀主要是用于流量超过电磁换向阀的工作范围的液压系统中,对执行元件的动作进行控制或对油液的方向进行控制,其功能与电磁换向阀相同。电液换向阀的控制油可由主油路提供。因此在使用电液换向阀时,应注意控制油的压力能否满足换向阀换向要求。另外,采用内部回油时,电液换向阀T口的回油背压不能超过起先导作用的电磁换向阀所允许的最大回油背压。

根据实际的压力和流量选:4WEH227X/OF6AG24N9ETK4

3.5.3减压阀

减压阀是输出压力低于输入压力,并保持压力恒定的控制阀。对减压阀而言,除了与溢流阀有类似的特性外,还要求其减压的稳定性好,即入口压力变化引起的出口压力变化小,同时,还要求通过阀的流量变化引起的出口压力变化要小。本系统中选用了一种减压。

根据需要和系统的压力选用:DR20-4-5X/100YM

3.5.4单向阀的选择

单向阀的开启压力取决于内装弹簧刚度。一般来说,为减小流动阻力可使用开启压力较低的单向阀。但是用于保持电液换向阀的控制压力或马达背压时,应使用开启压力高的单向阀。过滤器旁通的单向阀,其开启压力由虑芯堵塞压力确定。

当流过单向阀的流量远小于额定流量时,单向阀有时会产生震动。流量越小,开启越高,油中含气越多则越容易振动。

根据流量和压力选择:

主泵入口单向阀: DF-B32K

3.6液压辅件的计算与选择

3.6.1蓄能器的选择

⑴蓄能器[1]概述:蓄能器在液压装置中用来存储压力油,并根据需要放出所存储的液压油去做功,作为泵的辅助动力源而高效地利用起来,或者短时间内得到大大超过泵的容量的流量。此外,也可以用来吸收泵的脉动或管路中阀门快速关闭引起的压力冲击。

蓄能器的主要功能是存储能量、消除脉动和缓和冲击。存储能量:可以用蓄能器存储泵所排出的油液,然后向系统间接快速放液。由于蓄能器协助泵工作,故可以用比正常选小一点的泵;冲击阻尼:阀门的快速开闭能在液压系统中引起冲击波。这种冲击波能引起管子、软管和其它元件的振动、噪声、损坏和过早的失效。蓄能器具有吸收这些冲击波的功能;摩动阻尼:可以用蓄能器来阻尼泵所引起的冲击和脉动,保护液压系统免遭冲击和振动之害,并消除噪声。管式蓄能器对于脉动场合最为有效;背压:与液压缸合用的蓄能器可用来吸收缸的能量,起背压的作用;补油:可用蓄能器补充由于泄漏、降温或油液体积的变化引起的油液损失。

⑵蓄能器的确定

蓄能器的选择涉及到两项任务:首先确定正确的蓄能器的类型,然后选择蓄能器的容量、允许的压力和规格。隔离式充气蓄能器是最常见形式,这类蓄能器自成一套,尺寸小、重量轻、响应快、容易维修、稍贵。把气体与油液隔离的隔离件可以是活塞、气囊、或隔膜。活塞式蓄能器是圆柱形的,一端冲以高压气体另一端存储液压油,气液之间有浮动活塞隔离。隔膜式蓄能器往往是球形的,以最小的尺寸和重量造成很大的油液容积。飞机上就是用的这种蓄能器。皮囊式性能气有带球面峰头的圆柱形外壳,壳内有橡胶皮囊。气体被封在皮囊里,油液存储于皮囊外周围的空间里。壳体上端有

折弯机液压系统设计

- 折弯机液压系统设计《 |

摘要 》 立式板料折弯机是机械、电气、液压三者紧密联系,结合的一个综合体。液压传动与机械传动、电气传动并列为三大传统形式,液压传动系统的设计在现代机械的设计工作中占有重要的地位。因此,《液压传动》课程是工科机械类各专业都开设的一门重要课程。它既是一门理论课,也与生产实际有着密切的联系。为了学好这样一门重要课程,除了在教学中系统讲授以外,还应设置课程设计教学环节,使学生理论联系实际,掌握液压传动系统设计的技能和方法。 液压传动课程设计的目的主要有以下几点: 1、综合运用液压传动课程及其他有关先修课程的理论知识和生产实际只是,进行液压传动设计实践,是理论知识和生产实践机密结合起来,从而使这些知识得到进一步的巩固、加深提高和扩展。 2、在设计实践中学习和掌握通用液压元件,尤其是各类标准元件的选用原则和回路的组合方法,培养设计技能,提高学生分析和嫁接生产实际问题的能力,为今后的设计工作打下良好的基础。 3、通过设计,学生应在计算、绘图、运用和熟悉设计资料(包括设计手册、产品样本、标准和规范)以及进行估算方面得到实际训练。

? 目录 摘要 1任务分析----------------------------------------------------------------- -----------------------1 技术要求----------------------------------------------------------------- ---------------1 任务分析----------------------------------------------------------------- ---------------1 2 方案的确定 ----------------------------------------------------------------- -------------------2 运动情况分析----------------------------------------------------------------- ----------2 2.1.1变压式节流调速回-------------------------------------------------------------2 2.1.2容积调速回路 ----------------------------------------------------------------- -2 3 负载与运动分析 ----------------------------------------------------------------- -----------3 } 4 负载图和速度图的绘制

轧机厚度自动控制系统设计

轧机厚度自动控制系统设计 摘要:随着社会经济的发展,对板带产品的质量和精度要求越来越高。厚度精度就是板带产品的重要质量指标之一。本文针对轧机AGC技术的现状,以及轧机厚差产生的原因进行了分析。在此基础上,对轧机AGC进行分析,以APC为主要研究对象,选用PLC作为系统的控制器,将位移传感器测得的位移量经A/D转换送给PLC来控制步进电机,从而控制阀,通过轧制力来改变辊缝厚度实现轧机厚度控制。 1 引言 轧机又称轧钢机,轧钢机就是在旋转的轧辊之间对钢件进行轧制的机械,轧钢机一般包括主要设备(主机)和辅助设备(辅机)两大部分。轧钢机按轧辊的数目分为二辊,三辊式,四辊式和多辊式,轧钢机通常简称为轧机。 板带厚度精度是板带材的两大质量指标之一,板带厚度控制是板带轧制领域里的两大关键技术之一。带钢纵向厚度不均是影响产品质量的一大障碍,因此,轧机的一项重要课题就是带钢厚度的自动控制。厚度自动控制系统是通过测厚仪或传感器对带材实际轧出厚度连续进行测量,并根据实测值与给定值比较后的偏差信号,借助于控制回路或计算机的功能程序,改变压下装置、张力或轧制速度,把带材出口厚度控制在允许的偏差范围内。实现厚度自动控制的系统称为“AGC"。 我国近年来从发达国家引进的一些大型的现代化的板带轧机,其关键技术是高精度的板带厚度控制和板形控制。板带厚度精度关系到

金属的节约、构件的重量以及强度等使用性能,为了获得高精度的产品厚度,AGC系统必须具有高精度的压下调节系统及控制系统的支持。 而对于轧机来说产生厚差的原因大致可分为三大类: (1)轧机方面的原因:轧辊热膨胀和磨损、轧辊弯曲、轧辊偏心和支撑辊轴承油膜厚度等都会产生厚度波动。它们都是在液压阀位置不变的情况下,使实际辊缝发生变化,从而导致轧出的带钢厚度产生波动。 (2)轧件方面的原因:厚度偏差会直接受到坯料尺寸变化的影响。它包括来料宽度不均和来料厚度不均的影响。 (3)轧制工艺方面的原因:轧制时前后张力的变化、轧制速度的变化等。 2 系统总体设计 厚度自动控制AGC (Automatic Gauge Control)是指钢板轧机在轧制过程中通过动态微调使钢板纵向厚度均匀的一种控制手段。厚度自动控制系统是通过测厚仪或传感器对带材实际轧出厚度连续进行测量,并根据实测值与给定值比较后的偏差信号,借助于控制回路或计算机的功能程序,改变压下装置、张力或轧制速度,把带材出口厚度控制在允许的偏差范围内。 AGC系统一般包括有: 1)压下位置闭环:为了轧出给定厚度的轧件,首先必须在轧件进入辊缝之前,准确地设定空载辊缝。其次,在轧制过程中,为了使轧后的轧件厚度均匀一致,还必须随着轧制条件的变化及时的调整空

注塑机液压系统设计

机电课程设计 题目:注塑机液压系统设计 学院:机械工程学院 专业:机械设计制造及其自动化班级:学号:学生姓名: 导师姓名: 完成日期:

课程设计任务书 设计题目:注塑机液压系统设计 姓名系别机械工程专业机械设计及其自动化班级学号 指导老师教研室主任 一、设计要求及任务 1.设计要求 (1)公称注射量:250 cm3;螺杆直径: d=40mm;螺杆行程:s1=200mm;最大注射压力p=153MPa;注射速度:vw=0.07m/s;螺杆转速:n=60r/min;螺杆驱动功率:Pm=5kW;注射座最大推力:Fz=27 (kN);注射座行程:s2=230(mm);注射座前进速度:vz1=0.06m/s;注射座后退速度:vz2=0.08m/s;最大合模力(锁模力)Fh=900 (kN);开模力:Fk=49 (kN);动模板(合模缸)最大行程:s3=350 (mm);快速合模速度:vhG = 0.1m/s;慢速合模速度:vhG =0.02m/s;快速开模速度:vhG =0.13m/s;慢速开模速度:vhG =0.03m/s; (2)注塑机工作参数设计计算; (3)液压系统原理方案设计;液压系统设计计算及元件选择; (4)注塑机及液压系统总图设计。 2.设计任务 (1)绘制注塑机合模缸、注塑装置和液压系统油箱的装配图; (2)绘制液压系统原理图; (3)系统零部件的计算与选型; (4)按照要求编写设计说明书和打印图纸。 二、进度安排及完成时间 1.设计时间:两周,2012年6月 25日至2012年7月6日。 2.进度安排 第19周:布置设计任务,查阅资料,熟悉设计要求及任务,进行系统设计。 第20周:整理资料,撰写设计说明书,答辩,交设计作业。(印稿及电子文档)。

液压机液压系统设计

新疆大学 专业课课程设计任务书 班级:机械12-7 姓名:麦麦提阿卜杜拉学号:20122001702 课程设计题目:基于plc的液压动力滑台控制设计 说明书页数:19页 发题日期:2016 年 2 月26 日完成日期2016年4月15日 指导教师:穆合塔尔老师

目录 1.1.1设计任务- 2 - 2.1.1负载分析和速度分析- 2 - 2.11负载分析- 2 - 2.12速度分析- 2 - 3.1.1确定液压缸主要参数- 3 - 4.1.1拟定液压系统图- 6 - 4.11选择基本回路- 6 - 4.12液压回路选择设计- 7 - 4.13工作原理:- 8 - 5.1.1液压元件的选择- 9 - 5.11液压泵的参数计算- 9 - 5.12选择电机- 10 - 6.1.1辅件元件的选择- 11 - 6.11辅助元件的规格- 11 - 6.12过滤器的选择- 11 - 7.1.1油管的选择- 12 - 8.1.1油箱的设计- 13 - 8.11油箱长宽高的确定- 13 - 8.12各种油管的尺寸- 14 - 9.1.1验算液压系统性能- 14 - 9.11压力损失的验算及泵压力的调整- 14 - 9.12液压系统的发热和温升验算- 16 -

1.1.1设计任务 设计一台校正压装液压机的液压系统。要求工作循环是快速下行→慢速加压→快速返回→停止。压装工作速度不超过5mm/s,快速下行速度应为工作速度的8~10倍,工件压力不小于10KN。 2.1.1负载分析和速度分析 2.11负载分析 已知工作负载F w =10000N。惯性负载F a =900N,摩擦阻力F f =900N. 取液压缸机械效率 m η=0.9,则液压缸工作阶段的负载值如表2-1: (表2-1) 2.12速度分析 已知工作速度即工进速度为最大5mm/s,快进快退速度为工进速度的8-10倍。即40-50mm/s. 按上述分析可绘制出负载循环图和速度循环图:

毕业设计论文:板料折弯机液压系统设计

学生课程设计说明书 题目:板料折弯机液压系统设计学生姓名: 学号: 所在院系:电气学院 专业:机电一体化技术 班级:机电0918 指导教师:

昆明冶金高等专科学校电气学院 毕业设计(论文)任务书 专业:机电一体化 班级: 学生姓名: 学号: 毕业设计(论文)题目:板料折弯机液压系统设计 题目:板料折弯机液压系统设计 设计一台板料折弯机液压系统。该机压头的上、下运动用液压传动,其工作循环为快速下降、慢速下压(折弯)、快速返回。给定的条件为: 折弯力 ;6101?N 滑块重量 4105.1?N ; 快速空载下降 行程 180mm 速度(1v ) 23/mm s ; 工作下压(折弯) 行程 20mm 速度(2v ) 12/mm s ; 快速回程 行程 200mm 速度(3v ) 53/mm s 液压缸采用V 型密封圈,其机械效率91.0=cm n ,启动、制动、增速、减速时间均为0.2s 。要求拟定液压系统原理图,计算选择液压元件并对系统性能进行验算。 (注:折板时压头上的工作负载可分为两个阶段。第一阶段负载力缓慢增加,达到最大折弯力的5%左右,其行程为15mm 。第二阶段负载力急剧上升到最大折弯力,其上升规律近似于线性。) 毕业设计(论文)主要内容: 1、板料折弯机的液压系统工作参数要求 2、液压系统工况分析

3、初步拟定液压系统原理图 4、初步确定液压系统参数 5、液压元件的计算和选择 6、液压系统性能验算 7、绘制液压系统原理系统图、部件装配图、零件图,编写技术文件件。 毕业设计(论文)预期目标: 通过毕业设计,了解掌握现代液压设备的工作现状及发展趋势,掌握简单设备液压系统的设计计算过程;使学生能够运用所学的知识,解决生产及工作中实际问题,巩固、加深及灵活运用所学的专业知识并掌握机械设计的基本步骤和主要内容。 毕业设计(论文)指导教师: 系主任(教研室主任): 2012年1月4日

板料折弯机液压系统设计

板料折弯机液压系统设计

攀枝花学院 学生课程设计(论文) 题目:折弯机液压系统设计 学生姓名:谭晓波学号:201010601154 所在院(系):机械工程学院 专业:机械设计制造及其自动化 班级:10级机制四班 指导教师:杨光春职称: 2013年06 月12 日 攀枝花学院教务处制

攀枝花学院本科学生课程设计任务书 题 目 折弯机液压系统课程设计 1、课程设计的目的 学生在完成《液压传动与控制》课程学习的基础上,运用所学的液压基本知识,根据液压元件、各种液压回路的基本原理,独立完成液压回路设计任务;从而使学生在完成液压回路设计的过程中,强化对液压元器件性能的掌握,理解不同回路在系统中的各自作用。能够对学生起到加深液压传动理论的掌握和强化实际运用能力的锻炼。 2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等) 设计制造一台立式板料折弯机,该机压头的上下运动用液压传动,其工作循环为:快速下降、慢速加压(折弯)、快速退回。给定条件为: 折弯力N 5 103.1? ;滑块重量 N 4 105.1? ; 快速空载 下降 行程 200mm,速度(1 v ) 22/mm s ;慢速 下压(折弯)行程 30mm , 速度(2 v ) 11/mm s ; 快速回程行程222mm 速度(3 v )56/mm s , 液压缸采用V 型密封圈,其机械效率0.91 cm η = . 要 求拟定液压系统图,计算和选择液压元件。

3、主要参考文献 1王积伟,章宏甲,黄谊.主编. 液压传动. 机械工业出版社.2006.12 2成大先. 主编.机械设计手册单行——本机械传动. 化学工业出版社2004.1 3何玉林,沈荣辉,贺元成.主编.机械制图. 重庆大学出版社.2000.8 4 路甬祥主编.液压气动技术手册.北京.机 械工业出版社.2002 5 雷天觉主编.液压工程手册.北京.机械工业出版社.1990 4、课程设计工作进度计划 内容学时明确机床对液压系统的要求,进行工作 6 过程分析 16 初步确定液压系统的参数,进行工况分 析和负载图的编制 确定液压系统方案,拟订液压系统图8 6 确定液压制造元件的类型并选择相应的 液压元件,确定辅助装置 液压系统的性能验算4 合计1周

轧机液压辊缝控制系统的原理及应用

轧机液压辊缝控制系统的原理及应用 许战军 (河北钢铁集团 邯钢公司 西区冷轧厂 河北 邯郸 056002) 摘 要: 介绍邯宝公司2080冷轧酸轧联合机组轧机液压辊缝控制,通过分析HGC液压缸可以在位置控制模式和轧制力控制模式下运行的模式,由液压辊缝控制(HGC)系统调节轧机对带钢的压下量,直接影响到板型效果。 关键词: 轧机;液压辊缝控制;压下量 中图分类号:TG333 文献标识码:A 文章编号:1671-7597(2012)1110010-02 用。在咬钢的瞬间从位置控制转换到轧制控制,反过来也一 0 前言 样。由于控制模式转换必须在任何时候都可用,所以控制回路邯钢新区冷轧厂采用德国SMS集团最新的轧制技术,5架串 必须时刻调整输出来平衡设定值和实际值。位置控制和轧辊轧列式6辊轧机,通过弯辊系统、窜辊系统和螺旋压下系统来轧制 制力控制从属于更高一级的控制如厚度控制或秒流量控制。 带钢改善板型。螺旋压下系统主要靠液压辊缝控制(HGC)系 同步/倾斜控制系统是建立在位置控制和轧制力控制上统来调节轧机对带钢的压下量。冷轧就是带钢在再结晶温度进 的,以确保两个调节液压缸平行动作,这样可使轧机的上支承行轧制,所以液压辊缝控制的精度直接影响产品的厚度,液压 辊保持在轧机中心线上,并可变化。伺服阀的电源由UPS来提辊缝控制的倾斜控制配合弯辊和窜辊直接影响板型效果。 供,下表是伺服阀在各种模式下的电流值。 1 液压辊缝机械和液压系统结构 轧机机架配备了两个HGC液压缸。液压缸安装在轧机机架 上部。 HGC液压缸是用伺服阀进行闭环控制的,伺服阀仅控制液 压缸塞侧的压力。其中液压缸的油压必须是由轧机区高压液压 系统提供的。轧机机架的畜能器,直接在伺服阀之前,确保持 续的缓冲油量。 液压缸的杆侧是用一个独立的低压缓冲畜能器管路联结 的,可以尽心润滑并且避免真空。做打开动作时,例如当换辊 时HGC液压缸打开,杆侧管路压力会上增加,以提升辊缝开张 速度。 HGC液压系统图如下: 2.1 位置控制系统 位置控制用来控制液压缸位置,在操作侧和驱动侧都有位 置控制和倾斜控制。位置控制的输出限制值是可调节的,其大 小随倾斜量变化,最大约为伺服阀全开度的70%。 位置实际值是由2个HGC缸上的2个位置传感器(sony磁 尺)测量的,其精度可达1μm。每个传感器都安装在每个液压缸 中心,测量的是液压缸中心的高度。 当传感器错误时,HGC缸将停止运动。“传感器错误”信 号是通过对传感器系统里面的传感信号实时监测,监测电源和 位置差最大差异位置检测来实现的。液压缸完全收回的缸程是 由位置传感器侧量得。 2.2 轧制力控制 轧制压力控制是对驱动侧和操作侧的单独轧制力进行求和 并通过倾斜控制来修正而得来的。轧制力控制的输出限制值是 2 液压辊缝电气控制原理 可调节的,其大小随倾斜量变化,最大约为伺服阀全开度的HGC液压缸可以在位置控制模式和轧制力控制模式下运 70%。 行,当辊缝张开时液压缸一般是在位置控制模式下运行的。 轧制力是由安装在HGC缸塞侧的压力传感器测量得。一旦HGC缸的轧制力控制模式只有在辊缝关闭时才有可能 使

注塑机液压系统课程设计

《液压传动》 课程设计任务书 姓名:张阳 学号:077001583

注塑机是一种通用设备,通过它与不同专用注塑模具配套使用,能够生产出多种类型的注塑制品。注塑机主要由机架,动静模板,合模保压部件,预塑、注射部件,液压系统,电气控制系统等部件组成;注塑机的动模板和静模板用来成对安装不同类型的专用注塑模具。合模保压部件有两种结构形式,一种是用液压缸直接推动动模板工作,另一种是用液压缸推动机械机构通过机械机构再驱动动模板工作(机液联合式)。注塑机工作时,按照其注塑工艺要求,要完成对塑料原料的预塑、合模、注射机筒快速移动、熔融塑料注射、保压冷却、开模、顶出成品等一系列动作,因此其工作过程中运动复杂、动作多变、系统压力变化大。

注塑机的工作循环过程 注塑机对液压系统的要求是 1)具有足够的合模力熔融塑料以120~200MPa的高压注入模腔,在已经闭合的模具上会产生很大的开模力,所以合模液压缸必须产生足够的合模力,确保对闭合后的模具的锁紧,否则注塑时模具会产生缝隙使塑料制品产生溢边,出现废品。 2)模具的开、合模速度可调当动模离静模距离较远时,即开合模具为空程时为了提高生产效率,要求动模快速运动;合模时要求动模慢速运动,以免冲击力太大撞坏模具,并减少合模时的振动和噪声。因此,一般开、合模的速度按慢

一快一慢运动的规律变化。 3)注射座整体进退要求注射座移动液压缸应有足够的推力,确保注塑时注射嘴和模具浇口能紧密接触,防止注射时有熔融的塑料从缝隙中溢出。 4)注射压力和注射速度可调注塑机为了适应不同塑料品种、制品形状及模具浇注系统的工艺要求,注射时的压力与速度在一定的范围内可调。 5)保压及压力可调当熔融塑料依次经过机筒、注射嘴、模具浇口和模具型腔完成注射后,需要对注射在模具中的塑料保压一段时间,以保证塑料紧贴模腔而获得精确的形状,另外在制品冷却凝固而收缩过程中,熔化塑料可不断充入模腔,防止产生充料不足的废品。保压的压力也要求根据不同情况可以调整。 6)制品顶出速度要平稳顶出速度平稳,以保证成品制品不受损坏。

棒材轧机液压系统设计说明

棒材轧机液压系统设计说明

毕业设计 棒材轧机液压系统设计说明书

目录 1.前言 (1) 2.绪论 (2) 2.1液压技术概况 (2) 2.2本课题主要研究内容 (2) 2.3设计步骤 (3) 3.液压系统的工作要求 (5) 3.1液压系统的组成 (5) 3.2棒材轧机液压系统工作原理 (5) 3.3液压系统参数计算 (5) 3.3.1确定液压缸负载 (5) 3.3.2液压缸主要尺寸的确定 (6) 3.3.3确定液压泵的流量、压力和选择泵的规格 (7) 3.3.4与液压泵匹配的电动机的选定 (8) 4.确定液压系统方案、绘制液压系统原理图 (9) 4.1确定液压系统方案 (9) 4.1.1液压基本回路 (9) 4.1.2选择液压回路 (9) 4.2绘制液压系统图 (10) 4.2.1将基本回路组成系统原理图 (10) 4.2.2液压元件选择 (11) 4.3液压系统的验算 (11) 4.3.1系统压力损失计算 (12) 4.3.2系统效率计算 (13)

5.液压站的设计 (15) 5.1液压站简介 (15) 5.2油箱设计 (15) 5.2.1油箱有效容积的确定 (16) 5.2.2油箱的结构设计 (17) 5.3油箱结构 (20) 5.4液压站的结构设计 (21) 5.4.1液压泵的安装方式 (21) 5.4.2液压泵与电动机的连接 (22) 5.5辅助元件 (24) 5.5.1滤油器 (24) 5.5.2空气滤清器 (24) 5.5.3液压油 (24) 5.5.4液压控制装置的集成 (24) 5.6绘制装配图 (25) 5.7液压系统清洗、使用与维护 (26) 5.7.1清洗液压系统 (26) 5.7.2系统的使用和维护 (27) 6.结论 (29) 谢辞 (30) 参考文献 (31) 外文资料 (32)

板料折弯机液压系统设计说明书

攀枝花学院 学生课程设计说明书 题目:板料折弯机液压系统设计学生姓名:学号: 所在院(系):机电工程学院 专业:机械设计制造及自动化班级: 指导教师:

板料折弯机液压系统设计 摘要 立式板料折弯机是机械、电气、液压三者紧密联系,结合的一个综合体。液压传动与机械传动、电气传动并列为三大传统形式,液压传动系统的设计在现代机械的设计工作中占有重要的地位。因此,《液压传动》课程是工科机械类各专业都开设的一门重要课程。它既是一门理论课,也与生产实际有着密切的联系。为了学好这样一门重要课程,除了在教学中系统讲授以外,还应设置课程设计教学环节,使学生理论联系实际,掌握液压传动系统设计的技能和方法。 液压传动课程设计的目的主要有以下几点: 1、综合运用液压传动课程及其他有关先修课程的理论知识和生产实际只是,进行液压传动设计实践,是理论知识和生产实践机密结合起来,从而使这些知识得到进一步的巩固、加深提高和扩展。 2、在设计实践中学习和掌握通用液压元件,尤其是各类标准元件的选用原则和回路的组合方法,培养设计技能,提高学生分析和嫁接生产实际问题的能力,为今后的设计工作打下良好的基础。 3、通过设计,学生应在计算、绘图、运用和熟悉设计资料(包括设计手册、产品样本、标准和规范)以及进行估算方面得到实际训练。 关键词板料折弯机,液压传动系统,液压传动课程设计。

目录 摘要 1任务分析 (1) 1.1 技术要求 (1) 1.2 任务分析 (1) 2 方案的确定 (2) 2.1运动情况分析 (2) 2.1.1变压式节流调速回路 (2) 2.1.2容积调速回路 (2) 3 负载与运动分析 (3) 4 负载图和速度图的绘制 (4) 5 液压缸主要参数的确定 (4) 6系统液压图的拟定 (6) 7 液压元件的选择 (8) 7.1 液压泵的选择 (8) 7.2 阀类元件及辅助元件 (8) 7.3 油管元件 (9) 7.4油箱的容积计算 (10) 7.5油箱的长宽高确 (10) 7.6油箱地面倾斜度 (11) 7.7吸油管和过滤器之间管接头的选择 (11) 7.8过滤器的选取 (11)

(完整版)液压系统施工方案

液压系统施工方案 一、工程概况 攀钢集团成都钢铁有限公司①177精密轧管机组搬迁改造液压系统安装工程,由华夏建设公司承建。该工程液压系统设计(……),系统制造为(……),施工图设计为中 冶赛迪技术股份有限公司。 液压管道为碳钢(20#)无缝钢管。 系统液压介质为L-HM46抗磨液压油 系统管线压力及清洁度要求 编制依据 (1)H1连铸机管道

(6) H4主轧线管道 施工方法、技术措施 2.施工的重点、难点

液压系统的设备、元件精密,重要设备设备、元件均为进口件,其订货周期长,因此,运输、安装液压设备,保护设备不被损坏为工作的重点之一。液压系统清洁度要求为NAS7级,因此,现场设备安装、管道切割、焊接、连接、加油、循环清洁,应以确保清洁度为工作中心;液压系统的使用压力最高达到30 Mpa,如何确保焊接质量,密圭寸件的正确使用、安装,密圭寸面的紧固,成为减少泄漏的重要环节。 3. 设备的开箱验收 设备在运输至现场后,确认设备的规格、型号、数量,以及设备的外观是否完好,并作好开箱验收记录。暂时不能安装的设备,应作好保管、存放工作。现场的存放工作应有专人看护,防日晒雨淋,同时避免其它专业施工时对设备造成损坏。所有外露口均应包扎好,以免对设备造成污染。 4. 油箱、油泵、阀站等设备安装 (1) 设备安装前应根据设备图纸要求对设备的基础进行验收,校对基础的标 高,中心线及安装用的中心预埋件(如地脚螺栓、钢板等)位置是否正确和 齐全。 (2) 将放垫铁的基础面铲平,安放垫铁。 (3) 在运输、搬运设备,应注意对液压元件进行保护,无起重设备的地点搬运 时,应垫以枕木、滚筒,辅以葫芦牵引;起吊、牵引的受力点应在支架、 底座部位,不得使阀台、泵体等受力。 (4) 设备就位后,用检测精度为0.05mm的条式水平仪检查,允许误差为 0.5mm/m。 (5) 室内设备安装,应注意按先里后外的顺序进行。 (6) 设备调整完后,须紧固地脚螺栓,将垫铁间点焊。 (7) 以上工作完成后,填写《二次灌浆通知书》交由土建进行二次灌浆作业。5. 管道酸洗 本次工程使用的管材为20#碳无缝钢管,酸洗采用特制四合一磷化液酸

轮式压路机液压系统毕业设计

摘要 设计中介绍了结晶器液压振动系统,系统通过输入正弦电信号给伺服阀,进而控制液压缸的正弦振动。设计过程中系统的分析了系统的工作状况,以及在该工作状况下所系统所要达到的工作要求。设计中针对系统中的液压泵,伺服阀,液压缸等主要元件的选型经行了详细的计算与校核。 在泵站的设计中,核心部分是泵,油箱以及蓄能器的设计计算与选型,三者的关系是相互影响的,同时,液压系统也受外在因素的诸如工作环境和工作温度的影响,这些影响对系统的影响是非常大的,这个因素考虑的不全面直接影响到系统的工作性能。 在系统的各个参数计算中,根据设计内容所给出的条件,计算出系统液压缸的位移振动曲线。根据振动曲线方程可以求解出系统所需的最大流量,根据计算的结果确定整个系统的工作状况。 系统泵的驱动功率的计算,按照在系统振动过程中各个工况条件下所需功率的平均值,正弦振动的平均速度可以通过正弦振动方程计算出。 设计中的大部分元件都是通过相关参数的计算,根据产品的样本经行选型,以达到系统的要求。 关键词:结晶器;液压伺服系统;激振;正弦振动

Abstract The system of hydraulic vibration system for crystallizer was introduced in the design,To control the sinusoidal vibration of the cylinder, the sinusoidal signal is input into the servo valve by the computer .In the design, the working conditions is analysed,and the requirements of the system under this conditions is also analysed. For the design of the hydraulic system, the pump,servo valves, hydraulic cylinders and other major components of the Selection are detailed calculated and checked. In the design of the pumping station, the core are calculation of the pump, storage tank of the design and selection, the relations among each other are impacted, at the same time, The hydraulic systems are also impacted by external factors such as the working environment and temperature The impact of these effects on the system is very great, if this factor is not taken into consideration, There will be direct impact on the performances of the system. The various parameters of the system is calculated according to the contents of the conditions, and we can calculate the displacement vibration curve of the hydraulic cylinder of the system. According to vibration curve equation,we can work out the most flow of the system , And determine the working conditions according to the results of the whole system. The calculation of the pump-driven power of the system is the average of the power required in the vibration of the system under the working conditions. And the sine vibration equation can be calculated. The most components are selected through the calculation of the relevant parameters, based on a sample of the products selection, to meet the system requirements. Key words: Crystallizer; Hydraulic servo system; Exciting vibration; Sinusoidal vibration

注塑机原理之液压系统

(三)液压系统 注塑机是机、电、液一体化、集成化和自动化程度都很高。无论是机械液压式还全液压式,液压部分都占有相当的比值,对注塑机的技术性能、节能、环保以及成本占有重要部分。 注塑机液压系统由主回路、执行回路及辅助回路系统组成,如图所示。 图14 油路系统组成图 1,2,3,4,5,6—分别为合模油缸、滑模油缸、顶出油缸、注射座油缸、 注射油缸、液压xx; 7,8,9,10,11,12—分别为油缸的控制模块(CU)、指令模块(CM); 13—系统压力(P)、流量(Q)的控制和指令模块;14—泵;15—电机(M); 16—进油过滤器;17—油冷却器; 18—油箱;P—进油管路(高压);T— 回油管路。(低压) 油路总管线(P、T、P)的上部分是执行回路系统,下部分是主回路系统及辅助回路系统。

执行回路系统:主要由各执行机构(油缸)和指令及控制装置(电磁阀)组成。其功能是将进入管路P的高压油按程序放到油缸的左腔或右腔中去,推动活塞杆执行动作。高压油进入的时间、顺序和位置是通过电磁换向阀来实现的,工作指令通过电信号发给电磁阀的电磁铁,控制其阀芯动作,将控制油路(P)的高压油,进入换向阀推动阀芯动作,将高压油接通到油缸中去;而各油缸中的回油经回油管路T及辅助油路系统放回油箱。 主回路系统:由动力源和控制模块组成。动力源系统(电机、油泵)产生油压(P)和流量(Q),与指令(CU)及控制(CM)模块(压力阀、流量阀等)组成回路。从泵来的高压油,进入主管路的时间、顺序、压力及流量,是通过流量阀,压力阀是电磁铁获得,指令的时间、顺序和强弱,由控制其阀芯的推力和开度来确定的。 执行回路与主回路之间是通过进油管路P(高压),回油管路T(低压)以及控制回路P(高压)形成“连接网络”。 1.主要液压组件 注塑机应用液压组件非常广泛。 ⑴.动力组件 由电机带动泵实现电能—机械能—液压能的转换。有各种油泵和液压xx。 油泵是靠封闭容腔使其容积发生变化来工作的。理想的泵是没有的,因为结构上总会有制品缝隙就会有泄漏,而且机械磨损也会产生间隙,所以就要考虑泵的效率。不同质量的泵,其效率是不同的,直接影响了液压系统工作的稳定性。此外,油的压缩性也会对泵的效率产生影响。 (2).执行组件 执行组件是将液压能转换为机械能的组件,主要有油缸和油xx。 ①油缸 油缸可分为单作用柱塞式、双作用活塞式、双作用活塞杆式和双作用伸缩式油缸。

(完整版)液压传动课程设计-液压系统设计举例

液压系统设计计算举例 液压系统设计计算是液压传动课程设计的主要内容,包括明确设计要求进行工况分析、确定液压系统主要参数、拟定液压系统原理图、计算和选择液压件以及验算液压系统性能等。现以一台卧式单面多轴钻孔组合机床动力滑台液压系统为例,介绍液压系统的设计计算方法。 1 设计要求及工况分析 1.1设计要求 要求设计的动力滑台实现的工作循环是:快进 → 工进 → 快退 → 停止。主要性能参数与性能要求如下:切削阻力F L =30468N ;运动部件所受重力G =9800N ;快进、快退速度υ1= υ3=0.1m/s ,工进速度υ2=0.88×10-3m/s ;快进行程L 1=100mm ,工进行程L 2=50mm ;往复运动的加速时间Δt =0.2s ;动力滑台采用平导轨,静摩擦系数μs =0.2,动摩擦系数μd =0.1。液压系统执行元件选为液压缸。 1.2负载与运动分析 (1) 工作负载 工作负载即为切削阻力F L =30468N 。 (2) 摩擦负载 摩擦负载即为导轨的摩擦阻力: 静摩擦阻力 N 196098002.0s fs =?==G F μ 动摩擦阻力 N 98098001.0d fd =?==G F μ (3) 惯性负载 N 500N 2.01 .08.99800i =?=??= t g G F υ (4) 运动时间 快进 s 1s 1.0101003 11 1=?==-υL t 工进 s 8.56s 1088.010503 322 2=??==--υL t 快退 s 5.1s 1.010)50100(3 3 2 13=?+=+= -υL L t 设液压缸的机械效率ηcm =0.9,得出液压缸在各工作阶段的负载和推力,如表1所列。

折弯机液压系统设计(DOC)

第1 章任务分析 1.1技术要求 设计制造一台立式板料折弯机,该机压头的上下运动用液压传动,其工作循环为:快速下降、慢速加压(折弯)、快速退回。给定条件为: 折弯力1000000N 滑块重量15000N 快速下降速度23mm/s 慢速加压(折弯)速度12mm/s 快速上升速度53mm/s 快速下降行程180mm 慢速加压(折弯)行程20mm 快速上升行程200mm 1.2任务分析 根据滑块重量为15000N,为了防止滑块受重力下滑,可用液压方式平衡滑块重量,滑块导轨的摩擦力可以忽略不计。设计液压缸的启动、制动时间为△t=0.2s。折弯机滑块上下为直线往复运动,且行程较小(200mm),故可选单杆液压缸作执行器,且液压缸的机械效率ηcm=0.91。因为板

料折弯机的工作循环为快速下降、慢速加压(折弯)、快速回程三个阶段。各个阶段的转换由一个三位四通的电液换向阀控制。当电液换向阀工作在左位时实现快速回程。中位时实现液压泵的卸荷,工作在右位时实现液压泵的快速和工进。其工进速度由一个调速阀来控制。快进和工进之间的转换由行程开关控制。折弯机快速下降时,要求其速度较快,减少空行程时间,液压泵采用全压式供油。其活塞运动行程由一个行程阀来控制。当活塞以恒定的速度移动到一定位置时,行程阀接受到信号,并产生动作,实现由快进到工进的转换。当活塞移动到终止阶段时,压力继电器接受到信号,使电液换向阀换向。由于折弯机压力比较大,所以此时进油腔的压力比较大,所以在由工进到快速回程阶段须要一个预先卸压回路,以防在高压冲击液压元件,并可使油路卸荷平稳。所以在快速回程的油路上可设计一个预先卸压回路,回路的卸荷快慢用一个节流阀来调节,此时换向阀处于中位。当卸压到一定压力大小时,换向阀再换到左位,实现平稳卸荷。为了对油路压力进行监控,在液压泵出口安装一个压力表和溢流阀,同时也对系统起过载保护作用。因为滑块受自身重力作用,滑快要产生下滑运动。所以油路要设计一个液控单向阀,以构成一个平衡回路,产生一定大小的背压力,同时也使工进过程平稳。在液压力泵的出油口设计一个单向阀,可防止油压对液压泵的

板带材高精度轧制和板形控制

板带材高精度轧制和板形控制 板带轧制产生两个过程:轧件塑性变形过程和轧机弹性变形(弹跳)过程。 轧机弹跳方程h=s o’+p/k h- ----轧出带材厚;s o’:理论空载辊缝;p:轧制力;k:轧机刚度 直线A线,又称轧机弹性变形线,斜率k为轧机的刚度 零位调整后的弹跳方程 厚控方程h =s。+(p-p。)/k s。----考虑预压变形的相当空载辊缝 轧件塑性变形过程: 当来料厚度一定,由一定h值对应一 定p值可得近似直线B线,又称轧件 塑性变形线(斜率M为轧件塑性刚度 系数)。与A线相交纵坐标为轧制力p, 横坐标为板带实际厚度h C线:该线为等厚轧制线 厚度控制实质:不管轧制条 件如何变化,总要使A,B两线 交于C线,即可得到恒定厚度(高 精度)的板带材。 板带厚度变化的原因和特点(影响出 口厚度的因素) S。----由轧辊的偏心运转、磨损与热膨胀及轧辊轴承油膜厚度的变化所决定。它们都是在压下螺丝定位时使实际辊缝发生变化的 K ----在既定轧机轧制一定宽度的产品时,认为不变 P -----主要因素:故可影响到轧制力的因素必会影响到板带的厚度精度(使B线发生偏移)(1)轧件温度、成分和组织性能的不均对温度的影响具有重发性,温差会多次出现。故只在热轧精轧道次对厚度控制才有意义 (2)坯料原始厚度的不均可改变B线的位置和斜率,使压下量变化,引起压力和弹跳的变化。必须选择高精度的原料 (3)张力的变化通过影响应力状态及变形抗力而起作用;还引起宽度的改变。故热连轧采用不大的恒张力,冷连轧采用大张力。调节张力为厚控的重要手段 (4)轧制速度的变化影响摩擦系数(冷轧影响大)和变形抗力(热轧影响大),乃至影响轴承油膜厚度来改变轧制压力。对冷轧影响大。 板带厚度控制方法1)调压下改变A(2)调张力改变B 3)调轧制速度 最主要、最基本、最常用的还是调压下的方法。 调压下适用于下图16-2 a b两情况 调压下(改变原始辊缝,即改变A线): 用于消除轧制力p引起的厚度差(即B线偏移)

板料折弯机液压系统设计_课程设计(论文)

攀枝花学院 学生课程设计(论文)题目:折弯机液压系统设计 所在院(系):机械工程学院 专业:机械设计制造及其自动化班级:10级机制四班 2013年06 月12 日 攀枝花学院教务处制

攀枝花学院本科学生课程设计任务书 注:任务书由指导教师填写。

摘要 立式板料折弯机是机械、电气、液压三者紧密联系,结合的一个综合体。液压传动与机械传动、电气传动并列为三大传统形式,液压传动系统的设计在现代机械的设计工作中占有重要的地位。因此,《液压传动》课程是工科机械类各专业都开设的一门重要课程。它既是一门理论课,也与生产实际有着密切的联系。为了学好这样一门重要课程,除了在教学中系统讲授以外,还应设置课程设计教学环节,使学生理论联系实际,掌握液压传动系统设计的技能和方法。 液压传动课程设计的目的主要有以下几点: 1、综合运用液压传动课程及其他有关先修课程的理论知识和生产实际知识,进行液压传动设计实践,使理论知识和生产实践机密结合起来,从而使这些知识得到进一步的巩固、加深提高和扩展。 2、在设计实践中学习和掌握通用液压元件,尤其是各类标准元件的选用原则和回路的组合方法,培养设计技能,提高学生分析和嫁接生产实际问题的能力,为今后的设计工作打下良好的基础。 3、通过设计,学生应在计算、绘图、运用和熟悉设计资料(包括设计手册、产品样本、标准和规范)以及进行估算方面得到实际训练。 关键词板料折弯机,液压传动系统,液压传动课程设计。

目录 1 任务分析 (1) 1.1 技术要求 (2) 1.2 任务分析 (2) 2 方案的确定 (3) 2.1 运动情况分析 (3) 2.2 变压式节流调速回路 (3) 2.3 容积调速回路 (3) 3 负载与运动分析 (4) 4 负载图和速度图的绘制 (5) 5 液压缸主要参数的确定 (6) 6 系统液压图的拟定 (8) 7 液压元件的选择 (8) 7.1 液压泵的选择 (8) 7.2 阀类元件及辅助元件 (8) 7.3 油管元件 (11) 7.4 油箱的容积计算 (12) 7.5 油箱的长宽高确 (12) 7.6 油箱地面倾斜度 (12) 7.7 吸油管和过滤器之间管接头的选择 (13) 7.8 过滤器的选取 (13) 7.9 堵塞的选取 (13)

板带轧机换辊液压系统设计

1绪论 液压传动是一门较新的技术,是有很多其他传动所不能比拟的独特优点。因此,近年来,各种机械设备应用液压技术越来越普遍。世界各国对液压机械装置的需求量也急速上升。目前,液压技术不仅应用于一般机械、高精密机械和超大型设备,而且还应用于航海与海洋技术开发技术中。同时,也正应用于各种生活设施中。总之,液压技术已经广泛地深入到各个领域。我国的液压技术发展的也很快。特别是在工程机械、锻压机械、金属切削机床、采掘设备、轧钢设备、农业机械等机械制造和国防工业等一些部门。液压技术的应用日益增多。现在,我国已经制定了一些液压传动的技术标准,自行设计了各种液压元件,在标准、系列化、通用花方面做了大量工作。在液压技术的研究方面也取得了可喜的成果。 1.1 液压传动技术的发展和趋势 远在17世纪至19世纪,欧洲人对液体力学、流体传动、机构学及控制理论与机械制造就做出了主要贡献。其中包括1648年法国的B.帕斯卡提出的液体中压力传递的基本规律。1850年英国工程师William George Armstrong关于液压蓄能器的发明以及1895年英国人约瑟夫·布瑞玛的第一台液压机的英国专利。这些贡献与成就为20世纪的液压传动与控制技术的发展奠定了科学与工艺基础。 19世纪,工业上所使用的液压传动装置是以水作为介质,因其密封问题一直未能很好的解决以及电器传动技术的发展竞争,曾一度导致液压技术停滞不前。 20世纪30年代后,由于车辆、航空、船舶等功率传动的推动,相继出现了斜轴式及弯轴式轴向柱塞泵、径向和轴向液压马达。1936年Harry Vickers发明了先导控制阀为标志的管式系列液压控制元件。第二次世界大战期间,由于军事上的需要,出现了以电液伺服系统为代表的响应快、精度高的液压元件和控制信号。从而使液压技术得到迅猛发展。 20世纪50年代,随着各国经济的恢复和发展,生产过程自动化的不断增长,使液压技术很快转入民用工业,在机械制造、其中运输机械及各类施工机械、船舶、航空等领域得到广泛发展。 20世纪60年代以来,随着原子能、航空航天技术、微电子技术的发展液压技术在

相关文档
最新文档