水面无人艇路径规划研究综述

水面无人艇路径规划研究综述
水面无人艇路径规划研究综述

水面无人艇路径规划研究综述*

大连海事大学航海学院陈华张新宇

摘要:水面无人艇(unmanned surface vessel, USV)近年来受到国内外专家学者越来越多的关注。为了总结分析USV现有路径规划方法及其优缺点,通过对USV路径规划研究进行分类综述和分析,从获取环境空间障碍物的方式,将USV路径规划分为基于海洋环境信息的全局路径规划和基于传感器信息的局部路径规划。总结基于各类研究方法的主要研究成果及其主要特点,剖析其存在的主要问题,阐明USV路径规划的研究思想和意义,提出USV路径规划今后可能的发展方向。

关键词:USV;路径规划;海上交通

一引言

随着现代科学技术的飞速发展,海上智能交通作为我国科技战略的重要组成部分,主要实现船舶的航行自动化和海上交通的智能化管理。因此,作为海上交通系统的主要个体船舶,对其航行路径的研究,显得尤为重要。而近年兴起的研究热点--水面无人艇,是一种无人操作的水面舰艇,主要用于执行危险以及不适于有人船只执行的任务[1]。由于其具有体积小、速度快、智能化和自动化程度高的特点而吸引广大研究人员。它不仅可以用于军事领域的扫雷、侦察和反潜作战等方面,还可以用于民用领域的水文气象探测、环境监测和海上搜救等方面。文献[2,3]总结了无人艇的研究历史、现状以及发展趋势。在水面无人艇研发和使用领域,美国和以色列一直处于领先地位。位于美国弗吉尼亚州的UOV公司集风能、太阳能和回收动力作为能源而研发了理论上拥有无限续航能力的UOV,适用于海洋数据监测和收集等[4]。以色列Elbit公司推出了Stingary号USV,它具有船型小、机动灵活、隐蔽性好和智能巡航等优点[5]。中国对无人艇的研究起步较晚,但庆幸的是,国内对无人艇的研究已经越来越重视。中国气象局与沈阳航天新光集团共同研制了我国首艘无人驾驶船“天象一号”,它由海上无人探测平台和地面控制系统组成,能满足高海况下工作需求[6]。

目前水面无人艇主要配备的系统包括运动控制系统、传感器系统、通信系统和武装系统。其中,文献[7]将运动控制系统分为导航定位子系统、路径规划子系统和航迹跟踪子系统。而路径规划作为无人艇研究的核心问题,在一定程度上代表着无人艇智能化水平的高低。近年来对无人艇路径规划的研究成为海上智能交通的热点问题。本文从获取环境空间障碍物的方式,将无人艇路径规划分为基于海洋环境信息的全局路径规划和基于传感器信息的局部路径规划,分别综述其研究方法和成果并深入分析其本质特点和存在的不足,并对无人艇路径规划的发展方向提出几点展望。

二基于海洋环境信息的全局路径规划

全局路径规划是基于给定的海洋环境信息(通常指电子海图)来获取无人艇所经过区域的静态障碍物信息的大范围离线路径规划。为了解决全局路径规划问题,文献[7]将改进势场法与动态栅格法相结合设计了一种势场动态栅格法,通过将栅格动态细化的方式建立环境模型,利用改进势场法来搜索最优路径,通过减少折线来减少多余的路径点,最终达到路径优化的目的。该方法收敛速度快,能避免传统势场法容易陷入局部极小值问题,但该方法也没有考虑风、浪、流等水文气象因素对路径规划的影响。文献[8]提出一种基于电子海图的距离寻优Dijkstra算法来解决水面无人艇全局路径规划问题。为了克服传统Dijkstra算法占用内存大的问题,该算法使用动态网格模型来减少规划时间,提高规划精度。但该方法在环境模型的建立时仅仅基于电子海图,没有考虑风、浪、流等水文气象因素对航线设计的影响。文献[9]利用遗传算法和人工势场法设计了水面无人艇全局路径规划并进行了仿真实验,实验表明该方法能对多种复杂的障碍物环境进行规划,并且具有能在起点周围三面障碍物中寻找最优路径的能力。但该方法只是针对简单的几何图形和海岸线进行规划,没有引入真正意义上的电子海图。为了寻找一条最小或者接近最小的全局最优路径,文献[10,11]采用时效性好的A星算法作为路径规划算法,该方法也能找到最优路径,

*基金项目:国家自然科学基金项目(51309043),交通运输部应用基础研究项目(2014329225020),中国博士后科学基金项目(2014M551095),辽宁省自然科学基金项目(2014025005),辽宁省高校杰出青年学者成长计划(LJQ2014052),中央高校基本科研业务费专项资金资助项目(3132014202),辽宁省教育厅重点实验室基础研究项目(LZ2015009)。

但局限性在于无人艇要与即定路径非常近或处在该路径上,这对无人艇的控制系统提出了更高的要求。文献[12]针对大规模海洋环境条件复杂的特点采用碰撞检测技术和限制搜索区域构建障碍物潜在碰撞集,以达到减小航线规划搜索规模的目的。基于栅格模型简单及其对不规则障碍物表达能力强的优点,提取障碍物边界信息建立紧凑、高效的环境模型,对障碍物进行离散化处理,充分利用栅格间的邻接关系基于Elasticity 算法实现最短航线规划。实验结果表明设计的方法能够满足船舶在复杂的海洋环境中能高效的寻找出最优路径。但该方法没有考虑到转向次数问题,也没有考虑风浪流等外界环境的影响。文献[13]提出一种基于可视图法的A星算法用于解决无人艇全局路径规划问题,该方法克服了传统可视图法灵活性差的问题,可以提高规划效率,减少规划时间。但该算法将无人艇简化成一个质点,没有考虑无人艇的机动性能,同时也没有考虑风浪流的影响。为了解决大范围环境下的全局路径规划问题,文献[14]设计了分层和激活值相结合以及分层和遗传算法结合的路径规划算法,根据分层思想的特点,结合二维环境,采用十六叉树的环境模型建立每一层地图,在每层地图中建立各个区域的邻接关系,确定子起点和子终点。但该方法只是基于真实的海图,没有基于真正意义上的电子海图,也没有考虑风浪流等复杂环境因素的影响。

总之,无人艇全局路径规划的研究思路为:从电子海图中获取本航次所要经过海区的静态障碍信息,包括岸线、岛屿、暗礁和沉船等。然后采用A星算法、距离寻优Dijkstra算法、遗传算法和人工势场法等方法找出从起点到终点的无碰路径。一般采用离线的方法,即在无人艇开航前就设定好航线。但从目前现有的方法来看,大都没有考虑风、浪、流等水文气象因素对航线设计的影响。

三基于传感器信息的局部路径规划

局部路径规划是根据AIS获取附近船舶信息或者根据雷达等传感装置探测周围障碍物信息的小范围在线路径规划。障碍物通常是动态的船舶或者电子海图未显示的静态障碍物。英国的WasifNaeeml[15]等基于哈默斯坦和维纳模型,采用遗传算法非线性预测控制的思想来对无人艇进行实时局部路径规划,它是一个两输入单输出的系统。Canny和Reif[16]证明了在平面内限定动态障碍物速度的路径规划是NP问题。研究仍没有发现可以得到USV需要的接近于实时计算的最优方案。文献[17]采用基于模糊理论改进的ND方法规避局部危险,并采用Q学习机制和同时更新相似海风状态的Q值来提高收敛速度。该方法主要的贡献是打破了传统忽略风浪流影响的研究方法,在考虑外界因素上迈进了一步,但由于海面环境的复杂性,该方法也只是考虑了二维风的影响,而实际的海风是三维的,也没有考虑海浪和海流等因素的影响。文献[18,19]根据来船的航向和相对方位判断两船的会遇态势,根据来船的距离和速度,不同的会遇态势生成不同的会遇安全领域,进而采用进化算法生成安全路径。该方法融合了国际海上避碰规则的追越、交叉相遇和对遇条款,摒弃了传统的根据两船DCPA和TCPA判断紧迫局面的方法,而是采用规定好的来船相对方位和航向判断会遇态势,智能的生成安全领域和航行路径。该方法简单易行,执行效率高,能快速的生成满足要求的优化路径,但该方法将无人艇简化为一个质点,没有考虑无人艇的机动性能,也没有考虑海风、海浪和海流的影响。为了解决无人艇同时会遇多艘船舶问题,文献[20]提出基于国际海上避碰规则(International Regulations for Preventing Collisions at Sea,以下简称避碰规则)的确定性协同路径规划算法,该算法能使无人艇在会遇多艘船舶时能成功避让并寻找出最优路径,文中从不同的角度验证了算法的一致性和有效性,但该算法也没有考虑风浪流的影响。根据动态障碍物的规避问题,文献[21]提出基于海事规则的局部路径规划方法,该方法将动态障碍物在某一瞬时转换为相对无人艇静止的状态,并用粒子群算法以避碰规则为约束条件进行求解,通过仿真结果表明,该方法能有效规避动态障碍物,得到合理的规避策略。但由于障碍物运动状态的不确定性,预测的障碍物信息难免出现不准确的情况。为了解决复杂海况下的危险规避问题,文献[22]以Sarsa在线策略强化学习算法为基础,提出了USV在复杂海况下的自适应危险规避决策模型,并以渐进贪心策略作为行为探索策略,证明了USV自适应危险规避决策过程能够以概率1收敛到最优行为策略,论证结果表明,采用在线策略强化学习算法提升USV在复杂海况下的危险规避性能是可行的。

对现有文献的综述发现,无人艇局部路径规划可以分为融合避碰规则和不考虑避碰规则两类。融合避碰规则的局部路径规划中,大都采用速度避障法,该方法对来船能成功避让,但对于未知障碍为静态障碍

并不适用。不考虑避碰规则的局部路径规划中,将来船视为其他动态障碍,即无论来船的航向和航速如何,无人艇都对其进行避让,这会使无人艇在海上航行时,当需要来船采取避让行动的时候,无人艇也采取了避让行动,这会使两船行为的不协调,容易引起碰撞事故的发生。

四无人艇路径规划的发展方向

为深入研究无人艇路径规划中的建模问题,笔者认为以下可能的发展方向应该受到重视。

(一)针对无人艇路径规划中的环境建模问题,应考虑加入风、浪和流等外界因素的干扰。通过模拟,实测和咨询专家等方式获取比较可靠的数据,将获得的数据对模型进行验证。

(二)在无人艇会遇他船时,在采取避让行动时应考虑无人艇碰撞危险度问题,目前并无权威的无人艇碰撞危险度模型,因此可以参考现有船舶的碰撞危险度,根据无人艇的实际情况,构建无人

艇碰撞危险度。

(三)人工智能方法具有快速寻优的优点,已在建模、数字信号和图像处理等方面得到了广泛的应用,但在无人艇路径规划中,基于智能技术的路径规划远未发挥现有智能信息处理技术的优势,还

需深入研究。

五结语

水面无人艇无论在民用领域还是军事领域都发挥着不可估量的重要作用,是一个国家大力发展海洋强国战略不可或缺的有力武器。为推动无人艇路径规划的深入研究和广泛应用,本文从获得障碍物信息方式的角度,对现有路径规划方法进行分类综述和分析,总结出各类研究方法的现有成果和主要优缺点,剖析存在的问题。在此基础上,提出无人艇路径规划具有重要理论意义和实际应用价值的发展方向。

参考文献

[1]熊亚洲,张晓杰,冯海涛等.一种面向多任务应用的无人水面艇[J].船舶工程,2012, 34(1):16-19.

[2]Manely J E. Unmanned Surface Vehicles, 15 Years of Development [C]//Proc.Oceans 2008 MTS/IEEE Quebec Conference Exhibition, Quebec City: Ocean’08, 2008:1-4.

[3]Veers J, Bertran V. Development of the USV Multi-mission Surface Vehicle III [C]//5th https://www.360docs.net/doc/598068912.html,puter and IT Application in the Maritime Industries, COMPIT.2006:345-355.

[4]VEERS J, BERTRAM V. Development of the USV multi-mission surface vehicle III[C] // 5th International Conference on Computer Applications and Information Technology in the Maritime Industries. Delft, 2006.

[5]YAN R, PANG S, SUN H, et al. Development and missions of unmanned surface vehicle [J]. Journal of Marine Science and Application, 2010, 9(4):451-457.

[6]柳晨光,初秀民,吴青等. USV发展现状及展望[J].中国造船,2014,55(4):194-205.

[7]刘建.水面无人艇路径规划技术的研究[D].江苏科技大学.2014.

[8]庄佳园,万磊,廖煜雷,孙寒冰.基于电子海图的水面无人艇全局路径规划研究[J].计算机科学,2011,38(9):211-219.

[9]张玉奎.水面无人艇路径规划技术研究[D].哈尔滨工程大学.2008.

[10]卢艳爽.水面无人艇路径规划算法研究[D].哈尔滨工程大学,2010.

[11]王锦川.自主式水面航行器导航与制导算法的研究[D].大连海事大学,2014.

[12]汤青慧.基于电子海图的航线规划方法研究[D].中国海洋大学,2011.

[13]陈超,唐坚.基于可视图法的水面无人艇路径规划设计[J].中国造船,2013,54(1):129-135.

[14]饶森.水面无人艇的全局路径规划技术研究[D].哈尔滨工程大学.2007.

[15] Naeeml W, R Sutton, J Chudley. Modeling and Control of unmanned surface vehicle for environment monitoring [J]. Robotic Ocean Vehicles for Marine Science Applications, 2006, 1:409-415.

[16] J Canny, J Reif. New lower bound techniques for robot motion planning problem[C]. Proceedings of 28th Annual IEEE Symp on Foundation ofComputer Science, Los Angeles: CA,1987:49-60

[17]王敏捷.USV自适应局部危险规避方法研究[D].哈尔滨工程大学,2012.

[18] Tam C, Bucknall R. Collision risk assessment for ships [J].Journal of Marine Science and Technology, 2010,

15:257-270.

[19] Tam, C, Bucknall R. Path planning algorithm for ships in close range encounters [J].Journal of Marine Science and Technology, 2010, 15:395-470.

[20] Tam, C, Bucknall R. Cooperative path planning algorithm for marine surface vessels [J].Ocean Engineering, 2013, 57:25-33.

[21]杜开君,茅云生,向祖权,周永清等.基于海事规则的水面无人艇动态障碍规避方法[J].船舶工程,2015,44(3):119-124.

[22]张汝波,唐平鹏,杨歌,李雪耀等.水面无人艇自适应危险规避决策过程收敛性分析[J].计算机研究与发展,2014,51(12):2644-2652.

水面无人艇(USV)的关键技术

水面无人艇(USV)的关键技术 水面无人艇(Unmanned Surface Vessel,USV)近年来受到国内外越来越多的关注。国内外USV的最新进展和成果前文已经介绍过了,这里不再累述,本文重点介绍USV的控制方式、动力机构、自动避碰技术及路径优化和未来技术发展,并针对我国内河环境展望了USV在航道数据测量和海事巡航方面的应用前景。 一、USV技术发展 (一)USV控制方式 USV 船舶控制方式主要有3种,即远程遥控、自主航行、远程遥控/自主航行双模。 1.远程遥控 远程遥控是利用远程通信技术实现USV与岸上控制中心的信息交互,达到远程操控船舶的目的。在USV航行时,控制中心与其交互的信息包括航行状态信息、视觉信息、故障诊断信息和控制指令等。考虑到通信数据量大、实时性需求高的特点,比较适合的远程通信技术主要有WiFi,蜂窝网和卫星通信等,其中WiFi由于具备网络传输速率高、抗干扰能力强等特点,比较适合几百米范围内的通信,蜂窝网需

要在其覆盖范围内使用,而卫星通信不受距离限制,但成本较高。 2.自主航行 ASV与USV在概念上有所区别,主要表现在:①ASV 的航行、碰壁策略由自动控制系统提供,自动控制系统由远程控制中心或者由船舶自身控制,但船舶上允许有维护和服务人员;②USV可以是自主航行,也可以远程控制,但船舶上没有人。ASV要求船舶自身具有完整的动力控制系统、航迹/航向控制系统、自动避碰系统、故障诊断系统和应急处置系统。ASV一旦失控可能会造成十分严重的后果,因此在航行时ASV应与普通船舶一样遵守相同的交通规则,且一旦有故障发生,应采取应急措施。 3.远程遥控/自主航行双模 以目前理论水平和技术条件而言,完全替代人来操控船舶是很难实现的。采用远程遥控/自主航行双模这样一种比较常见和安全的控制方式是比较合适的。船舶为自主航行船舶,船舶电脑系统中显示的航行路径、气象导航和轨迹参数会实时地更新和存储,通过雷达、AIS和红外传感器监测周围环境。当遇到其他船舶或者障碍物,该船会根据COLREGs规则(国际海上避碰规则)进行避碰操作。与此同时,所有的

国外海军无人水面艇发展及关键技术

国外海军无人水面艇发展及关键技术 文/宋磊 有人水面舰艇相比,无人水面艇具有机动灵活、隐蔽性好、活动区域广、使用. 成本低等特点。目前,无人水面艇服役数量很少,主要用于执行海上情报、监视与侦察,反水雷战,电子战等军事任务。未来,随着智能化程度的不断提高,无人水面艇将具备遂行反潜、反舰作战等能力。 一、无人水面艇自主程度不断提升 与其他无人装备相比,无人水面艇发展相对滞后,但自主程度在不断提升。自主程度是衡量无人系统先进性的核心指标。无人水面艇按自主程度可分为遥控型、半自主型和全自主型三类。由于全自主控制方式对智能化程度要求较高、实现极为困难,尚处于研究探索阶段。目前,各国无人水面艇多采用半自主型。国外已服役或在研的无人水面艇主要装备型谱见图1。从装备型谱看,全自主型无人水面艇艇是未来无人水面艇的发展目标。 二、多功能无人水面艇发展备受关注 目前,开展无人水面艇研制的国家和地区主要包括美国、以色列、欧洲、日本等,但仅有美国、以色列的部分型号装备了部队。各国正在竞相发展集反水雷战、反潜战、电子战等能力于一体的多功能无人水面艇。 1.美国B研制并装备多种型号,且制定了明确的发展规划 美国正式服役的无入水面艇主要有“遥控猎雷系统”(RMS)、“海狐”和“斯巴达侦察兵”。其中,RMS由洛克希德·马丁公司在21世纪初研发成功,可对水雷进行快速侦察、探测、分类、识别并准确定位,也可用于反潜搜索、水面监视和沿海情报收集;“海狐”由美国西风海事公司研发,目前在美海军中服役的主要有“海狐”MKl和“海狐”MK2两型,美海军主要利用该艇进行江河地区的作战评估,以及远征部队的安全保障等;2002年,美海军水下战中心正式启动“斯巴达侦察兵”研制计划,2004年法国也加入其中,该艇备受各军种重视,海军陆战队计划将其用于执行远征后勤和再补给任务,特种部队计划将其用于水文调查及其他侦察、欺骗任务,陆军计划将“海尔法”等导弹装备该艇执行精确打击任务,协助内陆湖泊地带作战。目前,“遥控猎雷系统”和“斯巴达侦察兵”已装备美海军近海战斗舰,参与作战部署。此外,美国于2010年启动“反潜战持续跟踪无人水面艇”(ACTUV)研制计划。该艇设计长19米,排水量157吨,最高航速38节(7 0.4千米/小时),可持续工作30天,一次加油最多可航行6200千米,采用三体船型,可携带无人潜航器。上述指标均处于国际最领先的水平,同时也代表着无人水面艇的未来发展方向。 美国无入水面艇的发展思路和顶层规划也十分明确和清晰。21世纪初,美海军在《21世纪海上力量——海军设想》中提出,在201 5年前将新型无人平台引入未来网络化作战体系中。200 7年7月,美海军首次发布《海军无人水面艇主计划》,设定了无人水面艇的7项使命任务——反水雷战、反潜战、海上安全、反舰战、支持特种部队作战、电子战和支持海上封锁行动,指明了未来无入水面艇的发展重点及技术攻关方向。此后,美军方开始统筹各军种无人系统发展,并统一发布《无人系统路线图》,对无人水面艇的作战需求、关键技术领域以及与其他无人系统之间的互联互通性进行了总体规划。其中,2013年12月发布的最新版《无人系统路线图》对无人水面艇“近期(未来5年)、中期(未来10年)、远期(未来2 5年)”的技术发展重点和能力需求做出了更细致的说明:无人水面艇近期的技术发展重点将围绕增强型动力系统、通信系统和传感器系统等方面,中远期则将重点开发高效自主系统、障碍规避算法以及安全架构等;无人水面艇近期的能力需求是提高在本地受控区域执行特定任务的自主性并提高联网能力,中期将扩展行动范围并增加任务类型,远期则可在全球自主执行任务。《无人系统路线图》提出无入水面艇面临的技术挑战主要包括海上持久能力、恶劣环境中的生存能力等。同时还指出,为将无人系统潜能最大化,未来各类无人系统必须实现无缝互操作能力。2.以色列发展的型号种类仅次于美国,部分型号B装备不兑 以色列已开发多种型号,包括拉法尔公司和航空防务系统公司联合开发的“保护者”、埃尔比特系统公司的“黄貂鱼”和“银色马林鱼”、航空防务系统公司的“海星”等无人水面艇。其共同特点是充分借鉴无人机技术,并采用模块化设计。其中“保护者”项目开展最早,发展最为成熟,该艇隐身性高,装备现代化传感器系统和多样化武器系统,首批1 2艘已于2006年服役。 3.欧亚多国积极推进研制,产品尚未交付部队 英国在研无人水面艇主要包括“卫兵”、“哨兵”、“黑鱼”等。其中“卫兵”最为典型,由奎奈蒂克公司研制,采用先进的隐身设计和喷水推进技术,航速可达50节。法国在研型号主要包括“检察员”MK1、“罗德尔”和“巴西尔”等,其中“检察员”

物流配送最优路径规划

物流配送最优路径规划

关于交通运输企业物流配送最优路径规划的 研究现状、存在问题及前景展望 摘要:本文综述了在交通运输企业的物流配送领域最优路径规划的主要研究成果、研究存在问题及研究方向。主要研究成果包括运用各种数学模型和算法在运输网中选取最短或最优路径;从而达到路径、时间最优和费用最优;以及物流配送网络优化、车辆系统化统一调度的发展。今后研究的主要方向包括绿色物流,运输系统及时性和准确性研究等。 关键词:物流配送;最优路径;路径规划 Overview of scheme on Shortest Logistics Distribution Route in Transportation Industry Student: Wan Lu Tutor: Chen Qingchun Abstract: This paper reviewed of the optimal path planning about the main research results, problems and direction in the field of transportation enterprise logistics distribution. Main research results include using various mathematical model and algorithm selection or optimal shortest path in the network. So we can achieve the optimal path, the shortest time and minimum cost. At the same time, logistics distribution network optimization, the vehicle systematic development of unified scheduling are the research issues.The main direction of future research include green logistics, transportation system accurately and timely research and so on. Key words: Logics Distribution; Optimal Path; Path Planning 引言 物流业在我国的新兴经济产业中占据了重要了地位,称为促进经济快速增长的“加速器”。而物流配送作为物流系统的重要环节,影响着物流的整个运作过程以及运输企业的发展趋势和前景。采用科学、合理的方法来进行物流配送路径的优化,是物流配送领域的重要研究内容。近年,国内外均有大量的企业机构、学者对物流配送中最优路径选择的问题,进行了大量深入的研究,从早期车辆路径问题研究,到根据约束模型及条件不断变化的车辆最优路径研究,以及随着计算机学科的发展而推出的针对物流配送路径最优化的模型和算法等方面,都取得丰硕的学术成果。但是对于绿色物流配送的研究仍然不足。鉴于物流配送最优路径研究的重大理论意义和实践价值,为对我国物流配送的效率水平有一个系统的理解和把握,有必要对现有成果进行统计和归纳。本文尝试对我国运输企业物流配送最优路径规划进行探讨,以期为今后做更深人和全面的研究提供一定的线索和分析思路。 1 国内外研究现状 1.1 国内研究现状 1.1.1 主要研究的问题

路径规划毕业设计

1引言 1.1 课题研究背景及意义 1.2 主要研究内容及关键问题 2路径规划概述 路径规划是智能交通系统研究的重要内容,同时也是车辆定位与导航系统的重要组成部分,智能交通系统是包含若干子系统的复杂系统,其每个子系统都具有不同的功能,车辆定位与导航系统是智能交通系统的一个主要的应用子系统而路径规划是车辆定位与导航系统的重要组成部分。所以可以用下图来描述三者之间的关系。 2.1 路径规划的概念 路径规划是车辆定位系统与导航系统的重要组成部分,是它必不可少的核心功能之一。车辆定位与导航系统中的路径规划是在车辆行驶前或行驶过程中为司机提供从起始点到目标点的一条或若干条路线,来对司机的行车进行导航。路径规划可分为单车辆路径规划和多车辆路径规划,单车辆路径规划是在一个特定的道路网上根据一个车辆的当前位置和目标给出单个路径规划,属于用户优化问题;多车辆路径规划是在一个特定的道路网上为所有的车辆规划各自的目标路径,属于系统优化问题。 在计算机科学中,通常把求解两点之间一条路径的问题和多源最短路径问题,这些算法可视为单车辆路径规划的问题,多车辆路径规划比单车辆路径规划更复杂,单用于解决单车辆路径规划问题的背景知识将有利于研究多车辆路径规划的情形。 2.2 路径规划问题的效率 针对一个特定的应用,在进行路径规划是可以采用多种标准来优化路线,这取决于系统的设计和用户的意愿。一条路径的好坏取决于许多因素,有些司机可能选择行驶距离最短的路径,而有些司机宁愿行驶距离长些但必须行车条件好一些。这些路径选择标准可由设计决定,也可由司机通过一个用户界面来选定。在选择最好路径时,必须具备一个数字地图,来挑选使属性值如时间和距离最小的路径。 计算机中存储的具有拓补结构的车市路网由节点、边及相应的拓补关系构成。其中节点是道路的交叉点、端点,边是两节点间的一段道路,用于表示分段道路,边的权值可以定义为道路的距离或距离与其它信息的综合信息,此时可以将数字道路地图转化为带权有向图,因此无论采用何种标准,求解路网中两点之间的路径问题就可以归结为带权有向图的路径问题。 在图论中有许多比较成熟的最短路径算法可供采用,但在车辆定位与导航系统中,这些算法通常不能直接使用,原因有两个:一、对于实时车辆导航系统,路径规划必须在一定的时间内完成,这就要求路径规划算法具有较高的运算效率;二、对于车辆导航系统,负责路径规划的导航计算机系统受车载环境和成本制约,处理能力和存储资粮十分有限,而在实际应用中的数字道路数据库往往规模庞大。因此在车辆定位与导航系统中路径规划的研究目的和任务是改进图论中的算法或者构造新的算法,实现在尽可能短的时间内找到一条理想的路径。只考虑了路径规划的时效性,可能导致规划后的路径不是最优路径,但却是比较理想的

path planning 移动机器人路径规划方法综述

移动机器人路径规划方法 1.1路径规划方法 路径规划技术是机器人研究领域中的一个重要课题,是机器人导航中最重要的任务之一,国外文献常将其称为Path Planning,Find-PathProblem,Collision-Free,ObstacleAvoidance, MotionPlanning,etc.所谓机器人的最优路径规划问题,就是依据某个或某些优化准则(如工作代价最小、行走路线最短、行走时间最短等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。 路径规划主要涉及的问题包括:利用获得的移动机器人环境信息建立较为合理的模型,再用某种算法寻找一条从起始状态到目标状态的最优或近似最优的无碰撞路径;能够处理环境模型中的不确定因素和路径跟踪中出现的误差,使外界物体对机器人的影响降到最小;如何利用已知的所有信息来引导机器人的动作,从而得到相对更优的行为决策。这其中的根本问题是世界模型的表达和搜寻策略。障碍物在环境中的不同分布情况当然直接影响到规划的路径,而目标位置的确定则是由更高一级的任务分解模块提供的[8]。 根据机器人对环境信息掌握的程度和障碍物运动状态的不同,移动机器人的路径规划基本上可分为以下四类:①已知环境下的对静态障碍物的路径规划;②未知环境下的对静态障碍物的路径规划;③已

知环境下对动态障碍物的路径规划;④未知环境下对动态障碍物的路径规划。因此根据机器人对环境信息掌握的程度不同,可将机器人的路径规划问题可分为二大类即:基于环境先验信息的全局路径规划问题和基于不确定环境的局部路径规划问题。目前,路径规划研究方法大概可分为两大类即:传统方法和智能方法。 1.2传统路径规划方法 传统的路径规划方法主要包括:可视图法(V-Graph)、自由空间法(Free Space Approach)、人工势场法(Artificial Potential Field)和栅格法(Grids)等。 ⑴可视图法(V-Graph) 可视图法是Nilsson1968年在文献[9]中首次提出。可视图法将移动机器人视为一点,将机器人起始点、目标点和多边形障碍物的各定点组合连接,保证这些直线不与障碍物相交,这就构成了一张无向图称为可视图。由于任意两条直线的定点都是可见的,从起点沿着这些直线到达目标点的路线都是无碰撞的。于是,搜索最优路径的问题就转化为从起始点到目标点经过这些可视直线的最短距离问题。 这种方法的优点是可以得到最优路径,但缺陷是环境特征的提取比较困难,缺乏灵活性,一般需要机器人停止在障碍物前搜集传感器数据,并且传感器的精度对其影响也较大,尤其在复杂的非规整环境下更加难以实现安全无碰撞的路径规划。 ⑵自由空间法(Free Space Approach)

路径规划 API

路径规划API 1.概述: Autonavi路径规划API可以规划自驾,公交及步行三种路径。一条路径(Route)由多个路段组成。如自驾路径的可能像这样,从出发点沿路A直行(路段1),在路口左转进入路B( 路段2 ),再向左转进入路C(路段3)。公交路径也一样,如从出发点走到车站A(路段1),坐X站(路段2), 走100米换乘地铁(路段3),坐Y站下车(路段4),走200米到达目的地(路段5)。可以看出,3种路径规划,均可抽象为路径加路段的概念。除了基本的路径规划外,本API还提供了把路径作为Overlay加入到地图的功能。 2.Route.FromAndTo class: 2.1 概述: Route.FromAndTo是类Route的内部类。它定义了路径计算时的起始点。该类为构造路径时的帮助类。此类中定义的起点和终点,可能与路径计算结果的起点终点不一样。原因有二,一是可能要求了坐标偏转,二是对于自驾路径,导航引擎会将远离道路的起点终点移至较近的道路上。 2.2 构造函数 public FromAndTo(GeoPoint from, GeoPoint to, int trans) 构造函数。参数from定义了路径的起点,参数to定义了终点,参数trans决定了坐标偏转的设定。见2.3常量说明。 public FromAndTo(GeoPoint from, GeoPoint to) 构造函数。参数from定义了路径的起点,参数to定义了终点,且起点终点坐标不做偏转。见2.3常量说明。 2.3 常量定义: public static final int NoTrans; 不做偏转。 public static final int TransFromPoint = 1; 仅对起点做偏转 public static final int TransToPoint = 2; 仅对终点做偏转 public static final int TransBothPoint = 3; 对起点和终点做偏转 3.Route class 3.1概述: Route类定义了一条路径。此类不可以直接构造,只能通过类的静态(static)函数得到其实例。一条路径,可以是公交路径,步行路径,或者自驾路径。根据构建时的参数,可以得到不同的路径。 3.2成员变量: protected String mStartPlace: 路径起始点的描述 protected String mTargetPlace: 路径目的地的描述 protected List mSegs: 此路径所包含的路段列表,按照起点至终点的次序排列。

【专题】国外无人水面艇未来发展及关键技术

【专题】国外无人水面艇未来发展及关键技术 与有人水面艇相比,无人水面艇具有机动灵活、隐蔽性好、活动区域广、使用成本低等特点。目前,无人水面艇服役数量很少,主要用于执行海上监视侦察、反水雷战、电子战等军事任务。未来,随着智能化程度的不断提高,无人水面艇将具备遂行反潜、反舰作战等能力。 美国海军公布自主无人艇集群方案(Autonomous Swarm Boats)时长1分34秒无人水面艇自主程度不断提升 洛马公司Marlin无人潜航器 与其他无人装备相比,无人水面艇的发展相对滞后,但自主程度在不断提升。自主程度是衡量无人系统先进性的核心指标。无人水面艇按自主程度可分为遥控型、半自主型和全自主型3类。由于全自主控制方式对智能化程度要求较高,实现极为困难,尚处于研究探索阶段。目前,各国无人水面艇多采用半自主型。但是,从国外已服役或在研的无人水面艇主要型谱看,全自主型无人水面艇是未来无人水面艇的发展目标。多功能无人水面艇发展备受关注 目前,开展无人水面艇研制的国家和地区主要包括美国、以色列、欧洲、日本等,但仅有美国和以色列的部分无人水面艇型号装备了部队。各国正在竞相发展集反水雷战、反潜战、电子战等能力于一体的多功能无人水面艇。

海事无人系统分类图美国已研制并装备多种型号,且制定了明确的发展规划。美国正式服役的无人水面艇主要有“遥控猎雷系统”“海狐”和“斯巴达侦察兵”。 洛马公司AN/WLD-1“遥控猎雷系统”其中,“遥控猎雷系统”由洛克希德·马丁公司在21世纪初研发成功,可对水雷进行快速侦察、探测、分类、识别并准确定位,也可用于反潜搜索、水面监视和沿海情报收集。“海狐”由美国西风海事公司研发,目前在美国海军中服役的主要有“海狐”MK1和“海狐”M K2两型,美国海军主要利用该艇进行江河地区的作战评估,以及远征部队的安全保障等。2002年,美国海军水下战中心正式启动“斯巴达侦察兵”无人水面艇的研制工作,2004年法国也加入其中。该艇备受各军种重视,美国海军陆战队将其用于执行远征后勤和再补给任务,特种部队将其用于水文调查及其他侦察、欺骗任务,陆军将“海尔法”等导弹装备该艇执行精确打击任务,协助内陆湖泊地带的作战。目前,“遥控猎雷系统”和“斯巴达侦察兵”已装备美国海军近海战斗舰,参与作战部署。 美国海军测试“斯巴达侦察兵”无人水面艇此外,美国于2010年启动“反潜战持续跟踪无人水面艇”研制计划。该艇设计长19米,排水量157吨,最高航速38节,可持续工作30天,一次加油最多可航行6200千米,采用三体船型,可携带无人潜航器。上述指标均处于国际最高水平,同时也代表着无

移动机器人路径规划技术综述

第25卷第7期V ol.25No.7 控制与决策 Control and Decision 2010年7月 Jul.2010移动机器人路径规划技术综述 文章编号:1001-0920(2010)07-0961-07 朱大奇,颜明重 (上海海事大学水下机器人与智能系统实验室,上海201306) 摘要:智能移动机器人路径规划问题一直是机器人研究的核心内容之一.将移动机器人路径规划方法概括为:基于模版匹配路径规划技术、基于人工势场路径规划技术、基于地图构建路径规划技术和基于人工智能的路径规划技术.分别对这几种方法进行总结与评价,最后展望了移动机器人路径规划的未来研究方向. 关键词:移动机器人;路径规划;人工势场;模板匹配;地图构建;神经网络;智能计算 中图分类号:TP18;TP273文献标识码:A Survey on technology of mobile robot path planning ZHU Da-qi,YAN Ming-zhong (Laboratory of Underwater Vehicles and Intelligent Systems,Shanghai Maritime University,Shanghai201306, China.Correspondent:ZHU Da-qi,E-mail:zdq367@https://www.360docs.net/doc/598068912.html,) Abstract:The technology of intelligent mobile robot path planning is one of the most important robot research areas.In this paper the methods of path planning are classi?ed into four classes:Template based,arti?cial potential?eld based,map building based and arti?cial intelligent based approaches.First,the basic theories of the path planning methods are introduced brie?y.Then,the advantages and limitations of the methods are pointed out.Finally,the technology development trends of intelligent mobile robot path planning are given. Key words:Mobile robot;Path planning;Arti?cial potential?eld;Template approach;Map building;Neural network; Intelligent computation 1引言 所谓移动机器人路径规划技术,就是机器人根据自身传感器对环境的感知,自行规划出一条安全的运行路线,同时高效完成作业任务.移动机器人路径规划主要解决3个问题:1)使机器人能从初始点运动到目标点;2)用一定的算法使机器人能绕开障碍物,并且经过某些必须经过的点完成相应的作业任务;3)在完成以上任务的前提下,尽量优化机器人运行轨迹.机器人路径规划技术是智能移动机器人研究的核心内容之一,它起始于20世纪70年代,迄今为止,己有大量的研究成果报道.部分学者从机器人对环境感知的角度,将移动机器人路径规划方法分为3种类型[1]:基于环境模型的规划方法、基于事例学习的规划方法和基于行为的路径规划方法;从机器人路径规划的目标范围看,又可分为全局路径规划和局部路径规划;从规划环境是否随时间变化方面看,还可分为静态路径规划和动态路径规划. 本文从移动机器人路径规划的具体算法与策略上,将移动机器人路径规划技术概括为以下4类:模版匹配路径规划技术、人工势场路径规划技术、地图构建路径规划技术和人工智能路径规划技术.分别对这几种方法进行总结与评价,展望了移动机器人路径规划的未来发展方向. 2模版匹配路径规划技术 模版匹配方法是将机器人当前状态与过去经历相比较,找到最接近的状态,修改这一状态下的路径,便可得到一条新的路径[2,3].即首先利用路径规划所用到的或已产生的信息建立一个模版库,库中的任一模版包含每一次规划的环境信息和路径信息,这些模版可通过特定的索引取得;随后将当前规划任务和环境信息与模版库中的模版进行匹配,以寻找出一 收稿日期:2009-08-30;修回日期:2009-11-18. 基金项目:国家自然科学基金项目(50775136);高校博士点基金项目(20093121110001);上海市教委科研创新项目(10ZZ97). 作者简介:朱大奇(1964?),男,安徽安庆人,教授,博士生导师,从事水下机器人可靠性与路径规划等研究;颜明重(1977?),男,福建泉州人,博士生,从事水下机器人路径规划的研究.

一种快速神经网络路径规划算法概要

文章编号 2 2 2 一种快速神经网络路径规划算法α 禹建丽? ∏ √ 孙增圻成久洋之 洛阳工学院应用数学系日本冈山理科大学工学部电子工学科 2 清华大学计算机系国家智能技术与系统重点实验室日本冈山理科大学工学部信息工学科 2 摘要本文研究已知障碍物形状和位置环境下的全局路径规划问题给出了一个路径规划算法其能量函数 利用神经网络结构定义根据路径点位于障碍物内外的不同位置选取不同的动态运动方程并针对障碍物的形状设 定各条边的模拟退火初始温度仿真研究表明本文提出的算法计算简单收敛速度快能够避免某些局部极值情 况规划的无碰路径达到了最短无碰路径 关键词全局路径规划能量函数神经网络模拟退火 中图分类号 ×°文献标识码 ΦΑΣΤΑΛΓΟΡΙΤΗΜΦΟΡΠΑΤΗΠΛΑΝΝΙΝΓ ΒΑΣΕΔΟΝΝΕΥΡΑΛΝΕΤ? ΟΡΚ ≠ 2 ? ? ≥ 2 ≥ ∏ ΔεπαρτμεντοφΜατηεματιχσ ΛυοψανγΙνστιτυτεοφΤεχηνολογψ Λυοψανγ

ΔεπαρτμεντοφΕλεχτρονιχΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν ΔεπαρτμεντοφΧομπυτερΣχιενχε Τεχηνολογψ ΣτατεΚεψΛαβοφΙντελλιγεντΤεχηνολογψ Σψστεμσ ΤσινγηυαΥνι?ερσιτψ Βει?ινγ ΔεπαρτμεντοφΙνφορματιον ΧομπυτερΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν Αβστραχτ ∏ √ √ √ × ∏ ∏ ∏ ∏ ∏ ∏ 2 ∏ √ × ∏ ∏ ∏ ∏ √ ∏ Κεψωορδσ ∏ ∏ ∏ 1引言Ιντροδυχτιον 机器人路径规划问题可以分为两种一种是基于环境先验完全信息的全局路径规划≈ 另一种是基于传感器信息的局部路径规划≈ ?后者环境是未知或者部分未知的全局路径规划已提出的典型方法有可视图法 ! 图搜索法≈ ! 人工势场法等可视图法的优点是可以求得最短路径但缺乏灵活性并且存在组合爆炸问题图搜索法比较灵活机器人的起始点和目标点的改变不会造成连通图的重新构造但不是任何时候都可以获得最短路径可视图法和图搜索法适用于多边形障碍物的避障路径规划问题但不适用解决圆形障碍物的避障路径规划问题人工势场法的基本思想是通过寻找路径点的能量函数的极小值点而使路径避开障碍物但存在局部极小值问题且不适于寻求最短路径≈ 文献≈ 给出的神经网络路径规划算法我们称为原算法引入网络结构和模拟退火等方法计算简单能避免某些局部极值情况且具有并行性及易于从二维空间推广到三维空间等优点对人工势场法给予了较大的改进但在此算法中由于路径点的总能量函数是由碰撞罚函数和距离函数两部分的和构成的而路径点 第卷第期年月机器人ΡΟΒΟΤ? α收稿日期

路径规划概述

1.3.2路径规划方法的概述 路径规划是智能机器人领域中的一个重要分支,根据不同实验要求 规划出各自的最 优路径是路径规划研究的意义所在。在本实验系统中,路经规划主 要考虑一下两个方面 的问题:对于主臂,运动目标是在起始位置和目标位置间做直线运动,直线已是两点间 的最短距离,因此它的路经规划相对简单:对于从臂,在运动过程 中始终视主臂为其要 避碰的障碍物,它路径规划的目的则是要规划出一条与主臂无碰撞 的最短路径。 机器人的路径规划基本方法大体可分为3种类型112l: (1)基于环境模型的路径规划,它能够处理完全已知环境下机器人的 路径规划,但 当环境发生变化时,该方法无能为力。具体方法为:栅格法、可视 图法和自由空间法等。 (2)基于传感器信息的路径规划法,其实现了机器人在动态未知环境 中运动的重要 技术。具体方法为:人工势场法、栅格法、模糊逻辑法等。(3)基于 行为的路径规划法,它把导航问题分解为许多相对对立的导航单元,且这 些单元都有传感器和执行器,它们协调工作,共同完成运动任务。 栅格法将移动机器人工作环境分解成一系列具有二值信息的网格单元,用尺寸相同 的栅格对机器人运行环境进行划分,若某个栅格范围内不含任何障 碍物,则称此栅格为 自由栅格,反之称为障碍栅格。 人工势场法借鉴了物理势场的原理,把机器人所在的环境表示为一 种抽象的力场。

势场中包含斥力级和引力级,不希望机器人进入的区域和障碍物区域属于斥力级,目标 区和希望机器人进入的区域为引力级。引力级和斥力级的周围由一定的算法产生相应的 势场。机器人在势场中具有一定的抽象能力,它的负梯度方向表示机器人系统所受的抽 象力的方向,正是这个抽象力的作用,促使机器人绕过障碍物,朝目标前进。 模糊逻辑控制是以模糊集合论、模糊逻辑、模糊语言变量以及模糊推理为基础的一 种非线性的计算机数字控制技术。其特点为:可以将获得的不确定的数据经过处理得到 精确的数据结果。基于实时传感信息的模糊逻辑算法参考人的驾驶经验,通过查规则表 得到规划信息,实现局部路径的规划【B15l。该方法克服了势场法易产生局部极小问题, 适用于时变未知环境下的路径规划,实时性较好。 随着智能控制方法理论的逐渐成熟,当机器人面对比较复杂的工作环境时,将智能 控制方法应用到机器人的路径规划中可以大大提高机器人对环境的适应性。主要应用的 智能控制方法有人工神经网络法、遗传算法和蚁群算法等等。 人工神经网络是由大量简单的神经元相互连接而形成的自适应非线性动态系统,其 不依赖于被控模型,比较适合不确定和高度非线性的控制对象,并具有较强的学习和适应能力。采用神经网络的路径规划算法需要先将环境地图映射称神经元网络,并设置神 经元的值来表征不同的地图状况,在通过对神经网络的训练来获取最优的神经元集合以 组成最优路径。

机器人路径规划

1绪论 1.1机器人简介 1.1.1什么是机器人 机器人一词不仅会在科幻小说、动画片等上看到和听到,有时也会在电视上看到在工厂进行作业的机器人,在实际中也有机会看到机器人的展示。今天,说不定机器人就在我们的身过,但这里我们要讨论的是什么是机器人学研究的机器人。 机器人(robot)一词来源下1920年捷克作家卡雷尔. 查培克(Kapel Capek)所编写的戏剧中的人造劳动者,在那里机器人被描写成像奴隶那样进行劳动的机器。 后来作为一种虚构的机械出现在许多作品中,代替人们去完成某些工作。20世纪60年代出现了作为可实用机械的机器人。为了反这种机器人同虚构的机器人及玩具机器人加以区别,称其为工业机器人。 工业机器人的兴起促进了大学及研究所开展机器人的研究。随着计算机的普及,又积极地开展了带有智能的机器人的研究。到70年代,机器人作为工程对象已经被确认,机器人一词也受到公认。目前,机器人学的研究对象已不仅仅是工业机器人了。 即便是实际存在的机器人,也很难把它定义为机器人,而且其定义也随着时代在变化。这里简单地反具有下述性质的机械看作是机器人: 1.代替人进行工作:机器人能像人那样使用工具和机械,因此,数控机床和 汽车不是机器人。 2.有通有性:既可简单地变换所进行的作为,又能按照工作状况的变化相应 地进行工作。一般的玩具机器人不能说有通用性。 3.直接对个界作工作:不仅是像计算机那样进行计算,而且能依据计算结果 对外界结果对外界产生作用。 机器人学把这样定义的机器人作为研究对象。

1.1.2机器人的分类 机器人的分类方法很多,这里我们依据三个有代表性的分类方法列举机器人的种类。 首先,由天机器人要代替人进行作业,因此可根据代替人的哪一个器官来分类: 操作机器人(手):利用相当于手臂的机械手、相当于手指的手爪来使物体协作。 移动机器人(腿):虽然已开发出了2足步行和4足步行机器人,但实用的却是用车轮进行移动的机器人。(本文以轮式移动机器人作为研究对象)视觉机器人(眼):通过外观检查来除掉残次品,观看人的面孔认出是谁。虽然还有使用触觉的机器人,但由于它不是为了操作,所以不能说是触觉机器人。 也还有不仅代替单一器官的机器人,例如进行移动操作,或进行视觉和操作的机器人。 其次,按机器人的应用来分类: 工业机器人:可分为搬送、焊接、装配、喷漆、检查等机器人,主要用于工厂内。 极限作业器人:主要用在人们难以进入的核电站、海底、宇宙空间等进行作为的机器人。也包括建筑、农业机器人等。 娱乐机器人:有弹奏乐器的机器人、舞蹈机器人、宠物机器人等,具有某种程度的通用性。也有适应环境面改变行动的宠物机器人。 最后则是按照基于什么样的信息进行动作来分类: 表1基于动作信息的机器人分类

美国海军发布无人水面艇主计划

美国海军发布无人水面艇主计划(上) 2007年7月23日,美国海军发布了《海军无人水面艇主计划》。该计划从满足美国海军战略计划、舰队发展以及国防部到2020年部队转型的需求等方面,详细介绍了美国海军未来无人水面艇(USV)的发展计划。全文共分5个部分,即无人水面艇发展设想,无人水面艇的作战使命,发展系列无人水面艇,无人水面艇的技术与工程问题,建议与结论。现将主要内容摘编如下: 一、USV的发展设想 USV的发展设想是:开发和装备成本节约型的USV,改善海军和联合作战能力,支持本土防御、全球反恐作战、非对称作战和常规战争。为提升USV稳定性和耐波能力,协助打击地区性、跨国界、以及全球范围内的敌人,USV将增大目前和未来的平台。USV将完全实现自动化,从而降低通信/数据交换的需求以及操控人员的负担。此外,USV可通过布放和回收仪器设备,收集、发送和处理各类信息,使美军及其盟军能够以最低的风险或代价攻击目标。 为了实现USV的发展设想,USV主计划确定了以下目标: (1)确定USV近期(5年)、中期(5年至10年)和未来(10年以上)的能力,具体包括:任务描述和优先性,每项任务的高层次作战概念(CONOPS),并通过对备选能力进行评估,确定这些能力是否适用于USV。 (2)建立USV的性能级别,使各级USV能够满足能力的需求:①推荐若干级别的水面艇,构建高效的、集团化的、互为补充的能力;②在海军项目中,界定USV类型和尺寸的具体范围;③审查各USV级别内部以及彼此之间的模块化和通用化水平。 (3)评估技术要求以及目前的技术准备情况,为USV平台和相关负载的研制提出相应的技术投资策略。 二、USV的作战使命 根据国防部和海军的指导性文件,这份主计划确定了USV优先发展的7个任务领域,按照优先级排列,包括:反水雷战(MCM);反潜作战(ASW);海上安全(MS);水面作战(SUW);支持特种部队作战(SOF);电子战(EW);支持海上拦截作战(MIO)。针对每一项任务领域,研究团队将开发一种USV 任务包,这个任务包包括平台尺寸/类型、负载和可能的应用描述等。 三、发展系列USV 在2006年举行的USV主计划专题学术讨论会中,一项重要的结论是,界定USV的类型和尺寸级别将有助于协调舰队和USV采办项目,特别是在舰队兼容性、促进民品开发、集中控制、标准化、通用化、模块化和人员系统集成等方面。对于USV来说,最为重要的技术条件是USV能够被海军现役舰艇搭载,或仅需进行较小的改装,因此,通用的海军船型和尺寸成为首先考虑的因素。USV主计划推荐了一个非标准级的USV和三个标准级的USV,这4种级别的USV能够完全满足美国海军USV优先发展的7个任务领域的能力需求,具体包括: “X-级”是一个长3米或更小的非标准级USV,采用非标准模块建造,能够支持特种部队作战、以及海上拦截作战任务。它将提供低层次的情报、侦察、监视能力,以及有限的续航力、有效载荷和适航性,支持有人操作。

无人水面艇终极版

无人水面艇 无人水面艇(unmanned surface vessel,简称USV),是一种无人操作的水面舰艇。主要用于执行危险以及不适于有人船只执行的任务。一旦配备先进的控制系统、传感器系统、通信系统和武器系统后,可以执行多种战争和非战争军事任务. 1发展历史 无人舰艇的历史可追溯到二战时期,彼时,它们只是被作为一次性的制导武器使用;冷战开始后,旨在搜寻和清扫水雷的无人航行器开始列装各国海军,这些早期遥控舰艇多由电缆发送的导航信号或母舰通过无线电控制,自主活动能力有限。 上世纪90年代以后,人工智能和自动化技术的进步,让水上水下的无人舰艇迎来了真正的活跃期,更复杂的水下机器人(AUVs)和水面机器人(ASVs)也从概念走向现实。目前,西方国家的无人舰艇大多担负侦察任务,具备攻击能力的改型也已开始列装。 2国际现状 美国海军从上世纪90年代开始研究无人水面艇。2007年,美国海军发布《海军无人水面艇主计划》,为无人水面艇赋予了7项任务,同时还界定了无人水面艇的船型、尺寸和标准等要素,这标志着美国无人水面艇走上正规发展阶段。 以色列“保护者”型无人水面艇已经开始批量生产,并装备部队。新加坡海军是它第一个海外用户,在一次演习中,他们利用登陆舰搭载2艘“保护者”无人水面艇,进行海上保卫和封锁行动,据新加坡国防部称,“保护者”无人水面艇是“非常高效的”。 目前,德国、日本也在积极研究无人水面艇。中国无人水面艇的发展尚处于起步阶段,民用方面已取得进展,“天象1号”无人水面艇曾在奥运会青岛奥帆赛期间,作为气象应急装备为奥帆赛提供气象保障服务。 3特点 (1)艇性特点:对于艇型来说,国际普遍采取硬壳充气艇,长为6m到11m之间。采用充气 艇的方式,船底采用内设刚性龙骨的v型结构,充气胎与骨架板件组合,可在正常工作压力下使整个艇具有足够刚性,气胎分隔成3到5个独立气室可保证艇的抗沉性。另外四周充气部分也可起到良好的抗冲击缓冲作用,艇体边界有充气浮力胎,可极大避免风浪中倾斜的危险。 (2)动力特点:无人艇大多采用柴油机做动力,在推进形式上有舷外机和喷水推进等方式, 其中由于采用喷水推进的舰舶具有传动机构简单,机动性和操纵性好,吃水浅效率高等特点被广泛应用。 (3)操纵特点:无人艇操纵方式为无人遥控/按既定方案运行/自主运行等方式,在完全自主 运行方式下,对无人艇的智能化程度要求较高,实现较为复杂。 (4)应用特点:无人艇大多采用模块化设计,根据任务的不同,可采用多种不同模块。无人 艇部署机动灵活,使用方便,可跟随战斗舰出航执行任务,并可在危险区域或不宜派遣人的舰船区域独自自主执行任务,拓展了海上作战范围,具有良好的费效比,避免了人员的生命危险。 4应用领域 (1)反水雷战 无人艇可以快速,高效,低成本地以集群方式完成大范围的水雷探测与定位任务。 猎扫雷舰是单位吨位最贵的舰船,保有量有限,单独依靠猎扫雷舰完成大面积区域

移动机器人路径规划综述

移动机器人路径规划综述 目录 1 引言 (2) 2 传统路径规划方法 (2) 2.1 自由空间法 (2) 2.2 图搜索法 (3) 2.3 栅格法 (3) 3 智能路径规划方法 (4) 3.1基于模糊逻辑的路径规划 (4) 3.2基于遗传算法的路径规划 (5) 3.3基于神经网络的路径规划 (5) 3.4人工势场法 (5) 3.5基于模糊逻辑与信息融合的路径规划 (6) 4 结论与展望 (6) 参考文献 (7)

1 引言 所谓移动机器人路径规划技术,就是机器人根据自身传感器对环境的感知,自行规划出一条安全的运行路线,同时高效完成作业任务。移动机器人路径规划主要解决3个问题: 1) 使机器人能从初始点运动到目标点; 2) 用一定的算法使机器人能绕开障碍物,并且经过某些必须经过的点完成相应的作业任务; 3) 在完成以上任务的前提下,尽量优化机器人运行轨迹。 机器人路径规划技术是智能移动机器人研究的核心内容之一,它起始于20 世纪70年代,迄今为止,己有大量的研究成果报道[1]。路径规划方法的分类也呈现多样化,可以分为基于地图的全局路径规划方法[2,3]和基于传感器的局部路径规划方法[4],也可以分为传统路径规划方法[5]与智能路径规划方法[6]。 本文主要按传统路径规划方法与智能路径规划方法进行总结与评价。传统路径规划方法主要包含自由空间法,图搜索法,栅格法等,智能路径规划算法主要包含基于模糊逻辑的路径规划,基于神经网络的路径规划,基于遗传算法的路径规划,人工势场法以及信息融合方法等。 2 传统路径规划方法 2.1 自由空间法 自由空间法[7]应用于移动机器人路径规划,采用预先定义的如广义锥形和凸多边形等基本形状构造自由空间,并将自由空间表示为连通图,通过搜索连通图来进行路径规划。自由空间的构造方法[8]是:从障碍物的一个顶点开始,依次作其它顶点的链接线,删除不必要的链接线,使得链接线与障碍物边界所围成的每一个自由空间都是面积最大的凸多边形;连接各链接线的中点形成的网络图即为机器人可自由运动的路线。其优点是比较灵活,起始点和目标点的改变不会造成连通图的重构,缺点是复杂程度与障碍物的多少成正比,且有时无法获得最短路

水面无人艇路径规划研究综述

水面无人艇路径规划研究综述* 大连海事大学航海学院陈华张新宇 摘要:水面无人艇(unmanned surface vessel, USV)近年来受到国内外专家学者越来越多的关注。为了总结分析USV现有路径规划方法及其优缺点,通过对USV路径规划研究进行分类综述和分析,从获取环境空间障碍物的方式,将USV路径规划分为基于海洋环境信息的全局路径规划和基于传感器信息的局部路径规划。总结基于各类研究方法的主要研究成果及其主要特点,剖析其存在的主要问题,阐明USV路径规划的研究思想和意义,提出USV路径规划今后可能的发展方向。 关键词:USV;路径规划;海上交通 一引言 随着现代科学技术的飞速发展,海上智能交通作为我国科技战略的重要组成部分,主要实现船舶的航行自动化和海上交通的智能化管理。因此,作为海上交通系统的主要个体船舶,对其航行路径的研究,显得尤为重要。而近年兴起的研究热点--水面无人艇,是一种无人操作的水面舰艇,主要用于执行危险以及不适于有人船只执行的任务[1]。由于其具有体积小、速度快、智能化和自动化程度高的特点而吸引广大研究人员。它不仅可以用于军事领域的扫雷、侦察和反潜作战等方面,还可以用于民用领域的水文气象探测、环境监测和海上搜救等方面。文献[2,3]总结了无人艇的研究历史、现状以及发展趋势。在水面无人艇研发和使用领域,美国和以色列一直处于领先地位。位于美国弗吉尼亚州的UOV公司集风能、太阳能和回收动力作为能源而研发了理论上拥有无限续航能力的UOV,适用于海洋数据监测和收集等[4]。以色列Elbit公司推出了Stingary号USV,它具有船型小、机动灵活、隐蔽性好和智能巡航等优点[5]。中国对无人艇的研究起步较晚,但庆幸的是,国内对无人艇的研究已经越来越重视。中国气象局与沈阳航天新光集团共同研制了我国首艘无人驾驶船“天象一号”,它由海上无人探测平台和地面控制系统组成,能满足高海况下工作需求[6]。 目前水面无人艇主要配备的系统包括运动控制系统、传感器系统、通信系统和武装系统。其中,文献[7]将运动控制系统分为导航定位子系统、路径规划子系统和航迹跟踪子系统。而路径规划作为无人艇研究的核心问题,在一定程度上代表着无人艇智能化水平的高低。近年来对无人艇路径规划的研究成为海上智能交通的热点问题。本文从获取环境空间障碍物的方式,将无人艇路径规划分为基于海洋环境信息的全局路径规划和基于传感器信息的局部路径规划,分别综述其研究方法和成果并深入分析其本质特点和存在的不足,并对无人艇路径规划的发展方向提出几点展望。 二基于海洋环境信息的全局路径规划 全局路径规划是基于给定的海洋环境信息(通常指电子海图)来获取无人艇所经过区域的静态障碍物信息的大范围离线路径规划。为了解决全局路径规划问题,文献[7]将改进势场法与动态栅格法相结合设计了一种势场动态栅格法,通过将栅格动态细化的方式建立环境模型,利用改进势场法来搜索最优路径,通过减少折线来减少多余的路径点,最终达到路径优化的目的。该方法收敛速度快,能避免传统势场法容易陷入局部极小值问题,但该方法也没有考虑风、浪、流等水文气象因素对路径规划的影响。文献[8]提出一种基于电子海图的距离寻优Dijkstra算法来解决水面无人艇全局路径规划问题。为了克服传统Dijkstra算法占用内存大的问题,该算法使用动态网格模型来减少规划时间,提高规划精度。但该方法在环境模型的建立时仅仅基于电子海图,没有考虑风、浪、流等水文气象因素对航线设计的影响。文献[9]利用遗传算法和人工势场法设计了水面无人艇全局路径规划并进行了仿真实验,实验表明该方法能对多种复杂的障碍物环境进行规划,并且具有能在起点周围三面障碍物中寻找最优路径的能力。但该方法只是针对简单的几何图形和海岸线进行规划,没有引入真正意义上的电子海图。为了寻找一条最小或者接近最小的全局最优路径,文献[10,11]采用时效性好的A星算法作为路径规划算法,该方法也能找到最优路径, *基金项目:国家自然科学基金项目(51309043),交通运输部应用基础研究项目(2014329225020),中国博士后科学基金项目(2014M551095),辽宁省自然科学基金项目(2014025005),辽宁省高校杰出青年学者成长计划(LJQ2014052),中央高校基本科研业务费专项资金资助项目(3132014202),辽宁省教育厅重点实验室基础研究项目(LZ2015009)。

相关文档
最新文档