实验三 碳钢非平衡显微组织观察实验报告

实验三  碳钢非平衡显微组织观察实验报告

实验三碳钢非平衡组织观察实验报告

一、实验目的

1. 观察碳钢经不同形式热处理后显微组织的特点。

2. 领会奥氏体等温转变曲线对实际生产的意义。

二、实验设备及材料

1.金相显微镜

2.金相图谱

3.金相试样

三、实验内容

观察下表几种钢材热处理后的组织。

表1 钢材热处理后的组织

每组领取一套样品,在指定的金相显微镜下进行观察。

四、实验报告要求

1. 根据Fe-Fe3C相图和奥氏体等温转变曲线分析实验中四种材料获得相应组织的原因。

机构认知实验报告

机构认知实验报告 篇一:机构认知实验 实验一机构认知实验 一、实验目的 通过观看机构的运动(10个陈列柜,77种机构),了解各种机构的基本结构、工作原理、特点、功能及应用,配合相关课程的学习。 二、实验设备 各类机器、机构模型陈列柜(10个陈列柜,77种机构)。 三、实验原理和内容 机构由机架、原动件和从动件三部分组成,其中固定不动的构件为机架,运动规律给定的构件为原动件,原动件由电动机驱动做等速运动,其余的活动构件则为从动件。 本实验所要研究的四种基本机构如下: 1、平面连杆机构 2、凸轮机构 3、齿轮机构 4、停歇和间歇运动机构

四、注意事项 1、不要用手人为地拨动构件。 2、不要随意按动控制面板上的按钮。 3、遵守实验室规则,规范操作,注意安全。 五、实验报告内容要求 1、实验报告用实验报告纸书写,写上姓名、学号、班级、实验日期。 2、写出实验目的 3、写出实验原理 4、实验设备中常用机构的类型: 5、思考题: (1)机器是由组成的,当有多个机构时,它们应当按照一定的要求互相配合。 (2)在有曲柄存在的条件时,取不同的构件为机架,可以得到铰链四杆机构的种形式。 (3)平面连杆机构的第一种应用类型是:实现给定的。 (4)平面连杆机构的第二种应用类型是:实现给定的。

(5)利用重力、弹簧力或其他外力,使从动件与凸轮始终保持接触的锁合方式称为。若利用凸轮和从动件的高副几何形状,使从动件与凸轮始终保持接触的锁合方式称为。 (6)斜齿轮圆柱齿轮机构的传动优点是、、和。缺点是因轮齿倾斜而产生,使轴承受到附加的轴向推力。 (7)当齿数无穷多时,渐开线齿廓变成,齿轮变成。 (8)相同的齿数,模数大的齿轮轮齿周向尺寸和径向尺寸。 (9)渐开线齿廓上各点的压力角是不同的,越接近基圆压力角越,渐开线在基圆处的压力角为。国家标准规定齿廓上分度圆的压力角为20°与15°两种,常用的为。 (10)谐波齿轮减速器的特点是:大,少,小,同时啮合的齿数。 (11)摆线针轮行星齿轮减速器优点是:小,轻,能力大,高,平稳等。 (12)举例说明四大机构在日常生活中应用的实例。 附:陈列柜内容简介(文前数字为陈列柜中相应机构的序号)

金相报告

金相实验报告 目录 一、实验步骤及原理 1 (一)磨样1方式 1 工序 1 磨制方法 2 (二)抛光2机械抛光2 1. 原理 2 2.分类 3 3.操作 3 (三)腐蚀 4 1.概述 4 2.目的 4 3.化学侵蚀法的原理 4 4.进一步腐蚀的方法 5 5.操作步骤 5 (四)拍照5 二、金相显微镜的原理、构造及使用 5 1、原理 5 2、构造 6 3、使用 6 (五)硬度测试 7 1.硬度 7 2.洛氏硬度 7 3.布氏硬度 8 4.显微硬度 8 三.实验结果 9 (一)金相照片 9 (二)硬度值 9 四.参考资料来源 10 一、实验步骤及原理 磨样---抛光---腐蚀---拍照---分 析 观察宏观硬度HB,HRC 观察显微硬度 (一)磨样

●方式: 手工磨和机械磨 ●工序: 粗磨和细磨 粗磨—获得一个平整的表面 细磨—消除磨痕 A:粗磨 粗磨的目的是为了整平试样,并磨成合适的外形。粗磨一般在砂轮机上进图1. 试样磨痕示意图(1) 行。对很软的材料,可用锉刀锉平。使用砂轮机粗磨时,必须注意接触压力不可过大,若压力过大,可能使砂轮碎裂造成人身和设备事故,同时极易使磨面温度升高引起组织变化,并且使磨痕加深,金属扰乱层增厚,给细磨抛光带来困难。粗磨时需冷却试样,防止受热而引起组织变化。粗磨后需将试样和双手清洗干净,以防将粗砂粒带到细磨用的砂纸上,造成难以消除的深磨痕。 B:常规细磨方法 细磨的目的是消除粗磨时留下的较深的磨痕,为下一个工序——抛光做准备。常规的细磨有手工磨光和机械磨光两种方法。手工磨光是用手握持试样,在金相砂纸上单方向推移磨制,拉回时提起试样,使之脱离砂纸。细磨时可以用水作为润滑剂。我国金相砂纸按粗细分为01号、02号、03号、04号、05号等几种(表2-2)。细磨时,依次从粗到细研磨,即从01号磨至05号;每次换下一道砂纸之前,必须先用水洗去样品和手上的砂粒,以免把粗砂粒带到下一级的细砂纸上去。同时要将试样的磨制方向调转90°,即本道磨制方向与上一道磨痕方向垂直,以便观察上一道磨痕是否全部消除。 图2. 磨样操作图(1)为加快磨制速度,减轻劳动强度,可在转盘上贴有水砂纸的预磨机上进行机械磨光。水砂纸按粗细有200号、300号、400号—900号等。磨制时由200号开始,逐次磨到900号砂纸,磨制时要不断加水冷却。每换一道砂纸,必须用水将试样冲洗干净,并将磨制方向调 换90°。 ●磨制方法 ●砂纸平铺在玻璃板上,一手按住砂纸,另一手握住试样,使试样磨面朝下并与砂纸

金相试样的制备及金相组织观察

金相试样得制备及金相组织观察 一、实验目得 1、了解金相显微镜得基本原理、构造,初步掌握显微镜得正确使用。? 2、掌握金相显微试样得制备过程与基本方法。 3、了解浸蚀得基本原理,并熟悉其基本操作 4、学习利用金相显微镜进行显微组织观察.通过在显微镜下观察到得金相显微组织初步分析材料类型以及材料可能具备得机械性能等。 二、实验设备与用品 1、金相显微镜 2、不同粗细得金相砂纸一套、玻璃板、侵蚀剂(4%硝酸酒精) 3、抛光机 4、待制备得金相试样 三、金相显微镜得基本原理、构造及使用 1、显微镜得放大倍数 利用透镜可将物体得象放大,但单个透镜或一组透镜得放大倍数就是有限得,为此,要考虑用另一组透镜将第一次放大得象再行放大,以得到更高放大倍数得象。金相显微镜就就是基于这一要求设计得。显微镜中装有两组放大透镜,靠近物体得一组透镜为物镜,靠近观 察得一组透镜为目镜. 金相显微镜得光学原理图1如图所示。 物体AB置于物镜得一倍焦距F1与二倍焦距 之间,它得一次象在物镜得另一侧二倍焦距 以外,形成一个倒立、放大得实象A′B′;当 实象A′B′位于目镜得前一倍焦距F2以内时 则目镜复又使映象A′B′放大,而在目镜得前 二倍焦距 2 F2以外,得到A′B′得正立虚象 A″B″。因此最后得映象A″B″就是经过物镜、 目镜两次放大后所得到得。其放大倍数应为 物镜放大倍数与目镜放大倍数得乘积。 物体AB经物镜第一次放大得倍数: M物=A′B′/ AB=(Δ+f1′)/ f1 式中f1、f1′—-物镜前焦距与后焦距 Δ—-显微镜得光学镜筒长 与Δ相比,物镜得焦距f1′很短,可略, 所以M物≈Δ/ f1 象A′B′经目镜第二次放大得倍数: M目= A″B″/A′B′≈D/ f2 式中f2——目镜得前焦距 D——人眼明视距离,D≈图1 显微镜光学原理图 250㎜。 所以显微镜得放大倍数应为: M=M物·M目=(Δ/ f1)·(D/ f2) 当显微镜得机械镜筒长度等于光学镜筒长度时,M= M物·M目;而当这二者不等时,M= M物·M目·C,C就是与机械镜筒长、光学镜筒长有关得系数,一般为1,有时为0、63,其C

金相实验报告

金相实验报告 篇一:金相实验报告 广州大学机械与电气工程学院 课程报告 报告题目: 金相实验报告 专业班级:机械111 姓名:邓永明 学号: 1107XX14 组别:第六组 指导老师:胡一丹 完成日期: XX.10.18 一. 热处理工艺分析 1. 正火 (1)工艺内容:正火(英文名称:normalizing),又称常化,是将工件加热至Ac3(A 是指加热时自由铁素体全部转变为奥氏体的终了温度,一般是 从727℃到912℃之间)或Acm(Acm是实际加热中过共析钢完全 奥氏体化的临界温度线 )以上30~50℃,保温一段时间后,从 炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处

理工艺。 其目的是在于使晶粒细化和碳化物分布均匀化。根本目的是去 除材料的内应力、降低材料的硬度为接下来的加工做准备。 (2)工艺特点:正火主要用于钢铁工件。一般钢铁正火与退火相似,但冷却速 度稍大,组织较细。有些临界冷却速度很小的钢,在空气中冷 却就可以使奥氏体转变为马氏体,这种处理不属于正火性质, 而称为空冷淬火。与此相反,一些用临界冷却速度较大的钢制 作的大截面工件,即使在水中淬火也不能得到马氏体,淬火的 效果接近正火。钢正火后的硬度比退火高。正火时不必像退火 那样使工件随炉冷却,占用炉子时间短,生产效率高,所以在 生产中一般尽可能用正火代替退火。对于含碳量低于0.25%的 低碳钢,正火后达到的硬度适中,比退火更便于切削加

工,一 般均采用正火为切削加工作准备。对含碳量为0.25~0.5%的中 碳钢,正火后也可以满足切削加工的要求。对于用这类钢制作 的轻载荷零件,正火还可以作为最终热处理。高碳工具钢和轴 承钢正火是为了消除组织中的网状碳 化物,为球化退火作组织 准备。正火与退火的不同点是正火冷却速度比退火冷却速度稍 快,因而正火组织要比退火组织更细一些,其机械性能也有所 提高。另外,正火炉外冷却不占用设备,生产率较高,因此生 产中尽可能采用正火来代替退火。对于形状复杂的重要锻件, 在正火后还需进行高温回火(550-650℃)高温回火的目的在于 消除正火冷却时产生的应力,提高韧性和塑性。 正火后的组织:亚共析钢为F+S,共析钢为S,过共析钢为S+

铁碳合金平衡组织观察与分析实验报告

铁碳合金平衡组织观察与 分析 材料工程1601 实验者:王XX 学号:1703XXXXX

一实验目的 1、区别和研究铁碳合金(碳钢和白口铸铁)在平衡状态下的显微组织; 2、分析含碳量对铁碳合金显微组织的影响,加深理解成分、组织与性能之间的相互关系。 二概述 铁碳合金的显微组织是研究钢铁材料性能的基础。铁碳合金平衡状态的组织是指合金在极为缓慢的冷却条件下(如退火状态)所得到的组织,其相变过程均按Fe—Fe3C相图进行,所以我们可以根据该相图来分析铁碳合金的平衡组织。 图3-1 Fe-Fe3C相图 如图3—1所示,所有碳钢和白口铸铁在室温下的组织均由铁素体(F)和渗碳体(FeC)这两个基本相所组成。只是因含碳量不同,铁素体和渗碳体的相对数量、析出条件以及分布情况各有所不同,因而呈各种不同的组织形态,见表4—1。 碳钢和白口铸铁在金相显微镜下具有下面几种基本组织:

表4—1 各种铁碳合金在室温下的显微组织 及良好的塑性,硬度较低。用3—4%硝酸酒精熔液浸蚀后,在显微镜下呈现明亮色的多边形晶粒:亚共析钢中,铁素体呈块状分析;当含碳量接近于共析成分时,铁素体则呈断续的网状分布于珠光体周围。 (2)渗碳体(FeC)是铁与碳形成的一种化合物,其含碳量为6.67%。当用3~4%硝酸酒精溶液浸蚀后,渗碳体呈亮白色,若用苦味酸钠溶液浸蚀,则渗碳

体呈黑色而铁素体仍为白色。由此可区别铁素体与渗碳体。此外,按铁碳合金成分和形成条件不同,渗碳体呈观不同的形态:一次渗碳体(初生相)直接由液体中析出,在白口铸铁中呈粗大的条片状;二次渗碳体(次生相)从奥氏体巾析出,呈网络状沿奥氏体晶界分布,经球化退火,渗碳体呈颗粒状。 (3)珠光休(P)是铁素体和渗碳体的机械混合物,浸蚀后可观察到两种不同的组织形态: 1)片状珠光体它是由铁素休与渗碳体交替排列形成的层片状组织,经硝酸酒精溶液浸蚀后,在不同放大倍数的显微镜下,可以看到具存不同特征的层片状组织。在高倍放大时(照片4—1),能清楚地看到珠光体中平行相间的宽条铁素休和细条渗碳体。当放大倍数低时(照片4—2),由于显微镜的鉴别能力小于渗碳体片厚度,这时就只能看到一条黑线,它实际上就表示渗碳体。当组织较细而放大倍数更低时,珠光体片层就不能分辨,而呈黑色。 2)球状珠光体球状珠光休组织的特征是在亮白色的铁素体基体上,均匀分布着白色的渗碳体颗粒,其边界呈暗黑色,如照片4—3。 上述各类组织组成物的机械性能见表4—2。 (4)莱氏体(L)室温时是珠光体、二次渗碳体和共晶渗碳体所组成的机械混合物。它是由含碳量为4.3%的液态共晶白口铸铁在1147℃共晶反应所形成的共晶体(奥氏体和共晶渗碳体)其中奥氏体在继续冷却时析出二次渗碳体,在723℃以下分解为珠光体。因此,莱氏体的显微组织特征是在亮白色的渗碳体基底上相间地分布着暗黑色斑点及细条状的珠光体。 表4—2 各类组织组成物的机械性能

生产线平衡实验报告

安徽工业大学 生产线平衡实验报告 专业信息管理与信息系统 班级息111 姓名史家成 学号 119094276 日期 2014-4-23

一、概述 1. 实验目的及要求 将所学的生产运作与管理理论综合应用到实际生产系统的规划和运行管理中去,使学生在实训中理解和巩固所学理论知识,培养其在生产线运行调度过程中发现、分析和解决问题的能力,提高学生的专业素养和综合素质。 2. 实验内容 在生产系统实验室的地面生产线上进行三相异步电动机的装配。 二、实验内容完成情况 1.基于三相异步电动机拆装的生产实验 (1)三相异步电动机拆装:简介所装配三相异步电动机的各零部件的名称、拆装方法及注意事项等。 a、按时间过程拆:分别是风扇罩、风扇、前端盖、后端盖和转子、接线盒。 B、按时间过程装:分别是接线盒、后端盖和转子、前端盖、风扇和风扇罩。 (2)工作研究部分 流程程序图 (3)生产过程实训部分 实训内容及记录数据 简介本部分的实训内容及方式(按照车间管理的模式,将全部实训学生分为若干班组,各班组自行商定其作业安排、车间派工、实施方案和具体生产管理过程,然后轮班实训)1)个人方案介绍 简介本次设计的方案,包括小组成员岗位设置、岗位派工、装配流程、工序安排、物流路线等(可附图、表补充说明)

将学生分为车间主任,搬运工,操作工,计时人员;商议作业顺序及作业安排; 各工种就位;电动机组装,检验组装的成品,完成该次试验。 岗位设置及派工:我小组人员,具体分配为一车间主任、四个操作工,六个搬运工,四个计时人员 装配流程及工序安排:组装前后端盖→组装风扇盖→组装接线盒 2)初次方案设计及实施情况 说明本组初次实施的方案的具体内容及其设计依据→绘出装配流程图→完成数据记录表→根据记录数据总结本次方案设计及实施的质量;总结说明本次方案的优缺点由于是初次进行实践,我们并不熟悉每位队员对拆装电动机的熟悉程度,在有些步骤上浪费了一点时间,但我们进行了调整,最终顺利完成了。 3)第二次方案设计同2)一样,绘出装配流程图 将学生分为车间主任,搬运工,操作工,计时人员;商议作业顺序 及作业安排;各工种就位;电动机组装,检验组装的成品,完成该次试验。 岗位设置及派工:我小组人员,具体分配为一车间主任、四个操作工,六个搬运工,四个计时人员 装配流程及工序安排:组装前端盖→组装后端盖→组装风扇罩→组装接 线盒 Ⅲ 小结 对比总结两次方案的优缺点,针对出现的问题给出进一步的优化设计建议第一次只是盲目的进行生产,第二次是在带一次的基础上进行优化的。第 二次各工种工作时间更为平均 三、思考题 1.能否应用工序同期化方法进行装配时间平衡?如有,写出具体的过程,如不可行,为什么? 答:可以,可以同时进行前端盖和后端盖的装配,最后装配风扇罩,可将前后端分为两道工序

金相组织观察报告

实验二金相常识简介和铁碳合金平衡组织观察 一、目地要求 1 、了解试样制备过程、金相显微镜基本构造和原理等金相常识。 2 、研究和了解铁碳合金在平衡状态下的显微组织。 3 、分析成分对铁碳合金显微组织的影响,从而加深理解成分、组织和性能之间的相互关系。 二、实验内容:将制好的样品放在显微镜上观察,注意显微镜的正确使用,并分析样品制备的质量好坏,初步认识显微镜下的组织特征并分析成分对铁碳合金显微组织的影响。 三、实验设备:金相显微镜,抛光机易耗品:吹风器、样品、不同号数的砂纸、玻璃板,抛光粉悬浮液、4%的硝酸酒精溶液、酒精、棉花等 四、实验步骤: 1.金相样品的制备方法。 2、样品硝酸酒精溶液腐蚀(即浸蚀)。

实验结论: 1画组织示意图 (1)画出下列试样的组织示意图 1)亚共析纲 2)过共析钢 3)亚共晶白口铸铁 4)过共晶白口铸铁 (2)画图方法要求如下 1)应画岩石记录表中的30—50直径的圆内,注明:材料名称、含碳量、 腐蚀剂和放大倍数。并将组织组成物用细线引出标明。如下图: 2.回答以下问题 (1)分析所画组织的形成原因。

(2)分析碳钢(任选一种成分)或白口铸铁(任选一种成分)凝固过程。

教学及实验方法: 1 、教师讲述和演示阶段: 用 1 5 分钟时间讲解试样制备、显微镜结构、反射原理和黑白成像等金相常识,用 2 0 分钟时间联系铁碳平衡图讲解、分析本次实验的 7 种铁碳合金在平衡状态下的显微组织,用电视显微镜向全体学生展示所有显微组织,用 5 分钟时间讲解绘制显微 组织的有关技巧。 2 、学生动手实验阶段: 学生用 5 0 分钟时间对 7 种铁碳合金平衡组织进行观察和分析,进一步建立成分和组织之间相互关系的概念,绘出所观察到的显微组织图,用箭头标明各显微组织,并在相应图下标出成分,确立组织和成分之间的关系。

动平衡实验报告

硬支承动平衡实验报告 实验目的: 1.了解硬支承动平衡机的结构、控制面板、性能及操作方法。 2.验证、巩固和加深对基本理论的理解,培养实验动手能力。 3.掌握基本的机械实验方法、测量技能及用实验法以及培养学生踏实细致、严肃认真的科学作风。 实验设备: 1、硬支承动平衡机 2、台式钻孔机、钳工工作台 3、线切割滚丝筒 4、标定加重螺栓。 实验原理: 根据《机械原理》所述的回转体动平衡原理知:一个动不平衡的刚性回转体绕其回转轴线转动时,该构件上所有的不平衡重所产生的离心惯力总可以转化为任选的两个垂直于回转轴线的平面内的两个当量不平衡重和(它们的质心位置分别为和;半径大小可根据数值、的不同变化)所产生的离心力。动平衡的任务就是在这两个任选的平面(称ω为平衡基面)内的适当位置(和)加上两个适当大小的平衡重和,使它们产生的平衡力与当量不平衡重产生的不平衡力大小相等,而方向相反,即:

2 b 2b 22 222b 1b 1211ω r ωr ωr ωr G G G G =-=- 半径 越大,则所需的就越小。 通过平衡补偿回转体达到力和矩平衡,从而达到动平衡。 硬支承动平衡机工作原理简图如下所示: 实验步骤: 1)将两平衡平面处于原始位置,系统处于静平衡但动不平衡状态,在两支承处加润滑油。 2)按D 参数键,选定转子号,回车; 3)进入D1页,输入平衡转速540转,平衡配重的半径R ,回车; 4)进入D2页,输入A,B,C 参数,可测量,A 为第一平衡面距第一支承中心的距离,B 为两平衡面间距离,C 为第二平衡面和第二支承点的距离;输入支承方式HE-1,按存储键; 5)进入显示,测量页面;

实验一金相显微镜的使用与金相组织的观察

实验一金相显微镜的使用与金相组织的观察 一、实验目的 1.了解金相显微镜的构造,各个主要部件的效用。 2.掌握正确使用显微镜的操作及维护方法。 3.观察几种式样的金相组织 二、实验概述 (一)金相显微镜的知识及正确使用 1.显微镜放大原理: 利用透镜将物体的像放大,单个透镜的放大倍数是有限的(一般在20倍以下),因此要考虑用另一透镜组将第一次放大的像再行放大,以得到更高更清晰放大倍数的像,显微镜就是根据这一需求设计的。显微镜中装有两组放大透镜,靠近物体的一组为物镜,靠近眼睛的一组透镜称为目镜,但实际上显微镜采用的物镜和目镜都是由复杂的透镜组组成。图1-1为显微镜成像原理图。 图1-1显微镜成像原理图 若将试样AB 置于物镜之前距其一倍焦距(F1)略远一些的位置,由物体反射的光线通过物镜折射后得到一个倒立的放大的实像A′B′,在目镜上观察时,经物镜放大的倒立实像A′B′落在目镜焦距F2内( 在设计时安排好使目镜的焦点位置在F2以内) ,目镜又将A′B′再次放大,人眼在(250mm)的明视距离处,看到一个经两次放大的倒立的虚像A″B″就是我们在显微镜下的物象。总的放大倍数 为物镜的放大倍数与目镜放大倍数的乘积,M总=M 物×M 目 普通光学金相显微镜主要由三大系统构成:既光学系统,照明系统和机械系统。下面简单分述其主要构件的功能与特性。 光学系统:主要包括物镜和目镜,物镜是显微镜最重要的部件,成像质量在很大程度上取决于物镜的质量,它的性能包括数值孔径和分辨率,有效放大倍数及像差校正程度。 A:数值孔径:物镜的数值孔径(N.A)表示物镜的收集光线的能力,增强物镜的聚光能力可使成像的质量提高,它的大小通常以进入物镜的光线锥所张开的角度,既孔径角的大小,公式表示为: N.A=n.sinθ 式中n—物镜与观察物之间介质的折射率 θ—为物镜的孔径半角 因此提高数值孔径有两个途径: a.增大透镜的直径或减小物镜的焦距。实际上sinθ的最大值只能0.9左右,

金相试样制备试验报告.

金相试样的制备 一、实验目的 (1)了解金相显微试样制备原理,熟悉金相显微试样的制备过程。 (2)初步掌握金相显微试样的制备方法。 二、实验原理 金相试样制备 金相试样制备过程一般包括:取样、粗磨、细磨、抛光和浸蚀五个步骤。 1.取样 从需要检测的金属材料和零件上截取试样称为"取样"。取样的部位和磨面的选择必须根据分析要求而定。截取方法有多种,对于软材料可以用锯、车、刨等方法;对于硬材料可以用砂轮切片机或线切割机等切割的方法,对于硬而脆的材料可以用锤击的方法。无论用哪种方法都应注意,尽量避免和减轻因塑性变形或受热引起的组织失真现象。试样的尺寸并无统一规定,从便于握持和磨制角度考虑,一般直径或边长为15~20mm,高为12~18mm比较适宜。对那些尺寸过小、形状不规则和需要保护边缘的试样,可以采取镶嵌或机械夹持的办法。 金相试样的镶嵌,是利用热塑性塑料(如聚氯乙烯),热凝性塑料(如胶木粉)以及冷凝性塑料(如环氧树脂+固化剂)作为填料进行的。前两种属于热镶填料,热镶必须在专用设备一镶嵌机上进行。第三种属于冷镶填料,冷镶方法不需要专用设备,只将适宜尺寸(约φl5~20mm)

的钢管、塑料管或纸壳管放在平滑的塑料(或玻璃)板上,试样置于管内待磨面朝下倒入填料,放置一段时间凝固硬化即可。 2.粗磨 粗磨的目的主要有以下三点: 1)修整有些试样,例如用锤击法敲下来的试样,形状很不规则,必须经过粗磨,修整为规则形状的试样; 2)磨平无论用什么方法取样,切口往往不十分平滑,为了将观察面磨平,同时去掉切割时产生的变形层,必须进行粗磨; 3)倒角在不影响观察目的的前提下,需将试样上的棱角磨掉,以免划破砂纸和抛光织物。 黑色金属材料的粗磨在砂轮机上进行,具体操作方法是将试样牢牢地捏住,用砂轮的侧面磨制。在试样与砂轮接触的一瞬间,尽量使磨面与砂轮面平行,用力不可过大。由于磨削力的作用往往出现试样磨面的上半部分磨削量偏大,故需人为地进行调整,尽量加大试样下半部分的压力,以求整个磨面均匀受力。另外在磨制过程中,试样必须沿砂轮的径向往复缓慢移动,防止砂轮表面形成凹沟。必须指出的是,磨削过程会使试样表面温度骤然升高,只有不断地将试样浸水冷却,才能防止组织发生变化。 砂轮机转速比较快,一般2850r/min,工作者不应站在砂轮的正前方,以防被飞出物击伤。操作时严禁戴手套,以免手被卷入砂轮机。 3.细磨 粗磨后的试样,磨面上仍有较粗较深的磨痕,为了消除这些磨痕必须进行细磨。细磨,可分为手工磨和机械磨两种。 (1)手工磨 手工磨是将砂纸铺在玻璃板上,左手按住砂纸,右手握住试样在砂纸上作单向推磨。金相砂纸由粗到细分许多种,其规格可参考表2-1。 表2-1 常用金相砂纸的规格

机构平衡实验报告

图8-7 图8-8 机构平衡实验报告 班级: 实验日期 实验成绩: 成员信息 一、实验目得: (1)了解机械平衡得目得与意义 (2)学会分析平面机构运行过程产生得附加惯性力 (3)掌握平面机构平衡得完全平衡与部分平衡得方法 二、实验原理 Ⅰ、 机构平衡得概述 机构中作平面运动或往复直线运动得构件,质心位置随原动件得运动而变化,质心处得加速度大小与方向也在变化,故质心处得惯性力与惯性力矩也随原动件得运动发生变化。因此,该类构件上得惯性力不能利用在构件上加减配重得方法得到平衡,必须把各运动构件与机架作为一个整体来考虑惯性力与惯性力矩得平衡。 图8-7所示机构中各构件上得惯性力可以合成为一个通过机构总质心S 得总惯性力与总惯性力矩。如该机构处于平 衡状态,则有 (8-13) (8-14) 式中,∑m i 为机构中各构件得总质量;为机构总质心处得加速度;∑M z 为机构中各构件得总惯性力矩. 若机构满足式(8—13)则称为惯性力完全平衡。由于总质量不可能为零,必须使=0.即机构得总质心应作等速直线运动或静止不动.由于机构得运动就是周期性得,其总质心不可能总就是作等速直线运动,欲使=0,唯一得可能就是使其总质心静止不动。 Ⅱ、机构惯性力得完全平衡 1。利用对称机构平衡 如图8-8所示,由两个相同得曲柄滑块 机构对称布置。机构中各活动构件在运动过程中保持对称,机构得总质心位置将静止不动。相同机构对称布置可以实现惯性力完全平衡,但结构复杂,增加机器得重量。 2.利用配重平衡 如图8-9所示得铰链四杆机构中,设构件1、2、3得质量分别为m 1、m 2、m 3,其质心分别位于s1、s 2、 s3处。为了进行平衡,将构件2得质量用m2分别集中

焊缝接头组织的金相观察与分析

焊缝接头组织的金相观察与分析 一、实验说明 焊接是工业生产中用来连接金属材料的重要加工方法。根据工艺特点不同,焊接方法又分为许多种,其中熔化焊应用得最广泛。 熔化焊的实质就是利用能量高度集中的热源,将被焊金属和填充材料快速熔化,热后冷却结晶而形成牢固接头。 由于熔化焊过程的这一特点,不仅焊缝区的金属组织与母材组织不一样,而且靠近焊缝区的母材组织也要发生变化。这部分靠近焊缝且组织发生了变化的金属称为热影响区。热影响区内,和焊缝距离不一样的金属由于在焊接过程中所达到的最高温度和冷却速度不一样,相当于经受了不同规范的热处理,因而最终组织也不一样。 以低碳钢为例,根据热影响区内各区段在焊接过程中所达到的最高温度范围,依次分为熔合区(固相线一液相线),过热区(1100℃——固相线);完全正火区(AC3——1100℃);不完全旺火区(AC1~AC3)。对易淬火钢而言,还会出现淬火组织。 焊接结构的服役能力和工作可靠性,既取决于焊缝区的组织和质量,也取决于热影响区的组织和宽窄。因此对焊接接头组织进行金相观察与分析已成为焊接生产与科研中用以评判焊接质量优劣,寻找焊接结构的失效原因的一种重要手段。 本实验采用焊接生产中应用最多的低碳钢为母材,用手工电弧施焊,然后对焊接接头进行磨样观察。 二、实验目的 1、学会正确截取焊接接头试样。 2、认识焊缝区和热影响区各区段的组织特征。 3。深刻领会熔化焊焊接过程特点。 三、实验设备及器材 1、施焊设备及器材(手弧焊机、结422焊条,面罩)。 2、200×100×8mmA3钢板一块。施焊前用牛头刨床沿其长度方向中心线刨一条深2mm,宽4~5mm的弧形槽。 3、砂轮切割机一台。 4、钳工工具一套。 5,制备金相试样的全部器材。 6、金相显微镜若干台。 四、实验方法与步骤 1、在钢板上沿刨槽用F4mm结422焊条一根施焊。焊接电流取140~150A。 2、待钢板冷至室温后,用砂轮切割机截取试样。截取部位如下图所示,切割时须用水冷却。以防止组织发生变化(图中虚线为砂轮切割线,两端30mm长焊缝舍弃不用)。 焊接接头金相试样取样位置示意图 3、依照实验一步骤3所述方法截下的焊缝接头制备成金相试样。注意磨制面应选择与焊缝走向垂直的横截面。 4、在金相显微镜上观察制备好的焊接接头试样。光用低倍镜镜头(放大150倍)观察焊缝区及热影响区全貌,再用高倍镜镜头(450倍)逐区进行观察,注意识别各区的金相组织特征, 并画出草图。 五、实验报告要求 1、明确实验目的。

金相实验报告(成分组织观察分析)

金相综合实验报告 实验名称: 碳钢成分-工艺-组织-性能综合分析实验专业: 材料科学与工程 班级: 材料11(1) 指导老师:席生岐高圆 小组组长: 仇程希 小组成员:齐慧媛李敏朱婧王艳姿闫士琪陈长龙黄忠鹤郭晓波丁江蒋经国庞小通林乐 二〇一四年四月三日

一、实验目的 1.了解碳钢热处理工艺操作; 2.学会使用洛氏硬度计测量材料的硬度性能值; 3.利用数码显微镜获取金相组织图像,掌握热处理后钢的金相组织分析方法; 4.探讨淬火温度、淬火冷却速度、回火温度对45和T12钢的组织和性能(硬度)的影响; 5.巩固课堂教学所学相关专业知识,体会材料的成分—工艺—组织—性能之间关系。 二、实验内容 1.进行45和T12钢试样退火、正火、淬火、回火热处理,工艺规范参考相关资料; 2.用洛氏硬度计测定试样热处理试样前后的硬度; 3.制备所给表中样品的金相试样,观察并获取其显微组织图像; 4.对照金相图谱,分析探讨本次实验可能得到的典型组织:片状珠光体、片状马氏体、板条状马氏体、回火马氏体、回火托氏体、回火索氏体等的金相特征。三、实验原理 热处理是一种很重要的金属加工工艺方法。热处理的主要目的是改变钢的性能,热处理工艺的特点是将钢加热到一定温度,经一定时间保温,然后以某种速度冷却下来,从而达到改变钢的性能的目的。研究非平衡热处理组织,主要是根据过冷奥氏体等温转变曲线来确定。 热处理之所以能使钢的性能发生显著变化,主要是由于钢的内部组织结构发生了的一系列的变化。采用不同的热处理工艺,将会使钢得到不同的组织结构,从而获得所需要的性能。 钢的热处理基本工艺方法可分为退火、正火、淬火和回火等。 (一)碳钢热处理工艺 1.加热温度 亚共析钢加热温度一般为Ac3+30-50℃,过共析钢加热温度一般为Ac 1+30-50℃(淬火)或Acm+50-100℃(正火)。 淬火后回火温度有三种,即:低温回火(150-250℃)、中温回火(350-500℃)、

碳钢的热处理及非平衡组织观察

实验二碳钢的热处理及非平衡组织观察 一、实验目的 1. 了解退火、正火、淬火及回火等普通热处理的基本工艺与生产。 2. 认识碳钢典型的热处理组织,了解不同加热温度、不同冷却速度及不同回火温度对所得组织的影响。 二、实验内容 实验一中我们研究了铁碳合金的平衡组织,即缓冷后的组织。它完全符合铁碳状态图所得出的结果,而非平衡组织,通俗的理解就是在较快的冷速下所得到的组织,除退火外,正火、淬火或回火所得的组织都为不平衡组织。 1. 状态图可决定热处理的加热温度和可以进行哪一类热处理。但热处理后的产物尚需视冷却速度而定,这样就需要运用过冷奥氏体等温转变曲线(C曲线)来决定。而钢的回火后组织又必须结合钢的回火相变原理去理解。图1为共析钢由TTT曲线推测过冷奥氏体连续冷却所获转变产物。 A1为临界线(727℃),Ms为马氏体转变开始温度。以不同冷却速度进行冷却。根据冷却曲线和“C”曲线相交的位置可以判断出奥氏体转变产物是什么组织。 V k——表示转变为马氏体的最小冷速。

V1——相当于退火冷速(炉冷),产物为片状珠光体。 V2——相当于正火冷速(空冷),产物为索氏体,索氏体也是α+Fe3C的机械混合物,与珠光体不同的是其片状较细,在放大倍数较高的显微镜观察时可以分辨清楚(一般800~1000倍) V3——相当于在油中冷却,产物为屈氏体+马氏体。屈氏体也是α+Fe3C的机械混合物只是片状更细,故要在更高放大倍数下才能分辨。普通金相显微镜分辨不清,呈黑色团块状。 V4——相当于在水中冷却(淬火),产物为马氏体+残余奥氏体。马氏体(M)是碳在α—Fe中的过饱和固溶体,其组织特征呈亮白色针状。针与针之间的夹角一般为60°或120°,针的粗细与原来γ的晶粒度有密切的关系。若选取热处理加热温度过高,则由于γ晶粒很粗大,淬火后的M针也粗大。这种情况下钢的韧性很低。正常淬火温度下,M针应很细,呈隐针状。钢在淬火后常保留某些未转变的奥氏体,称为残余奥氏体,它与一般的奥氏体没有什么区别。 下面是一些钢种热处理后的显微组织。 45钢退火处理(100×):基体组织为珠光体及铁素体。铁素体沿奥氏体晶界呈网络状分布。片状珠光体的体积分数约占基体总体积分数的55%,由此可以推算出钢中W(C)为45%。同时,从网络状分布的铁素体可以看出,此钢退火温度不高;故其晶粒细小。这种钢在退火状态下强度是偏低的,为了充分发挥材料的潜力,通常于采用调质或正火处理。 45钢860℃加热保温后淬火(500×)。针状淬火马氏体,其针叶大小中等。

材料课件实验一光学金相组织观察方法

材料课件实验一光学金相 组织观察方法 Jenny was compiled in January 2021

实验一光学金相组织观察方法 目的 1.了解光学金相组织观察方法及步逐; 2.了解光学金相显微镜的结构,熟悉其使用的基本方法; 3.了解光学金相样品的制备过程,体会制过程对观察组织的影响。光学金相显微镜的结构 为观察材料的显微组织,必须借助显微镜,大家可能用过生物显微镜,知道其大致结构有:物镜、目镜、粗调、微调等,生物样品是透明的,可用自然光。 工程材料,如金属材料,是不透明的,成像利用的是反射光,因此在光学金相显微镜中,结构上明显特点是有一套照明设备,现用显微镜的照明设备包括:电源、变压器、灯泡、透镜组——得到平行光,经过孔径光栏、滤色片、视场光栏,再经过物镜照射到试样上。经过试样的反射光进入物镜经过一次放大,再经过目镜的再次放大,我们看到的是经过二次放大的虚像。因为最后看到的像和各人的视力的影响,不同人观察时对显微镜要进行微调。

显微组织成像原理 如图所示,从透镜内垂直照射 到试样上的平行光,将发生反射和 吸收。如果试样是镜面,光线全部 原路返回,最后成像为亮点;如果 试样有不平的沟槽,部分光线反射后不能进入物镜,这样这些地方成像为暗区。有明有暗就构成了表面的图象,就是我们观察到的组织形貌。金相试样的制备方法 取样:从材料或零件上截取准备观察的样品,要求组织要有代表性,大小要适合制样和观察,尺寸过小的还要进行镶嵌。 打平:让观察面宏观为平面,用砂轮、锉刀或其它方法来实现。 磨光:用不同粒度的金相砂纸,从粗到细依次细磨,让其粗糙度不断减小。细磨的方法有干磨和湿磨,可用手工细磨和机械细磨。

碳钢及铸铁平衡组织观察

碳钢及铸铁平衡组织地观察与分析实验报告 学院:专业:班级: 姓名学号实验组 3 实验时间指导教师成绩 实验项目名称碳钢及铸铁平衡组织地观察与分析 实 验目地(一)熟练运用铁碳合金相图,提高分析铁碳合金平衡凝固过程及组织变化地能力. (二)掌握碳钢和白口铸铁地显微组织特征. 实 验要求1、学生对试样均需逐个观察 2、分析并用铅笔绘出组织示意图. 实验 原理 图4-1 铁碳相图 铁碳合金相图是研究碳钢组织.确定其热加工工艺地重要依据.按组织标注地铁碳相图见图4-1.铁碳合金在室温地平衡组织均由铁素体(F)及渗碳体(Fe3C)两相按不同数量.大小,形态和分布所组成.高温下还有奥氏体(A)及δ固溶体相. 利用图4-1分析铁碳合金地组织时,需了解相图中各相地本质及其形成过程,明确图中各线地意义,三条水平线上地反应及反应产物地本质和形态,并能作出不同合金地冷却曲线,从而得知其凝固过程中组织地变化及最后地室温组织. 根据含碳量不同,铁碳合金可分为工业纯铁.钢及白口铸铁三大类.

(一)工业纯铁:碳地质量分数小于0.0218%地铁碳水化合物合金称为工业纯铁. (二)钢:碳地质量分数W C在(0.0218~2.11)%之间地铁碳合金称为碳钢. 1.共析钢W C=0.77%,在727℃以上地组织为奥氏体,冷至727℃时发生共析反应: 2.亚共析钢成分为0.0218%

金相实验报告

实验五 铁碳合金平衡组织的显微观察 一.实验目的 1. 观察铁碳合金在平衡状态下的显微组织特征。 2. 掌握铁碳合金成分,组织性能之间的变化规律。 二、 实验器材 1、金相显微镜 2、金相标准试样 四.实验原理 铁碳合金室温下基本相和组织组成物的基本特征 1.铁素体(F ) 是碳溶入α-Fe 中的间隙固溶体,晶体结构为体心立方晶格,具有良好的塑韧性,但强度硬度低,经4%硝酸酒精浸蚀呈白色多边形晶粒,在不同成分的碳钢中其形态为块状和断续网状。 2.渗碳体(Fe 3C ) 是铁与碳形成的化合物,含碳量为6.69%。 晶格为复杂的八面体结构,硬度高,脆性大,用4%的硝酸酒精浸蚀后呈白色,用碱性苦味酸钠热蚀后呈黑色,用此法可以区分铁碳合金中的渗碳体和铁素体。由铁碳相图知,随着碳的质量分数的不同,渗碳体有不同的形态,一次渗碳体是由液态直接析出的渗碳体,呈白色长条状;二次渗碳体是从奥氏体中析出的渗碳体,呈网状分布,三次渗碳体是从铁素体中析出的渗碳体,沿晶界呈小片状,共晶渗碳体在莱氏体中为连续基体,共析渗碳体是同铁素体交替形成呈交替片状。 3.珠光体(P ) 是铁素体与渗碳体的机械混合物,在平衡状态下,铁素体和渗碳体是片层相间的层状组织。在高倍下观察时铁素体和渗碳体都呈白色,渗碳体周围有圈黑线包围着,在低倍下当物镜的鉴别能力小于渗碳体厚度的时候,渗碳体就成为一条黑线。见图3-1。 五。实验内容及步骤 a (15000×) b (400×) 图2-1 不同放大倍数下珠光体的显微组织

观察以下铁碳合金组织 在铁碳状态图上,根据碳的质量分数的不同,铁碳合金分为工业纯铁,碳钢及白口铸铁。 1.工业纯铁 碳的质量分数小于 0.0218%的铁碳合金称为工业纯铁。室温下的组织为单相的铁素体晶粒。用4%的硝酸酒精浸蚀后,铁素体呈白色。当碳的质量分数偏高时,在少数铁素体晶界上析出微量的三次渗碳体小薄片,见图 3-2。 2.碳钢 碳的质量分数在0.0218~2.11%范围内的铁碳合金称为碳钢,根据钢中含碳量的不同,其组织也不同,钢又分为亚共析钢,共析钢,过共析钢三种。 1)亚共析钢 碳的质量分数在0.0218~0.77%范围内,室温下的组织为铁素体和珠光体,随着碳的质量分数的增加,先共析铁素体逐渐减少,珠光体数量增加。见图 3-3 。白色有晶界的为铁素体,黑色层片状的组织为珠光体。 在显微镜下,可根据珠光体所占面积的百分数估计出亚共析钢的碳的质量分数: Wc ≈Wp%×0.77% Wc –碳的质量分数 Wp –珠光体所占面积的百分数 2) 过共析钢 碳的质量分数在0.77~2.11%范围的碳钢为过共析钢。室温下的组织 为层片状珠光体和二次渗碳体,见图 3-4。 用4%硝酸酒精浸蚀,二次渗碳体呈白色网状分布在珠光体周围。用碱性苦味酸钠溶液热蚀后,渗碳体呈黑色。 图 3-2 工业纯铁显微组织 a 用4%硝酸酒精浸蚀 b 用碱性苦味酸钠热蚀 图 3-4 T12钢显微组织 20钢 45钢 70钢 图 3-3 亚共析钢的显微组织

铁碳合金非平衡组织观察

实验四铁碳合金非平衡组织观察一、实验目的 识别铁碳合金在不同热处理状态下的显微组织 加深对TTT曲线的理解及非平衡状态下钢的成份热处理工艺、组织之间的关系的认识。二.实验原理碳钢经热处理后的组织,可以是平衡或接近平衡状态(如退火、正火)的组织,也可是不平衡组织(如淬火组织),因此在研究热处理后的组织时,不但要参考铁碳相图,还要利用C曲线。 铁碳相图能说明慢冷时不同碳质量分数的铁碳合金的结晶过程和室温下的组织,计算相的质量分数。C曲线则能说明一定成分的铁碳合金在不同冷却条件下的转变过程,及能得到哪些组织,如图4-1。 1.冷却时所得的各种组织组成物的形态a.珠光体(图4-2) 珠光体是奥氏体高温转变的产物,根据其片层间距的大小可分为: (1)珠光体(P)是铁素体与渗碳体的机械混合物,层片较粗。 (2)索氏体(s)是铁素体与渗碳体的机械混合物。其层片比珠光体更细密,在显微镜的高倍(700倍以上)放大下才能分辨。 (3)屈氏体(T)也是铁素体与渗碳体的机械混合物。片层比索氏体更细密,在一般光学显微镜下无法分辨,只能看到如墨菊状的黑色组织。当其少量析出时,沿晶界分布呈黑色网状包围马氏体。当析出量较多时,呈大块黑色晶团状。只有在电子显微镜下才能分辨其中的片层。b.贝氏体 贝氏体是奥氏体中温转变的产物,也是铁素体与渗碳体的两相混合物,但其金相形态与珠光体类组织不同,并因钢的成分和形成温度不同而有差别。其组织形态主要有二种:(1)上贝氏体(B)上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗

碳体所组成的非层状组织。当转变量不多时,在光学显微镜下为成束的铁素体条向奥氏体晶界内伸展,具有羽毛状特征。在电镜下铁素体以几度到十几度的小位向差相互平列,渗碳体沿条的长轴方向排列成行。 (2)下贝氏体下贝氏体是在片状铁索体内部沉淀有碳化物的混合物组织。由于下贝氏体易受浸蚀,所以在显微镜下呈黑色针状,在电镜下是以片状铁索体为基体,其中分布着很细的碳化物片,大致与铁索体片的长轴呈55。~65。的角度。C.马氏体( 马氏体(M)是奥氏体低温转变的产物,是碳在α—Fe中的过饱和固溶体。马氏体可分为两大类,即板条状马氏体和片状马氏体。 (1)板条状马氏体在光学显微镜下,板条状马氏体的形态呈现为一束束相互平行的细长条状马氏体群,在一个奥氏体晶粒内可有几束不同取向的马氏体群。每束内的条与条之间以小角度晶界分开,束与束之间具有较大的位向差。板条状马氏体的立体形态为细长的板条状,其横截面据推测呈近似椭圆形。由于条状马氏体形成温度较高,在形成过程中常有碳化物析出,即产生自回火现象,故在金相试验时易被腐蚀呈现较深的颜色。在电子显微镜下,马氏体群是由许多平行的板条所组成。经透射电镜观察发现,板条状马氏体的亚结构是高密度的位错。含碳低的奥氏体形成的马氏体呈板条状,故板条状马氏体又称低碳马氏体.因亚结构为位错又称位错马氏体。 (2)片状马氏体在光学显微镜下,片状马氏体呈针状或竹叶状,片间有一定角度,其立体形态为双凸透镜状。因形成温度较低,没有自回火现象,故组织难以浸蚀,所以颜色较浅,在显微镜下呈白亮色。用透射电镜观察,其亚结构为孪晶。 含碳高的奥氏体形成的马氏体呈片状,故称为片状马氏体,又称高碳马氏体;根据亚结构特点.又称孪晶马氏体。 马氏体的粗细取决于淬火加热温度,即取决于奥氏体晶粒的大小。高碳钢在正常淬火温度下加热,淬火后得到细针状马氏体,在光学显微镜下呈布纹状,仅能隐约见到针状,故又称为隐晶马氏体。如淬火温度较高,奥氏体晶粒粗大,则得到粗大针状马氏体。d.残余奥氏体(Ar) 当奥氏体中碳质量分数大于0.5%时,淬火时总有一定量的奥氏体不能转变成为马氏体,而保留到室温,这部分奥氏体即为残余奥氏体。它不易受硝酸酒精溶液的浸蚀,在显微镜下呈白亮色,分布在马氏体之间,无固定形态,淬火后未经回火时,残余奥氏体与马氏体很难区分,都呈白亮色。只有回火后才能分辨出马氏体间的残余奥氏体。淬火钢经不同温度回火后,所得的组织通常分为三种: (1)回火马氏体淬火钢在150℃—250℃之间进行低温回火时,马氏体内析 出碳化物,这种组织称为回火马氏体。与此同时,残余奥氏体也开始转变为回火马氏体。在显微镜下回火马氏体仍保持针(片)状形态。因回火马氏体易受浸蚀。所以为暗色针状组织。回火马氏体具有高的强度和硬度,而韧性和塑性较淬火马氏体有明显改善。 (2回火屈氏体是淬火钢在350℃~500℃进行中温回火所得的组织,是铁素体与粒状渗碳体组成的极细密混合物。组织特征是,铁素体基本上保持原来针(片)状马氏体的形态,而在基体上分布着极细颗粒的渗碳体,在光学显微镜下分辨不清,为黑点。但在电子显微镜下可观察到渗碳体颗粒。回火屈氏体有较好的强度,最佳的弹性,韧性也较好。(3)回火索氏体是淬火钢在500~C~650~C高温回火时所得到的组织。它是由粒状渗碳体和等轴形铁素体组成的混合物。在光学显微镜下可观察到渗碳体小颗粒,它均匀分布

相关文档
最新文档